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Abstract. Eddy covariance data from regional flux networks are direct in situ measurement of carbon, water, and energy fluxes

and are of vital importance for understanding the spatio-temporal dynamics of the the global carbon cycle. FLUXNET links

regional networks of eddy covariance sites across the globe to quantify the spatial and temporal variability of fluxes at regional

to global scales and to detect emergent ecosystem properties. This study presents an assessment of the representativeness of

FLUXNET based on the recently released FLUXNET2015 data set. We present a detailed high resolution analysis of the evolv-5

ing representativeness of FLUXNET through time. Results provide quantitative insights into the extent that various biomes are

sampled by the network of networks, the role of the spatial distribution of the sites on the network scale representativeness at

any given time, and how that representativeness has changed through time due to changing operational status and data avail-

ability at sites in the network. To realize the full potential of FLUXNET observations for understanding emergent ecosystem

properties at regional and global scales, we present an approach for upscaling eddy covariance measurements. Informed by the10

representativeness of observations at the flux sites in the network, the upscaled data reflects the spatio-temporal dynamics of

the carbon cycle captured by the in situ measurements. This study presents a method for optimal use of the rich point mea-

surements from FLUXNET to derive an understanding of upscaled carbon fluxes, which can be routinely updated as new data

become available, and direct network expansion by identifying regions poorly sampled by the current network.

15

Data from this study are available at http://dx.doi.org/10.15486/NGT/1279968

1 Introduction

Terrestrial ecosystems are a critical component of the global carbon cycle regulating the climate through a range of biogeophys-

ical and biogeochemical mechanisms. Terrestrial ecosystems exchange about 120 Pg of carbon per year with the atmosphere,

through the processes of photosynthesis and respiration (Schlesinger and Bernhardt, 2013). Eddy covariance-based methods20

are widely used around the world to measure the gas exchange between vegetation and the atmosphere. The eddy covariance

method assumes the measurement site is located in flat terrain, experiences steady or stable atmospheric conditions, and is sur-

rounded by uniform vegetation for an extended distance in the upwind direction (Baldocchi, 2003). In practice, however, sites

are often located in non-ideal and spatial heterogeneous regions and are thus may be prone to varying degrees of measurement
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error (Baldocchi, 2003). Understanding the spatial representativeness of site measurements is required for landscape-scale inte-

gration and interpretation of carbon flux measurements. While an individual site may be considered representative of the biome

in which it is located, any carbon flux measurement network must include a broad representation of vegetation types, climates,

and stages of disturbance. FLUXNET is a global network of micrometeorological flux measurement networks consisting of in-

dividual sites that measure the exchange of carbon dioxide, water vapor, and energy between the biosphere and the atmosphere5

(Baldocchi et al., 2001). FLUXNET consists of more than ∼750 sites (http://fluxnet.fluxdata.org/sites/historical-site-status/)

across the globe that are independently operated by regional networks (http://fluxnet.fluxdata.org/about/regional-networks/).

However, the locations of the sites in the network were not formally designed to uniformly and consistently observe global

biomes and thus represent a sparse and spatially biased sampling of the global terrestrial ecosystem. Careful synthesis of spatio-

temporally sparse flux observations is required to understand the regional to global scale carbon cycle. Upscaling of fluxes to10

regional to global scales requires understanding and quantification of the spatial representativeness of the global network of

flux sites.

A number of studies have analyzed the representativeness of regional networks of flux sites. Hargrove et al. (2003) analyzed

the representativeness of the AmeriFlux network using an ecoregion-based approach and found that while most of the conti-

nental United States was well represented by the network, the Pacific Northwest and Texas grasslands were poorly represented15

by the network sites. Yang et al. (2008) conducted a similar independent study of AmeriFlux network repsentativeness using

remotely sensed climate and vegetation data products and arrived at conclusions similar to Hargrove et al. (2003). Hargrove and

Hoffman (2005) presented a quantitative ecoregion-based approach to assess the representiveness of networks and a method

for design of sampling networks. Sulkava et al. (2011) studied the representativeness of the European flux tower network and

developed a quantitative network design tool for identifying and prioritizing addition of new flux sites. Chen et al. (2011,20

2012) used remote sensing and footprint analysis to characterize the spatial representativeness of flux sites across the Canadian

Carbon Program Network. He et al. (2015) conducted a similar assessment of regional representativeness for the Chinese flux

network. They also identified a set of sites that would complement the existing flux network. Most of these assessments of the

spatial representativeness of regional flux networks across the globe have been focused on quantifying the coverage by the net-

work and for the design of new sampling sites. However, the quantitative representativeness of network sites has not yet been25

applied to synthesize and upscale observations beyond the footprints of individual sites to provide landscape- to global-scale

estimates of flux measurements.

