

1 **ReOBS: a new approach to synthetize long-term multi-variable dataset and**
2 **application to the SIRTA supersite**

3

4 Marjolaine Chiriaco⁽¹⁾, Jean-Charles Dupont⁽²⁾, Sophie Bastin⁽¹⁾, Jordi Badosa⁽⁴⁾, Julio
5 Lopez⁽²⁾, Martial Haeffelin⁽²⁾, Helene Chepfer⁽³⁾, Rodrigo Guzman⁽³⁾

6

7 (1) LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06,
8 CNRS, Guyancourt, France

9 (2) Institute Pierre Simon Laplace, Ecole Polytechnique, Université Paris-Saclay,
10 Palaiseau, France.

11 (3) Laboratoire de Météorologie Dynamique, Univ. Pierre and Marie Curie, Paris,
12 France.

13 (4) Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

14

15

16

17 **DOI:** <http://dx.doi.org/10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE>

18 Or 10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE at dx.doi.org

19

20 **Dataset available at:** <http://sirta.ipsl.fr/reobs.html> (tab download, no password
21 required)

22

23 **Abstract**

24

25 A scientific approach is presented to aggregate and harmonize a set of sixty geophysical
26 variables at hourly scale over a decade, and to allow multiannual and multi-variables
27 studies combining atmospheric dynamics and thermodynamics, radiation, clouds and
28 aerosols, from ground-based observations. Many datasets from ground-based
29 observations are currently in use worldwide. They are very valuable because they
30 contain complete and precise information due to their spatio-temporal co-localization
31 over more than a decade. These dataset, in particular the synergy between different type
32 ob observations, are under-used because of their complexity and diversity due to
33 calibration, quality control, treatment, format, temporal averaging, metadata, etc. Two
34 main results are presented in this article: (1) a set of methods available for the
35 community to robustly and reliably process ground-based data at a hourly time scale
36 over a decade is described, and (2) a single netCDF file is provided based on the SIRTA
37 supersite observations. This file contains approximately sixty geophysical variables
38 (atmospheric and in-ground) hourly averaged over a decade for the longest variables.
39 The netCDF file is available and easy to use for the community. In this article,
40 observations are “re-analyzed”. The prefix “re” refers to six main steps: calibration,
41 quality control, treatment, hourly averaging, homogenization of the formats and
42 associated metadata, and expertise on more than ten years of observations. In contrast,
43 previous studies (i) took only some of these six steps into account for each variable, (ii)
44 did not aggregate all variables together in a single file, and (iii) did not offer an hourly
45 resolution for about sixty variables over a decade (for the longest variables). The
46 approach described in this article can be applied to different supersites and to additional
47 variables. The main implication of this work is that complex atmospheric observations

48 are made readily available for scientists that are non-experts in measurements. Dataset
49 from SIRTA observations can be downloaded on <http://sirta.ipsl.fr/reobs.html> (tab
50 download, no password required) under DOI <http://dx.doi.org/10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE>.

52
53

54 1. Introduction

55

56 The Intergovernmental Panel on Climate Change (IPCC) simulations show a large spread
57 between models when predicting future climate at global scale, but also when
58 representing the observed current climate. These model uncertainties are larger at the
59 regional scale and at short time scale (e.g. seasonal scale). These scales are however key
60 for the impacts assessment. For example models do not reproduce observed magnitudes
61 of interannual and seasonal variability and extremes in temperature and precipitation
62 (Terray and Boé, 2013). Hawkins and Sutton (2009) also show that climate natural
63 variability is the main source of uncertainty to predict regional climate evolution at the
64 scale of 10-20 years (compared to the selected scenario or model). Observations of the
65 atmosphere must be considered in order to improve both our knowledge of the
66 processes that create this temporal variability and the simulations uncertainties. These
67 observations must describe atmospheric processes that involve a large number of
68 variables in the atmospheric columns and in the ground, and at various spatial and
69 temporal scales.

70 Multiannual and multi-variables datasets are therefore necessary. Many of these
71 datasets from ground-based observations have a significant scientific value because they
72 contain complete and precise information on one or several decades, due to their spatio-
73 temporal co-localization. Supersite observatories such as the Site Instrumental de
74 Recherche par Télédétection Atmosphérique (SIRTA, Haeffelin et al. 2005) or the
75 different Atmospheric Radiation Measurements (ARM, Ackerman et al. 2003) are among
76 these sets of observations. But they are under-used, in particular the observation
77 synergy aspects, because of their complexity and diversity in terms of calibration
78 procedures, quality control, data treatment, file format, temporal representativeness,

79 metadata etc, because of the weak magnitude of the signals to be highlighted (e.g. trend
80 versus natural variability), and because of the complex connections between local-scale
81 processes and climatic-scale anomalies (e.g. links between ground/boundary
82 layer/atmosphere processes and heatwaves, as in Chiriaco et al. 2014).
83 An important homogenization work was needed on these observations. Homogenization
84 has been performed for ARM observatories leading to the ARMBE (ARM Best Estimate)
85 data product (Xie et al. 2010), which is the “ARM datastreams specifically tailored to
86 climate modelers for use in the evaluation of global climate models. They contain a best
87 estimate of several cloud, radiation, and atmospheric quantities. The ARMBE dataset
88 was created to showcase all the flagship products of ARM” (from
89 <https://www.arm.gov/capabilities/vaps/armbe>). A specificity of ARMBE products is
90 that all variables are gathered in only two files: ARMBEATM (ATM for atmosphere) for
91 many atmospheric state profiles and surface quantities, and ARMBECLDRAD (CLDRAD
92 for cloud and radiation) that contains a best estimate of several selected ARM and
93 satellite-measured cloud and radiation relevant quantities.
94 In this article, additional steps are applied to the observations and precisely described in
95 order to understand how the observations are “re-analyzed”. This method is called
96 ReOBS. The prefix “re” refers to six main steps on more than ten years of observations:
97 calibration, quality control, algorithmic treatment, hourly averaging, homogenization of
98 the data formats and associated metadata, and scientist expertise. In contrast, previous
99 studies (i) only take into account some of these six steps for each variable, (ii) do not
100 aggregate together all variables in a single file, (iii) do not offer an hourly resolution for
101 about 60 variables on a decade (for the oldest variables).
102 The ReOBS method was initially inspired by the ARMBE project and has been developed
103 at SIRTA (located 20 km southwest of Paris, France). The SIRTA observatory has been

104 collecting data for fifteen years from active and passive remote-sensing, in situ
105 measurements at the surface, in the ground, and in the planetary boundary layer. Early
106 versions of SIRTA ReOBS dataset ("Re" stands for different steps of re-processing, see
107 next sections, and "OBS" stands for observations) have already been used in scientific
108 studies that required the multi-variables and multi-temporal scales available in the
109 SIRTA-ReOBS dataset (Cheruy et al. 2012, Chiriaco et al. 2014, Pal and Haeffelin 2015,
110 Bastin et al. 2016, Dione et al. 2016). The ReOBS method has also been tested for other
111 supersites for some variables (classical meteorology, radiative fluxes, heat fluxes):
112 Cabauw (in Netherlands) and Chilbolton (in England) supersites in the framework of
113 EUCLIPSE European project (European Union Cloud Intercomparison, Process Study
114 and Evaluation project), and CO-PDD (Cézeaux – Opme – Puy De Dôme at Clermont
115 Ferrand in France) and P2OA (Plateforme Pyrénéenne d'Observations Atmosphériques
116 at Lannemezan in France) in Dione et al. (2016).
117 The objective of the current paper is to present a scientific approach (ReOBS) to
118 aggregate and harmonize about fifty geophysical variables at hourly scale on a decade,
119 to study atmospheric dynamics and thermodynamics, radiation, clouds and aerosols,
120 from ground-based observations. This paper presents two main results: (1) a set of
121 methods available for the community to process ground-based data robustly and
122 reliably at an hourly time scale over a decade; (2) provision of a single netCDF file
123 containing about fifty substantial geophysical variables hourly averaged over a decade
124 for the oldest ones, easily usable for the community.
125 The SIRTA observations used for applying the ReOBS method are described in Section 2.
126 The method used for ReOBS is then detailed in Section 3. Section 4 presents the contents
127 of SIRTA-ReOBS file and its major strengths: the vertical profiles, the multi-temporal

128 scales, and the multi-parameter specificity. Discussion and conclusions are drawn in
129 Section 5.

130

131 2. Observations

132 2.1. SIRTA observatory

133 SIRTA is a French national observatory dedicated to the monitoring of tropospheric
134 clouds and aerosols, the dynamics and thermodynamics of the boundary layer, and the
135 turbulent and organized transport of water and energy near the surface. The SIRTA
136 observatory is a mid-latitude site (48.71°N, 2.2°E) located in a semi-urban area, on the
137 Saclay plateau 20 km southwest of Paris, and hosts active and passive remote sensing
138 instruments since 2002 (Haeffelin et al. 2005). The SIRTA missions are 1) to monitor
139 continuously and on the long-term the atmospheric column using a core ensemble of
140 instruments, 2) to coordinate field campaigns in order to address specific scientific
141 questions, such as processes related to water vapor and clouds, the ultraviolet radiation
142 or the aerosol physics and chemistry, and 3) to provide teaching resources and to host
143 experimental training activities.

144 Figure 1 shows a selection of SIRTA routine measurements from the different on-site
145 locations (e.g. roof, mast, plain). The measurements used in the current study are listed
146 in Table 1. Lidars play a special role in the SIRTA instrumental park because several
147 lidars have been deployed at the SIRTA Observatory over the past 15 years, providing a
148 unique 3D-database: (1) a dual-wavelength (532 and 1064 nm) depolarization lidar
149 (called LNA for “Cloud and Aerosol Lidar”, used in the current study) from 2002 until
150 2015 [Haeffelin et al., 2005], (2) a multi-wavelength elastic (355, 532, 1064 nm) and
151 Raman (387, 408, 607 nm) depolarization lidar (called IPRAL for “IPSL Hi-Performance
152 multi-wavelength Raman Lidar for Cloud Aerosol Water Vapor Research”) since mid-

153 2015, (3) an automatic 355 nm backscatter and depolarization lidar (Leosphere ALS450,
154 used in this study) from 2008 until 2014, and (4) an automatic 1064 nm Lidar
155 ceilometer (Lufft CHM15k) since mid-2015. The different lidars differ significantly in
156 complexity, emitted power, detection channels, signal-to-noise ratio, and capacity to
157 operate autonomously. For instance the LNA backscattered signal provides information
158 on the presence of clouds and aerosols in the vertical column between 0.5 and 15 km
159 altitude whereas the ALS450 backscatter lidar signal is exploited between 0.2 and 10
160 km.

161

162 2.2. SIRTA measurements used as inputs for ReOBS

163 Table 1 shows the measurements used as inputs to create the SIRTA-ReOBS file. The
164 table contains the instruments name, the physical bounds of the measurements, the
165 native resolution of the measurements, and the available period of observation. This set
166 of variables includes *in situ* measurements ((1- 6) and (11-14) in Table 1), passive
167 remote-sensing measurements ((7-10) and (17-20)), and active remote-sensing
168 measurements ((15-16) in Table 1).

169 These different measurements are used to create the geophysical variables listed in
170 Table 2. Some of the geophysical variables are directly measured, and some others
171 require advanced data processing, such as substantial quality control or algorithm
172 application. Data processing performed independently of the ReOBS processing chain
173 and already published is described and referenced in Table 2. The data processing
174 developed in the framework of the ReOBS project is described in Section 3.

175 In the rest of the article, the geophysical variables are split into four groups. Group A
176 contains the *standard meteorology variables* (first block in Table 2) such as 2-m
177 temperature, pressure, wind speed and direction, relative humidity, etc. Group B

178 contains the *advanced non-standard meteorology variables* (second block in Table 2)
179 such as radiative fluxes, heat fluxes, in-ground temperature and moisture, etc. These
180 latter variables are directly measured but are usually not available from typical weather
181 stations because they require advanced technologies, for instance based on remote-
182 sensing. Group C contains *variables retrieved from measurements* using algorithms
183 applied to remote-sensing measurements (third block in Table 2) such as cloud fraction,
184 water vapor content, etc. Finally, group D contains atmospheric vertical profiles from
185 lidar (fourth block in Table 2).

186

187 3. The ReOBS method

188

189 3.1. ReOBS general processing chain

190 The 14 year-long SIRTA-ReOBS dataset is contained in a single *netCDF* file containing
191 hourly values of 63 physical variables listed in Table 2. The short and standard name
192 used for each variable in the ReOBS dataset follows the Coupled Model Intercomparison
193 Project (CMIP) and the Climate Forecast (CF) conventions, respectively, when available.
194 For variables not included in CMIP or CF conventions, classical names are used or new
195 ones are created.

196 The strength of the ReOBS dataset is that all variables are processed using the same
197 high-level processing chain, completed by some sub-processing computations specific to
198 each variable. Figure 2 shows the ReOBS processing chain (in blue on fig. 2), which
199 starts after the acquisition process (in orange on fig. 2). Steps outside of the ReOBS
200 processing chain are marked in green.

