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Abstract. Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire 15 

dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and 

their impact on atmospheric composition, long term fire records are needed that fuse information from different 

satellite and in-situ data streams. Here we describe the fourth version of the Global Fire Emissions Database 

(GFED) and quantify global fire emissions patterns during 1997-2015. The modeling system, based on the 

Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model, has several modifications from the previous 20 

version and uses higher quality input datasets. Significant upgrades include: 1) new burned area estimates with 

contributions from small fires, 2) a revised fuel consumption parameterization optimized using field 

observations, 3) modifications that improve the representation of fuel consumption in frequently burning 

landscapes, and 4) fire severity estimates that better represent continental differences in burning processes across 

boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a 25 

different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and 

boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires 

(GFED4s) were 2.2 × 1015 grams carbon per year (Pg C yr-1) during 1997-2015, with a maximum in 1997 (3.0 

Pg C yr-1) and minimum in 2013 (1.8 Pg C yr-1). These estimates were 11 % higher than our previous estimates 

(GFED3) during 1997-2011, when the two datasets overlapped. This increase was the result of a substantial 30 

increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel 

consumption (-19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace 

gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised 

emission factors. If small fire burned area was excluded (GFED4 without the “s” for small fires), average 

emissions were 1.5 Pg C yr-1. The addition of small fires had the largest impact on emissions in temperate North 35 

America, Central America, Europe, and temperate Asia. Our improved dataset provides an internally consistent 

set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire 

dynamics and their impact on the Earth System. GFED data is available from http://www.globalfiredata.org.    
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1  Introduction 

Fires have occurred naturally since the rise of vascular plants on land over 400 million years ago (Scott and 

Glasspool, 2006), shaping biomes and influencing climate through modulation of the carbon cycle and emissions 

of greenhouse gases and aerosols (Edwards et al., 2010; Langmann et al., 2009; van Langevelde et al., 2003). 

During the Anthropocene, humans have become an increasingly important driver of fire occurrence (Bowman et 5 

al., 2011). Human activity has enhanced fire activity in locations such as deforestation zones, while fire 

suppression and conversion of fire-prone landscapes such as savannas to agriculture in Africa, or of fire-

maintained open lands to closed-canopy forests in the eastern US has generally decreased fire activity (Andela 

and van der Werf, 2014; Bowman et al., 2009; Nowacki and Abrams, 2008). To study how climate influences 

fires at the global scale and, in turn, how fires influence the carbon cycle, air quality, and climate we have 10 

developed the Global Fire Emissions Database (GFED). 

The scientific community has used past releases of GFED for over a decade. GFED has been used by 

atmospheric and biogeochemical modeling groups as an input dataset to study the impact of fires on 

biogeochemical cycles (Chen et al., 2010; Schwietzke et al., 2016), atmospheric chemistry (Aouizerats et al., 

2015; Castellanos et al., 2014), and human health (Johnston et al., 2012; Marlier et al., 2013), in assessment 15 

reports of the Intergovernmental Panel on Climate Change (IPCC) to estimate the role of fire and deforestation in 

biogeochemical cycles (Ciais et al., 2013), in the National Oceanic and Atmospheric Administration (NOAA’s) 

Carbontracker system (Peters et al., 2007), and in annual updates of the Global Carbon Project (Le Queré et al., 

2015). GFED also serves as a benchmark for optimizing fire modules in dynamic global vegetation and Earth 

System models (Hantson et al., 2016), and for fire emissions estimates derived from fire radiative power (FRP), 20 

including the Global Fire Assimilation System (Kaiser et al., 2012). Finally, burned area from GFED has 

provided a means for building early warning systems of fire season severity (Chen et al., 2016).   

The first version of GFED was released in 2004 and has since undergone several revisions as improved burned 

area estimates became available. GFED2 was released after Giglio et al. (2006) improved on the mapping of 

burned area from active fire data. GFED3 was released when this conversion was no longer necessary because 25 

almost all burned area in the Moderate Resolution Imaging Spectroradiometer (MODIS) era had been mapped 

(Giglio et al., 2010), and the current version follows further improvements in the burned area algorithm (Giglio 

et al., 2013). Satellite burned area is the most important input dataset regulating the spatial and temporal pattern 

of emissions following the Seiler and Crutzen (1980) approach, and is complemented in GFED by a 

biogeochemical modeling framework that provides estimates of biomass in various carbon ‘pools’ including 30 

leaves, grasses, stems, coarse woody debris, and litter. These pools are combusted to different degrees during a 

fire depending on pool-specific parameters and environmental conditions that influence fuel moisture and the 

simulated burn depth in organic soils of boreal forests and peatlands. 

Over the past decade, a parallel line of research has made considerable progress in estimating emissions using 

direct observations of fire radiative power (FRP). When continuous observations are available or the FRP diurnal 35 

cycle can be modeled, FRP can be integrated over time turning FRP into fire radiative energy (FRE) which is 

directly related to fire emissions (Wooster, 2002). FRP-based methods can provide emissions estimates in near 
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real time (Darmenov and da Silva, 2015; Kaiser et al., 2012). Despite progress (Ichoku and Ellison, 2014; 

Schroeder et al., 2014a), there is still substantial uncertainty and some of these FRE approaches apply a scaling 

factor to match GFED. Comparisons between the ‘classical’ burned area approach and the FRP approach, or 

approaches based on active fire detections in general, have indicated there is considerable variability in the 

amount of burned area associated with an individual active fire detection, and thus, the two approaches do not 5 

always align (Giglio et al., 2006; Randerson et al., 2012). In general, direct mapping of burned area excels when 

fires are large, but has difficulty in detecting smaller fires, for example, in croplands and in other areas where 

many fires have a size below the 21 ha of an individual 500 m MODIS pixel. Combining both burned area and 

active fire data, Randerson et al. (2012) provided evidence that the total area burned by these relatively small 

fires is substantial at the global scale. Therefore, emission estimates based solely on active fires, including the 10 

Fire INventory from NCAR (Wiedinmyer et al., 2011), may better capture spatial and temporal variability in 

regions with many small fires than emission estimates based solely on burned area. However, approaches based 

solely on active fires usually do not account for spatial and temporal variability in burned area per active fire nor 

in variability in fuel consumption within biomes.  

In this paper we describe the emissions estimates associated with the GFED4 burned area product from Giglio et 15 

al. (2013), with or without additional burned area from small fires based on a revised version of the Randerson et 

al. (2012) small-fire estimation approach. The main focus of our analysis will be on the model version that 

includes small fires (GFED4s), while the emissions estimates based on burned area without small fires will be 

referred to as GFED4. We also used a recent meta-analysis (van Leeuwen et al., 2014) to constrain our modeled 

estimates of fuel consumption. Fuel consumption is the amount of biomass, coarse and fine litter, and soil 20 

organic matter consumed per unit area burned and is the product of fuel load and combustion completeness. 

Besides these two main improvements over earlier versions, we made a number of additional modifications 

including updated input datasets and the use of satellite-derived estimates of parameters governing fuel 

consumption and tree mortality in the boreal region (Rogers et al., 2015). In Sect. 2 we provide more detail on 

these input datasets, followed by a description of the modeling framework in Sect. 3. Results are given in Sect. 4 25 

followed by a discussion in Sect. 5 that includes a description of the main differences with GFED3 and an 

assessment of the primary sources of uncertainty in estimating fire emissions. In the conclusions (Sect. 6) we 

summarize the main points of our analysis and describe several important directions for future work. 