We present here an analysis of the quantitative represenatitveness of the FLUXNET global network of sites that contributed

to the FLUXNET2015 data set. While a large number of global flux sites are affiliated with the FLUXNET network, only a

subset of site data are typically available in data collections. Thus, only the sites with data available in the most recent July30

12, 2016, release of FLUXNET2015 were included in our study. Independently operated sites in the FLUXNET network often

vary significantly in their period of active operation or data availability for logistical reasons. Thus in this study, in addition

to quantifying the spatial representativeness of the network, we quantify the temporally variable representativeness of data

availability within the FLUXNET2015 collection. Finally, we present an approach for global upscaling of eddy covariance

fluxes from FLUXNET network informed by the temporally varying spatial representativeness of the flux sites.35
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(a) This map shows the spatial locations of all FLUXNET sites. Red triangles indicate the location of

all sites registered in the FLUXNET network. Blue circles indicate sites included in the

FLUXNET2015 data set. The size of the blue circles quantifies the period of operation or data

availability.

(b) Active FLUXNET2015 sites each year during the

period 1991–2014. (Blue bars: all active sites; Green

bars: active sites with GPP_DT_CUT_REF available)

Figure 1. Eddy covariance sites in the FLUXNET2015 collection.

2 Data and Methods

2.1 Eddy covariance measurements

FLUXNET provides uniform and high quality data products through coordination among various regional flux networks across

the globe (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/). We used the latest release of the FLUXNET2015

eddy covariance data set collection in this study. The time series products in the FLUXNET2015 collection were gap filled5

(Reichstein et al., 2005) and went through a rigorous QA/QC procedure (Pastorello et al., 2014). The model efficiency method

reference GPP product (GPP_DT_CUT_REF) calculated using day time data (Lasslop et al., 2010) was used to create an

upscaled data product in this study.

While more than∼750 sites are registered in the FLUXNET database (http://fluxnet.fluxdata.org/sites/historical-site-status/),

indicated by red triangles in Figure 1(a), data from only 165 global sites were available in the FLUXNET2015 data set released10

July 12, 2016, and shown by filled blue circles in Figure 1(b). This study was limited to data contained in the FLUXNET2015

data set. Environmental data sets used in our study were not available at the permanent wetland site at Adventdalen, Norway

(NO-Adv) and thus was excluded from the analysis. Thus, the GPP observations from 164 sites globally (Figure 1(a)) spanning

the period 1991–2014 were used. FLUXNET sites are maintained and operated by independent groups and the period of active

operation and data availability varies widely from site to site, ranging from a single year to up to 24 years (Figure 1(a)). Fig-15

ure 1(b) shows the number of active sites for which data was available in the FLUXNET2015 collection in any year during the

period 1991–2014. Due to extremely limited data availability before year 2000, we limited our study to the period 2000–2014.

There also exists some variability in variables and data fields available from any site. Figure 1(b) also shows the number of

sites where the GPP_DT_CUT_REF variable used in this study was available.
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2.2 Environmental variables

Ecosystem structure and functioning are governed by multiple independent control variables including climate, parent material,

topography, potential biota and time (Chapin et al., 2012). A set of environmental variables to capture climatic, edaphic and

topographic characteristics were selected to characterize the terrestrial ecosystem in this study (Table 1).

Table 1. Environmental variables used for ecoregion delineation, representativeness analysis and upscaling. These data are in the form of

∼4 km raster grids.