201 For each variable (lidar profiles excepted), the hourly mean values are calculated from
202 the native resolution data (5 s to 1 min) by averaging all the data available within +/- 30

203 min around the full hour in order to be consistent with outputs from Global Circulation
204 Models (GCM) and Regional Climate Models (RCM). Each hourly variable is completed by
205 its intra-hour standard deviation. The hourly standard deviation of each variable helps
206 in detecting non-physical spikes (i.e. successive increase and decrease) and dips (i.e.
207 successive decrease and increase in the signal). This temporal variability information is
208 also useful to document large changes in the atmospheric conditions such as a cold front
209 for air temperature, broken clouds for radiative fluxes, and summer storms for
210 precipitations or latent heat fluxes.

211 Variables entering the ReOBS dataset are quality-controlled at their native time
212 resolution. The quality control test consists in verifying that the variable lies within
213 physical bounds (Tab. 1). Calculations of hourly mean and standard deviation only use
214 native resolution data that have passed quality control. A simple informative quality flag
215 is associated to each hourly value of a variable:

- 216 - 0: quality control is OK
- 217 - 1: there are valid data but for less than 50% of the period (that is, for less
218 than 30 minutes)
- 219 - there is no flag 2 because it is used for internal control
- 220 - 3: data is unavailable for the entire hour (no measurements or less than
221 50% of the measurements in the hour passes the quality control). In this case, the
222 hourly value is set by convention to -999.96.

223

224 Beside the systematic quality tests described above, some additional complementary
225 quality controls have been applied to specific variables, as described in the following
226 subsections (Sect. 3.2 to 3.5).

227

228

229 3.2. Specific computations for standard meteorological variables

230 Classical meteorological variables collected at three different locations are included in
231 the ReOBS dataset: 1) the first group of variables is collected at the supersite SIRTA and
232 has the advantage of being representative of the very local meteorology since the
233 beginning of the supersite activities, 2) the second group of variables aims at
234 characterizing the surrounding meteorology around the SIRTA site, and 3) the third
235 group of variables is from the standardized Météo-France station, collected at Trappes,
236 15 km away from the SIRTA supersite. These three different datasets are identified with
237 the suffixes -SIR, -REG, -TRP respectively in the following.

238

239 (i) Description of surrounding meteorology around SIRTA site.

240 Figures 3b, 3c, and 3d illustrate the difference in the air temperature, wind speed, and
241 cumulated precipitations at three Météo-France stations within a 50x50km domain
242 around the SIRTA supersite: in Trappes (48.8°N, 2.0°W), in Paris-Montsouris (48.8°N,
243 2.3°W) and in Orly (48.7°N 2.4°W).

244 The Probability Density Function (PDF) of the 2-m air temperature (noted *tas* in SIRTA-
245 ReOBS) shows an offset of about 2°C for Paris-Montsouris site compared to the Orly,
246 Trappes and SIRTA sites, which is due to the urban heat. Maximum values for the mean
247 wind speed value (noted *sfcWind* in SIRTA-ReOBS) are measured at the Orly site and the
248 mean wind speed is around 3 m.s⁻¹ at SIRTA. Note that measurements at the SIRTA site
249 are performed over a roof: wind speed is thus measured at 10 m above the roof,
250 corresponding to 25 m above ground level, whereas it is measured at 10 m above
251 ground level for the other stations. Even if a ground level standard (Météo-France-like)

252 meteorological station is also present at SIRTA, the rooftop measurements were
253 preferred for the ReOBS file because they started earlier (in 2003) than the standard
254 meteorological station (in 2006). The four stations are characterized with a cumulated
255 annual precipitation ranging between 600 and 700 mm/year.

256 The data collected in the three stations around the SIRTA supersite are used to
257 characterize the surrounding 2-m meteorology. A weight is associated to each station
258 based on the following method: the 50 km x 50 km domain is divided by a factor 300 x
259 300, leading to 90.10^3 grid boxes, and each site is given a weight inside the 300x300 box
260 region, which corresponds to its geometric representativeness. The weight of the
261 Trappes station is then 44.4%, the weight of the Orly station is 34.5% and the weight of
262 the Paris-Montsouris station is 21.1% (Fig. 3a). The regional scale meteorology variables
263 v (-REG) included in ReOBS are then obtained from:

264
$$(1)$$

$$\bar{v} = \sum_i^n x_i w_i$$

265 where $x = \{x_1, \dots, x_4\}$ is the set of values taken by a variable v (2-m temperature,
266 humidity, wind) at each of the four stations, and $w = \{w_1, \dots, w_4\}$ is the station weight.

267

268 (ii) Quality control of the standard meteorological variables

269 The quality control for meteorological variables listed in tab. 2 consists of two additional
270 tests compared to what was indicated in Sect. 3.1. The goal of the quality control is to
271 reject unphysical values and to reject values with unrealistic temporal variability
272 (Tables 1 and 3), e.g. non-physical jump in the data record, non-physical persistence in
273 time of the measured values.

274 Non-physical jumps in the data are detected at native high temporal resolution as the
275 correlation between the adjacent samples increases with the sampling rate. If the
276 difference between two successive measurements is more than a specified limit given in
277 Tab. 3 (these tests are about to be refined in a new study that will give a new version of
278 the SIRTA-ReOBS file) the current measurement is rejected but it is used for checking
279 the temporal consistency with the next measurement. Two examples of measurements
280 that did not pass the quality control tests are shown in Fig. 4a and 4b for pressure and
281 soil temperature jumps, respectively. In the first example, an unphysical change of 2 hPa
282 within 1 minute is observed in pressure and in the second example several temperature
283 spikes are detected (up to 0.6°C change within 1 minute).

284 The unphysical persistence in time of the measured values are detected by verifying that
285 the variability within 1 hour is physical, following values in Tab. 3. If the one-minute
286 values do not vary by more than a specified lower limit (given in Tab. 3) within one
287 hour, the current value fails the check. Figure 4d shows an example of an unphysical
288 wind speed measured by a cup anemometer. The value is 0 m/s because of frost
289 deposition on the sensor and should be compared to the simultaneous unaffected
290 measurement collected by the sonic anemometer. The persistence test is completed by a
291 calculation of the standard deviation of temperature, pressure, humidity, and wind
292 speed for the last one-hour period. In combination with the persistence test, the
293 evaluation of the standard deviation is a very good tool for the detection of a blocked
294 sensor as well as a 1-hour sensor drift.

295

296 3.3. Specific computation for advanced meteorological variables

297 The data quality of in-ground temperature and permeability of the soil is checked using
298 the tests above (Tab. 1 and 3).

299 The quality of the downwelling shortwave (SW) and longwave (LW) fluxes is tested
300 following the recommendation of the *Baseline Surface Radiation Network* (BSRN) (Test
301 version 2.0: Roesch et al, 2011). Additional semi-automatic controls were developed and
302 applied to SW irradiances in order to reject data collected when the sun-tracker failed
303 (used for the direct and diffuse SW radiation measurements) and to remove values that
304 are non-consistent between measured global SW fluxes measured and global SW fluxes
305 calculated from direct and diffuse measured ones. Individual 1-min native data not
306 passing the test is automatically removed before performing the 1-hour averages. For
307 SW fluxes, the global as well as the direct and diffuse irradiance components are
308 included in the ReOBS dataset. A best estimate of the global SW is calculated as a
309 combination of the global irradiance measurement and the sum of the diffuse and
310 horizontal direct irradiance measurements. The sum is taken as default and the blanks
311 in observations are filled with the global irradiance measurement.
312 The sensible and latent heat flux data are subjected to spike detection and rejection
313 algorithms. Sensible and latent heat fluxes are based on sonic measurements and gas
314 analyzer. The lag between the sonic measurements and the gas analyzer is set to the lag
315 of maximum correlation over the averaging interval between the sonic anemometer
316 temperature and the absolute humidity measured by the gas analyzer. At hourly
317 intervals, sensible and latent heat fluxes are derived from eddy-covariance technics as
318 well as turbulence statistics. Raw data and calculated statistics are subjected to strict
319 data limits to reject unphysical values ((13 and (14) in tab. 1). For the latent heat flux,
320 the open-path InfraRed Gas Analyzer (IRGA) used between 2005 and 2012 could be
321 damaged by precipitations and was therefore manually switched on and off. The
322 temporal sampling was thus relatively low and we decided to exchange the IRGA with an
323 open-path Licor LI-7500 in 2012.

324

325 3.4. Retrievals based on remote-sensing measurements developed for ReOBS

326

327 3.4.1. Computations for the cloud fraction and cloud base height from lidar

328 The ReOBS dataset contains Cloud Base Height (CBH) and time series of the Cloud
329 Fraction (CF), deduced from the SIRTA 355-nm lidar and processed with the STRAT
330 algorithm (STRucture of the Atmosphere; Morille et al., 2007). The cloud fraction (noted
331 cf_{nfov} , where “nfov” stands for “narrow field of view”) is defined as the number of
332 profiles containing clouds divided by the total number of profiles collected in one hour.

333 The cloud base height of the first layer (noted $CBH1$) corresponds to the altitude of the
334 first cloud layer from the ground as detected by the STRAT algorithm. An hourly cloud
335 base height is reported in ReOBS only if at least 33% of the profiles collected during this
336 hour are cloudy and only if less than 40% of the profiles collected during this hour are
337 noisy (these 33% and 40% thresholds have been chosen based on sensitivity tests in
338 order to be representative of the selected hour). $CBH2$ and $CBH3$ respectively are the
339 altitudes of the base of a second and a third cloud layer (resp.) detected above $CBH1$ and
340 separated from the first cloud (the one with $CBH1$) with clear sky.

341

342 3.4.2. The mixing layer depth product

343 The Mixing Layer Depth (MLD, noted mld in SIRTA-ReOBS) is part of the SIRTA-ReOBS
344 database. It is retrieved from routine lidar measurements (ALS450 from Leosphere
345 Company) following the method described in Pal et al. (2013) and Haeffelin et al.
346 (2012).

347 In this method, the intensity of the lidar-derived aerosol backscatter signal at different
348 altitudes is used to determine the hourly averaged vertical profiles of variance. Next, the

349 location of maximum turbulent mixing within the mixing layer is determined and
350 corresponds to the mean MLD. Micrometeorological measurements of Monin-Obukhov
351 length scale are used. (effect of buoyancy on turbulent flow [Monin and Obukhov,
352 1954]) to better determine the MLD, especially
353 for early morning transition and evening transition periods. For these two specific
354 periods, a first-order approximation on the boundary layer growth rates is obtained and
355 the variance-based results analysis guides the attribution by searching the altitude of
356 minimum of the gradient closest to the mean MLD. Two transition periods of a day are
357 used to distinguish the turbulent regimes during the well-mixed convective ABL
358 (Atmospheric Boundary Layer) and nocturnal/stable MLD.

359

360 3.5. Computations for the lidar profiles

361 The SIRTA ReOBS dataset contains information on the detailed vertical description of
362 the atmosphere since 2002 from the LNA instrument. A drawback of this instrument is
363 that it requires human intervention and does not operate when it rains, which
364 introduces gaps in the data record.

365 Two different hourly variables are included in the ReOBS dataset:

366 - One variable called *STRATHisto*, which contains the number of occurrences of
367 clear sky, aerosols, clouds, non-valid data, and fully attenuated laser within one
368 hour for each vertical level. The vertical resolution is 15 m up to 15 km and the
369 layer type classification is based on the STRAT algorithm.

370 - One variable called *SRhisto* is a 2D height-intensity number of occurrences
371 accumulated during one hour, as defined in Chepfer et al. (2010). The lidar signal
372 intensity is estimated using the scattering ratio $SR = ATB/ATB_{mol}$ where ATB is
373 the total attenuated backscatter lidar signal and ATB_{mol} is the signal in clear sky

374 conditions. The vertical resolution is 15 m and the intensity axis contains 18 bins;
375 -999 / -777 / -666 / 0 / 0.01 / 1.2 / 3 / 5 / 7 / 10 / 15 / 20 / 25 / 30 / 40 / 50 /
376 60 / 80. The value “-999” indicates non-normalized noisy profiles, the value “-
377 777” is for profiles that cannot be normalized due to the presence of a very low
378 cloud, and the value “-666” is for non-valid data. ATB profiles are normalized to a
379 daily molecular profile based on radiosounding measurements launched every
380 day 10-km away from the SIRTA supersite (at the Météo-France station in
381 Trappes). The altitude of normalization of ATB (which must be clear sky) is
382 determined for each profile using the STRAT algorithm.

383

384 4. Results

385

386 4.1. Description of the ReOBS database content

387 All data passing the quality control tests are included in the ReOBS final netCDF file. The
388 variables included in the SIRTA-ReOBS are listed in Tab. 2 together with their
389 nomenclature (Tab. 2, second column). Figure 5 shows the temporal coverage of each
390 variable. Some variables such as the classical meteorological variables or the
391 downwelling radiative fluxes are very well sampled since 2002 when SIRTA activities
392 started. In contrast, the record for lidar profiles, which started in 2002, contains many
393 gaps. The sampling of the latent heat flux is much more intermittent than the sampling
394 of the sensible heat flux due to instrumental issues (see Sect. 3.3).

