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Abstract

The Weddell Gyre plays a crucial role in the modification of climate by advecting heat
poleward to the Antarctic ice shelves and by regulating the density of water masses
that feed the lowest limb of the global ocean overturning circulation. However, our
understanding of Weddell Gyre water mass properties is limited to regions of data5

availability, primarily along the Prime Meridian. The aim of this paper is to provide
a dataset of the upper water column properties of the entire Weddell Gyre. Objec-
tive mapping was applied to Argo float data in order to produce spatially gridded, time
composite maps of temperature and salinity for fixed pressure levels ranging from 50
to 2000 dbar, as well as temperature, salinity and pressure at the level of the sub-10

surface temperature maximum. While the data are currently too limited to incorporate
time into the gridded structure, the data are extensive enough to produce maps of the
entire region across three time composite periods (2002–2005, 2006–2009 and 2010–
2013), which can be used to determine how representative conclusions drawn from
data collected along general RV transect lines are on a gyre scale perspective. The15

work presented here represents the technical prerequisite in addressing climatological
research questions in forthcoming studies. These data sets are available in netCDF
format at doi:10.1594/PANGAEA.842876.

1 Introduction

The Weddell Gyre provides an important link between the upper ocean and the ocean20

interior through the formation of Weddell Sea Deep Water (WSDW) and Weddell Sea
Bottom Water (WSBW). WSDW in particular contributes significantly to Antarctic Bot-
tom Water; a prominent water mass present throughout much of the abyssal global
ocean (Orsi et al., 1999; Johnson, 2008). As such, the Weddell Gyre acts as a buffer
through its role in transferring heat into the deep ocean; potentially playing a key role25

in a changing climate (Fahrbach et al., 2011).
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The main source water of the Weddell Gyre, Circumpolar Deep Water (CDW), enters
at intermediate depths primarily from the east, although the open northern boundary
permits intrusions of CDW to a lesser extent (Klatt et al., 2005; Fahrbach et al., 2004,
2011; Cisewski et al., 2011). Upon entering the gyre, CDW becomes known as Warm
Deep Water (WDW) and can be identified by its sub-surface potential temperature max-5

imum of 0.6–1 ◦C (Fahrbach et al., 2011). WDW undergoes water mass transformation
to form the underlying water masses. This process is controlled by (1) the transport and
mixing of source waters into the gyre (Leach et al., 2011), (2) changes within the Wed-
dell Gyre and on the adjacent shelves by influences from sea-ice and ice-shelves, and
finally (3) the transport of modified water masses with the gyre outflow (Foster et al.,10

1987; Fahrbach et al., 1994, 1995, 2011). A schematic showing the basic Weddell Gyre
circulation overlying a map of the bathymetry is shown in Fig. 1.

It has been well documented that the global ocean is warming (Lyman et al., 2010;
Levitus et al., 2012; Abraham et al., 2013). Furthermore, observations show a warm-
ing trend in the upper parts of the CDW (Boning et al., 2008; Gille, 2008) as well as15

in AABW within the Atlantic Ocean (Purkey and Johnson, 2013; Couldrey et al., 2013;
Azaneu et al., 2013). Within the Weddell Gyre, a general increase in potential temper-
ature of the WSDW and WSBW from the 1980s until 2008 has been observed, along
with a warming of the entire water column over 24 years (Fahrbach et al., 2011). It
therefore stands to reason that the key water mass that links the above mentioned20

water masses may also be warming. However, WDW is renowned for being subject to
significant variation from year to year (Robertson et al., 2002; Fahrbach et al., 2011),
complicating the issue as to whether or not long-term change is occurring.

To date, the literature focusing on Weddell Gyre hydrography has been largely based
on observations from repeat hydrographic sections – primarily collected during various25

cruises (e.g. Fahrbach et al., 2004, 2007, 2011), as well as data from moorings, de-
ployed both along the Prime Meridian and strategically placed locations throughout the
gyre (Fahrbach and De Baar, 2010; Klatt et al., 2005; Behrendt et al., 2011). While
these data are well-established; there are now 30 years of data collected from RV Po-
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larstern alone; the data nevertheless provides only snapshots in time that cover a rela-
tively small region of the Weddell Gyre (Fahrbach et al., 2007). Fahrbach et al. (2011)
provides an in-depth comprehensive analysis of the variations within the Weddell Sys-
tem. However, much of the analysis of long-term changes is based on data along the
Prime Meridian only – a region of high variability due to its close proximity to Maud Rise5

– influencing the relatively high frequency fluctuations of observed WDW properties.
In addition to repeat hydrographic sections and moorings throughout the Weddell