Variable Description Units Source

Bioclimatic Variables

Annual mean temperature ◦C Hijmans et al. (2005)

Mean diurnal range ◦C Hijmans et al. (2005)

Isothermality – Hijmans et al. (2005)

Temperature seasonality ◦C Hijmans et al. (2005)

Temperature annual range ◦C Hijmans et al. (2005)

Mean temperature of wettest quarter ◦C Hijmans et al. (2005)

Mean temperature of driest quarter ◦C Hijmans et al. (2005)

Mean temperature of warmest quarter ◦C Hijmans et al. (2005)

Mean temperature of coldest quarter ◦C Hijmans et al. (2005)

Annual precipitation mm Hijmans et al. (2005)

Precipitation during the wettest quarter mm Hijmans et al. (2005)

Precipitation during the driest quarter mm Hijmans et al. (2005)

Precipitation during the warmest quarter mm Hijmans et al. (2005)

Precipitation during the coldest quarter mm Hijmans et al. (2005)

Edaphic Variables

Available water holding capacity of soil mm Global Soil Data Task Group (2000); Saxon et al. (2005)

Bulk density of soil g/cm3 Global Soil Data Task Group (2000); Saxon et al. (2005)

Soil carbon density g/m2 Global Soil Data Task Group (2000); Saxon et al. (2005)

Total nitrogen density g/m2 Global Soil Data Task Group (2000); Saxon et al. (2005)

Topographic Variables

Compound topographic index (relative wetness) – Saxon et al. (2005)

Hijmans et al. (2005) developed very high resolution interpolated climate surfaces (WorldClim) for global land areas. Using a5

large number of global sources of weather station data, they created global climate surfaces at 30 arc second spatial resolution

(∼1 km). They also derived a set of 19 bioclimatic variables (BioClim) (with spatial resolution of 2 arc minute or ∼4 km)

that are biologically meaningful, representing annual trends, seasonality and extreme or limiting environmental factors. We

selected 14 bioclimatic variables (Table 1) to represent the global bioclimatic environment in this study. We also selected four

edaphic variables (Global Soil Data Task Group, 2000; Saxon et al., 2005) and one topographic variable (Saxon et al., 2005)10

to characterize not just the above-ground but also the below-ground environment.

4
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Figure 2. Global ecoregions delineated using 20 bioclimatic, edaphic and topographic characteristics (Table 1). This randomly colored map

shows 10 distinct ecoregions identified by the k-means clustering algorithm.

2.3 Ecoregionalization

FLUXNET classifies the sites based on vegetation type they represent using IGBP classification scheme (IGBP, 1990, 1992)

among cropland, closed shrubland, deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest, grass-

land, mixed forest, open shrubland, savanna, wetlands and woody savanna. While the IGBP classifications are primarily based

on vegetation, a wider range of environmental variables (bioclimatic, edaphic and topographic) were employed in our study.5

The multivariate clustering technique has been widely used in ecology and Earth sciences for delineation of ecoregions that are

relatively homogeneous with respect to selected environmental characteristics (Hargrove and Hoffman, 2005; Bernert et al.,

1997; Lark, 1998; Hessburg et al., 2000). A massively parallel k-means clustering analysis tool developed by Kumar et al.

(2011) was used to derive custom ecoregions using a selected set of environmental variables (Table 1).

Figure 2 shows the global land area classified into 10 distinct ecoregions at ∼ 4 km resolution, when defined quantitatively10

by the k-means clustering algorithm, using 20 bioclimatic, edaphic and topographic characteristics (Table 1). Quantitatively

defined ecoregions correspond well with the major global biomes and serves as a reference landcover classification for this

study.

2.4 Representativeness of flux sites

Representativeness of a measurement site is the extent to which the measurements collected at any given location and time15

represent the conditions at any other location and time. Eddy covariance flux towers measure a range of meteorological and

flux variables. While the measurements captured by the sensors are direct measures of a small region in the footprint of the

5
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tower, understanding the representativeness of the measurements for a broader landscape is critical for upscaling of point mea-

surements to the larger area. There has been a number of attempts to assess the representativeness of flux tower networks.