2  Input datasets 

Our version of the CASA model described in Sect. 3 requires input datasets on vegetation characteristics, 30 

meteorology, and fire parameters. Most of these datasets are somewhat different from those used in previous 

versions of GFED, in part due to a need for shorter latency in our updates. We re-gridded all of the input datasets 

to 0.25° spatial resolution and a monthly temporal resolution. We took additional steps to create estimates of fire 

dynamics on daily and 3-hourly time steps. 
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2.1  Vegetation characteristics 

In CASA, the fraction of absorbed photosynthetically active radiation (fAPAR) is used to estimate net primary 

production (NPP), fractional tree cover (FTC) is used in the allocation of NPP between living carbon pools, and 

land cover (LC) is used to set turnover rates for stems and leaves, applying emission factors, and for categorizing 

fire carbon emissions. 5 

We calculated fAPAR based on the Global Inventory Modeling and Mapping Studies (GIMMS) Normalized 

Difference Vegetation Index (NDVI) version 3g (Pinzon and Tucker, 2014) and relations established by Los et 

al. (2000). This dataset is derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor flying 

on board several satellites. We capped fAPAR at 0.95, corresponding to an NDVI value of 0.9. Data were not 

available for several remote islands, including Hawaii and Fiji, and we do not report emissions for these 10 

locations. 

FTC was derived by aggregating the annual MODIS MOD44B vegetation continuous fields (250m, V051, 

Hansen et al., 2005) to 0.25°. In order to provide consistency over the full time period, we used the last year 

available (2013) and increased FTC in prior years using the fire-driven deforestation rates. These fire-driven 

deforestation rates were based on the amount of burned area within tropical forests at an annual time step. We 15 

used land cover maps from the annual MODIS MCD12C1 land cover type product and University of Maryland 

(UMD) classification scheme (Friedl et al., 2010). The climate modeling grid (CMG, 0.05°) dataset was 

resampled to 0.25° based on the mode land cover type. This dataset was available for 2001-2012; data from 2001 

were applied to earlier years in the time series, and 2012 land cover data were used for years after 2012.  

2.2  Meteorological datasets 20 

We now use air temperature (t2m), soil moisture (swvl), and solar radiation (ssrd) from the ERA-interim dataset 

(Dee et al., 2011) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). We 

calculated the monthly mean for all datasets and regridded the 0.75° dataset to our 0.25° resolution without 

interpolation.   

These datasets are somewhat different from inputs for earlier GFED versions but are now internally consistent. 25 

Interannual and seasonal variability was relatively similar to datasets previously used in GFED, and these 

variations have the largest impact on our calculations. The use of soil moisture is new; previously, we used a 

bucket model based on rainfall and potential evaporation to calculate the wetness of soils, a key input dataset for 

calculating heterotrophic respiration (Rh) rates and combustion completeness (see Sect. 3). Soil moisture is now 

transformed to a soil moisture index (SMI) based on soil-type specific permanent wilting point (PWP) and field 30 

capacity (FC) values as described in http://www.ecmwf.int/en/forecasts/documentation-and-support/evolution-

ifs/cycles/change-soil-hydrology-scheme-ifs-cycle and is capped at 1. This was done for all 4 different soil layers 

(0-7, 8-28, 29-100, 101-255 cm). The SMI for the 0-7 cm layer replaces the scalar used previously for 

combustion completeness, the average SMI of all layers was used in the allocation of assimilated carbon to 

above- and belowground pools (see Sect. 3), the average SMI of the top two layers was used to down regulate 35 

NPP in herbaceous vegetation in the light use efficiency model when moisture was limiting, whereas the average 
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of the top four layers were used for NPP in woody vegetation. We used the average SMI for the upper two layers 

to represent the influence of soil moisture on the abiotic scalar regulating rates of Rh. 

 

2.3  Fire processes 

We derived burned area (both mapped burned area and active fire detections scaled to burned area) and metrics 5 

that can be used to assess fire-induced tree mortality and combustion completeness from satellite. Our burned 

area time series is based on MODIS data for the August 2000 onwards period (the “MODIS era”) and based on 

other sensors before that period. In Sect. 2.3.1 we briefly describe the MODIS burned area data for which a more 

detailed description, including how the pre-MODIS burned area was derived, is described in Giglio et al. (2013). 

In Sect. 2.3.2 we then explain how the small fire burned area estimates for the MODIS era were derived based on 10 

Randerson et al. (2012). This is the GFED4s burned area time series and complemented with other sensors to 

compute the full 1997-2015 time period dataset (Sect. 2.3.3). 

 

2.3.1  Burned area from MODIS 

For the MODIS era we used the MODIS Collection 5.1 MCD64A1 burned area product (Giglio et al., 2013). 15 

Compared with Collection 5 and earlier versions of the MCD64A1, the Collection 5.1 product reduces the 

unintentional removal of small burns and eliminates some systematic omission errors (Giglio et al., 2013). The 

MCD64A1 product maps daily burned area at 500 m spatial resolution; these data are then aggregated to a 0.25° 

grid (both monthly and daily) to produce the MODIS-era GFED4 burned area product (Fig. 1a).  

 20 

2.3.2  Small fire burned area during the MODIS era 

In the MODIS era, we combined 500 m burned area (see above), 1-km thermal anomalies (active fires) from 

Terra and Aqua MODIS, and 500 m surface reflectance observations to statistically estimate burned area 

associated with small fires, BAsf, in each 0.25° grid cell (i), month (t), and aggregated vegetation type (v): 

 25 

!"!! !, !, ! = !"!"# !, !, ! ×!!,!,!,! ×!!,!,!,!       (1) 

 

where FCout is the number of active fire pixels outside of the perimeter of the MCD64A1 burned area, α is a ratio 

of burned area to active fires within MCD64A1 burned areas, and γ is a correction factor derived from 

comparing difference normalized burned area (dNBR) of active fires observed outside (dNBRout) and inside 30 

(dNBRin) of MCD64A1 burned areas with unburned control areas (dNBRcontrol, see Eq. 4 of Randerson et al., 

(2012)). α and γ scalars were estimated each year (y), as a function of region (r), seasonal interval (s), and 

aggregated vegetation type (v). Our method was similar to that described in Randerson et al. (2012), but with 

several important modifications to each of the 3 factors on the right hand side of Eq. 1 as described below.  
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First, we used the MCD64A1 product from Collection 5.1, replacing Collection 5 that was used in Randerson et 

al. (2012). Second, instead of using a single source of Level-3 composited thermal anomaly/fire product from 

Terra (MOD14A1), here we used individual active fire detections from both Terra and Aqua. Third, to improve 

geolocation accuracies, we used the MODIS fire location product (MCD14ML) instead of the gridded composite 

fire product (MOD14A1). To further reduce geolocation uncertainties, we only retained active fire detections 5 

with small or moderate scan angles (equal or less than 0.5 radians). Even with the above adjustments to improve 

georegistration, some remaining resampling error was introduced in the process of projecting the variable-size 

MODIS fire pixels onto the 500 m sinusoidal grid on which the MCD64A1 burned area product is generated. To 

partially correct this known bias, we applied region-specific factors ranging from 0.88 in northern hemisphere 

Africa to 1.12 for Boreal and Central Asia. These correction factors, which were derived using a rigorous model 10 

of the sample-dependent MODIS pixel shape and size, statistically compensated for the simplified, fixed 1-km 

radius initially used to determine whether an active fire pixel was co-located (inside) or outside of the 

MCD64A1 burn area pixels.  Finally, to estimate dNBR for active fires inside of MCD64A1 burned area, we 

only used active fire detections for which each of the 4 overlapping 500 m pixels were classified as burned. This 

was a stricter criterion than in Randerson et al. (2012) that increases dNBRin and its separation from dNBRout and 15 

other areas used as controls (Fig. 2).  

It was not possible to apply the same constraint in the calculation of dNBRout, so this adjustment had the effect of 

lowering γ. At the same time, we raised the filtering standard for control pixels (Eq. 4 of Randerson et al. (2012)) 

so that pixels within a 1 km buffer area of active fire detections by either Terra or Aqua MODIS were excluded 

in the calculation of dNBR for non-burning areas (dNBRcontrol). During the regional aggregation of dNBR, we 20 

excluded 500 m pixels that were marked as ‘water’ by MODIS land cover type product (MCD12Q1).  