Gyre, Argo floats have been deployed in the region since 2000. Argo is a global array
of over 3500 free-drifting profiling floats that measure the temperature and salinity of
the upper 2000 m of the ocean, allowing for continuous monitoring of the global upper10

ocean. While in the major ocean basins the data are abundant enough to provide a rel-
atively uniform distribution of data throughout, the deployment of Argo floats at high
latitudes has been considerably more limited, especially prior to 2007. This is due to
the risk of damage to floats resulting from the seasonal presence of sea ice; preventing
the float from surfacing or converging around the float while it is at the surface transmit-15

ting data to satellite, thus crushing and damaging the float. A sea-ice sensing algorithm
was introduced to floats after 2007 (Klatt et al., 2007) whereby floats would “sense” the
likelihood of sea-ice at the surface, and may subsequently temporarily abort mission to
surface, storing the hydrographic data until the next opportunity to surface arises. The
location of the float at (1) the last profile prior to entering the sea-ice zone, and (2) the20

first profile upon exiting the sea-ice zone, are linearly interpolated in order to provide
a rough guess of the float location for the profiles that took place under the sea-ice.
Such profiles can be seen in particular in Fig. 2d. There are symbols distributed along
straight lines; these represent the linearly interpolated location estimates of stored pro-
file stations while the float is under ice.25

There are now over 10 years of Argo float data available for the entire Weddell Gyre
region, spanning from December 2001 to present, which can be used to determine the
spatial variation of upper water column properties throughout the gyre. However, due
to the irregular nature of the free-drifting profiling float, both in a spatial and temporal
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context, there are significant challenges regarding the utilization of these data in the
creation of statistically robust gridded datasets. One common method in dealing with
profile data is the application of objective mapping; an adapted form of kriging first de-
veloped in application to oceanography by Bretherton et al. (1976), though a similar
method was previously applied in a meteorological context (Gandin, 1965). The tech-5

nique is based on the Gauss–Markov Theorem and provides a point-wise estimate of
the interpolated field; this estimate is linear and unbiased and is based on the mini-
mization of the expected interpolation error (i.e. is optimal in the least squares sense;
Gandin, 1965; McIntosh, 1990). The method also provides a map of error variance
which takes into account the spatial distribution of the data used.10

The objective mapping method has been implemented for a number of studies.
Wong et al. (2003) and Böhme and Send (2005) have applied the method in a two-
stage procedure in order to calibrate float profile salinity data, while Rabe et al. (2011)
mapped Arctic observation data in order to determine changes in freshwater content.
On a global scale, objective mapping has been used to provide monthly hydrographic15

fields for the World Ocean Atlas (Chang et al., 2009) and to determine warming of the
global upper ocean (Lyman et al., 2010; Lyman and Johnson, 2008). The dynamic na-
ture of the major ocean basins and the relatively sensitive salinity investigations require
temporally and spatially dense data in order to apply objective mapping at suitable spa-
tial and temporal correlation length scales. The studies described above were feasible20

as there is a significantly higher volume of data available for the lower and intermediate
latitudes of the ocean than at high latitudes. However, the limited volume of data at high
latitudes is such that when objective mapping has been applied to float data on a global
scale, regions south of ∼ 50–60◦ S are poorly represented in the mapping process and
are typically the primary cause of discrepancies (e.g. Roemmich and Gilson, 2009; von25

Schuckmann and Le Traon, 2011; Chang et al., 2009).
The aim of this paper is to provide a spatially gridded dataset of the upper wa-

ter column properties with particular focus on the entire Weddell Gyre. We describe
the method followed in order to objectively map the irregular Argo float profile data
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onto regularly gridded fields, excluding regions beyond the Weddell Gyre boundaries.
Associated mapping errors are also provided. While spatially gridded, the resulting
mapped fields represent time composites of three separate time periods (2002–2005,
2006–2009 and 2010–2013), since the data are currently too limited to incorporate
both a spatial and temporal averaging scheme.5

2 Methods

2.1 Data: pre-mapping processing

Float profile data was retrieved from the Coriolis website (www.coriolis.eu.org). All pro-
files from within the Weddell Gyre region (50 to 80◦ S; 70◦W to 40◦ E) from Decem-
ber 2001 to March 2013 were selected. While there are 25 848 profiles, only profiles10

that have been subjected to delayed-mode quality control processing are used in this
study, which leaves about 19 600. The profiles are checked for duplicates which are
subsequently removed. The majority of available delayed-mode profiles occur in 2008
and 2009 (Fig. 3). While there is a clear seasonal bias in the number of profiles in the
first half of the time series, this bias reduces after 2007. This is due to the introduction of15

an ice-sensing algorithm that allows floats to abort the present mission to surface if the
presence of sea-ice is predicted at the surface (Klatt et al., 2007; Fig. 3). The majority
of profiles have a vertical limit of 2000 dbar, although there are more than 1500 profiles
that are limited to 1000 dbar (about 75 % of these profiles are actually located north of
the gyre boundary and most likely occur due to the complex bottom bathymetry of the20