Hargrove et al. (2003) analyzed the representativeness of the AmeriFlux network using an ecoregion based approach. For each

ecoregion in the map, they calculated the Euclidean distance in their data space to the single closest ecoregion that contains a

site from the network. Yang et al. (2008) studied the representativeness of the AmeriFlux network using MODIS and GOES5

data and used Euclidean distance to quantify the similarity between any location and the collection of AmeriFlux sites. Using

a combination of footprint modeling and moderate-resolution remote sensing, Chen et al. (2011) calculated the representative-

ness with a sensor location bias metric. Sulkava et al. (2011) developed a tool to evaluate the representativeness of the European

eddy covariance network. They calculated representativeness as the Euclidean distance measured in data space between the

cluster centers and the established stations. He et al. (2015) studied the ChinaFlux sites and calculated the represenativeness10

of flux tower sites as the Euclidean distance in a 4-dimensional environmental space. They calculated the Euclidean distance

from each pixel to each tower and selected the minimum distance as their network representativeness. Hoffman et al. (2013)

utilized climate and permafrost characteristics and derived a Euclidean-based representativeness for a sampling design in the

Arctic environment. They developed two approaches for calculating representativeness for sampling network design. First, the

ecoregions-based representativeness, where the dissimilarity of any ecoregion containing a sampling site to any other ecore-15

gion, was calculated as the Euclidean distance between the two ecoregion centroids within the standardized n-dimensional data

space. The second was a point-based representativeness approach in which the Euclidean distance of each map pixel containing

a site from every other pixel on the map was calculated in the standardized n-dimensional data space. When a network of sites

is present, the Euclidean distance for the site closest to the pixel in data space was selected as the representativeness of that

pixel.20

In this study, we used the point-based representativeness approach (Hoffman et al., 2013) to compute the dissimilarity of en-

vironmental conditions between any flux site location and every land pixel on the globe at∼4 km resolution in 20-dimensional

data space (Table 1). At each flux site the environmental characteristics (Table 1) were extracted from the gridded data sets

and the Euclidean distance to every land pixel on the globe was computed as d
(
V site,V pixel

)
=

√
∑20

n=1

(
V site

n −V pixel
n

)2

,

resulting in a map showing dissimilarity in environmental conditions sampled by the flux site location to that of other locations25

on the globe. For example, a representativeness map for the Willow Creek, U.S. site (US-WCr) (Figure 3) located in an upland

Deciduous Broadleaf Forest (DBF) shows that the site is representative of temperate environment in central United States and

Europe. However, this site does not capture well the dry environment of the southwestern U.S., coastal regions of the southern

U.S., evergreen forests in the northwestern U.S. Tropical and high latitude regions of the globe experience significantly differ-

ent environmental conditions and thus show high dissimilarities when compared to the US-WCr site. Similarly, the Evergreen30

Broadleaf Forest (EBF) site at Santarum km83, Brazil (BR-Sa3) (Figure 3) represents tropical environments well, but shows

high dissimilarities with temperate and high latitude regions.

Environmental conditions at any location on the map may be characteristic of one or many or none of the sites in the sampling

network. To understand the best representative from the network as a whole, every pixel was assigned the representativeness

corresponding to the site closest to it in the multivariate environmental data space. Figure 4 shows the best representativeness of35
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(a) Willow Creek, U.S. (US-WCr)

(b) Santarum km83, Brazil (BR-Sa3)

Figure 3. Representativeness of individual flux sites.

7

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-36, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 23 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 4. Network representativeness for all of the FLUXNET2015 sites (164 sites).

the FLUXNET network considering all 164 sites from FLUXNET2015. FLUXNET2015 shows fairly good representativeness

for the large parts of the world except for northern high latitude regions like Iceland, wet tropical forests in South America and

southeast Asia.

However, Figure 4 is only the theoretical representativeness of 164 sites in FLUXNET2015, since not all sites are in active

operation or have data available each year. As the sites come and goes out of operation, and depending on if data is available5

or not, our sampling (and thus upscaled view) of terrestrial carbon flux is variable through time. We calculated the representa-

tiveness of the network every month considering which sites were active and had data available. Figure 5 shows snapshots of

representativeness of the network at different times during the period 1996–2014. Global carbon fluxes were poorly sampled

in 1996, when only eight sites were available globally, but has steadily improved since then as sampling sites have been added.

Many eddy covariance measurement sites were added in mid-latitude regions of Europe and North America and Australia,10

where most of the flux sites are now clustered. Compared to 2011 (Figure 5(c)), 2014 (Figure 5(d)) shows a significant decline

in the representiveness of the network globally due to data from a fewer number of sites being available. While many of the

sites may be in active operation during recent years, the data from them most probably have not been made available, increasing

uncertainties of global, upscaled estimates of carbon fluxed and highlighting the importance of making data available quickly.