During the time both Terra and Aqua fire detections were available (January 2003-December 2015), we 

calculated BAsf separately for Terra (MOD) and Aqua (MYD). BAsf was then estimated as the arithmetic mean of 

the two estimates. A climatological ratio of BAsf-MYD/BAsf-MOD was used to estimate BAsf-MYD during periods 

when Aqua MODIS observations were not available (August 2000-December 2002). The final GFED4s burned 25 

area during the MODIS era was the sum of GFED4 burned area (Sect. 2.3.1; Fig. 1a) and burned area from small 

fires (BAsf, Fig. 1b). As expected, burned area from small fires is more prevalent in areas with extensive 

agriculture and in other human-dominated landscapes (Fig. 1c). 

 

2.3.3  Estimating burned area prior to the MODIS era (1997-2000) for GFED4s 30 

For the pre-MODIS era, we used monthly active fire data from the Visible and Infrared Scanner (VIRS) aboard 

the Tropical Rainfall Measuring Mission (TRMM) or the Along Track Scanning Radiometers (ATSR) on board 

multiple platforms to estimate burned area. Two steps of optimization were used to derive total burned area, 

starting with the GFED4s product described above. The first step was to develop a relationship between 

aggregated active fires (from VIRS or ATSR) and burned area during the MODIS era in each GFED region, with 35 
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the aim of using this relationship to estimate regional burned area during 1997-2000. The second step involved 

distributing the aggregated burned area within each region to individual 0.25° grid cells. 

To calculate the regional sum of BA during the pre-MODIS era, we first performed regression analyses between 

ATSR or VIRS active fires and the regional sum of GFED4s burned area during the MODIS era. We developed 

linear regression models for each GFED region (Fig. 3), for each month, and for each of the five aggregated 5 

vegetation classes (see Randerson et al. (2012) for a description of the vegetation classes). When ATSR and 

VIRS active fire data were both available (Jan 1998-Jul 2000), the highest performing regression from these two 

datasets was used to estimate the burned area in each region. Among the 14 continental-scale regions, we used 

VIRS data in Africa, Southeast Asia, Equatorial Asia, and Australia and ATSR data in all other regions (Fig. 4). 

Prior to 1998 when VIRS data were not available, regressions based on ATSR were used. If the ATSR or VIRS 10 

active fires for any given month were outside the dynamic range of active fires during the MODIS era, we 

instead used linear regression derived from all of the monthly data during the MODIS era for that region.  

After quantifying the sum of burned area within each region, we distributed it among 0.25° grid cells using the 

following approach. While active fires from ATSR or VIRS provide some indication about the temporal 

dynamics of fire in a region, the active fire approach tends to underestimate burning in savannas and other areas 15 

with herbaceous fuels. To assess how well active fires captured regional spatial patterns, we estimated the spatial 

correlation between active fires and burned area in each GFED region during the MODIS era. Higher 

correlations from these analyses indicated better agreement between the spatial distribution of ATSR/VIRS 

active fires and GFED4s burned area. Since we found the correlation coefficients varied seasonally, a mean 

monthly (m) set of spatial correlation coefficients (SC) was derived to determine the level of representation of 20 

burned area by ATSR/VIRS active fires. The spatial distribution function of burning was based on a linear 

combination of climatological distribution of burned area (cl) and the distribution of active fires (FC):  

 

!"!"#!!"#$% !, ! = !"!" !, ! × !"#!" !, !, ! ×!" !,! + !"#!" !, !, ! ×(1 − !" !,! )        (2) 

 25 

where SDFFC and SDFcl are unitless spatial distribution functions that each sum to 1 in each GFED region and 

were derived from active fire detections or the monthly climatology of burned area during the MODIS-era from 

GFED4s, and BArs is the regional (r) sum of burned area for that month and region derived from the regressions 

between GFED4s and ATSR or VIRS active fires described above. In temperate and high latitude regions, where 

the spatial correlation between active fires and burned area is relatively high, the equation primarily uses 30 

information from the pre-MODIS active fires to assign the spatial distribution of burned area. In regions where 

the spatial correlation between active fires and burned area is relatively low, the equation relies more on the 

climatological burned area pattern from the MODIS era. For consistency with the previous step, the source of the 

active fires for generating the SPF was the same as active fires used to generate the regional sum of burned area 

in each region. The contribution of ATSR, VIRS, MCD64A1, and BAsf to the total burned area is shown in Fig. 4 35 

for the GFED4s time series. 
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2.3.4  Combustion completeness and fire-induced mortality in boreal forests 

Despite relatively similar environmental conditions and vegetation attributes, the boreal regions in North 

America and Eurasia exhibit significantly different patterns of fire severity (Wooster and Zhang, 2004). This was 

shown to primarily be a function of divergent plant traits for the dominant tree species in each continent (Rogers 5 

et al., 2015). Species in North America tend to promote crown fires with higher levels of combustion 

completeness of the canopy and tree mortality compared to lower-severity surface fires in Eurasia. As with other 

global fire models, GFED3 did not capture these differences due to biome-wide parameterizations. 

To address the large-scale differences in boreal fire effects, we integrated satellite-based metrics of severity from 

Rogers et al. (2015) including immediate tree mortality and an index of vegetation destruction. These were 10 

initially calculated at 1 km and 500 m resolutions, respectively, and aggregated to 1°, but here rescaled to our 

0.25° grid without interpolation. Vegetation destruction was derived from three MODIS-based metrics that 

provide information on immediate fire-induced losses of green vegetation, reduction in canopy and soil water, 

and landscape charring. These included dNBR, decreases in NDVI, and increases in summer land surface 

temperature (LST). The original vegetation destruction product used LST from Aqua and was available from 15 

2003-2012. We extended it here to 2001 and 2002 using multiple linear regression relationships based on Terra 

LST, dNBR, and changes in NDVI at 1° (r2 = 0.95 for North America, 0.96 for Northwest Eurasia, 0.95 for 

Northeast Eurasia, and 0.91 for Southern Eurasia). Immediate tree mortality was based on decreases in tree cover 

and increases in spring albedo one year after a fire, and was provided for fires between 2001 and 2009. For both 

products, grid-cell-specific averages were used in years not covered, and grid cells without valid values were 20 

assigned regional burned-area weighted means. On average, vegetation destruction was 36 % lower and fire-

induced tree mortality was 42 % lower in boreal Eurasia compared to boreal North America. More details on 

model integration are given in Sect. 3.1, and more information on these products can be found in Rogers et al. 

(2015).  

 25 

3  Modeling framework and modifications 

GFED is based on the Carnegie-Ames-Stanford-Approach (CASA) model that was developed in the early 1990s 

to simulate the terrestrial carbon cycle using satellite data ( Potter et al., 1993; Field et al., 1995; Randerson et 

al., 1996). In previous work we adjusted the model to account for fires (van der Werf et al., 2003; 2004); further 

revisions were implemented in GFED2 (van der Werf et al., 2006) and GFED3, including modifications to 30 

estimate the contribution of different fire categories including agricultural waste burning, boreal forest fires, 

deforestation fires, peatland fires, and  savanna fires (van der Werf et al., 2010). Below we describe the model in 

general (3.1), followed by a more detailed explanation of the changes we made in this version (Sect. 3.2-3.5). 
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3.1  CASA-GFED framework 

When CASA was developed it computed carbon fluxes as the difference between NPP and Rh. Both are still 

calculated for each month and each 0.25° grid cell. NPP is based on a light use efficiency model (Field et al., 

1995) and is distributed over various live biomass ‘pools’ (leaves, stems, roots) according to satellite-derived 

fractional tree cover maps. In forests we allocate NPP to all three live biomass pools, and in grasslands to leaves 5 

and roots, accounting for variability in allocation due to gradients in mean annual precipitation as in GFED3. 

The carbon in these pools is subsequently delivered to 9 litter pools at the surface and in the soil with turnover 

rates set for each pool depending on moisture conditions and temperature.  