region. Some of these “shallow” profiles within close proximity to Maud Rise may also
be explained by bottom bathymetry). Data are filtered according to their corresponding
quality flags; only those with a quality flag of 1 are used, which indicates that the data
have passed all quality control tests and that the “adjusted value is statistically con-
sistent” (for more information about the quality control procedure of Argo floats, refer25

to the quality control manual at www.argodatamgt.org). Additionally, any data points
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where the corresponding adjusted pressure error exceeds 20 dbar are rejected. This is
in accordance with the guidelines provided on the Argo website (www.argo.ucsd.edu).
The temperatures in Argo are reported to be accurate to ±0.002 ◦C while pressures are
accurate to ±2.4 dbar (Owens and Wong, 2009). For salinity, if there is a small sensor
drift, uncorrected salinities are accurate to ±0.1 psu, although this value can increase5

with increasing sensor drift. Delayed mode processing subjects all float profiles to de-
tailed scrutiny, by comparison with historical data (Owens and Wong, 2009), providing
corrected adjusted values while assigning each value with a quality flag.

Conservative Temperature, Absolute Salinity and potential density are determined
from the in-situ temperature, practical salinity and pressure variables in the profile data,10

in accordance with TEOS-10 (IOC et al., 2010). Conservative Temperature is more
representative of the “heat content” of seawater in comparison to potential temperature
(McDougall and Barker, 2011). The profile data are linearly interpolated onto 41 dbar
levels, ranging from 50 to 2000 dbar. The pressure levels used are shown in Table 1.
Objective mapping is applied to the entire dataset spanning from December 2001 to15

March 2013, as well as to 3 sub-sets, where the data are split according to the follow-
ing time periods: (1) 2002–2005, (2) 2006–2009 and (3) 2010–2013, which splits the
dataset into roughly equal time spans. The profile distribution for the three time periods
is shown in Fig. 2b–d while the respective profile densities (the number of profiles to
a 3×3◦ grid cell) are shown in Fig. 4.20

2.2 Sub-surface temperature maximum

In addition to the temperature and salinity maps of the 41 standardized pressure levels
to which the profile data are interpolated, maps of temperature, salinity and pressure
are also determined at the level of the sub-surface temperature maximum. Examples of
typical Temperature–Pressure profiles from Argo float data within the Weddell Gyre are25

shown in Fig. 5. The sub-surface temperature maxima are clearly marked. There are
two reasons for providing the sub-surface temperature maximum. Firstly, it represents
the core of incoming Circumpolar Deep Water, which is the main source water feeding
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the Weddell Gyre. Secondly, it is used to define the northern boundary of the Weddell
Gyre. The northern boundary is defined by the Weddell Front, which is controlled by
the topography of the sub-surface ridges (e.g. the North Weddell ridge) but is not fixed
in position due to strong interactions between the Antarctic Circumpolar Current to the
north and the Weddell Gyre flow to the south. The Weddell Front can be located where5

the core of warm water from the Antarctic Circumpolar Current meets the relatively cold
subsurface water of the Weddell Gyre (Fahrbach et al., 2011). Thus, the sub-surface
temperature maximum is used to aptly define the latitude at which the meridional tem-
perature gradients are the highest – which is the definition of the northern boundary of
the Weddell Gyre in this study. The sub-surface temperature maximum is determined10

by taking the sum of the z scores of temperature and pressure. The z score assigns
“scores” to data points based on their deviation from the mean. Using z scores instead
of the standard deviations (from which the z scores are calculated) allows for the di-
rect consideration of standard deviations from two different variables; here we seek the
warmest temperature at the deepest depth, in order to ensure the sub-surface temper-15

ature maximum is selected rather than, for example, the summer surface water. The
index of the sum of z scores with the smallest magnitude then represents the level of
the sub-surface temperature minimum (i.e. the coldest water at the shallowest depth).
The maximum sub-surface temperature can then be determined as the maximum tem-
perature below the minimum. This method finds the deepest temperature maximum,20

thus taking into account seasonal surface warming.

2.3 Approach to objective mapping

Objective mapping was applied to Argo float data in order to produce spatially gridded
fields of temperature and salinity for the upper ocean in the Weddell Gyre region. One
requirement of objective mapping is to have knowledge of the mean field, 〈x〉, which,25

due to the irregular nature of the Argo array, presents a challenge and is the very moti-
vation for objective mapping in the first place. Many studies involve the decomposition
of measured fields into large and small scale components, where the subsequent large-

516

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

scale field estimate is subtracted from the data. The resulting data residuals are used
to determine the small scale component. The final mapped field estimate is the sum
of the large- and small scale components. This way, the mean (first guess) field, 〈x〉, is
a simple matter of taking the mean of the set of data, x = [x1, . . .,xi ], and the mean of
the residuals of x for the small-scale component. Such studies stem from Roemmich5