395 There are two versions of SIRTA-ReOBS file: a complete file, which includes all
396 information available (1.2 Gb), and a smaller file, which contains all data except for the
397 vertical information from the lidar (11.5 Mb). Both data files are available on the

398 following website: <http://sirta.ipsl.fr/reobs.html> (tab download, no password required),
399 which also includes quicklooks and a documentation.

400 The main added values of ReOBS compared to classical supersite databases are 1) the
401 vertical profile information coming from lidar measurements, which is user-friendly
402 thanks to the GOCCP (GCM Oriented CALIPSO Cloud Product) method (Chepfer et al.
403 2011), 2) the possibility to study the troposphere at different time-scales, from daily to
404 decadal timescales, and 3) the availability of a multi-variable synergetic view of the
405 atmosphere. And of course a mix of these three aspects. These three main added values
406 are detailed in the following subsections.

407

408 4.2. Vertical profile information

409 The lidar profiles included in SIRTA-ReOBS provide useful information on the vertical
410 distribution of clouds and aerosols in the atmosphere. This information together with
411 many other SIRTA-ReOBS variables have been used recently in various studies (Cheruy
412 et al. 2012, Chiriaco et al. 2014, Bastin et al. 2016). We first show examples of the two
413 main ReOBS variables built from lidar measurements (SRhisto and STRATHisto) and we
414 then describe how these data are used to built cloud fraction profiles. Finally we
415 describe how to use these data to evaluate clouds simulated by models.

416

417 **SRhisto and STRATHisto.** Figure 6 shows *SRhisto* (Fig. 6a) and *STRATHisto* (Fig. 6b) for
418 every hour containing measurements from 2003 to 2016. Periods without lidar
419 measurements are not included in this figure and this happens frequently (see Fig. 5)
420 because measurements are only performed when it is not raining and with human
421 intervention (i.e. not during night and weekends). Using *SRhisto* the repartition of clouds
422 can be analyzed as a function of altitude and as a function of the intensity of the lidar

423 signal (SR), which is a proxy of the cloud optical thickness. Fully attenuated lidar signals
424 are located in the bin $0 < SR < 1$, clear sky are found in the bin $SR = 1$, uncertain are in
425 the bin $1 < SR < 5$ (it could be aerosols for instance), and $SR > 5$ is for clouds (white
426 vertical line in Fig. 6a) (bins defined in section 3.5). The analysis of *SRhisto* shows that
427 non-precipitating clouds observed at SIRTA (note: the LNA lidar instrument does not
428 operate when it rains) are mostly thin low clouds (under 4 km with $SR < 15$), or thin
429 high clouds (above 7 km with $SR < 20$), and there are also thicker clouds with $SR > 80$ or
430 fully attenuated lidar signal. There are almost no mid-level clouds (between 4 and 7 km)
431 and only few clouds with $20 < SR < 80$. The analysis of *STRATHisto* indicates that for
432 these non-precipitating cases, the amount of clouds that fully attenuates the lidar signal
433 (i.e. “noise”) is approximately on the same order of magnitude than the amount of
434 thinner clouds.

435

436 **Cloud fraction profiles.** Cloud fraction profiles are derived from the *SRhisto* or from the
437 *STRATHisto* variables at a temporal scale ranging from one hour up to several years. At a
438 given altitude level, the cloud fraction is the ratio between the occurrence of cloudy
439 cases and the occurrence of all cases excluding the noisy ones. In *STRATHisto* the
440 occurrence of cloudy layers is given in flag “clouds”. In *SRhisto*, a layer is declared cloudy
441 in a lidar profile when $SR > 5$ and $SR > 1+\epsilon /ATB_{mol}$ with $\epsilon = 1.3 \times 10^{-6}$ SI (ATB_{mol} is
442 included in SIRTA-reOBS). As expected, the cloud fraction profiles obtained from *SRhisto*
443 or from *STRATHisto* (Fig. 6d) are different due to the differences in the definition of the
444 cloud detection in the two algorithms. In particular, *SRhisto* features less low-level
445 clouds ($z < 4\text{km}$) than *STRATHisto*. The magenta curve in Fig. 6c is the SR distribution for
446 cloudy cases during a given hour for the STRAT algorithm. This distribution shows that
447 about 28% of these cases correspond to cases where SR cannot be estimated because of

448 the presence of a very low cloud (-777 in Fig. 6c) preventing the normalization of the
449 profile (no detection of molecular signal under the cloud). This could explain the
450 differences of low cloud fractions between *STRATHisto* and *SRhisto* in Fig. 6d. The part of
451 the magenta curve with values between 0.01 and 5 corresponds to cloudy cases for the
452 STRAT algorithm but not based on the SR threshold method. This could explain the bias
453 between CF SR and CF STRAT that occurs at almost all vertical levels. Red and yellow
454 curves in Fig. 6c also highlight the fact that most of the cases that are defined as PBL or
455 aerosols for the STRAT algorithm are actually not cloudy when based on the SR
456 threshold method (the parts of these curves above SR = 5 represent less than 5%). The
457 differences between STRAT- and SR-based algorithms illustrate the important
458 sensitivity of the cloud fraction profile to the cloud definition. This sensitivity needs to
459 be taken into account when comparing the measurements to simulations from GCM or
460 RCM in order to reproduce the algorithm hypotheses in the simulations: it is usually
461 done using lidar simulator described below.

462

463 **Lidar simulator.** To compare the *SRhisto* variables from SIRTA-ReOBS to GCM or RCM
464 outputs, we have developed a ground-based lidar simulator, which is similar to the
465 GOCCP products that have been initially developed for model evaluation, together with
466 the COSP (CFMIP [Cloud Feedback Model Intercomparison Project] Observation
467 Simulator Package) lidar simulator (Chepfer et al. 2008). Model outputs are used as
468 inputs for the lidar simulator to simulate what would be measured from the CALIOP
469 (Cloud-Aerosol Lidar with Orthogonal Polarization) spatial lidar if the atmosphere were
470 the simulated one. First the lidar equation that gives the ATB in function of altitude is
471 used to simulate SR from model outputs. Then the same space and time resolutions as in
472 observations and the SR thresholds are used for the simulated lidar profiles as in actual

473 data algorithm (GOCCP for space lidar observations, hist SR for ground-based), making
474 the lidar profiles directly comparable to the measured ones. In order to use *SRhisto* for
475 model evaluation in the same way as GOCCP, we have modified the COSP lidar simulator
476 to make a ground-based lidar version of it. Modifications comparing to the initial version
477 of the COSP lidar simulator (Chepfer et al. 2008) is the vertical reverse of the lidar
478 equation following the very first version of lidar simulator described in Chiriaco et al.
479 (2006). This new version of the ground-based lidar simulator has been used for
480 comparisons between the SIRTA-ReOBS lidar profiles and the WRF/MED-CORDEX
481 (Weather Research and Forecast model; Coordinated Regional Climate Downscaling
482 Experiment for Mediterranean area) simulation in Bastin et al. (2016). This ground-
483 based version of the lidar simulator is currently implemented to the new COSP2
484 simulator package (version 2 of COSP, currently developed for CMIP6 simulations),
485 following these steps: 1) computation of the molecular optical thickness of each layer
486 (i.e. the atmosphere clear of any particles);, 2) computation of the particles optical
487 thickness of each layer, 3) computation of the total optical thickness of each layer by
488 adding the molecular and the particles optical thicknesses, 4) computation of the total
489 backscatter lidar signal as it would have been measured by a ground-based lidar by
490 integrating progressively these optical thicknesses from the lowest atmospheric layer to
491 the top of the atmosphere, and 5) computation of the SR profile by dividing the
492 attenuated total backscatter lidar profile by the clear sky profile.

493

494 4.3. From the daily timescale to the decadal timescale

495 The temporal variability of the variables included in SIRTA-ReOBS is synthetized in a
496 single figure, as shown in Fig. 7a for the 2-m temperature. Each row represents a year
497 and in each row, the x-axis indicates the day of the year and the y-axis indicates the hour

498 of the day. This figure allows for the visualization of the presence of gaps in the record
499 and the different temporal scales of variability: diurnal, seasonal, and interannual. A first
500 visual inspection leads to the identification of significant anomalies in terms of
501 amplitude and in terms of persistence. Figure 7b shows the mean temperature diurnal
502 cycle split by seasons. Solid lines indicate the local SIRTA temperature (-SIR) and dashed
503 lines indicate the surrounding temperature (-REG, Sect. 3.2.). Since air temperature is at
504 first order controlled by radiation, the coldest season is winter (mean value 4.1°C)
505 followed by spring (10.8°C), fall (12°C), and summer (18.5°C), as expected. The
506 amplitude of the diurnal cycle is greater in summer (standard deviation of 2.7°C), then
507 spring (STD=2.3°C), fall (STD=1.7°C), and winter (STD=1°C). The specificity of SIRTA
508 seems to lead to an attenuation of this diurnal cycle, as it is less pronounced than in the
509 surrounding areas (note that temperatures during daytime are lower at SIRTA than in
510 the surroundings whereas they are equivalent during the night), likely due to
511 urban/vegetation/soil moisture effects. Figure 7c shows the mean annual cycle of the 2-
512 m temperature at 12 UTC (noon; black lines) and at 0 UTC (midnight; grey lines). As for
513 the diurnal cycle, differences between local SIRTA measurements (solid lines) and
514 regional 2-m temperature (dashed lines) are more pronounced at noon than at
515 midnight. Figure 7d shows the interannual variability of the 2-m temperature split into
516 seasons. There is no significant trend in the four seasons (the linear regression of each of
517 the four curves multiplied by the number of years is weaker than 1σ (where σ is the STD)
518 of the curve). Nevertheless, significant temperature anomalies are detected such as the
519 cold winter 2010, the cold spring 2013, the warm fall 2006, the warm winter 2007 or
520 the hot summer 2003. Summer mean values are split into weather regimes following the
521 classification of Yiou et al. (2008), which is a deliverable of the A2C2 (Atmospheric flow
522 Analogues for Climate Change) project. In summer at SIRTA, the daily temperature is

523 maximal when the weather regime is NAO+ (North Atlantic Oscillation +), it is weaker
524 when the weather regime is blocking or NAO-, and it is minimal when the weather
525 regime is "Atlantic Ridge", as expected based on literature (numbers in the box in Fig.
526 7e). The anomaly (i.e. the mean value of all years is subtracted from each year value) of
527 $V(y, r_i)$ for June-July-August in a given year y and a given regime r_i (where r_i is one of the
528 four weather regimes mentioned above) plotted in Fig. 7e is calculated as follows:

529
$$V(y, r_i) = \langle tas(y, r_i) \rangle / \text{STD}(tas(y, r_i)) \quad (2)$$

530 where $\langle tas(y, r_i) \rangle$ is the mean value of the 2-m air temperature in year y and for days in
531 regime r_i , and $\text{STD}(tas(y, r_i))$ is its standard deviation. Hence $V(y, r_i)$ is a mean
532 temperature normalized by its variability and is unitless. Using this estimation, strong
533 anomalies (i.e. anomalies that have a strong standard deviation) due to only a few
534 numbers of days are minimized. This representation shows that summers that are not
535 particularly warm or cold could actually contain significant anomalies. During summer
536 2013 for instance, NAO- days have been significantly warmer than NAO- days of the
537 other summers, meaning that during these particular days, temperature anomaly was
538 due to processes and not only due to the large-scale circulation condition.

539 Figure 8 is the same as fig. 7 but illustrates the Cloud Radiative Effect (CRE) in the
540 longwave following the equation:

541
$$CRE_{LW} = rlds - rldscs \quad (3)$$

542 where $rlds$ and $rldscs$ are the downward all-sky and clear-sky LW flux as defined in Tab.
543 2. Figure 8a highlights the fact that the database only has few gaps for these variables. It
544 also shows that the diurnal cycle does not seem to be very intense (about 5 W/m^2
545 amplitude in DJF (December January February) and SON (September October
546 November), and about 10 W/m^2 in JJA (June July August) and MAM (March April May))
547 whereas the annual cycle is significant (about 25 W/m^2 difference between summer and

548 winter, in particular during the night). Figure 8a-d show that clouds have a stronger
549 radiative effect in the longwave during winter than during the other seasons regardless
550 of the hour of the day, for every year. It could simply be due to the amount of clouds that
551 occur more often during winter, or due to cloud radiative properties that are different
552 between the seasons. This variable does not have a significant trend from 2003 to 2015
553 for all season (i.e. the trend is smaller than the standard deviation). Nevertheless, the
554 mean seasonal values are significantly anti-correlated to the temperature values in
555 spring (-0.7) and in summer (-0.9). At first order the CRE_{LW} is driven by the amount of
556 clouds, and the more clouds, the cooler the temperature. This anti-correlation is less
557 pronounced in winter and fall (-0.5). This is explained by the fact that 1) the
558 temperature variability must be driven by the air mass circulation more than by clouds,
559 and that 2) in winter there is less solar radiation even if there are no clouds so the
560 difference between a clear sky day and a cloudy day is not as pronounced as in summer.
561 Particular anomalies of CRE_{LW} can be related to the temperature ones: for instance
562 winter 2007 was particularly mild (fig. 7d) and was associated to weak longwave cloud
563 radiative effect (fig. 8d) that could be due to a deficit of clouds. On the contrary, winter
564 2010 was colder than other winters in the period of study and is associated with strong
565 CRE_{LW} . This correlation is also observed in summer (e.g. summers 2007 and 2011 are
566 cold and have strong CRE_{LW}). The distinction of CRE_{LW} for each of the four weather
567 regimes in summer (fig. 8e) shows the part of the CRE_{LW} anomaly that is not due to the
568 large-scale dynamical conditions, which is the first order driver. The 2013 positive
569 temperature anomaly for NAO- cases is associated to an important deficit of CRE_{LW} in
570 this weather regime.