The turnover rates of the wood pool in GFED4 (the modeling framework used to derive both GFED4 and 

GFED4s emissions) were adjusted at the biome level to match observed aboveground biomass (Avitabile et al., 10 

2016; Santoro et al., 2015). Wood turnover now varies between 40 years for deciduous broadleaf forest and 65 

years for deciduous needleleaf forest, with turnover times for evergreen forest in between those values: 52 years 

for evergreen needleleaf and 55 for evergreen broadleaf (Fig. 5). Similarly, turnover times of slowly-

decomposing soil pools were adjusted in GFED4 to better match measured values reported for 0-30 and 30-100 

cm (Batjes, 2016). 15 

In GFED1 we added fire, herbivory, and grazing as additional carbon loss pathways besides Rh. Fires transfer 

carbon to the atmosphere and between the different pools depending on the burned fraction of the grid cell, 

combustion completeness, fire induced mortality rates, and information on whether belowground carbon pools 

are susceptible to fire or not.  

Combustion completeness (CC) is treated similarly in GFED4 as in our previous work with set minimum and 20 

maximum values, see Table 1 in van der Werf et al. (2010). We scaled CC using the soil moisture index (SMI) 

of the top 7 cm such that that the 5th and 95th percentiles corresponded with the minimum and maximum values. 

Fire induced tree mortality was set to 2 % for low tree cover regions (mainly savannas and agriculture) and 50 % 

for forests in general but modified in tropical forests based on fire persistence as in GFED3, and in boreal 

regions according to satellite derived proxy datasets (Sect. 2.3.4). More specifically, in boreal forests we used the 25 

satellite-derived instantaneous tree mortality to represent fire-induced tree mortality. In addition, we did not use 

the CC scaling by SMI for the aboveground wood in the boreal region but used the satellite-derived vegetation 

destruction scalar for this. The combustion completeness of the wood pool ranged between the set minimum and 

maximum values (0.2 and 0.4, respectively), and linearly depended on the vegetation destruction scalar instead 

of SMI.  30 

 

3.2  Modifying the burned fraction to account for sub-grid scale heterogeneity in fuels 

In our previous model set-up, fires lowered the fuel load in each grid cell depending on burned area, combustion 

completeness, and fire induced mortality rates. This was done uniformly in the grid cell not accounting for the 

fact that fires only lower fuel in the fraction of the grid cell that actually burned. This may have led to an 35 

underestimation of emissions in frequently burning regions, especially towards the end of the fire season. For 
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example, in a grassland grid cell that burns in two consecutive months, each with 0.5 burned fraction, modeled 

fuel loads in the second month are half those of the first month if combustion completeness is set at 100 % (Fig. 

6). In reality, the fuel load in that grid cell in the second month should be similar to that in the first month for the 

part that had not burned, and depleted for the part that had burned. To compensate for this effect we now 

calculate the modified burned fraction of the grid cell as: 5 

 

!"#(!, !) =
!"(!,!)
!(!)

(! −  !"(!,!)!!!
!!!
!(!) )

         (3) 

 

where MBF is the modified burned fraction or the modified fraction of the grid cell that burns, BA is the burned 

area, and A is the area of the grid cell at location (i). In our hypothetical example from above MBF now becomes 10 

1 in the second month according to Eq. 3, thus generating similar emissions in the two months that each burn the 

same area (Fig. 6). When cumulative burned area over a fire season exceeds the grid cell area this approach 

yields negative values towards the end of the season; if this occurs these values are replaced by the burned area 

divided by the grid cell area. Because we only take into account the burned area from the actual month and the 

three preceding months, grid cells with two burning seasons are probably not impacted because they usually 15 

occur with more time in between. Our approach does not influence the burned area datasets but only the way it is 

used in the conversion of burned area to emissions. 

 

3.3  Fuel consumption optimization 

Emissions are derived from the multiplication of burned area and fuel consumption per unit burned area, the 20 

latter being the product of fuel loads per unit area and combustion completeness. Van Leeuwen et al. (2014) 

summarized the peer-reviewed literature on fuel consumption rates consisting of 76 studies and covering 121 

unique measurement locations. In addition to the fuel consumption measurement, we also included the fuel load 

measurements mostly in savannas from Scholes et al. (2011) and assumed a combustion completeness of 0.9 for 

these fuel measurements to calculate fuel consumption. This latter set of 95 measurements were mostly confined 25 

to South Africa, Botswana, and Zambia.  

We used these two compilations to adjust the turnover rates of herbaceous fuels where the largest discrepancies 

between the model and measurements were found. Uncertainties in the comparison stem from comparing 

different time period (most measurements were made before our study period) and from comparing local 

measurements with model estimates for 0.25° grid cells. Fuel consumption rates are highly variable, not only 30 

between biomes but also within biomes and between separate fuel classes. The overall spatial representativeness 

of the fuel consumption field measurements is reasonable for most fire-prone regions. However, several 

important regions from a fire emissions perspective– including Southeast Asia and Central Africa– are under-

represented. For this study we used version 1 of the fuel consumption database available from 

http://www.falw.vu/~gwerf/FC/. 35 
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11 

 

3.4  Emission factors 

Emission factors are used to convert dry matter burned into emissions of trace gases and aerosols. These were 

assigned in GFED3 based on the compilation of Andreae and Merlet (2001) with annual updates. A new 

compilation was developed by Akagi et al. (2011) who considered a subset of the available literature focusing on 5 

measurements of smoke that had cooled to ambient temperature but had not undergone photochemical processes. 

In addition to this approach that may better match the requirements from the atmospheric community, Akagi et 

al. (2011) reported mean values for more biome categories. The most important change in that regard from the 

GFED perspective is the partitioning of the extratropical forest category into temperate and boreal forests. We 

compiled a subset of the available species that are most frequently used in large-scale chemistry transport models 10 

and filled missing values using those of Andreae and Merlet (2001), see 

http://www.falw.vu/~gwerf/GFED/GFED4/ancill/GFED4_Emission_Factors.txt.  

 

3.5  Redistributing monthly emissions on daily and 3-hourly timescales 

We made several improvements to the approach described by Mu et al. (2011) for redistributing monthly 15 

emissions to daily and 3-hourly time steps in each 0.25° grid cell. This set of higher temporal resolution 

emissions was created only for the period of 2003 to the present because of increased MODIS active fire data 

availability after the launch of Aqua.  

To estimate the daily distribution of emissions, we used two sources of information: active fires from 

MCD14ML and the day of burning reported in the MCD64A1 burned area product. In tropical regions between 20 

25°N and 25°S, we weighted the information content from these two sources equally in grid cells for which both 

data streams were available. In GFED3, the day of burning was not available for use as a constraint on daily 

variability. In the extra-tropics (poleward of 25°N and 25°S) we solely used active fires to distribute the daily 

pattern of emissions. In these regions, gaps between successive overpasses of Aqua and Terra are smaller, and 

active fires have been shown to be moderately effective in capturing daily variations in fire spread rates 25 

(Veraverbeke et al., 2014). We removed persistent active fire locations associated with volcanoes, gas flaring, 

and many other non-fire sources, using a more recent static hotspot database (Randerson et al., 2012). A simple 

3-day center mean smoothing filter was applied in tropical regions to adjust for gaps in MODIS coverage, 

following Mu et al. (2011). 

We created a climatological diurnal cycle of burning in each region and for different aggregated vegetation types 30 

to redistribute daily emissions on a 3-hour time step. The approach is similar to the one described in Mu et al. 

(2011), and uses active fire data derived from full hemispheric scans of GOES-11 (West) and GOES-12 (East) 

observations during 2007-2009 with version 6.0 of the WF_ABBA algorithm (Prins et al., 1998; Reid et al., 

2009). Here, we used an improved land cover type product from Friedl et al. (2010), MCD12C1 version 5.1, 

during 2007-2009 to create diurnal cycles of emissions for three aggregated vegetation classes within 35 
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continental-scale regions in the western hemisphere. These diurnal cycles were then applied in other regions 

using the same mapping strategy as described in Mu et al. (2011). An example of the redistribution of emissions 

using this approach for daily and hourly emissions is shown in Fig. 7, showing relatively comparable results as 

in GFED3. 