(1983), and include Wong et al. (2003), Böhme and Send (2005) and Chang et al.
(2009). Other studies provide an estimate of the mean (first guess) field using model
output data, or climatology fields, such as in Hadfield et al. (2007). For the examples
listed above, the mapping method is applied in regions where the hydrography is highly
variable, and data are spatially and temporally abundant. Thus, the small-scale signal10

is essential in resolving small-scale features in both a spatial and temporal context.
By comparison, hydrography in the sub-surface Weddell Gyre is relatively invariant,

and the volume of available data is considerably smaller, rendering such high-resolution
mapped field variables unfeasible. There is always a compromise regarding the degree
of detail achievable in a spatial context vs. a time context. In this study, the aim is to15

provide a broad outlook on the properties across the entire Weddell Gyre. Therefore
a slightly different approach is chosen here. Firstly, rather than incorporate a temporal
separation factor into the equation which assigns a weight to each data point, which
would lead to a spatially and temporally regular gridded dataset, the data is split into
sub-sets of time periods, so that the resulting maps represent spatially gridded time20

composites of the field variables for these time periods. This is due to the sparsity
of the dataset. Secondly, the mapping process is implemented in a two-step proce-
dure, allowing for a step-by-step improvement of the mean field estimate. In the first
stage, the first guess field (in other words, the expected true value of the variable at
the grid point location) is the zonal mean, calculated from all floats binned within the25

corresponding latitudinal boundaries, while the covariance is a function of large scale
separation. The outcome is a large-scale estimate of the mapped field without con-
sideration of smaller-scale features; this field estimate then becomes the first guess
field in the second stage of mapping, where the covariance is a function of small-scale
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separation, which gives extra weight to close-by data in regions where the data are
abundant. In regions of sparse data density, the objective estimate reverts back to the
mean guess field and the corresponding mapping error is large. This 2-stage method
reduces the possibility for errors by providing an improved estimate of the first guess
field, which leads to a general reduction in the magnitude of the signal variance, 〈s2〉,5

by which the covariance matrices are scaled by. The error variance is calculated from
the second stage of the mapping only.

2.4 Objective mapping

For each pressure surface, the corresponding temperature and salinity data are ex-
tracted from the vertically linearly interpolated float profiles (for further details refer10

to Sect. 2.1). Thus, only vertically interpolated data at the pressure surface to be
mapped to are included in the mapping. The extracted data points are objectively
mapped onto a regular 1◦ × (1◦/cos(−65◦)) grid. This results in grid cells of approxi-
mately 110km×110km at 65◦ S; roughly the central axis of the gyre. For each grid
point, N representative profiles (x) are selected for the mapping procedure (for details15

regarding the selection procedure, refer to Sect. 2.5). The objective estimate of the
variable, Xg1, at the grid point g is given by Eq. (1a) for stage 1 and Eq. (1b) for stage
2. The zonal mean, xz, is the first guess field in stage 1 while the objective estimate
from stage 1 becomes the first guess field used in stage 2. The term ω denotes the
weighting matrix (Wong et al., 2003).20

Xg1 = xz +ω ·
(
x−xz

)
(1a)

Xg2 = Xg1 +ω ·
(
x−Xg1

)
(1b)

Each profile x is weighted by the horizontal distance D and the fractional distance F
in potential vorticity: (1) between the grid point location g and the profile location i ,
and (2) between the neighbouring N profile locations, i and j . Thus, the profiles are25

not just weighted according to their distance to the grid point, but also to neighbouring
518
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profiles. As such, where three profiles may have the same distance to a grid point,
the profile furthest apart from the neighbouring profiles will be assigned the largest
weight (for example, refer to Fig. 6). The fractional distance F (Eq. 2) accounts for the
cross-isobath separation between two locations. This reflects the influence of potential
vorticity, and thus bathymetry (Fig. 7) and the Coriolis force (and therefore change in5

latitude); potential vorticity strongly influences the flow patterns of water masses, which
is accounted for by (Böhme and Send, 2005):

F =
|PV(a)−PV(b)|√
PV2 (a)+PV2 (b)

(2)

where a and b represent the locations of grid point g and profile i or the neighbouring
N profile pairs, i and j . PV is the barotropic potential vorticity, PV = f

H where f is the10

Coriolis parameter and H is the full ocean depth, based on the general bathymetric
chart of the oceans (GEBCO; IOC et al., 2003). The distances D and F are scaled by
a horizontal length scale L (L(stage 1) = 1000 km and L(stage 2) = 500 km) and a cross-
isobath scale φ (F(stage 1) = 0.5 and F(stage 2) = 0.25) respectively. See Sect. 2.5 for the
reasoning behind the chosen values for L and F .15

The decay scales determined by the distances D and F and their associated length
scales are applied in the form of covariance functions in order to determine the weight
matrix, ω (Eq. 3). The data-grid covariance (Cdg; Eq. 4) is a function of the distances
between the grid point g and the profile location i while the data-data covariance (Cdd;
Eq. 5) is a function of the distance between the N neighbouring profiles, i and j . Thus,20

for every grid point, while Cdg is a 1×N vector, Cdd is a N ×N matrix. The covariance
of the data is assumed to be Gaussian, following Böhme and Send (2005).