571

572 4.4. Multi-variables synergetic view of the atmosphere

573 One of the main advantages of ReOBS is that all variables are synthetized in a single file
574 at the same temporal resolution, facilitating studies with multi-variables synergy
575 particularly useful for the understanding of atmospheric processes. This synergy aspect
576 has been exploited in previous studies using the SIRTA-ReOBS data, for instance to study
577 the diurnal cycle, the annual cycle, and the interannual variability but for multiple
578 variables, (Cheruy et al. (2012) and Bastin et al. (2016)), to study the different
579 components and scales of the mixing layer depth variability (Pal and Haeffelin, 2015),
580 and to perform in addition a dynamical analysis (Dione et al. 2016, and Chiriaco et al.
581 2014).
582 Figure 9 illustrates a possible synergy of multi-variables. The distribution of three
583 variables affecting boundary layer processes in summer (JJA) is plotted (colors) as a
584 function of mixing layer depth (y-axis) and sensible heat flux (x-axis) in the afternoon
585 (between 2 pm to 6 pm). The occurrence distribution of mixing layer depth versus
586 sensible heat flux is reported in fig. 9a and then as black contours in each other subplot:
587 each isoline represents an increment of 0.5%; pixels outside the most external isoline
588 represent less than 0.5% of the cases (per pixel). The 2-m temperature distribution is
589 shown on the top figure, the soil moisture at 5-cm depth on the middle one, and the
590 cloud radiative effect on shortwave fluxes (CRE_{SW}) on the bottom one.
591 Figure 9a shows that shallow boundary layers (altitude of 500-1000 m) in summertime
592 afternoon are mostly associated with low values of sensible heat flux ($0-50 \text{ W/m}^2$). They
593 are associated to strong values of shortwave cloud radiative forcing ($<200 \text{ W/m}^2$) due
594 to the presence of clouds, high soil moisture ($> 0.25 \text{ g/m}^2$) and low air temperatures ($<$
595 17°C). Deeper boundary layers (altitude of 1500-2000 m) are associated with a wide
596 range of sensible heat fluxes ($50-150 \text{ W/m}^2$) and generally higher air temperatures ($>$

597 22°C). For these deeper boundary layer cases, soil moisture and shortwave cloud
598 radiative forcing are found to vary significantly.

599 The role of clouds in the link between *mld* and *hfss* can be easily identified on Fig. 9 In
600 absence of clouds (CRE_{SW} close to zero), *mld* and *hfss* both have a high amplitude while
601 they both have a weak amplitude in presence of clouds with strong albedo effect (CRE_{SW}
602 $< -200 \text{ W/m}^2$). The occurrence of clouds with strong albedo effect correlates well with
603 low temperatures and high soil moisture values.

604 However most occurrences (black contours) correspond to low *hfss*, relatively high *mld*,
605 and intermediate values of CRE_{SW} . Temperatures are generally quite high also, and *sm5*
606 also presents intermediate values. Very clear sky and dry soil conditions ($CRE_{SW} > -50$
607 W/m^2 and $sm5 < 0.2 \text{ g/m}^2$) generally lead to strong sensible heat fluxes and high
608 temperatures, which do not necessarily translate into higher mixing layer depths than
609 under cloudier conditions.

610 In summary, low *mld* are induced by strong cloud albedo effect and thus by low
611 temperature and weak sensible heat flux due to weak energy reaching the surface. On
612 the contrary, at hourly time scale, a *mld* higher than 1500 m is associated with a
613 temperature higher than 20°C and a wide range of CRE_{SW} (although greater than -200
614 W/m^2). But this *mld* can be associated with a weak sensible heat flux. One reason for this
615 is that the dominant time scale of variability for the boundary layer depth is the daily
616 timescale, the maximum value being reached generally near 16 UTC in summer above
617 SIRTA (Pal and Haeffelin, 2015), while the time scale of variability of the boundary layer
618 forcers is hourly or less (radiative and heat fluxes). The temporal variability around the
619 *mld* maximal value is often weak during this time lapse because it reacts with a delay.
620 The energy dissipation rate in the boundary layer is slow and then the boundary layer
621 stays deep even after the solar energy starts to decrease. So there is a delay between the

622 decrease of mld and the decrease of the sensible heat flux. When considering hourly time
623 scale, many cases have high mld and low $hfss$. Investigating this issue in detail using the
624 ReOBS database is beyond the scope of this paper.

625

626 5. Summary and perspectives

627 We have presented a set of methods available for the community to robustly process
628 ground-based data at an hourly time scale over more than a decade. The ReOBS
629 processing chain has been applied to SIRTA ground-based measurements and leads to
630 the production of a single netCDF file containing about sixty substantial geophysical
631 variables hourly averaged over up to a decade. The netCDF file is available at
632 <http://sirta.ipsl.fr/reobs.html> under <http://dx.doi.org/10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE>.

634 The main implication of this work is that complex observations are made available for
635 the scientific community and allow for multiannual and multi-variables studies
636 combining atmospheric dynamics and thermodynamics, radiation, clouds and aerosols.
637 For example the variability of 2-m temperature and LW cloud radiative effect can be
638 jointly studied on the diurnal up to the interannual timescales. The multi-variables
639 synergy is also illustrated with a focus on the boundary layer processes. As mentioned
640 before, SIRTA-ReOBS has been already used in previous published studies: Cheruy et al.
641 (2012) and Bastin et al. (2016) used SIRTA-ReOBS to evaluate simulations from GCM
642 and from RCM respectively, and in these studies, using SIRTA-ReOBS has led to identify
643 the processes responsible of the model biases. Still in term of processes, Pal and
644 Haeffelin (2015) used SIRTA-ReOBS to study the different components and scales of the
645 mixing layer depth variability. And Dione et al. (2016) and Chiriaco et al. (2014) have
646 benefited from SIRTA-ReOBS to study specific season anomalies. Datasets from ReOBS

647 method are also useful tools for teaching and outreach activities such as the European
648 KIC-Climate summer Journeys of the LABEX L-IPSL (Laboratory of Excellence Institut
649 Pierre Simon Laplace) CLE-workshop (CLimate and Environment).
650 The ReOBS processing chain is now complete but the produced files such as SIRTA-
651 ReOBS are continuously being improved e.g. by adding new periods of data, by treating
652 new variables, and by improving the quality control. The SIRTA-ReOBS file presented in
653 this paper is at the time t. Future development for SIRTA-ReOBS include 1) improving
654 the quality control of classical meteorological variables based on a comparative study of
655 different methods, 2) adding vertical profiles from radiosounding launched twice a day
656 10-km away from the SIRTA supersite since the 90's, and 3) adding new variables such
657 as cloud radar data, gases and wind profiles from radar and lidar.
658 The ReOBS approach described in this paper will be applied to other supersites.
659 Applying this approach to data from supersites of the ACTRIS-FR (Aerosol Cloud and
660 Trace Gases Researche Infrastructure – France) infrastructure, in particular to the P20A
661 site located in the South of France is currently being tested. Applying ReOBS to ACTRIS-
662 EU supersites is also under discussion. Another ongoing project is to integrate the
663 ReOBS dataset to the OBS4MIP (Observations for Model Intercomparisons Project)
664 database, which contains the data collected from observations developed specially for
665 comparisons to CMIP simulations. This requires only few adaptations to fit the OBS4MIP
666 standards.
667

668 **Acknowledgments**

669 The authors would like to thank the financial support from Ecole Polytechnique, IPSL,
670 FX-Conseil, and the European project EUCLIPSE (European Union Cloud
671 Intercomparison, Process Study and Evaluation project) for ReOBS since the beginning
672 of this project. This study also benefited from the support of the Labex L-IPSL, which is
673 funded by the Agence Nationale pour la Recherche (Grant #ANR-10-LABX-0018).

674 The authors would like to thank IPSL mesocenter and ESPRI teams from IPSL for
675 providing computing and storage resources, and the SIRTA for providing measurements
676 and data.

677 This work is also a contribution to the EECLAT project through LEFE-INSU and CNES
678 supports, and to ACTRIS-FR which is a national distributed research infrastructure and
679 identified on the French roadmap for Research Infrastructures, published by the
680 Ministry of Research. ACTRIS-FR is coordinated by the CONSORTIUM ACTRIS-FR and
681 comprises a large number of French research organizations and institutions.

682 Marjolaine Chiriaco was partly supported by Centre National d'Etudes Spatiales (CNES)
683 until 2016.

684 The authors would like to thank A2C2 European project for providing the weather
685 regimes classification (ERC advanced grant No. 338965 - A2C2).

686

687 **References**

688 Ackerman, T. and Stokes, G.: The Atmospheric Radiation Measurement Program, *Physics*
689 *Today*, **56**, 38–45, 2003.

690 Bastin S., M. Chiriaco, P. Drobinski, 2016: Control of radiation and evaporation on
691 temperature variability in a WRF/MED-CORDEX simulation: comparison with collocated
692 long term ground based observations near Paris. *Clim. Dyn.*, DOI : [10.1007/s00382-016-2974-1](https://doi.org/10.1007/s00382-016-2974-1).

694 Bosisio, A. V., and C. Mallet, 1998: Influence of cloud temperature on brightness
695 temperature and consequences for water retrieval, *Radio Science*, **33**, 929-939.

696 Brutsaert, W. 1982: Evaporation into the atmosphere: theory, history and applications.
697 *D. Reidel Publishing Co.*, Norwell, Mass. 299 pp.

698 Businger, S., Chiswell, S.R., Ulmer, W.C. and Johnson, R., 1996: Balloons as a Lagrangian
699 measurement platform for atmospheric research. *Journal of Geophysical Research* **101**:
700 doi: 10.1029/95JD00559. issn: 0148-0227.

701 Chepfer H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne et G. Sèze, 2008: Use of
702 CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model.
703 *Geoph. Res. Lett.*, **35**, iss. 15

704 Chepfer H., S. Bony, D. Winker, G. Cesana, JL. Dufresne, P. Minnis, C. J. Stubenrauch, S.
705 Zeng, 2010: The GCM Oriented Calipso Cloud Product (CALIPSO-GOCCP), *J. Geophys.*
706 *Res.*, **115**, D00H16, doi:[10.1029/2009JD012251](https://doi.org/10.1029/2009JD012251).

707 Cheruy F., J. C. Dupont, A. Campoy, A. Ducharne, F. Hourdin, M. Haeffelin, M. Chiriaco,
708 2012: Combined influence of atmospheric physics and soil hydrology on the realism of

709 the LMDz model compared to SIRTA measurements. *Clim. Dyn.*, DOI 10.1007/s00382-
710 012-1469-y. .

711 Chiriaco M., R. Vautard, H. Chepfer, M. Haeffelin, J. Dudhia, Y. Wanherdrick, Y. Morille et
712 A. Protat, 2006: The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison
713 between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA
714 Atmospheric Observatory. *Month. Weath. Rev.*, **134**, 897 – 918.

715 Chiriaco M., S. Bastin, P. Yiou, M. Haeffelin, J.-C. Dupont, L. Klenov, M. Stéfanon, 2014:
716 European heat-wave in July 2006 : observations and modelling showing how local
717 processes amplify conducive large-scale conditions. *Geophys. Res. Lett.*, **41** issue 15, 5644
718 – 5652.

719 Dione C. F. Lohou, M. Chiriaco, M. Lothon, S. Bastin, J.-L. Baray, P. Yiou, A. Colomb, 2017 :
720 The influence of synoptic circulations and local processes on temperature anomalies
721 over three French observatories. *JAMC*, DOI: <http://dx.doi.org/10.1175/JAMC-D-16-0113.1>.

723 Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol
724 optical properties from sun and sky radiance measurements. *J. Geophys. Res.*, **105**, 20
725 673-20 696.

726 Durr, B., and R. Philipona, 2004: Automatic cloud amount detection by surface longwave
727 downward radiation measurements, *J. Geophys. Res.*, **109**, D05201,
728 doi:10.1029/2003JD004182

729 Dutton, E. G., A. Farhadi, R. S. Stone, C. N. Long, and D. W. Nelson, 2004: Long-term
730 variations in the occurrence and effective solar transmission of clouds as determined
731 from surface-based total irradiance observations, *J. Geophys. Res.*, **109**, D03204,
732 doi:10.1029/2003JD003568.