8
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2.5 Upscaling point measurements

Quantitative representativeness of network sites can be utilized to upscale flux estimates to larger spatial and temporal scales for

input to or evaluation of process modeling or for estimating landscape-scale characteristics (Hoffman et al., 2013). Upscaling

eddy covariance constrained estimates of gross primary production (GPP) from a global network of flux sites requires 1)

identifying all sites that sample environments similar to any location, and 2) developing a statistical model to estimate GPP at5

all global land regions using estimates from point measurements at flux sites.

2.5.1 Inverse distance weighted interpolation

Interpolation is a process of using measurements about a process at a limited number of point locations to make estimates

about the process at other, unmeasured locations. Inverse distance weighting (IDW) is a deterministic, nonlinear interpolation

technique that uses a weighted average of the measurements from nearby sample points to estimate the magnitude of variables10

at non-sampled locations. IDW interpolation is based on Tobler’s first law of geography (Tobler, 1970) which states “everything

is related to everything else, but near things are more related than distant things”. The weight of a measurement at a particular

point is assigned in the averaging calculation depending upon the sampled point’s distance to the non-sampled location. While

traditional spatial interpolation approaches often employ the distance in geographic space between sampled points and the

un-sampled location, in this study the distance in multivariate environmental data space (representativeness of the sampling15

location) was used to calculate the weights. Thus, samples from locations closer in terms of environmental conditions were

assigned higher weights in interpolation while information about geographical proximity was never used in the process.

An important aspect of the inverse distance weighting interpolation is the neighborhood of influence that determines the

sampling points that are used for interpolating the value at any un-sampled location. In this study we systematically defined the

neighborhood of influence (described in Section 2.5.2) and thus identified the flux measurements to include in the interpolation20

at each spatial location and at each monthly time step during the study period.

High temporal resolution measurements at eddy covariance sites capture the temporal dynamics and variability (seasonal

and interannual), allowing us to examine the influences of phenology, drought, heat waves, El Niño, length of growing season,

presence/absence of snow on canopy-scale fluxes, etc. (Baldocchi et al., 2001). Statistical models built using all the data,

while representing the long term trends and mean climatology well, also tend to lose the fine temporal dynamics captured by25

measurements. To preserve the rich temporal dynamics in the flux measurements, we built the interpolation at monthly time

steps using the data only from that month. This approach, distinct from many past studies, helps capture the temporal variability

in the upscaled data set; however, it is also prone to exhibit a bias if a localized phenomena is experienced by a flux site.

2.5.2 Identifying flux sites in similar environments

While global terrestrial ecosystems are highly diverse and heterogeneous, point measurements at flux sites sample the environ-30

ment in which they are located. These measurements are representative of similar conditions at geographic locations elsewhere.

The network of global flux sites which are managed and operated by independent regional institutions provide a sparse and

10
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Figure 6. Spatial distribution of FLUXNET sites across global ecoregions.

non-uniform sampling of the environment. While some regions and environments may be well sampled, others may be un-

dersampled. Thus it is important to identify the flux sites in similar environments where GPP estimates were available for

upscaling. We overlaid the locations of sites in FLUXNET over the quantitatively defined ecoregions (Figure 2) and identified

the sites in each ecoregion. Figure 6 shows the distribution of 164 FLUXNET sites in the FLUXNET2015 collection globally

across various ecoregions. To estimate the GPP at any location, the sites located within the same ecoregion would provide5

the most relevant and representative measurements. Ecoregions in the mid-latitudes of North America and Europe are well

sampled by the global network of flux sites, while sites in many of the other ecoregions are few to none. Figure 4 shows the

best possible representativeness while using all 164 sites in the FLUXNET2015 collection. The actual availability of flux site

measurements is spatio-temporally variable.

Table 2 shows the number of sites within each ecoregion each year during the period 1991–2014 for which data were10

available in the FLUXNET2015 collection. We carefully processed and identified the sites at which GPP estimates were

available within each ecoregion monthly for use in the upscaled product. However, there were some ecoregions and time

periods that were completely unsampled by the available sites. In such cases we identified the ecoregion most similar in

multivariate data space (Table 1) that was sampled by at least one or more flux sites and used those data for extrapolation. The

accuracy of the GPP estimates in such cases is expected to suffer due to data limitation.15

3 Results and discussions

We used monthly time series of GPP estimates from eddy covariance observations taken at flux towers from FLUXNET2015

to develop upscaled gridded GPP data sets at ∼ 4 km resolution. We compared the upscaled GPP time series data set to

11
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Table 2. Active flux sites present in each ecoregion during 1991–2014. Data from the period 1991–1999 was not used in the study. Some

ecoregions had no flux sites available during the period 2000–2014.