ω = Cdg ·
[
Cdd + I · 〈η2〉

]−1
(3)

Cdgi
= 〈s2〉 ·exp

−
D2

ig

L2
+
F 2

ig

φ2


 (4)

519

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Cddij
= 〈s2〉 ·exp

−
D2

ij

L2
+
F 2

ij

φ2


 (5)

〈s2〉 =
(

1
N

)∑
i

(
xi −X

)2
(6)

〈η2〉 =
(

1
2N

)∑
i

(xi −xn)2 (7)

The covariance functions are scaled by the signal variance, 〈s2〉 (Eq. 6), which mea-
sures the squared deviations of the data from the mean field.N is the number of profiles5

used to estimate the value at the grid point. The mean field X , is the zonal mean in
the first mapping stage while the objective estimate from stage 1 becomes the mean
field in the second mapping stage. A random noise signal (i.e. the noise variance),
〈η2〉 (Eq. 7), is added to the diagonal of the data-data covariance function, where xn is
the variable of the profile with the smallest distance to the profile location i . This term10

accounts for the variations between nearby data.
In addition to providing an estimate of the field at locations where there are no data,

objective mapping also provides an error variance of the objective estimate. This is
taken from the second stage of the mapping:

σ2
g = 〈s2〉 −Cdg ·

[
Cdd + I · 〈η2〉

]−1
·CT

dg (8)15

where the superscript T signifies the transpose of the vector Cdg.

2.5 Choosing appropriate length scales (L,F ) and selecting N surrounding
data points to a grid point

In stage 1 of the mapping, the length scales are L = 1000 km and φ = 0.5 while in the
second mapping stage, in order to give extra weight to nearby data points, L = 500 km20
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and φ = 0.25. Thus, a factor of 4 in the difference f /H is equivalent to a 500 km hori-
zontal separation on the separation parameter; the decay scale used in the covariance
functions (Hadfield et al., 2007). The performance of the objective mapping is sensitive
to the length scales used in the correlation function. For a successful and accurate
mapping of the field of variables, the applied length scales need to be larger than the5

minimum distance between data points. Otherwise, the mapped estimate will revert to
the mean first guess field used in the mapping, and the resulting mapping error will
be large. In order to establish suitable length scales for the mapping, the percentage
of grid points with at least 40 data points within certain distances are calculated, in
a similar manner to Hadfield et al. (2007). The results are shown in Fig. 8. The mini-10

mum distance where 100 % of the grid points have at least 40 data points for the entire
time series is 1000 km. However, while the percentage remains high (about 99 %) for
the time periods 2006–2009 and 2010–2013, the percentage decreases to about 95 %
for the time period 2002–2005. At 500 km, about 95 % of the grid points have 40 or
more data points for the entire time period; about 75, 93 and 90 % of the grid points15

have more than 40 data points within 500 km for the time periods 2002–2005, 2006–
2009 and 2010–2013 respectively. This value rapidly decreases for distances less than
500 km. Therefore, 1000 km is used for the large length scale in the first mapping stage
and 500 km is the small length scale L used in the second mapping stage. If a temporal
separation factor were to be incorporated into the decay scale for the second stage of20

the mapping, the length scales would have to increase accordingly.
The number of data points (N) used in the calculation of the field estimate was set to

40. The decay scale of the data-grid covariance function (D2
ig/L

2+F 2
ig/φ

2) was applied
to the data with the large length scales of stage 1 (L = 1000 km and F = 0.5), and
all corresponding data points where the decay scale was larger than 1 were filtered25

out (i.e. only data within the e-folding scale of the covariance function were selected;
D2

ig/L
2+F 2

ig/φ
2 < 1). Where more than 40 profiles were available within the decay scale

limit, data were sub-selected by the shortest possible distance to the grid point (i.e.
smallest decay scale values).
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At first, the mapping process was carried out for the sub-surface temperature maxi-
mum. The resulting field of conservative temperature was used to determine the north-
ern boundary of the gyre: for each longitudinal bin, the latitude where the sub-surface
temperature is more than 2 ◦C is masked. Following this, the latitude at which the merid-
ional sub-surface temperature gradient is largest is defined as the position of the Wed-5

dell Front. All grid cells north of this latitude are masked in the following objective map-
ping processes. The mapping process is then carried out for 41 pressure surfaces,
ranging from 50 to 2000 dbar.