733 Eck, T.F., B.N.Holben, J.S.Reid, O.Dubovik, A.Smirnov, N.T.O'Neill, I.Slutsker, and S.Kinne
734 (1999), Wavelength dependence of the optical depth of biomass burning, urban and
735 desert dust aerosols, *J. Geophys. Res.*, **104**, 31 333-31 350.

736 Haeffelin M., L. Barthès, O. Bock, C. Boitel, S. Bony, B. Bouniol, H. Chepfer, M. Chiriaco, J.
737 Delanoë, P. Drobinski, J. L. Dufresne, C. Flamant, M. Grall, A. Hodzic, F. Hourdin, F.
738 Lapouge, Y. Lemaître, A. Mathieu, Y. Morille, C. Naud, V. Noël, J. Pelon, C. Pietras, A.
739 Protat, B. Romand, G. Scialom et R. Vautard, 2005 : SIRTA, a ground-based atmospheric
740 observatory for clouds and aerosols research. *Ann. Geophys.*, **23**, 253 – 275.

741 Haeffelin, M., F. Angelini, Y. Morille, G. Martucci, S. Frey, G. P. Gobbi, S. Lolli, C. D. O'Dowd,
742 L. Sauvage, I. Xueref-Rémy, B. Wastine, and D. G. Feist, 2011: Evaluation of Mixing-Height
743 Retrievals from Automatic Profiling Lidars and Ceilometers in View of Future Integrated
744 Networks in Europe. *Boundary-Layer Meteorology*.

745 Haeffelin M., · F. Angelini, · Y. Morille, · G. Martucci , S. Frey, · G. P. Gobbi, · S. Lolli, · C. D.
746 O'Dowd, L. Sauvage, · I. Xueref-Rémy, · B. Wastine, · D. G. Feist, 2012: Evaluation of
747 Mixing-Height Retrievals from Automatic Profiling Lidars and Ceilometers in View of
748 Future Integrated Networks in Europe, *Boundary-Layer Meteorol* **143**, 49–75
749 DOI 10.1007/s10546-011-9643-z

750 Hawkins E. and R. Stutton, 2009: The potential to narrow uncertainty in regional climate
751 predictions. *American Meteorological Society*: 1095-1107

752 Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., ... & Smirnov, A., 1998:
753 AERONET—A federated instrument network and data archive for aerosol
754 characterization. *Remote sensing of environment*, **66**(1), 1-16.

755 Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their
756 Structure and Measurement, 289 pp., *Oxford Univ. Press*, New York.

757 Long, CN, and JJ DeLuisi, 1998: Development of an Automated Hemispheric Sky Imager
758 for Cloud Fraction Retrievals. In Proceedings 10th Symposium on Meteorological
759 Observations and Instrumentation, January 11-16, 1998, Phoenix, AZ.

760 Long, C. N., 2004: The Next Generation Flux Analysis: Adding Clear-sky LW and LW
761 Cloud Effects, Cloud Optical Depths, and Improved Sky Cover Estimates, 14th ARM
762 Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004

763 Long, C. N., T. P. Ackerman, K. L. Gaustad, and J. N. S. Cole, 2006: Estimation of fractional
764 sky cover from broadband shortwave radiometer measurements, *J. Geophys. Res.*, **111**,
765 D11204, doi:10.1029/2005JD006475.

766 Long, C. N., Sabburg, J., Calb'ó, J., and Pag'es, D., 2006: Retrieving cloud characteristics
767 from ground-based daytime colorall-sky images, *J. Atmos. Ocean. Tech.*, **23**, 633–652.

768 Long, CN, and DD Turner. 2008: A method for continuous estimation of clear-sky
769 downwelling longwave radiative flux developed using ARM surface measurements.
770 *Journal of Geophysical Research* **113**, D18206, doi:10.1029/2008JD009936.

771 McArthur L.J.B. 2004: Baseline Surface Radiation Network (BSRN). Operations Manual.
772 WMO/TD-No. 1274, WCRP/WMO.

773 Monin, A.S.; Obukhov, A.M., 1954: Basic laws of turbulent mixing in the surface layer of
774 the atmosphere. *Tr. Akad. Nauk SSSR Geofiz. Inst.*, **24**, 163–187.

775 Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon, 2007: STRAT: An automated
776 algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar
777 data, *J. Atmos. Oceanic Technol.*, **24**, 761– 775, doi:10.1175/JTECH2008.1.

778 Ohmura A., and coauthors, 1998: Baseline surface radiation network (BSRN/WCRP):
779 New precision radiometry for climate research. *Bull. Amer. Meteor. Soc.*, **79**, 2115 – 2136.

780 Pal S, Haeffelin M, Batchvarova E, 2013. Exploring a geophysical process-based
781 attribution technique for the determination of the atmospheric boundary layer depth
782 using aerosol lidar and near surface meteorological measurements. *Journal of*
783 *Geophysical Research*, **118**, 1 – 19.

784 Pal, S., and M. Haeffelin, 2015: Forcing mechanisms governing diurnal, seasonal, and
785 interannual variability in the boundary layer depths: Five years of continuous lidar
786 observations over a suburban site near Paris. *J. Geophys. Res. Atmos.*, **120**, 11,936–
787 11,956, doi:[10.1002/2015JD023268](https://doi.org/10.1002/2015JD023268)

788 Panofsky, H.A., and Dutton, J.A. 1984: Atmospheric turbulences. *John Wiley, New York*.
789 397 pp.

790 Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., & Zhang, T., 2011: Assessment
791 of BSRN radiation records for the computation of monthly means. *Atmospheric*
792 *Measurement Techniques*, **4**(2), 339-354.

793 Rose T., S. Crewell, U. Loehnert, and C. Simmer, 2005: A network suitable microwave
794 radiometer for operational monitoring of the cloudy atmosphere. *Atmos. Res.*, **75** (3),
795 183–200.

796 Roth, C H, Malicki, M A, and Plagge, R. 1992: Empirical evaluation of the relationship
797 between soil dielectric constant and volumetric water content as the basis for
798 calibrating soil moisture measurements. *Journal of Soil Sci.* **43**, 1-13

799 Schmid, B., J. J. Michalsky, D. W. Slater, J. C. Barnard, R. N. Halthore, J. C. Liljegren, B. N.
800 Holben, T. F. Eck, J. M. Livingston, P. B. Russell, T. Ingold, and I. Slutsker, 2001:
801 Comparison of Columnar Water-Vapor Measurements from Solar Transmittance
802 Methods. *Appl. Opt.* **40**, 1886-1896.

803 Schotanus, P., F. T. M. Nieuwstadt, and H. A. R. Debruin, 1983: Temperature-
804 measurement with a sonic anemometer and its application to heat and moisture fluxes.
805 *Boundary Layer Meteorol.*, **26**(1), 81–93.

806 Terray L. and J. Boé, 2013: Quantifying 21st-century France climate change and related
807 uncertainties. *C. R. Geosci.*, **345**, 136-149

808 Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for
809 density effects due to heat and water-vapor transfer. *Q. J. R. Meteorol. Soc.*, **106**(447),
810 85– 100.

811 Wieser A., Fiedler F., U. Corsmeier, 2001: The Influence of the Sensor Design on Wind
812 Measurements with Sonic Anemometer Systems. *JAOT*, **18**, 1585-1608.

813 Xie, S., R.B. McCoy, S.A. Klein, R.T. Cederwall, W.J. Wiscombe, E.E. Clothiaux, K.L. Gaustad,
814 J.C. Golaz, S.D. Hall, M.P. Jensen, K.L. Johnson, Y. Lin, C.N. Long, J.H. Mather, R.A. McCord,
815 S.A. McFarlane, G. Palanisamy, Y. Shi, and D.D. Turner, 2010: CLOUDS AND MORE: ARM
816 Climate Modeling Best Estimate Data. *Bull. Amer. Meteor. Soc.*, **91**, 13–20. DOI:
817 [10.1175/2009BAMS2891.1](https://doi.org/10.1175/2009BAMS2891.1).

818 [Yiou, P., Goubanova, K., Li, Z. X., and Nogaj, M., 2008: Weather regime dependence of
819 extreme value statistics for summer temperature and precipitation. *Nonlin. Processes
820 Geophys.*, **15**, 365-378, doi:10.5194/npg-15-365-2008.](https://doi.org/10.5194/npg-15-365-2008)

821

822

823

824

List of the tables

Table 1: List of variables measured at SIRTA and used as inputs for ReOBS.

Table 2: Variables included in SIRTA-ReOBS. First block (family A) is for classical meteorological measurements, second block (family B) is for more advanced measurements, third block (family C) is for parameters retrieved from observations, fourth block (family D) is for vertical lidar measurements.

Table 3: Range of temporal variabilities considered when performing the quality control for the variables listed in the table.

Measured variable, unity	Instrument	Reference	Physical bounds – <i>Sensor uncertainty</i>	Native resolution	Period of obs.
(1) 2-m air temperature, K	Platinum Resistance Thermometer (PT-100 sensors)	Haeflalin et al., 2005	-30 / 50°C – 0.2°C	5sec	2003-2016
(2) 2-m relative humidity, %	HMP110 hygrometer		3/103% - 2%	5sec	2003-2016
(3) Pressure, Pa	PTB110 barometer		850/1050hPa – 0.2hPa	5sec	2003-2016
(4) 2-m wind speed, m.s ⁻¹	A100R cup anemometer		0/40m.s ⁻¹ – 0.2m.s ⁻¹	5sec	2003-2016
(5) 2-m wind direction, °	W200P wind vane				2003-2016
(6) Precipitation at surface, kg/m ² /s	R3070 rain gauge		0/50mm.h ⁻¹ – 0.1mm	5sec	2003-2016
(7) Surface downwelling LW radiation, W.m ⁻²	CG4 or CGR4 pyrgeometers	Ohmura et al., 1998 + BSRN procedures: McArthur, 2004	100/500W.m ⁻² – 4 W.m ⁻²	1sec	2003-2016
(8) Surface downwelling SW radiation, W.m ⁻²	Diffuse: Kipp & Zonen CMP22 or CM22 pyranometers Direct: CH1 or CHP1 pyrheliometers		-5/1200W.m ⁻² – 5W.m ⁻²	1sec	2003-2016
(9) Surface upwelling LW radiation, W.m ⁻²	cg2 30m above ground		250/500W/m ² – 8 W.m ⁻²	10sec	2007-2016
(10) Surface	cm21		-5/400W.m ⁻² –	10sec	2007-

upwelling SW radiation, W.m ⁻²	30m above ground		<i>10W.m⁻²</i>		2016
(11) Soil temperature x ¹ cm below ground ¹ , K	Platinum Resistance Thermometer (PT-100 sensors)	-	-30/50°C	5sec	2007-2016
(12) Soil moisture x ¹ cm below ground ¹ , g/cm ³	Capacitive sensor (ML2x model from Delta-T Devices)	Roth et al., 1992	0.05-0.6m ³ /m ³	5sec	2007-2016
(13) 3D wind velocities and virtual air temperature, m/s	METEK (USA-1 standard model) sonic anenometer	Wieser et al., 2001	0-30m/s, <i>0.02m/s</i>	10Hz	2006-2016
(14) water vapor fluctuations, ppt	Open-Path Krypton hygrometer IRGA (Infrared Gas Analyzer)		0-60ppt, 2%	10Hz	
(15) lidar backscattered profiles, -	Leosphere automatic lidar (355 nm)	Haeffelin et al., 2011	-	30sec, 15 m vertical	2008-2013
(16) lidar backscattered profiles, -	LNA lidar (532 and 1064 nm)	Haeffelin et al. 2005	-	30sec, 15 m vertical	2003-2016
(17) 360° sky image, -	Yankee Environmental System Total Sky Imager (TSI)	Long et al., 1998	-	1min	2009-2016
(18) 440 – 870 nm spectral irradiance	Cimel Sunphotometer	Dubovik et al., 2000	-	when sun disc is visible	2008-2016
(19) zenith	GPS	Champolion	-	15min	2008-

path delay (ZPD), s		et al. 2004			2016
(20) liquid water path	RPG-HATPRO microwave radiometer	Rose et al., 2005	–	1sec	2010- 2016

¹ x is 5 cm, 10 cm, 20 cm, 30 cm, 50 cm

Table 1: List of variables measured at SIRTA and used as inputs for ReOBS.