4  Results 5 

Over the 1997 – 2015 period, fire emissions according to GFED4s are on average 2.2 Pg C y-1 with substantial 

interannual variability. In Sect. 4.1 we discuss the spatial pattern of burned area and the resulting emissions, and 

in 4.2 the temporal patterns. We then discuss the modeled fuel consumption (4.3) and the greenhouse gas forcing 

of fires in 4.4. We also explain the main differences between GFED4s and GFED3 as well as differences in 

emissions between GFED4s and GFED4, with the latter derived from the same modeling framework but using 10 

the burned area dataset without small fires (i.e., with burned area from GFED4) (4.5).  

4.1  Spatial patterns 

The spatial patterns of emissions and burned area are similar but because fuel consumption is, in general, 

inversely related to fire frequency (Table 1), emissions are less spatially variable than burned area (Fig. 8). 

About 84 % of global carbon emissions has an origin in the tropics between 23.5°N and 23.5°S (1830 Tg C y-1), 15 

and 65% comes from tropical savannas (1418 Tg C y-1), underscoring the importance of fire as a driver of 

biogeochemical cycles and ecosystem processes in tropical ecosystems. 

The relative importance of different regions or continents varies depending on whether one is considering burned 

area, carbon emissions, or trace gas emissions. For example, while Equatorial Asia (mostly Indonesia) is 

responsible for only 0.6 % of global burned area, the region accounts for 8 % of carbon emissions and 23 % of 20 

CH4 emissions from global fire activity. Boreal forests offer a similar, although less extreme, example: 2.5 % of 

global burned area, 9 % of global fire carbon emissions, and 15 % of global fire CH4 emissions. This difference 

is due to the large variability in fire behavior and fuel consumption in forested regions with high fuel loads, 

especially when fires consume organic soils. The larger contribution of coarse fuels and smoldering stages of 

combustion in organic soils also contributes to higher emission factors for reduced species such as CO and CH4. 25 

More information on the relative contribution of the different regions is provided in Tables 1 and 2 for fire 

carbon emissions and on http://www.falw.vu/~gwerf/GFED/GFED4/tables/ for individual trace gases and 

aerosol species.  

 

4.2  Temporal dynamics 30 

Forest fires are the primary driver of interannual variability in fire emissions (Fig. 9, Table 2). In the tropics, 

much of this variability is linked with sea surface temperatures, including large-scale climate modes such as El 

Niño, that alter fire risk in tropical forests (Chen et al., 2016). El Niño years including 1997-1998, 2002, and 

2015 have relatively large contributions from tropical forests. Peat burning in Equatorial Asia contribute 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-62, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



 
 

 

 

13 

substantially to anomalously high emissions 1997 and 2015, in part due to the human-ignited fires that burn in 

drained peatlands during prolonged drought periods associated with El Niño (Field et al., 2016; van der Werf et 

al., 2008). Most of the interannual variability in emissions originates from regions outside of Africa, which is 

visible in the top right panel shown in Fig. 9 that excludes emissions from Africa.  

August and September are usually the months with highest emissions, coinciding with the main austral fire 5 

season (Fig. 10). This dominance of the southern hemisphere is because southern hemisphere Africa has higher 

emissions than northern hemisphere Africa (especially during the latter part of our time period) and the 

deforestation regions south of the equator are larger and more active than those north of the equator. Finally, it 

coincides with the burning season in the temperate and boreal northern hemisphere, which is much stronger than 

the one in the southern hemisphere. The inclusion of small fires does not influence these dynamics (Fig. 10), 10 

while the modified conversion of burned area to burned fraction of fuel causes a slight delay in the peak fire 

season, mostly in Africa (Fig. 11).  

 

4.3  Fuel consumption 

Modeled and measured (van Leeuwen et al., 2014) fuel consumption agree reasonably when aggregated to 15 

biome-levels (Fig. 12). Fuel consumption in savannas and other regions with herbaceous fuels is lower in 

GFED4 (both with and without small fires) because of increases in the turnover rates of herbaceous leaf and 

surface litter pools. As a consequence, fuel consumption in GFED4 in savannas is more than 30 % lower than 

fuel consumption in GFED3. Compared with the fuel consumption database from van Leeuwen et al. (2014), 

GFED4 predicts estimates that are, on average, 14 % higher than the fuel consumption measured in the 20 

collocated grid cells. GFED4 also shows a somewhat lower range than the observations. 

Fuel consumption in tropical forests is substantially higher (45 %) than measured. However, measured fuel 

consumption typically does not account for repeated burning during the deforestation process which can lead to 

complete combustion over a full fire season following multiple fires (van der Werf et al., 2009; Yokelson et al., 

2007). In temperate forests, GFED4 average fuel consumption is 33 % below the measured values while in 25 

boreal forests the model is 39 % higher. The discrepancy in temperate forests can be traced back to one very high 

measurement in Tasmania that is not reproduced in the collocated grid cell in GFED4; the medians are in close 

agreement. Pinpointing the reasons for the disagreement in boreal regions is less straightforward; the range, 

mean, and medians for the modeled values exceed the measured ones. One potential reason might be related to 

the relatively large number of experimental burns in the database of van Leeuwen et al. (2014) for this biome 30 

which in general occur under conditions less favorable for large fires to prevent them from growing out of 

control. For the State of Alaska, GFED4 estimates of fuel consumption are similar to estimates from the Alaska 

Large Fire Database that rely solely on fuel consumption observations from uncontrolled wildfires (Veraverbeke 

et al., 2015). The satellite-derived maps of tree mortality and combustion completeness led to an increase in fuel 

consumption in North America. On average, fuel consumption is now 38 % higher than in boreal Asia for grid 35 

cells north of 55°N and with more than 20 % tree cover. For all other biomes the number of fuel consumption 

measurements is probably too small for a fair comparison. 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-62, 2017

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



 
 

 

 

14 

 

4.4  Greenhouse gas forcing of fires and potential for mitigation 

Fires emit the greenhouse gases CO2, CH4, and N2O, and modify the climate also by emitting precursors of 

aerosols and ozone, aerosols, and changing surface properties such as albedo in often complex ways (Randerson 

et al., 2006; Ward et al., 2012). Average annual greenhouse gas emissions according to GFED4s were 7.4 Pg 5 

CO2, 16 Tg CH4, and 0.9 Tg N2O. Note that in this section we refer to C emissions in CO2 mass units rather than 

the C mass units used in the rest of the paper. Using a 100-year time horizon and based on global warming 

potentials of 34 for CH4 and 298 for N2O (Myhre et al., 2013), this translates to 8.2 Pg CO2 equivalent annually, 

or 23 % of global fossil fuel CO2 emissions in 2014 (Le Queré et al., 2015).  

However, fire emissions are not generally a net CO2 source to the atmosphere, and may be better viewed as “fast 10 

respiration”, because regrowing vegetation in many burned areas will sequester a roughly equivalent amount of 

atmospheric CO2 during post-fire stages of ecosystem recovery over a period of years to decades (Landry and 

Matthews, 2016). In general, only fires that are not balanced by regrowth are a net CO2 source. The most 

obvious fire types in this category are fires used in the deforestation process or those that burn drained peatlands. 