2.6 Masking grid cells of high error variances

In addition to the mapped variables and associated mapping errors, error masks are10

also provided corresponding to the mapping errors of conservative temperature and
absolute salinity. Where a grid cell mapping error passes the masking criteria, the grid
cell is represented by the number 1; all other grid cells are represented by the fill
value NaN. The method of defining the masking criteria is outlined as follows. Sep-
arate histograms of temperature and salinity mapping errors are created, where the15

grid cells are binned according to their error variances and a subsequent percentage
of grid cells within each error variance bin are determined. A sample histogram (of
conservative temperature at 800 dbar of the entire 11 year time composite) is shown
in Fig. 9. The masking error criterion at 95 % is about 0.01 ◦C; all grid cells with an
error variance that exceeds this value are masked and shown as slightly transparent20

in the maps presented in Sect. 3. The masking criterion is defined by the error value
which is not exceeded by 95 % of the grid cells. Any grid cell where the corresponding
mapping error is larger than the masking criterion is masked (by a 1 in the masking
array). This is carried out separately for each vertical level of mapped variables. There
are two masks – the “temperature mask” is based on the masking criterion from the25

temperature mapping error alone, whereas the salinity mask is based on the condition
that if either temperature or salinity mapping errors exceed the corresponding masking
criteria, the respective grid cell is masked (again with a 1 in the masking array). The
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masking criterion is determined from the error maps of the entire 11 year composite,
as well as for each subset time composite period. The maps shown in Sect. 3 are
masked according to the error maps of the entire 11 year composite, to show how the
error variance increases with less available data (in particular, for example, in the time
period from 2002 to 2005). The masks are applied in the form of a semi-transparent5

layer over the contour maps (see Sect. 3). For pressure at the level of the subsurface
temperature maximum, the temperature mask is applied instead of a mask based on
the pressure error map. This is because the subsurface temperature field is relatively
stable, whereas the pressure is more dynamic. This is discussed further in Sect. 4.2.

3 Results10

The following section describes the format of the dataset resulting from applying ob-
jective mapping to Argo float data and provides some examples of the subsequent
mapped fields of data. The pressure and conservative temperature at the level of the
sub-surface temperature maximum is presented for the entire 11 year time compos-
ite. Additionally, the mapped fields of conservative temperature and absolute salinity15

at 800 dbar are shown, along with the corresponding error variances, for the entire
11 year time composite and the three time period subsets (2002–2005, 2006–2009
and 2010–2013).

3.1 Data format: gridded fields of upper Weddell Gyre water properties

The time composite data sets of mapped field variables are provided as netCDF files;20

one file for each available time period. The filenames and corresponding variables pro-
vided in each netCDF file are listed in Tables 2 and 3 respectively. Mapped fields of
conservative temperature (◦C), absolute salinity (gkg−1) and potential density (kgm−3)
are provided for 41 vertical pressure levels (listed in Table 1). Additionally, the three
variables listed above, as well as pressure (dbar) at the level of the subsurface temper-25
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ature maximum are provided (Sect. 2.2 details the method of identifying the subsurface
temperature maximum). All mapped variables are provided alongside corresponding
mapping errors and error masks (see Sect. 2.6 for a detailed explanation of the er-
ror masks). Information regarding the grid coordinates and vertical pressure levels are
provided, where grid cell size is defined by 1◦ latitude ×1◦/cos (−65◦) longitude; latitude5

and longitude are described as −90 to 90◦N and −180 to 180◦ E respectively. Fur-
ther details found in the global attributes of the netCDF files are described throughout
Sect. 2. The coordinates represent the centre of each grid cell. The missing value is de-
fined by NaN. Additional information regarding the units of variables and the structure
of the corresponding data array (i.e. latitude × longitude × vertical pressure level) are10

detailed in the attributes of each variable, and are also detailed throughout this paper.

3.2 Sub-surface conservative temperature maximum

A typical feature in the hydrography of polar regions is the presence of a sub-surface
temperature maximum, as displayed in Fig. 5, which results from influx of warmer wa-
ters from lower latitudes. The maps in Fig. 10 present conservative temperature, Θ, at15

the level of the sub-surface temperature maximum, for the entire time series from 2002
to March 2013. Figure 10a displays the original float profiles while Fig. 10b shows the
mapped field of Θ(Θmax). The associated mapping error is provided in Fig. 10c. Note
the translucent contours within Fig. 10b mark the regions of high error marked by the
dark red contours in the mapping error of Fig. 10c (for detailed explanation, refer to20