	Variable	ReOBS short name	Based on tab. 1 variables	Treatment before ReOBS processing chain
A	SIRTA 2-m air temperature, K	tas_SIR	(1)	Direct measurement
	SIRTA 2-m relative humidity, %	hurs_SIR	(2)	Direct measurement
	SIRTA 2-m specific humidity, kg/kg	huss_SIR	(2)	Simply derived from (2)
	SIRTA Sea-level pressure, Pa	psl_SIR	(3)	simply derived from (3)
	SIRTA 2-m wind speed, m/s	sfcWind_SIR	(4)	Direct measurement
	SIRTA 2-m northward wind, m/s	vas_SIR	(4) (5)	Simply derived from (4) & (5)
	SIRTA 2-m eastward wind, m/s	uas_SIR	(4) (5)	Simply derived from (4) & (5)
	SIRTA precipitation at surface, kg/m ² /s	pr_SIR	(6)	Direct measurement
	Trappes 2-m air temperature, K	tas_TRP	Meteo-FR	Direct measurement
	Trappes 2-m northward wind, m/s	vas_TRP	Meteo-FR	Derived from wind speed and direction
B	Trappes 2-m eastward wind, m/s	uas_TRP	Meteo-FR	Derived from wind speed and direction
	Trappes precipitation at surface, kg/m ² /s	pr_TRP	Meteo-FR	Direct measurement
	Surface downwelling LW radiation, W/m ²	rlds	(7)	Direct measurement
	Surface downwelling SW radiation, W/m ²	rsds	(8)	Direct measurement
	Surface upwelling LW radiation, W/m ²	rlus	(9)	Direct measurement
	Surface upwelling SW radiation, W/m ²	rsus	(10)	Direct measurement
	Soil temperature x ¹	stx ¹	(11)	Direct measurement

C	cm bellow ground, K			
	Soil moisture x^1 cm bellow ground, g/cm 3	smx 1	(12)	Direct measurement
	Lidar cloud fraction	cf_nfov	(15)	Developed for ReOBS based on Morille et al. 2007: Sect. 3.4.1
	Surface downwelling SW radiation for clear sky, W/m 2	rsdscs	(8)	Data parameterization fitting an equation to measured data, accounting zenithal angle, effects of Sun-Earth geometry, mean cloud-free atmospheric components, local surface albedo, subset of measurements error [Dutton et al. 2004]
	Surface downwelling LW radiation for clear sky, W/m 2	rldscs	(7)	Analysis of surface irradiance, air temperature, humidity measurements [Long and Turner 2008]; technique with repeatability about 3 W.m $^{-2}$ [Durr and Philipona 2004; Long 2004]
	Cloud fraction from sky imager	tot_cld_tsi		Analysis of color ratio, filtering image into clear or cloudy [Long et al. 1998, 2006]
	Cloud fraction from LW radiation	cflw	(7)	APCADA algorithm [Durr and Philipona 2004]
	Cloud fraction from SW radiation	cfsw	(8)	Long et al. 2006
	Surface upward sensible, W/m 2	hfss	(13) (14)	Derived from fluctuations of heat and moisture covariances with respect to vertical wind velocity [Brutsaert 1982; Panofsky and Dutton 1984]
	Surface upward latent, W/m 2	hfls	(13) (14)	Variances and covariances rotated to streamwise coordinate for flux computation [Kaimal and Finnigan 1994]

			Corrections for sonic virtual temperature [Schotanus et al. 1983] and density correction for latent heat flux [Webb et al. 1980]
Lidar cloud base height, m	cbhx ³	(17)	Developed for ReOBS based on Morille et al. 2007: Sect. 3.4.1
Aerosol optical thickness at x nm	aot_x ⁴	(18)	Holben et al. 1998
regional 2-m air temperature, K	tas_REG	Meteo-FR	Developed for ReOBS: Sect. 3.2
regional 2-m northward wind, m/s	vas_REG	Meteo-FR	
regional 2-m eastward wind, m/s	uas_REG	Meteo-FR	
regional precipitation at surface, kg/m ² /s	pr_REG	Meteo-FR	
Clear sky integrated water vapor, kg/m ²	water	(18)	Using 675-, 870-, 940-nm channels [Schmid et al. 2001]
Aerosol optical thickness at x ³ nm	aot_x ³	(18)	Beer-Lambert-Bouguer law [Holben et al. 1998]
Angstrom exponent ⁵ between x ⁴ and y ⁴ nm, nm	x_yangstrom ⁴	(18)	Eck et al. 1999
Mixing layer depth, m	mld	??	Developed in the context of ReOBS: Sect. 3.4.2 [Pal and Haeffelin. 2015]
Total GPS water vapor, kg/m ²	iwv	(19)	Businger et al. 1996
Liquid water content, g/m ²	lwp	(20)	Brightness temperature at 23.8 and 31.4 GHz + input from temperature and humidity sensors [Bosisio and Mallet 1998]. Accuracy about 10-20 g.m ⁻²
Lidar scattering ratio	SRhisto	(16)	Developed for ReOBS following

D	vertical histograms			GOCCP method [Chepfer et al. 2010]: Sect. 3.5
	Lidar STRAT classification vertical histograms	STRATHisto	(16)	Developed for ReOBS applying STRAT algorithm [Morille et al. 2007]: Sect. 3.5
	Lidar molecular profile	Molecular	(16)	Developed for ReOBS applying STRAT algorithm [Morille et al. 2007]: Sect. 3.5
	Altitude of normalization of lidar profiles, m	Alt norm	(16)	Developed for ReOBS applying STRAT algorithm [Morille et al. 2007]: Sect. 3.5

¹ x is 5 cm, 10 cm, 20 cm, 30 cm, 50 cm

² x is first layer (1), second layer (2), third layer (3)

³ x is 1020, 870, 675, 500, 440, 380, 340 nm

⁴ x and y are the interval between ³ values.

⁵ negative slope (or first derivative) of Aerosol Optical Depth (AOD) with wavelength in logarithmic scale is the Angstrom parameter (Eck et al. 1999, see fig. 4r for significance value).

Table 2: Variables included in SIRTA-ReOBS. First block (category A) is for classical meteorological measurements, second block (category B) is for more advanced measurements, third block (category C) is for parameters retrieved from observations, and fourth block (category D) is for vertical lidar measurements.

variable	Temporal variability
tas	5min : $\Delta T < 6^\circ\text{C}$ and $\Delta U < -9^\circ\text{C}$ 60min : $\Delta T > 0.1^\circ\text{C}$
hurs	5min : $\Delta T < 22\%$ and $\Delta U < -23\%$ 60min : $\Delta T > 0.05\%$
psl	5min : $\Delta P < 5\text{hPa}$ and $\Delta U < -4\text{hPa}$ 60min : $\Delta T > 0.1\text{hPa}$
sfcWind	5min : $\Delta U < 30\text{m/s}$
pr	5min : $\Delta U < 40\text{mm}$
stx ¹	15min : $\Delta T < 3^\circ\text{C}$ and $\Delta U < -4^\circ\text{C}$ at -5cm 15min : $\Delta T < 3^\circ\text{C}$ at -10cm 15min : $\Delta T < 1.5^\circ\text{C}$ at -30cm 60min : $\Delta T > 0.05^\circ\text{C}$

¹ x is 5 cm, 10 cm, 20 cm, 30 cm, 50 cm

Table 3: Range of temporal variabilities considered when performing the quality control for the variables listed in the table.

Figure captions

Figure 1: Illustration of the routine instruments on the SIRTA supersite.

Figure 2: Schematic of the ReOBS general processing chain. Orange, blue, and green boxes and arrows respectively are for steps before, during, and after (resp.) the ReOBS processing chain.

Figure 3: (a) Location of the SIRTA supersite and the three neighbouring Météo France stations with their associated weight as defined in the text. Relative occurrence of hourly mean air temperature (b) and wind speed (c) at SIRTA and at the neighbouring Météo France stations between 2005 and 2014, and cumulated precipitation at SIRTA and at the neighbouring Météo France stations in 2012 (d).

Figure 4: Example of an unphysical jump in instantaneous values of pressure (a) and temperature in ground at 5 cm (black) and at 10 cm (red) (b). Example of unphysical persistence of high wind speed measurements using with a cup anemometer (d) due to frost (negative temperature in red and high humidity values in blue) (c).

Figure 5: Temporal coverage of groups of variables in the SIRTA-ReOBS dataset. In the top panel, blue bars indicate the total numbers of years with data and red bars indicate the mean numbers of days with measurements in a year. In the lower panel, blue bars indicate the numbers of months with data and red bars indicate the mean numbers of hours with measurement in a day. The numbers in brackets are the number of variables in each sub-group. Variables are separated in four categories: classical meteorological measurements (group A, left), more advanced measurements (group B, center-left), variables retrieved from measurements (group C, center-right), and lidar profiles (group D, right). Dn means downward, up means upward.

Figure 6: (a) Lidar Scattering Ratio (*SR*) histogram obtained by cumulating all SIRTA observations data from 2003 to 2016. The color bar is the logarithm10 of the percentage of occurrence (the sum of one line is equal to $\log(100\%)$), the pink horizontal line corresponds to the altitude of recovery of the lidar ($z = 1$ km; below this altitude, lidar data is more complicated to use); the white vertical line corresponds to the threshold of cloud detection ($SR = 5$). (b) STRAT histogram obtained by cumulating all data from 2003 to 2016. The color bar is the logarithm10 of the percentage of occurrence. (c) percentage of occurrence of *SR* values for the different STRAT flags (noise in blue – no cases actually -, molecular in green, PBL in red, aerosols in yellow, clouds in magenta, no detection in cyan), cumulating all altitudes above 1 km and only for hours containing a single STRAT flag. (d) Fraction of clouds (in %): *CF SR1* (black solid line) is the occurrence of $SR > 5$ versus the occurrence of $SR > 0$, *CF SR2* (grey solid line) is the occurrence of $SR > 5$ versus the total occurrence of profiles, *CF STRAT1* (black dashed line) is the occurrence of STRAT cloudy profiles versus the occurrence of STRAT molecular+PBL+aerosols+cloud profiles, *CF STRAT2* (grey dashed line) is the occurrence of STRAT cloudy profiles versus the total occurrence of profiles.

Figure 7: Contribution of the multi-temporal scale for the 2-m temperature (in $^{\circ}\text{C}$). (a) Hourly values, each row corresponds to a year with the day of the year in x-axis, and the hour of the day in y-axis. (b) Mean diurnal cycle averaged from 2003 to 2016 split into seasons (DJF in blue, MAM in green, JJA in red, SON in brown). The mean values and the standard deviation of the 2-m temperature in each season are indicated. (c) Mean annual cycle averaged monthly from 2003 to 2016 at 12 UTC (black line) and at 0 UTC (grey line) with interannual STD in errorbars. (d) Interannual evolution from 2003 to 2016, averaged by season (same colours as (b)). The trends of the curve (i.e. the slope of the curve linear regression multiplied by the number of years – 13) and its standard

deviation are indicated. (e) Same curve as in (d) for JJA only, split per weather regimes (NAO- in cyan, Atlantic ridge in magenta, blocking in green, NAO+ in orange) and plotted in anomaly (i.e. the mean value of all years is subtracted) where “norm. T2” is calculated following the equation (1). In all panels, solid lines are for the SIRTA local 2-m temperature, and dashed lines are for the regional 2-m temperature (around the SIRTA supersite).

Figure 8: Same as figure 7 but for the longwave cloud radiative effect (in W/m^2). In panel (d), the correlation between values in fig. 7d (tas) and values in fig. 8d (CRE_{LW}) are indicated.

Figure 9: Occurrence distribution (in %) of the mixing layer depth (y-axis) and the sensible heat flux (x-axis) variables in summer (JJA) for the afternoon (2 pm to 6 pm). Averaged 2-m temperature (b), averaged soil moisture at 5 cm depth (c), and averaged shortwave cloud radiative effect (d). Data are cumulated before the averaging. Black contours in (b), (c) and (d) are isolines of (a): the outermost isoline indicates 0.5% of occurrence and each curve is then incremented of 0.5%, and the internmost curve corresponds to 4%.

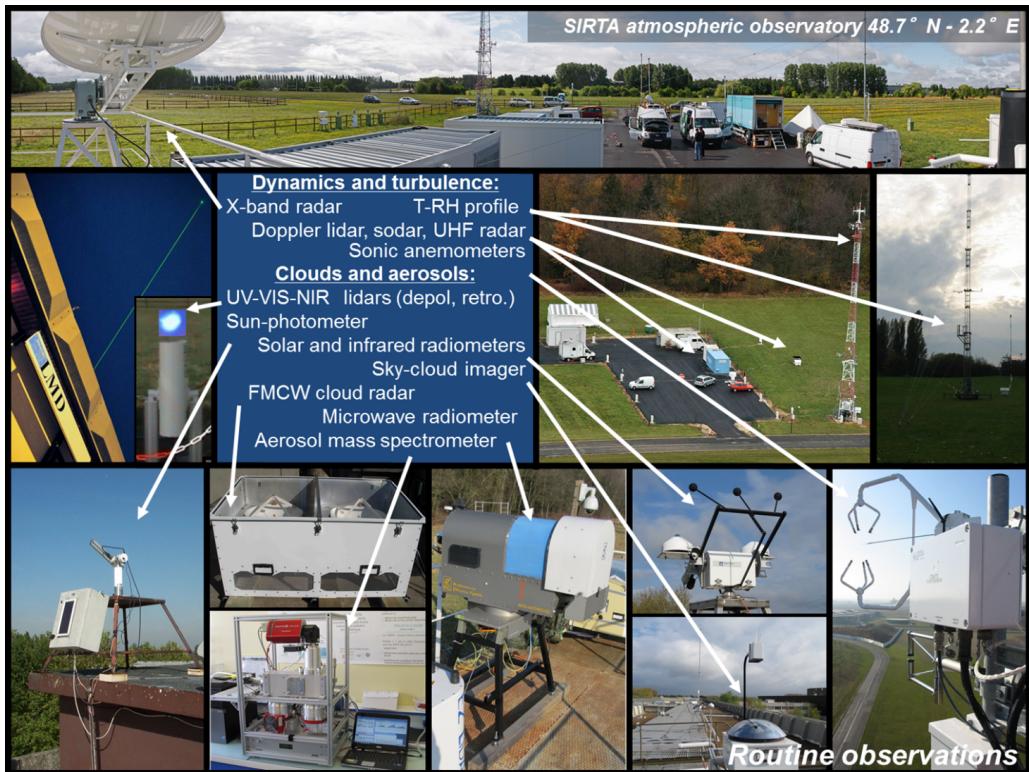


Figure 1: Illustration of the routine instruments on the SIRTA supersite.