CO2 emissions from these two fire types are estimated here to be 1.4 Pg CO2. Including CH4 and N2O of all fire 15 

types, the contribution of fires to the greenhouse gas budget is 2.2 Pg CO2 equivalent annually or 6 % of global 

fossil fuel CO2 emissions in 2014. Another category of fire emissions that may add to the build-up of 

atmospheric CO2 are those that see an increase over time, for example increased burned area or combustion 

completeness in boreal regions related to climate change. Our time series is too short and our modeling 

framework is too incomplete to capture the exact magnitude of emissions from a changing boreal fire regime.  20 

Savanna fire season management has been proposed as a climate mitigation instrument. By burning early in the 

season instead of late, fires are in general more patchy, release fewer emissions, and prevent large late season 

fires (Russell-Smith et al., 2013). According to GFED4s, total annual savanna fire emissions averaged 4.9 Pg 

CO2, 6 Tg CH4, and 0.6 Tg N2O. In this case, only CH4 and N2O emissions are relevant and combined account 

for 0.27 Pg CO2 equivalent of annual emissions. Experiments with early burning in Australia have shown a 25 

potential reduction of up to 50 % (Walsh et al., 2014), but it is not known to what extent it is possible to use this 

approach in other regions, what the side effects will be, and whether some of the mitigation will be offset by 

higher CH4 emission factors because early season fires may occur when fuels have had less time to cure. In 

Australia the latter is probably not the case (Meyer et al., 2012), but if this is also true in other regions remains to 

be investigated. 30 

 

4.5  Differences between GFED4s, GFED4, and GFED3 

In general, small fire burned area (GFED4s) and the modified burned-area-to-burned-fraction conversion 

(GFED4 and GFED4s) cause emissions to increase, while the optimization of fuel consumption causes emissions 

to decrease as compared with earlier versions of GFED. On a global scale, these modifications yield a modest 35 
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increase in fire carbon emissions in GFED4s as compared with GFED3 (11 % for the overlapping 1997-2011 

time period). However, the effects of the three main adjustments vary spatially; on a regional scale the 

differences are larger (Fig. 13). The relative effect of the small fire burned area is largest in temperate and 

subtropical regions where agricultural waste burning and shifting cultivation are important drivers of fire 

activity. The more than doubling of burned area in Central America and Northern hemisphere South America 5 

compared to GFED3 reflects differences in both GFED4 burned area and the inclusion of small fires (Fig. 13). 

Burned area in Temperate North America and Europe also increases by about a factor of 2, and most of this 

difference is due to small fire burned area.  

Our modifications to herbaceous fuel turnover rates cause fuel consumption per unit area to decrease, whether or 

not small fire burned area is included, in all regions except Central Asia where consumption increase by 10 

approximately 20 to 30 % (Fig. 13). Estimates of fuel consumption are similar in GFED4 and GFED4s, 

indicating that fuel loads in areas burned by small fires are not substantially different from those in mapped 

burned areas (or that our relatively coarse modeling set-up cannot resolve finer-scale landscape differences). The 

exception is Central Asia where small fire burned area causes a relative increase of burned area in forested 

regions. In Central America and Equatorial Asia, in contrast, small fire burned area occurs predominantly in 15 

areas with relatively low fuel loads. 

The modified burned-area-to-burned-fraction parameterization causes an increase of 5 % in carbon emissions 

(not shown). The new parameterization only influences grid cells that burn for more than one month in a season, 

and has a larger effect in grid cells that have a high burn fraction. Regions with frequent savanna fires therefore 

have the highest sensitivity, with emissions in northern hemisphere Africa, southern hemisphere Africa, and 20 

Australia increasing by 9, 8, and 6 %, respectively. In other regions, the differences are smaller than 2 %. In 

addition to the increase in emissions in frequently burning savannas, the new parameterization also changes the 

temporal dynamics (Fig. 11); early season emissions are lower because less fuel remains from the previous 

growing season, and late-season emissions are higher because the parameterization has the effect of increasing 

grid-cell level fuel consumption later in the fire season. 25 

Without small fire burned area, the impact of decreasing fuel consumption and a minor reduction in burned area 

(2 % globally) yields a total carbon emissions estimate of 1.5 Pg C y-1 in GFED4, a 23 % reduction compared to 

GFED3 during 1997-2011. Although globally GFED4 emissions are lower than GFED3, in some regions both 

burned area and emissions increase, mostly in temperate regions (Fig. 13). Using the new set of emission factors 

that separate extratropical forests into boreal forest and temperate forest components generates a larger increase 30 

in CO emissions in boreal regions than expected from the change in carbon emissions alone (Fig. 14). 

5  Discussion 

We have calculated global carbon emissions from fires by using a biogeochemical model to combine satellite 

fire observations with estimates of fuel consumption that respond to variations in environmental conditions. In a 

subsequent step, we have used a higher resolution set of emission factors to convert carbon emissions into 35 

emissions of trace gases and aerosols. Since the publication of GFED3 in 2010, burned area algorithms have 
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been improved considerably (Giglio et al., 2013), and now include a preliminary estimate of the impact of small 

fires (Randerson et al., 2012). In parallel, the fuel consumption database created by van Leeuwen et al. (2014) 

has enabled the development of an improved parameterization of herbaceous vegetation turnover in grassland 

and savanna ecosystems, and validation of our modeled values in several other biomes. New emission factor 

measurements and a more systematic assessment of the available data has led to a more consistent set of 5 

emission that better resolve extratropical forest biomes (Akagi et al., 2011). Combined, all of the elements 

required to calculate emissions following the Seiler and Crutzen (1980) paradigm have seen substantial 

improvements. Our new emission estimates are therefore more reliable than previous estimates because they 

account for updated information on key components of the fire emissions equation, but uncertainties remain 

substantial and are difficult to quantify. 10 

The addition of small fire burned area is a key improvement in GFED4s compared to earlier versions, for 

example, and the modifications we describe in this paper have improved our estimates compared to Randerson et 

al. (2012). However, the actual magnitude of small fire burned area is difficult to quantify on global scales 

because it requires a large sample of burned area measurements from sensors with a higher spatial resolution 

than MODIS. To date, Landsat estimates of burned area have been produced for various regions and purposes 15 

including the validation of coarser resolution data (Padilla et al., 2014; Roy and Boschetti, 2009; Silva et al., 

2005) but a publicly available and global-scale database of Landsat burned area is needed to better validate 

ongoing efforts to produce reliable burned area estimates from coarser resolution satellite imagery. In addition, 

new missions such as the Visible Infrared Imager Radiometer Suite (VIIRS) and Landsat-8 also increase the 

number of active fires detected compared to MODIS (Schroeder et al., 2014b). 20 

A somewhat similar story exists with respect to validating fuel consumption. The fuel consumption database 

from van Leeuwen et al. (2014) has enabled a more systematic validation but the number of studies is limited, 

relatively few measurements were made during our study period, and it is questionable to what degree the local 

measurements are representative for the 0.25° grid cell averages reported here. Thus, our estimates are most 

likely to remain useful for large-scale studies. Although recent regional studies have shown that our global 25 

modeling framework is indeed capable of generating reliable large-scale emissions in Alaska and the tropics, 

these studies also show that GFED may have problems capturing finer scale dynamics (Andela et al., 2016; 

Veraverbeke et al., 2015). While improved satellite missions and combining various data streams may help in 

improving the fuel consumption parameterization in models, systematic field-based assessments of fuel 

consumption along gradients of productivity and other factors influencing variability in fuel consumption within 30 

biomes is a necessary step in further improving bottom-up fire emission estimates. New satellite-estimates of 

biomass may be helpful in this regard (for example the Global Ecosystem Dynamics Investigation [GEDI] 

mission), particularly in deforestation and temperate forest and shrubland regions, where aboveground living 

biomass comprises a large component of fuel consumption. 

Given the large uncertainties in bottom-up emission estimates in the past, top-down constraints have often been 35 

used to pinpoint discrepancies between modeled and measured atmospheric abundances of trace gases or 

aerosols. Carbon monoxide (CO) was most often used (Arellano et al., 2004; Hooghiemstra et al., 2011; Huijnen 

et al., 2016) because fires are a major source of CO, its lifetime is relatively long, and column CO is measured 
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from several satellite sensors. More recent work also includes other species such as formaldehyde, NO2, and 

aerosol optical depth (Bauwens et al., 2016; Mebust et al., 2011; Petrenko et al., 2012). While providing 

additional information on strengths and weaknesses of inventories such as GFED, for example potentially 

missing late season fires (Castellanos et al., 2014), the results of these studies are often contradicting (van 

Leeuwen et al., 2013), potentially due to the use of different atmospheric models and sources of observations. 5 

We would therefore respectfully argue that uncertainties in bottom-up and top-down approaches are overlapping. 