Year Total

Ecoregions

1 2 3 4 5 6 7 8 9 10

14.27% 4.19% 14.65% 12.19% 17.84% 3.12% 12.21% 14.82% 5.45% 1.25%

1991 1 1 0 0 0 0 0 0 0 0 0

1992 1 1 0 0 0 0 0 0 0 0 0

1993 1 1 0 0 0 0 0 0 0 0 0

1994 1 1 0 0 0 0 0 0 0 0 0

1995 2 2 0 0 0 0 0 0 0 0 0

1996 8 8 0 0 0 0 0 0 0 0 0

1997 10 9 1 0 0 0 0 0 0 0 0

1998 13 12 1 0 0 0 0 0 0 0 0

1999 15 14 1 0 0 0 0 0 0 0 0

2000 26 21 2 1 1 0 0 0 1 0 0

2001 40 26 2 3 1 0 0 0 3 0 5

2002 61 35 3 4 2 6 0 0 3 1 7

2003 73 37 3 7 5 8 1 0 3 1 8

2004 90 48 4 8 5 8 1 0 6 2 8

2005 89 49 3 8 5 5 1 1 7 2 8

2006 76 50 3 6 5 2 1 1 6 1 1

2007 80 51 5 5 5 3 1 1 8 1 0

2008 86 53 4 6 7 3 1 2 9 1 0

2009 89 54 4 4 6 3 1 2 14 1 0

2010 84 53 2 4 3 4 0 1 16 1 0

2011 91 57 3 3 3 2 0 3 18 2 0

2012 93 57 2 3 3 3 0 3 19 3 0

2013 85 51 2 3 3 2 0 3 18 3 0

2014 61 38 2 2 1 2 0 1 13 2 0

FLUXNET-MTE (Jung et al., 2009). While FLUXNET-MTE GPP was also developed using observations from FLUXNET

sites, a different set of sites and data products were used in the current study. The overlapping period of 2000–2008 was used

for comparison with FLUXNET-MTE.

3.1 Spatial distribution of GPP

Figure 7 shows the global spatial distribution of time integrated mean annual GPP for four years in the comparison period.5

The quality and accuracy of the upscaled GPP time series data is strongly affected by the availability and spatial distribution

of the flux sites at any given time. Figure 8 shows the comparison of our upscaled GPP estimates with FLUXNET-MTE GPP

estimates (Jung et al., 2009). Agreement was fairly good for Northern Hemisphere mid-latitudes regions that were well sampled
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by FLUXNET2015 sites. However, the data show significant differences in Southern Hemisphere tropical regions, which lack

sufficient flux measurements. For example, FLUXNET-MTE employs the data for the flux sites in Matto Grosso (BR-Mtg) in

South America, which was not available as part of FLUXNET2015 data set, leading to an underestimate of GPP in that region

compared to FLUXNET-MTE. FLUXNET-MTE also suffers from limitations of data in this region, indicated by their high

index of extrapolation in tropical areas (Jung et al., 2009).5

Extra-tropical regions in the Southern Hemisphere were poorly sampled by the FLUXNET2015 data with only a few sites

making data available in that region. In addition, based on the environmental similarity sites in the Northern Hemisphere were

used to estimate the fluxes in the region, which have an out-of-phase phenology, leading to an overestimation of GPP magnitude

in Northern Hemisphere winter.

Higher estimates of GPP compared to FLUXNET-MTE in our upscaled data set in coastal regions of the Pacific Northwest10

of North America provide an improved representation of the wet evergreen forests. Coastal regions of the Pacific Northwest

possess of high orographic relief and strong rain shadows. FLUXNET-MTE does not capture these highly productive forests,

probably due to lower resolution averaging over wet and dry forests, but our approach at a high resolution provides a better

estimate of GPP in this orographically complex terrain.