Sect. 2.6). This occurs for all contour maps presented in this paper. The boundary
of the gyre to the north is clear as a sharp transition between warmer temperatures
above 2 ◦C to the north and cooler temperatures of the gyre below 1 ◦C to the south.
This boundary reflects the bathymetry of the region, including the northern extension of
the gyre at the South Sandwich Trench (just east of 30◦W, 53 to 60◦ S). The incoming25

source water of the Circumpolar Deep Water is also shown as a core of warm water
entering the gyre in the east, in the southern limb of the gyre (at about 65◦ S, 30◦ E).
This warm water cools from about 1.2 to 0.6 ◦C as it circulates westwards through the
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southern limb of the gyre. A double gyre structure is also suggested, where the sec-
ondary gyre occurs in the north-east sector, splitting from the main gyre at about 5◦W.
The associated mapping error is relatively small, with the largest errors occurring at the
gyre boundary, particularly in regions of complex bathymetry. The error is small within
the gyre, even in regions of especially sparse data density (with the exception of 45–5

55◦W, 64–72◦ S, where no profile floats are located within the region). This is because
the temperature field is relatively stable, which results in a small signal variance field.
The field of pressure at the sub-surface temperature maximum, Pr(Θmax), Fig. 11, is less
stable in comparison to Θ(Θmax), which is why the error (Fig. 11c) is larger, again at the
gyre periphery as well as along the Antarctic coast. There is also a considerable deep-10

ening of the sub-surface temperature maximum at about 65◦ S, just east of the Prime
Meridian, from about 200 m in the surrounding region to roughly 400 m, which occurs
directly over Maud Rise (note the mapping error is relatively small in this region). The
sub-surface temperature maximum is shallowest within the gyre centre, and deepest
towards the gyre peripheries, demonstrating the domed structure associated with the15

cyclonicity of the gyre.
The mean meridional sub-surface temperature, Θ(Θmax) along the Prime Meridian

(as extracted from the corresponding objectively mapped gridded data set) is given in
Fig. 12a along with the resultant meridional temperature gradient in Fig. 12b. The large
dots show the latitude at which the gradient is largest, which occurs at 56◦ S (note:20

the gradient is negative due to the south–north direction). This is the latitude used
to define the northern boundary at the Prime Meridian, which corresponds with the
northern boundary used in the long-term analysis of properties at the Prime Meridian
in Fahrbach et al. (2011). All grid points north of this latitude are masked from the
mapping process for the subsequent isobaric mapped surfaces.25

3.3 An example: Θ and SA at 800 dbar

Figure 13a–c shows the original profile data, the mapped field and the associated
mapping errors respectively, of conservative temperature at 800 dbar, for the entire time
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period from 2002 to 2013. Figure 14 shows the same but for absolute salinity, SA. The
temperature field shows the structure of the gyre, where relatively warm water from the
north enters the gyre in the southern limb (south of 60◦ S) at about 30◦ E and gradually
cools as it circulates in a clockwise direction throughout the gyre. There is a gradual
transition from relatively warm water in the south east sector of the gyre, to cooler water5

in the western southern limb of the gyre, to even cooler water in the northern limb of
the gyre. The coolest water at 800 dbar occurs in the east within the northern limb of
the gyre. The cyclonic-gyre signal is less clear in the absolute salinity field (Fig. 14b).
Regardless, there is a gradual freshening from the southern limb to the northern limb
of the gyre, consistent with the cooling spatial trend. Again, the associated mapping10

errors are small, in particular in the centre of the gyre, and larger in regions of complex
bathymetry at the gyre boundaries.

Figure 15a–c shows the mapped conservative temperature fields at 800 dbar for data
sub-sampled to the time periods 2002–2005, 2006–2009 and 2010–2013 respectively,
while Fig. 15d–f shows the corresponding mapping errors. The temperature fields rep-15

resent the gyre structure with the water cooling as it transitions from the southern limb
to the northern limb in a clockwise direction. While the northern boundary appears
to be relatively stable, with minimal change across the three time periods, the region
where warm water enters from the east varies with each time period. The warmest
signal that extends furthest into the gyre (about 1 ◦C) occurs in 2006–2009 (Fig. 15b).20

However, the error associated with this region (Fig. 15e; about 10–30◦ E, 62–68◦ S) is
relatively large, due to a considerable data gap that can be seen in Fig. 2c. There is
also a large data gap and associated mapping error for 2010–2013 (Fig. 2d and Fig. 15f
respectively). Figure 16 shows the same as Fig. 15 but for absolute salinity. Again the
freshest signal occurs in the northern limb. The southern limb appears to be saltier in25

the first time period (2002–2005), particularly in comparison to the second time period
(2006–2009). The errors in Fig. 16d–f are smaller in comparison to the temperature
fields due to a smaller signal variance.
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4 Discussion

The following Section assesses the performance of the objective mapping method (out-
lined in Sect. 2) in providing gridded fields of water column properties of the upper
2000 m of the entire Weddell Gyre. Certain decisions regarding the mapping method
are discussed and potential implications are highlighted. Additionally, the mapping er-5

rors are carefully considered in terms of the likely causes of large error variances in
certain regions. Lastly, in place of a regular grid, the profiles were objectively mapped
to the locations of the profiles themselves in order to directly gauge the performance
of the mapping process, by assessing the difference between the original data and the
mapped product.10