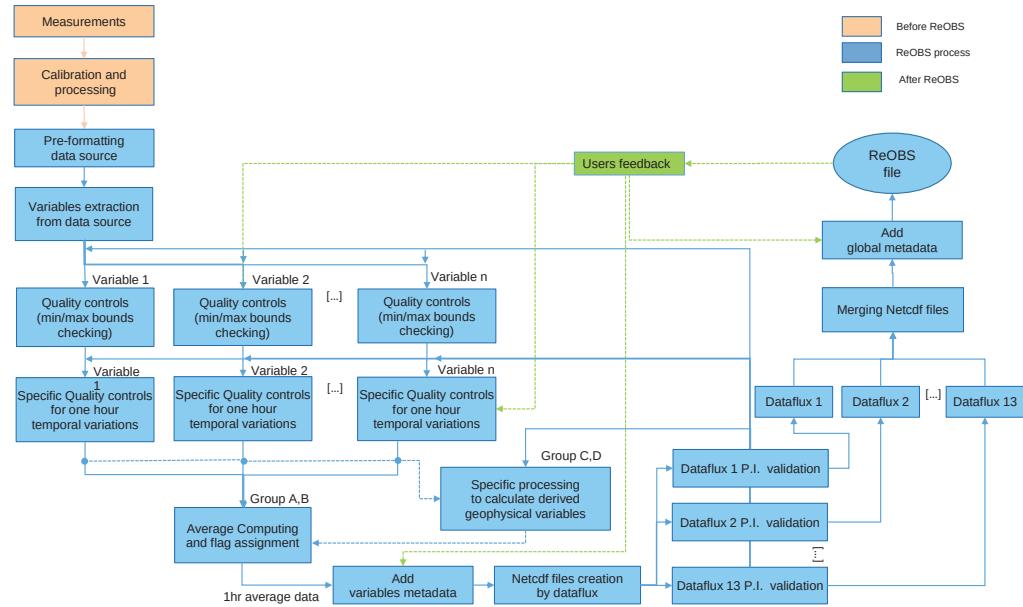
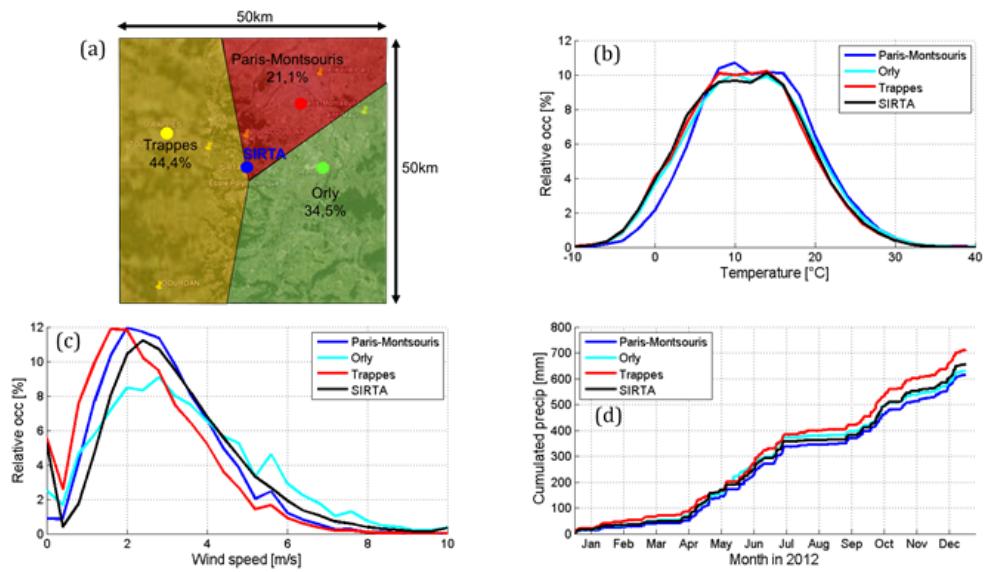
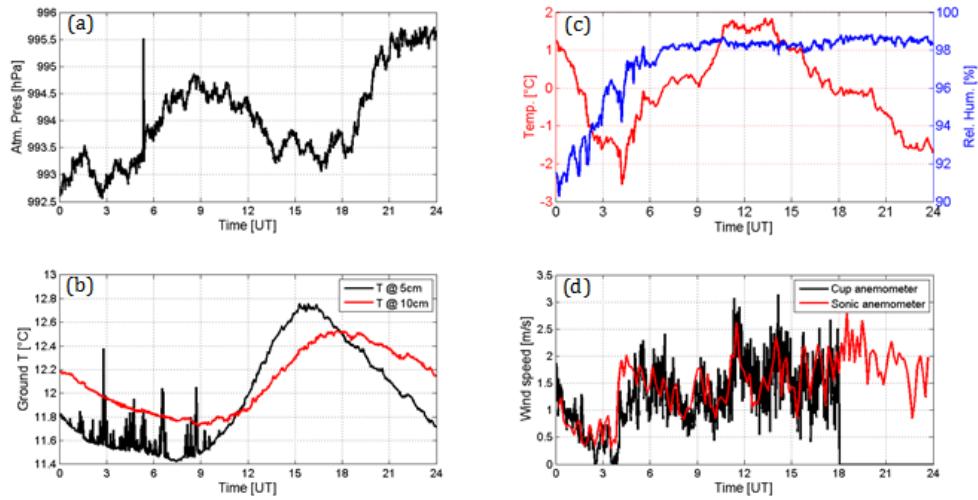
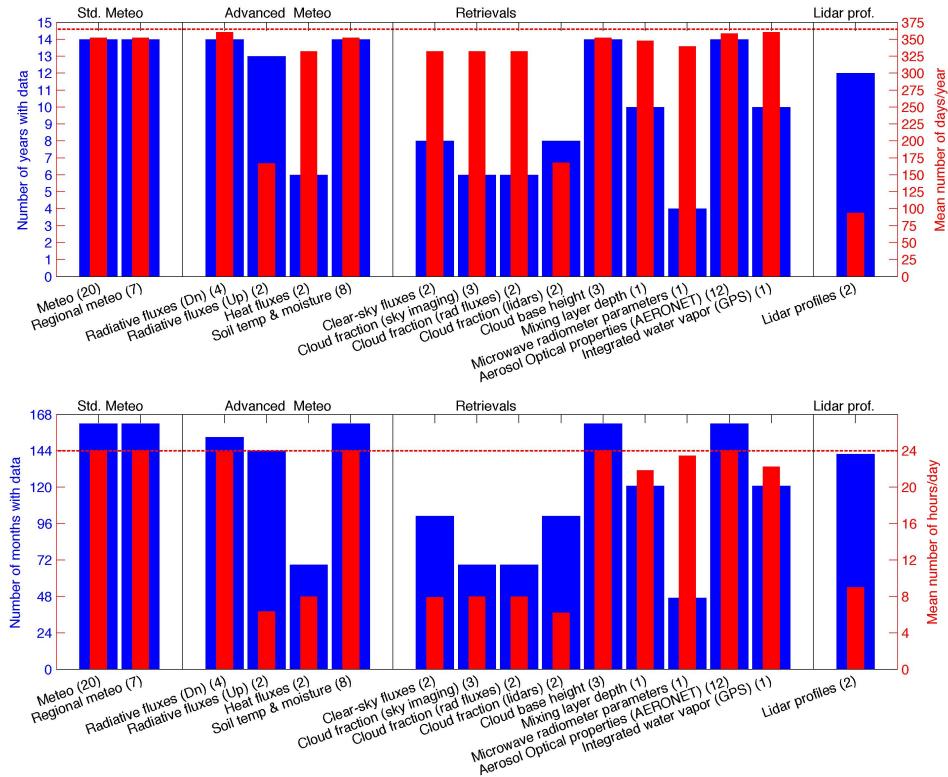
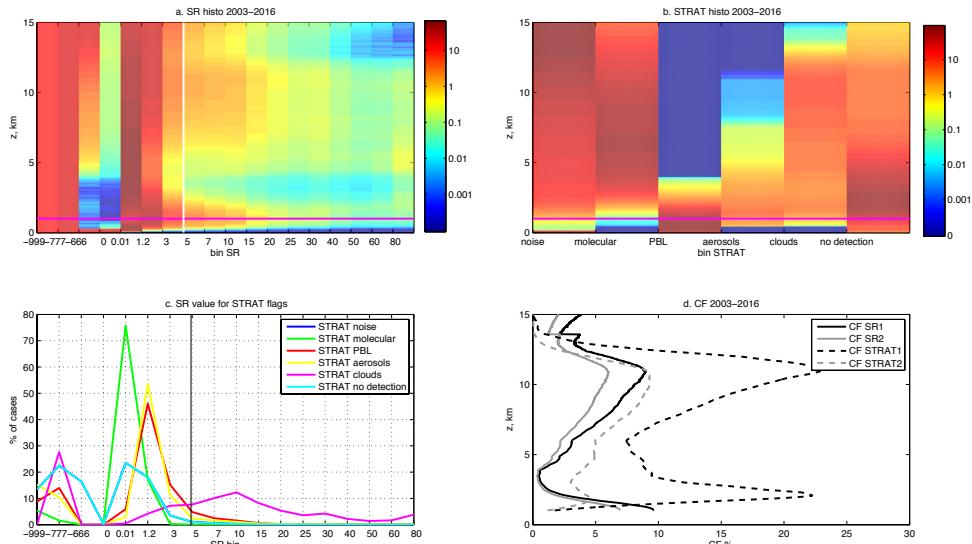
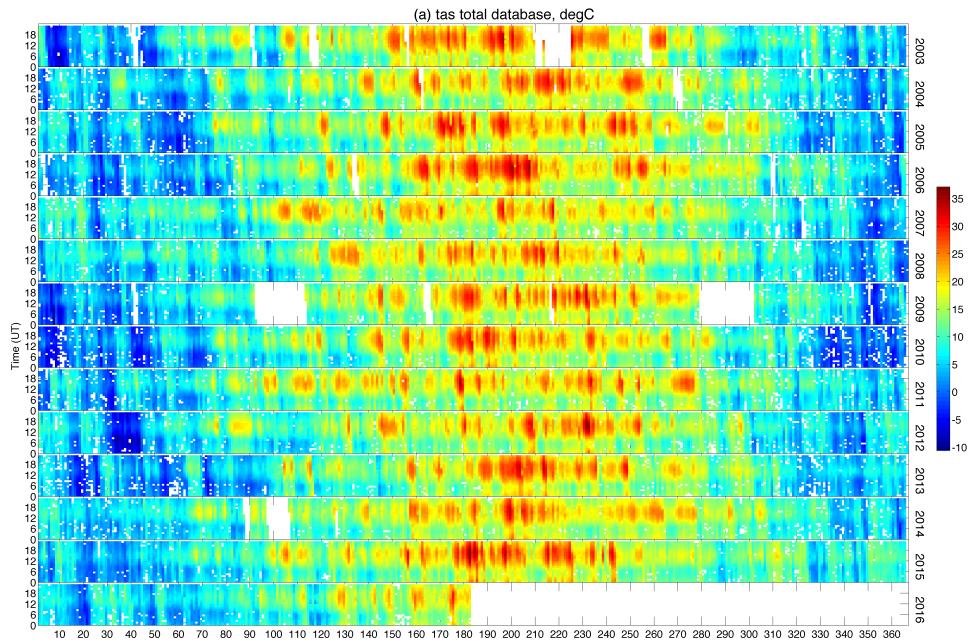


Figure 2: Schematic of the ReOBS general processing chain. Orange, blue, and green boxes and arrows respectively are for steps before, during, and after (resp.) the ReOBS processing chain.


Figure 3: (a) Location of the SIRTA supersite and the three neighbouring Météo France stations with their associated weight as defined in the text. Relative occurrence of hourly mean air temperature (b) and wind speed (c) at SIRTA and at the neighbouring Météo France stations between 2005 and 2014, and cumulated precipitation at SIRTA and at the neighbouring Météo France stations in 2012 (d).


Figure 4: Example of an unphysical jump in instantaneous values of pressure (a) and temperature in ground at 5 cm (black) and at 10 cm (red) (b). Example of unphysical persistence of high wind speed measurements using with a cup anemometer (d) due to frost (negative temperature in red and high humidity values in blue) (c).