3.2 Seasonal patterns of GPP15

Figure 9 shows the zonal mean seasonal patterns of monthly GPP estimated from FLUXNET2015 for years 2000, 2006, 2011,

and 2014. In all cases, June and July exhibit the large GPP in the Northern Hemisphere extra-tropics. Weak seasonality, inter-

annual variability, and regional under-sampling results in non-persistent ordering of monthly GPP in the tropics. As mentioned

above, Southern Hemisphere high latitude regional estimates are strongly influenced by measurements in Northern Hemisphere

mid-latitudes because of the similarity in their environmental conditions and the lack of FLUXNET2015 measurement sites in20

the Southern Hemisphere. Consequently, anomalously high GPP is estimated during June and July in −30◦ to −50◦ latitude.

The varying list of measurement sites each year also affects upscaled GPP estimates. For example, many fewer sites have made

data from year 2014 available in FLUXNET2015, so Figure 9(c) exhibits unusually low tropical GPP. Figure 10(a) shows

significant spread in our annual upscaled GPP because of both interannual variability and as a consequence of the continuously

evolving list of contributing measurement sites. However, it is likely that interannual variability is strong enough to result in25

great variability in GPP than is exhibited by the FLUXNET-MTE estimates in Figure 10(b).

3.3 Temporal variability of GPP

Eddy covariance observations at flux sites capture changes in biosphere–atmosphere exchange at a high temporal resolution.

Temporal variability is due to long term changes in environmental conditions, vegetation dynamic, disturbance events, etc. To

preserve the temporal variability in GPP captured by the instruments in the upscaled product, only the observations from the30

same month were used in our IDW-based interpolation method.

Thus the pattern of time integrated annual GPP over the years show significant interannual variability for all latitudinal zones

(Figure 10(a)). Variability was especially high in tropical region where only a few flux sites were present in FLUXNET2015

13

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-36, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 23 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



(a
)Y

ea
r2

00
0

(b
)Y

ea
r2

00
6

(c
)Y

ea
r2

01
1

(d
)Y

ea
r2

01
4

Fi
gu

re
7.

Sp
at

ia
ld

is
tr

ib
ut

io
n

of
tim

e
in

te
gr

at
ed

an
nu

al
m

ea
n

G
PP

flu
xe

s
[U

ni
ts

:g
C

m
−

2
d−

1
].

14

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-36, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 23 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



(a
)Y

ea
r2

00
0

(b
)Y

ea
r2

00
2

(c
)Y

ea
r2

00
4

(d
)Y

ea
r2

00
8

Fi
gu

re
8.

C
om

pa
ri

so
n

of
up

sc
al

ed
an

nu
al

m
ea

n
G

PP
flu

xe
st

o
FL

U
X

N
E

T-
M

T
E

G
PP

.P
os

iti
ve

va
lu

es
in

di
ca

te
hi

gh
er

es
tim

at
es

,a
nd

ne
ga

tiv
e

in
di

ca
te

lo
w

er
es

tim
at

ed

G
PP

co
m

pa
re

d
to

FL
U

X
N

E
T-

M
T

E
.[

U
ni

ts
:g

C
m
−

2
d−

1
]

15

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-36, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 23 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



(a) Year 2000 (b) Year 2006

(c) Year 2011 (d) Year 2014

Figure 9. Seasonal patterns of mean monthly GPP across latitudinal bands. [Units: g C m−2 d−1]

data set. The magnitude and temporal variability of the upscaled GPP estimates were thus significantly influenced by regions

where flux sites were present and may not be reflective of reality. Vegetation responses to the severe 2005 drought in the

Amazon has been a topic of controversy with studies reporting patterns of greening (Saleska et al., 2007) and others reporting

decline (Samanta et al., 2010). Our GPP product shows a green up during the 2005–2006 period in tropical zones; however,

this greening cannot be fully confirmed because of the lack of sufficient flux sites to adequately sample tropical regions for5

the spatio-temporal pattern of vegetation response to drought. For example, Santarem Km67 site (BR-Sa1) in Tapajos National

Forest in Amazonia Brazil was one of the few sites in the tropics that was available in FLUXNET2015. Patterns of GPP

observations at BR-Sa1 (Figure 11), including a greening trend during 2005-2006 drought, strongly influenced our upscaled

data set. Flux measurements from more sites, including existing sites which are not available within FLUXNET2015, would

help improve the upscaled estimates of GPP.10
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(a) Upscaled GPP (b) FLUXNET-MTE

Figure 10. Interannual variability in GPP fluxes for the period 2000–2008. [Units: g C m−2 d−1]

Figure 11. Observed GPP timeseries at Santarem Km67 site (BR-Sa1), Brazil [Units: g C m−2 d−1]

While FLUXNET-MTE shows a similar latitudinal pattern, interannual variability was significantly lower (Figure 10(b)).