For example, carbon emissions from Indonesia during the 2015 high fire year according to GFED4s were almost 

400 TgC (Fig. 9, http://www.falw.vu/~gwerf/GFED/GFED4/tables/GFED4.1s_C.txt). Two inversion studies 

using Measurement of Pollution in the Troposphere (MOPITT) CO measurements arrived either 100 Tg higher 

(Yin et al., 2016) or 100 Tg lower (Huijnen et al., 2016). Part of the difference can be attributed to the use of 10 

higher CO emission factors in the latter study which thus requires less carbon burned to match atmospheric 

observations, but part is also due to differences in model set-up and analysis design. The use of different top-

down constraints (e.g. Infrared Atmospheric Sounding Interferometer (IASI) versus MOPITT) could lead to 

additional discrepancies.  

Studies focusing on AOD are an exception and do not give conflicting results but indicate that bottom-up 15 

estimates are roughly a factor 3 too low (Johnston et al., 2012; Kaiser et al., 2012; Petrenko et al., 2012; Tosca et 

al., 2013). While some studies have therefore boosted bottom-up emissions or created new inventories with 

much higher emissions to get AOD values more in line with observations (Liousse et al., 2010), this may 

jeopardize the reasonable agreement between bottom-up and top-down estimates found for most trace gases. To 

date, the disagreement between measured and modeled AOD has been most often been linked to bottom-up 20 

emissions, but AOD calculation in models are uncertain as well. For example, increasing the hygroscopicity 

reduced the offset in tropical regions (Reddington et al., 2016). Besides exploring the factors that are used to 

estimate AOD in model such as the hygroscipicity, combining multiple species in inversion studies and better 

emission factors are needed to resolve one of the most important questions in biomass burning emissions 

research. 25 

Most of the emission factors (EF) used in these top-down approaches are based on mid-day sampling during 

peak fire emission rates. The EF measured under these somewhat restricted circumstances are still highly 

variable with a natural coefficient of variation about the mean of ~40 % on average (Akagi et al., 2011). The 

diurnal or longer term variation in EF should be larger but has not been explicitly well-measured yet (Saide et 

al., 2015). The EF of many species is still unmeasured in the field for some important fire types such as wildfires 30 

(Akagi et al., 2011) and for some compound classes with perhaps the most important missing species being the 

semi-volatile precursors to organic aerosol, which are difficult to measure even in lab experiments (Gilman et al., 

2015). A related area of uncertainty is the evolution of emissions. Only a few field studies have measured how 

organic aerosol (OA) levels change with time. In one an increase of OA by a factor of ~2.5 was observed 

(Yokelson et al., 2009) while in another study OA decreased by about 20 % (Akagi et al., 2012). Understanding 35 

what controls secondary OA levels is critical to guide the proper use of AOD in inversions and to understand 

health and climate impacts. 
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Additional small errors also occur. In straightforward application of the carbon mass balance method the carbon 

content of the fuel that is actually volatilized is based on a few carbon content measurements of fuel subsamples. 

EF are proportional to the carbon content used. This can theoretically cause an overestimation of the EF (~4 %) 

if charcoal yields are important (Surawski et al., 2016). On the other hand, the uncertainty in what actually burns 

means that the high carbon components can burn preferentially leading to underestimated EFs if based on 5 

average fuel C content (Santin et al., 2015). In general these small uncertainties may tend to cancel. The fact that 

all carbon-containing species cannot be measured also causes EF to be systematically overestimated by 1-3 % 

(Akagi et al., 2011). 

For GFED3, we performed a Monte Carlo simulation to estimate carbon emissions uncertainties based on 

assumed uncertainties of key input data including burned area and best-guess estimates of various model 10 

parameters. We now refrain from estimating formal uncertainties because of difficulties in assessing the 

uncertainties in the various layers. For example, the burned area in many regions where small fires are important 

now by far exceeds the range of uncertainty reported for GFED3 burned area. Given the reasonable agreement 

between our burned area estimates and more refined regional estimates (Randerson et al., 2012), and between 

our modeled biome-average fuel consumption estimates and those measured in the field, a best guess uncertainty 15 

assessment would be a 1σ of 50 % in general but higher in areas where small fire burned area and/or the 

difficulty in quantifying organic soil burning is important.  

Lowering and/or better quantifying this uncertainty involves a thorough assessment of the burned area estimates 

and especially those from small fires, using more direct satellite observations of fire severity and fuel 

consumption based on FRP data, and new field data on fuel consumption and emission factors along critical 20 

gradients such as productivity. Increasing the spatial resolution of our modeling framework could lower the 

impact of spatial heterogeneity in fire parameters and make for easier comparisons with or validation using 

ground-based data. Better understanding and modeling diurnal cycles may be equally important in addressing 

how variable for example the relative importance of flaming and smoldering combustion is. Finally, with new 

missions such as Suomi-NPP and the various Sentinels now collecting data an emphasis on merging various time 25 

series would help in lengthening the time series over which we have consistent data to over 20 years. 

6  Conclusions 

We have revised the Global Fire Emissions Database using new observations of burned area including those 

from smaller fires as well as several other new data streams. In addition we have modified the fuel consumption 

parameterization in our model to better match observations. Global average fire emissions were estimated to be 30 

2.2 Pg C yr-1 over 1997-2015 with substantial interannual variability. This is an 11 % increase compared to our 

previous work (GFED3), and in regions where small fires are relatively important such as temperate regions the 

increase could be as large as 100 %. Net greenhouse gas emissions from these fires were on average 6 % of 

global 2014 fossil fuel CO2 emissions consisting of 1.4 Pg C yr-1 CO2 emissions from deforestation and tropical 

peat fires which are a net CO2 source to the atmosphere just like fossil fuel emissions, and 16 Tg CH4 and 0.9 Tg 35 
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N2O yr-1 from all fire types using a 100-year horizon to convert the warming potential of these greenhouse gases 

to CO2 equivalents. 

Over the past several years, uncertainties in all of the data layers used to calculate emissions (burned area, fuel 

consumption, and emission factors) have been reduced from new algorithms and data availability. While biome-

level fuel consumption rates are now more in line with observations than in our previous work, uncertainties are 5 

still substantial at higher resolutions as indicated by regional studies. In addition, the small fire burned area 

approach carries substantial uncertainties. Merging information from the long-term MODIS era with newer 

instruments could reduce some of these uncertainties, but carefully designed and interdisciplinary field 

campaigns measuring fuel consumption, fire dynamics, and emission factors along gradients and throughout fire 

seasons are equally necessary to further improve biomass burning estimates. All burned area and emissions data 10 

is available via http://www.globalfiredata.org  
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Figure 1: Average burned area over 2003-2015 from (a) MODIS surface reflectance imagery (MCD64A1) and (b) 
small fire burned area. Panel (c) shows the small fire percentage of total burned area. 
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Figure 2: The distribution of difference normalized burn ratio (dNBR) for active fires detected within burned areas 
from MCD64A1 (red), outside of burned areas (orange), and for control areas (blue) within Northern Hemispheric 
Africa (NHAF) and Central Asia (CEAS). The distributions, generated using observations in 2001-2012, were 
constructed during the peak fire month for each region. The improved approach (see Sect. 2.3.2 for details) 5 
compressed the distributions in unburned control areas and increased the separation between the three categories. 
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Figure 3. Map of the 14 regions used in this study, after Giglio et al. (2006) and van der Werf et al. (2006). 
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Fig. 5. Frequency distribution of fuel consumption in different regions (See Fig. 7 for the list 

of region abbreviations), with deforestation fires marked in red. Note the logarithmic y-axis 

scale and the different x-axis scales for each plot. Each bar represents 0.1 kg C per m
2
 of 

burned area, averaged over 1997-2009, centered upon its mean. 