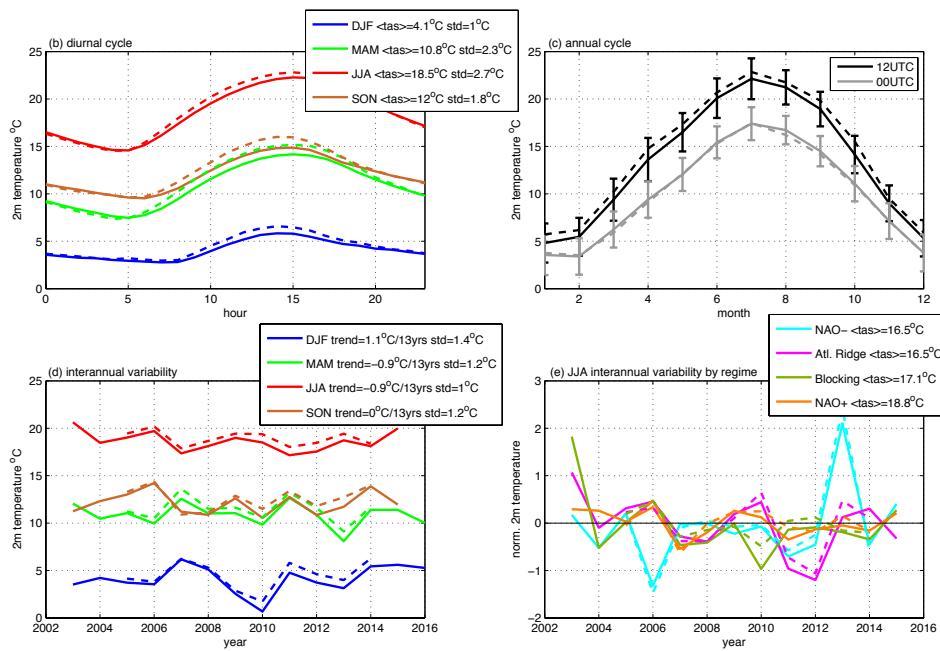


Figure 5: Temporal coverage of groups of variables in the SIRTA-ReOBS dataset. In the top panel, blue bars indicate the total numbers of years with data and red bars indicate the mean numbers of days with measurements in a year. In the lower panel, blue bars indicate the numbers of months with data and red bars indicate the mean numbers of hours with measurement in a day. The numbers in brackets are the number of variables in each subgroup. Variables are separated in four categories: classical meteorological measurements (group A, left), more advanced measurements (group B, center-left), variables retrieved from measurements (group C, center-right), and lidar profiles (group D, right). Dn means downward, up means upward.

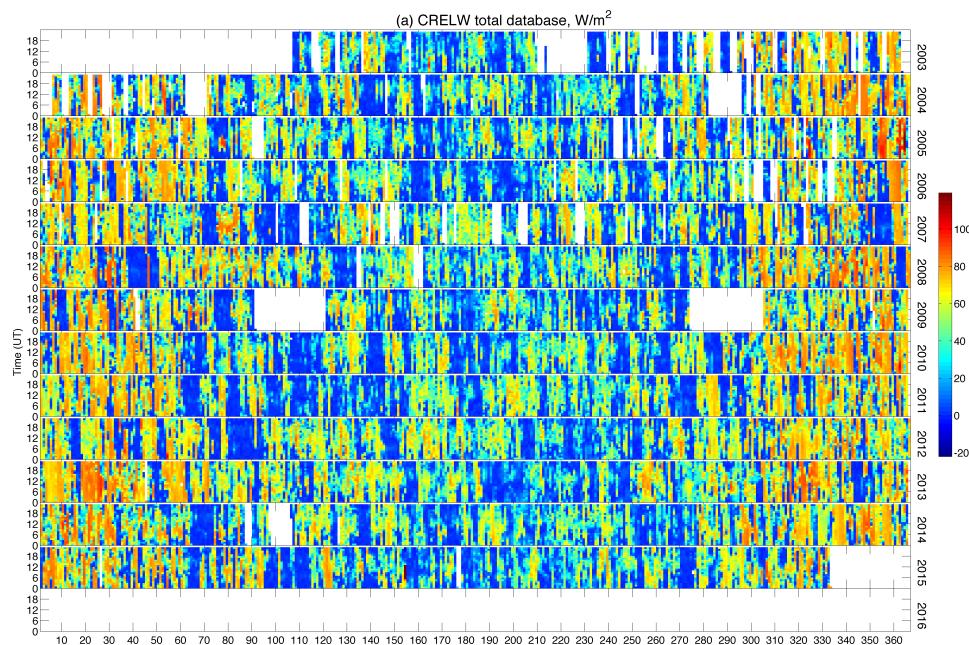


Figure 6: (a) Lidar Scattering Ratio (SR) histogram obtained by cumulating all SIRTA observations data from 2003 to 2016. The color bar is the logarithm10 of the percentage of occurrence (the sum of one line is equal to $\log(100\%)$), the pink horizontal line corresponds to the altitude of recovery of the lidar ($z = 1$ km; below this altitude, lidar data is more complicated to use); the white vertical line corresponds to the threshold of cloud detection ($SR = 5$). (b) STRAT histogram obtained by cumulating all data from 2003 to 2016. The color bar is the logarithm10 of the percentage of occurrence. (c) percentage of occurrence of SR values for the different STRAT flags (noise in blue – no cases actually -, molecular in green, PBL in red, aerosols in yellow, clouds in magenta, no detection in cyan), cumulating all altitudes above 1 km and only for hours containing a single STRAT flag. (d) Fraction of clouds (in %): CF SR1 (black solid line) is the occurrence of $SR > 5$ versus the occurrence of $SR > 0$, CF SR2 (grey solid line) is the occurrence of $SR > 5$ versus the total occurrence of profiles, CF STRAT1 (black dashed line) is the occurrence of STRAT cloudy profiles versus the occurrence of STRAT molecular+PBL+aerosols+cloud profiles, CF STRAT1 (grey dashed line) is the occurrence of STRAT cloudy profiles versus the total occurrence of profiles.

Figure 7: Contribution of the multi-temporal scale for the 2-m temperature (in °C). (a) Hourly values, each row corresponds to a year with the day of the year in x-axis, and the hour of the day in y-axis. (b) Mean diurnal cycle averaged from 2003 to 2016 split into seasons (DJF in blue, MAM in green, JJA in red, SON in brown). The mean values and the standard deviation of the 2-m temperature in each season are indicated. (c) Mean annual cycle averaged monthly from 2003 to 2016 at 12 UTC (black line) and at 0 UTC (grey line) with interannual STD in errorbars. (d) Interannual evolution from 2003 to 2016, averaged by season (same colours as (b)). The trends of the curve (i.e. the slope of the curve linear regression multiplied by the number of years - 13) and its standard deviation are indicated. (e) Same curve as in (d) for JJA only, split per weather regimes (NAO- in cyan, Atlantic ridge in magenta, blocking in green, NAO+ in orange) and plotted in anomaly (i.e. the mean value of all years is subtracted) where “norm. T2” is calculated following the equation (1). In all panels, solid lines are for the SIRTA local 2-m temperature, and dashed lines are for the regional 2-m temperature (around the SIRTA supersite).

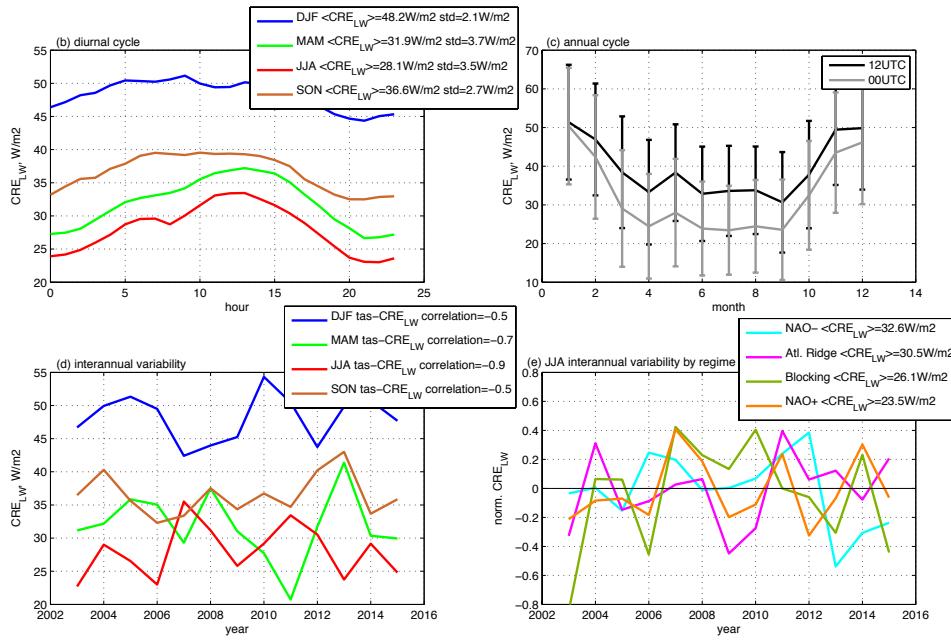


Figure 8: Same as figure 7 but for the longwave cloud radiative effect (in W/m²). In panel (d), the correlation between values in fig. 7d (tas) and values in fig. 8d (CRE_{LW}) are indicated.

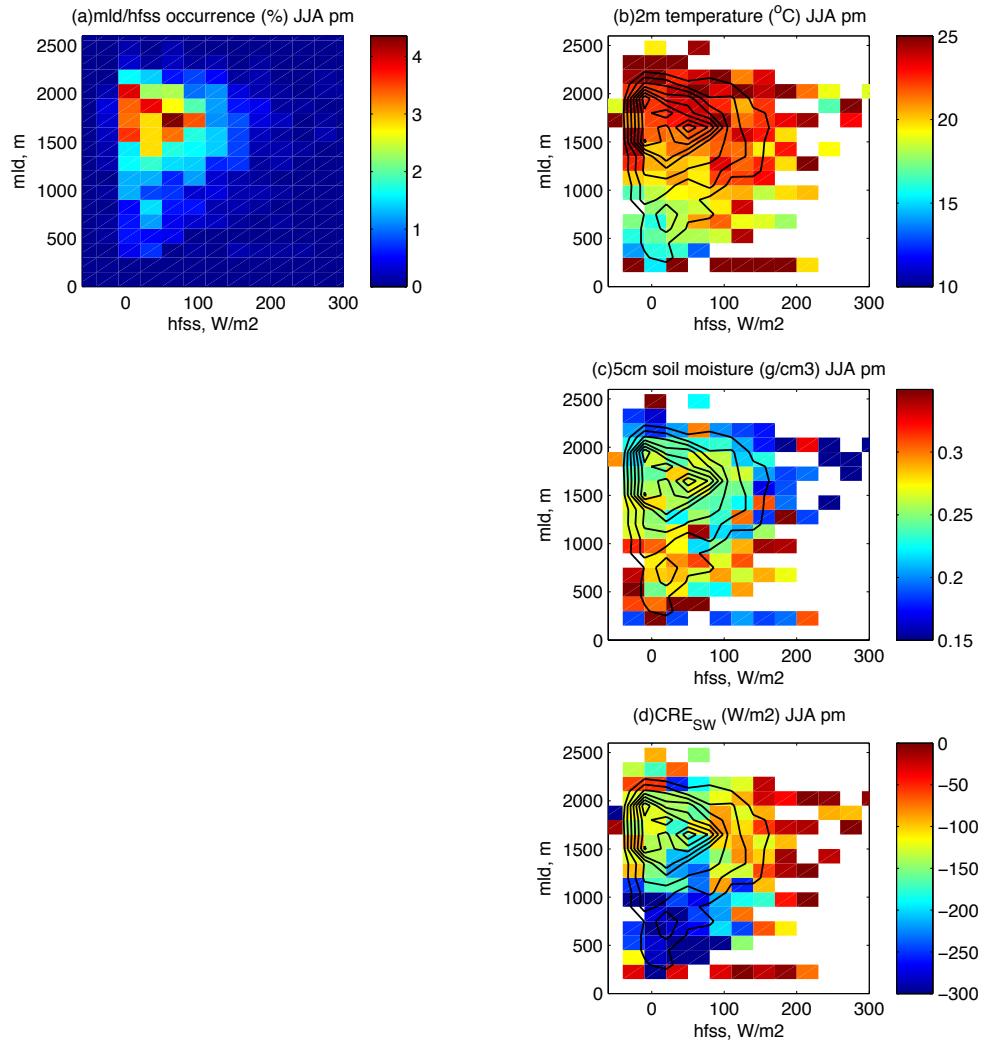


Figure 9: (a) Occurrence distribution (in %) of the mixing layer depth (y-axis) and the sensible heat flux (x-axis) variables in summer (JJA) for the afternoon (2 pm to 6 pm).

Averaged 2-m temperature (b), averaged soil moisture at 5 cm depth (c), and averaged shortwave cloud radiative effect (d). Data are cumulated before the averaging. Black contours in (b), (c) and (d) are isolines of (a): the outermost isoline indicates 0.5% of occurrence and each curve is then incremented of 0.5%, and the internmost curve corresponds to 4%.