The FLUXNET-MTE model was trained using data across all years, and thus possibly was less susceptible to the strong

interannual variability observed at the flux sites and rather is closer to a climatological mean pattern.

Due to variability in the number and spatial distribution of flux sites for which data were available in FLUXNET2015,

the upscaled GPP product also exhibits year to year variability in accuracy. Figure 12 and Table 3 summarize the statistical5

comparison of the upscaled GPP with FLUXNET-MTE GPP as reference benchmark.
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Figure 12. Statistical comparison of upscaled time integrated annual mean GPP with FLUXNET-MTE GPP.

Table 3. Comparison statistics for upscaled GPP data set compared to FLUXNET-MTE

Year RMSE Correlations (R)

2000 1.959 0.675

2001 1.557 0.717

2002 1.717 0.669

2003 1.710 0.739

2004 1.652 0.763

2005 2.425 0.594

2006 1.974 0.661

2007 1.484 0.730

2008 1.512 0.724

4 Conclusions

Networks of global flux sites capture the dynamic terrestrial biosphere–atmosphere gas exchange and provides us insights

into terrestrial ecosystem processes. In this study we have presented a method to assess the representativeness of the global

network of flux sites, specifically those included in the FLUXNET2015 data set. Due to independent operation of member

flux sites in the FLUXNET network, a wider range of variation exists in duration of operation, measurements being conducted5

and availability of data sets for open research. Thus unlike previous studies, we conducted our assessment to quantify the

representativeness of the network through time. The analysis provides a window into the evolution of the global eddy covariance

measurements over time, quantify the contribution of any individual sites, identify the regions that are better represented by

addition of sites over time, and ones that continue to be under-represented.

Upscaling of measured carbon fluxes is key for exploiting the full potential of rich FLUXNET2015 observations beyond10

the tower footprints to landscape scale understanding of ecosystem processes. We also developed a representativeness-based
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upscaling approach to develop monthly time series high resolution global gridded estimates of GPP. Our upscaling method

utilized the observations only from flux sites that sampled similar environmental conditions. Spatio-temporal variability and

accuracy of the upscaled GPP data set strongly reflects the spatio-temporal variability in distribution of flux observations. Thus,

the data set has higher accuracy and low uncertainty in the ecoregions that are well sampled by the available flux sites, and

lower accuracy and higher uncertainty in the ecoregions where available observations are sparse to none. Study was an attempt5

to understand the global carbon cycle (specifically GPP) through the lens of eddy covariance measurements across the globe.

This work highlights the regions that are poorly understood by the existing (and available) networks, like Southern Hemisphere

in general and carbon rich tropical forest ecosystems in particular.

This approach can easily be applied to flux data as they become available in order to routinely derive upscaled carbon fluxes.

While the current study was focused on GPP fluxes, the same method can be applied to other carbon, water and energy fluxes.10

While a larger number of sites are part of the full global FLUXNET network, full potential of the network to understand

the global carbon cycle can be realized only when data from all the sites are made available for research and analysis. Our

future efforts will focus on integration of data sets from other flux and forest inventory networks, like the Global Ecosystem

Monitoring (GEM) and RAINFOR networks, especially to improve our understanding of biodiversity and ecosystem function

in carbon rich tropical forests.15

Data availability

All data sets from this study have been archived (Kumar et al., 2016) as a part of Next Generation Ecosystem Experiments
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format.20
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Appendix A: Upscaled monthly GPP time series

Figure 13 shows the upscaled monthly time series of spatial distribution of global GPP fluxes for the year 2000.

(a) January 2000 (b) February 2000

(c) March 2000 (d) April 2000

(e) May 2000 (f) June 2000
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(g) July 2000 (h) August 2000

(i) September 2000 (j) October 2000

(k) November 2000 (l) December 2000

Figure 13. Spatial distribution of upscaled global monthly GPP for year 2000.
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