Fig. 5. Frequency distribution of fuel consumption in different re-
gions (See Fig. 7 for the list of region abbreviations), with deforesta-
tion fires marked in red. Note the logarithmic y-axis scale and the
different x-axis scales for each plot. Each bar represents 0.1 kgC
per m2 of burned area, averaged over 1997–2009, centered upon its
mean.

the 0.5� grid cell encompassing their study region, modeled
minimum fuel loads were 200 gCm�2, based on fuel build
up after one year. Maximum fuel loads were 550 gCm�2

when fires were excluded in our model, which was somewhat
larger than observed in the field. In savanna areas of northern
Australia, Williams et al. (1998) performed a landscape-scale
experiment where fuel loads were found to range between 75
and 650 gCm�2 with most fires burning in areas with 100–
200 gCm�2 of fuel. For Australia as a whole, we found that
most fires consumed less than 100 gCm�2 of fuel although
a substantial amount of burning occurred in areas where con-
sumption ranged between 100–400 gCm�2 (Figs. 5, 6). In
the area where Williams et al. (1998) performed their mea-
surements average fuel consumption was about 250 gCm�2

of fuel while maximum fuel consumption (reached when
fires were excluded for 5 years) was 600 gCm�2 of fuel.
While far from exhaustive, these comparisons were encour-
aging.

2.4.5 Trace gas emissions

Our modeling framework calculated carbon fluxes. Emis-
sion factors (EF) were then used to translate the fire carbon
loss to trace gas and aerosol emissions. EFs have been mea-
sured in most fire-prone biomes, compiled by Andreae and
Merlet (2001) and updated annually (M. O. Andreae, per-
sonal communication, 2009). We used separate EFs from
this database for fires in (1) tropical forests, (2) grasslands
and savannas, (3) extratropical forests, and (4) agricultural
residues. The EFs were based on the mean of the measure-
ments for each species within each of the 4 biomes described
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Fig. 6. Fuel consumption (gC per m2 of area burned), averaged
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Fig. 7. Map of the 14 regions used in this study, after Giglio et al. (2006) and van der Werf et 

al. (2006).  

Fig. 7. Map of the 14 regions used in this study, after Giglio et
al. (2006) and van der Werf et al. (2006).

above, with EFs for tropical forest fires applied to deforesta-
tion fires. For tropical peat burning we were aware of only
one study that collected soils from the field for laboratory
analysis (Christian et al., 2003). EFs from this study for re-
duced species were about twice as high as those for tropical
forest fires. Deforestation and degradation fires in the non-
humid tropics received the average EF from (1) grasslands
and savannas and (2) tropical forest fires because they repre-
sent a mixture of these fire types, and we applied the same EF
to woodland fires. We did not apply separate emission factors
for above- and belowground fuel components in extratropical
forest fires because available field measurements had a large
range of variability that integrated across these two sources
of emissions. EFs were reported per kilogram dry matter
burned. Based on mass balance equations of the EFs (CO2
+ CO + CH4), we used a dry matter carbon content of ap-
proximately 48% to convert model estimates of fire carbon
emissions to dry matter emissions (prior to the application
of EFs), with the exception of 44% for agricultural fires and
56% for peat fires. The EFs we used for several trace gas and
aerosol species are given in Table 5.

Atmos. Chem. Phys., 10, 11707–11735, 2010 www.atmos-chem-phys.net/10/11707/2010/
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Figure 4: Regional time series (1997-2015) of GFED4s monthly burned area. The different colors indicate the 
contribution from each of the different data sources and methodologies (ATSR, TRMM-VIRS,  500 m MCD64A1, and 
small fires) used to produce the entire data set.  
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Figure 5: Comparison of modeled standing biomass with the compilation from Avitabile et al. (2016) and Santoro et 
al. (2015). Bins with fewer than 100 grid cells are excluded.   5 
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Figure 6: Burned area, fuel load, and emissions for a hypothetical grid cell where 50 % of the area burns in month 2 
and 50 % in month 3, and assuming a combustion completeness of 100 %. “Previous” refers to our previous work in 
GFED3 and before where no adjustments were made in the conversion of burned area to the fraction of fuel load that 
is combusted, “modified” refers to the current approach (GFED4 and GFED4s) where we treat the burned fraction as 5 
the fraction of the total remaining fuel in the grid cell that is combusted using Eq. 3.  
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Figure 7: A comparison of monthly (top panels), and disaggregated daily (middle) and 3-hourly (bottom) emissions 
from GFED3 (left hand side) and GFED4s (right hand side) for an example grid cell in South America (11.75°S, 
51.75°W). 
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Figure 8: GFED4s burned fraction (a), fuel consumption (b), and emissions (c) averaged over 1997-2015 
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Figure 9: GFED4s annual fire carbon emissions for various regions and sources. 
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Figure 10: Monthly emissions from GFED4 (red) and GFED4s (gray). 
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Figure 11: Monthly GFED4s fire carbon emissions for Northern Hemisphere Africa (a) and Southern Hemisphere 
Africa (b) based on straight conversion of burned area to burned fraction ("previous') and with the new 
parameterization according to Eq. 3 ("modified").  5 
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Figure 12: Measured and modeled fuel consumption for various biomes showing the range (whiskers), mean (colored 
dots and diamonds), median (open dots and diamonds), and 25th and 75th percentiles (boxes) for those biomes with 
more than 10 measurements. Comparison is based on the meta-analysis of van Leeuwen et al. (2014) and collocated 
0.25° grid cells. The time periods of measurement and model do not necessarily overlap. 'n' indicates the number of 5 
measurements for each biome. Note the logarithmic scale. 
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Figure 13: Relative differences in burned area, fuel consumption, carbon emissions, and carbon monoxide (CO) 
emissions between GFED4 (black) and GFED4s (gray) compared to GFED3 for 14 basis regions explained in Fig. 3 
and the globe averaged over 1997 to 2011.  

 5 
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Figure 14: Latitudinal distribution of carbon monoxide (CO) emissions for GFED3, GFED4, and GFED4s.  
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able 1: 1997-2015 area-averaged fire return tim
e, biom

ass and fuel quantities, com
bustion com

pleteness, and fuel consum
ption. R

egion abbreviations 
are explained in Fig. 3. 
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Table 2: Carbon emissions estimates and the contribution of different fire categories over the 1997-2015 study period. Region 
abbreviations are explained in Fig. 3. 

Region Carbon emissions (Tg C yr-1) CV (%) Contribution of different fire categories to total carbon emissions (%) 

  Mean Minimum Maximum Savanna 
Boreal 
forest 

Temperate 
forest 

Tropical 
forest Peat Agriculture 

BONA 60 12 128 53 0.3 86.6 4.1 0.0 7.2 1.7 
TENA 18 11 31 29 33.1 0.0 46.5 0.0 0.0 20.4 
CEAM 38 15 177 93 45.4 0.0 1.9 36.8 0.0 15.9 
NHSA 31 13 60 35 72.6 0.0 0.0 21.3 0.0 6.1 
SHSA 293 104 561 45 49.4 0.0 1.8 45.6 0.0 3.1 
EURO 8 4 19 43 28.5 0.2 12.3 0.0 0.0 59.0 
MIDE 2 1 3 24 36.0 0.0 3.5 0.0 0.0 60.5 
NHAF 450 359 645 16 88.4 0.0 0.0 5.1 0.0 6.5 
SHAF 671 583 774 7 92.5 0.0 0.1 4.7 0.0 2.7 
BOAS 125 45 280 53 2.1 78.9 2.6 0.0 1.7 14.8 
TEAS 62 36 85 21 29.9 11.7 12.7 2.5 0.0 43.3 
SEAS 116 66 177 28 53.8 0.0 7.0 31.0 0.0 8.1 
EQAS 181 18 1110 135 11.1 0.0 0.0 43.7 43.0 2.2 
AUST 118 42 190 33 86.2 0.0 10.0 2.3 0.0 1.5 
Global 2175 1773 3032 15 65.2 7.3 2.3 15.1 3.9 6.3 
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