4.1 Objective mapping performance

Argo float data were objectively interpolated in order to provide gridded fields of wa-
ter column properties of the upper 2000 m of the Weddell Gyre. By comparing the
scatter-grams of the original data (e.g. Fig. 13a) to the corresponding mapped prod-
ucts (e.g. Fig. 13b), it is clear that the objective mapping method performs generally15

well in producing regularly gridded fields of (i) temperature at the sub-surface tempera-
ture maximum (Fig. 10b), and (ii) of temperature and salinity at 800 dbar (e.g. Fig. 13b
and Fig. 14b respectively). In addition, the associated mapping errors are relatively
small throughout (e.g. Fig. 13c); less than 0.01 ◦C across the majority of the Weddell
Gyre in Fig. 15d–f. The discernable general hydrographic features of Figs. 10–16 are20

also to be expected; the cyclonicity of the gyre is demonstrated by the relatively cool
gyre interior (e.g. Fig. 13b). Furthermore, shoaling of the sub-surface temperature max-
imum occurs at the centre (Fig. 11b), exhibiting the dome-like structure of the gyre as
discussed by Orsi et al. (1993) and Fahrbach et al. (2011). By assessing the spatial
variability of temperature across the three time periods in Fig. 15a–c, it is clear that the25

temperature in the eastern sector of the gyre’s southern limb is more variable than both
the cooler gyre interior and the western sector of the southern limb. This is due to the
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variability of the incoming source water, Circumpolar Deep Water, which is influenced
by the variability of the Antarctic Circumpolar Current and possibly wind forcing of the
Weddell Gyre (Fahrbach et al., 2011; Cisewski et al., 2011). Additionally, the influence
of Maud Rise leads to increased spatial variability in the region; such as a deepening
of the sub-surface temperature maximum in Fig. 11b and a regional cooling at 800 dbar5

across all three time periods in Fig. 15 (although the cooling is so slight during the first
time period (2002–2005) that the contour levels in Fig. 15a fail to resolve the localised
cooling). The cooling and freshening over Maud Rise at 800 dbar (Figs. 13b and 14b
respectively), along with the deepening of a cooler temperature maximum, represents
trapped water in a Taylor Column and shows agreement with Bersch et al. (1992),10

Muench et al. (2001) and Leach et al. (2011). The factors discussed above could ex-
plain the variability of Warm Deep Water along the Prime Meridian as observed and
discussed by Fahrbach et al. (2011). However, considerable data gaps within the east-
ern sector of the southern limb, especially for the latter two time periods (e.g. Fig. 2c
and d), render it challenging to draw concrete observations for this region. The impor-15

tance of establishing efforts to monitor this region is becoming increasingly recognized,
due to the potential contribution of incoming deep water masses from further east on
the export of Antarctic Bottom Water to the lower limb of the global oceanic overturning
circulation (Meredith et al., 2000, 2014; Jullion et al., 2014).

There appears to be two main influences determining the magnitude of the map-20

ping error variances throughout the Weddell Gyre. The mapping error is typically large
in regions of sparse data coverage (e.g. in the south-west corner of the Weddell Sea
in Fig. 10c), which is especially prominent in the first time period, as shown by the
large masked area in Fig. 15a (the masked areas are semi-transparent and mark re-
gions where the mapping error is larger than 0.007 ◦C; see Sect. 2.6 for an expla-25

nation of the error masks). However, there are also regions of dense data coverage
where the mapping errors are also relatively large (e.g. at about 60◦ S, west of 45◦W,
in Fig. 13c). In particular, the north-west corner of the gyre has relatively high map-
ping errors throughout all maps. This is due to the dynamic nature of the region. The

528

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

bathymetry is complex due to the presence of submerged ridges and trenches. It is
also at the very periphery of the gyre where complex interaction with the Antarctic
Circumpolar Current takes place (e.g. Klatt et al., 2005; Fahrbach et al., 2004, 2011;
Cisewski et al., 2011). Thus, the objective mapping is poorly representative of these
highly variable, complex regions. One way to improve the objective estimate of these5

regions is to incorporate more suitable correlation length scales as well as a temporal
separation factor into the decay scale in Eqs. (4) and (5), such as in Böhme and Send
(2005). The correlation length scales would need to match the scale of the true field in
order to adequately map these regions. Since these regions typically only occur at the
very periphery of the gyre, and due to data sparsity throughout the relatively invariant10

inner gyre, the correlation length scales are chosen to represent the large scale field
of the entire gyre, as opposed to a small-scale, temporally scaled field of a smaller
area of the gyre (since the mapping would be restricted to regions where there are
enough data to perform the interpolation). Additionally, the incorporation of a temporal
separation factor would require an increase in the correlation length scales in Eqs. (4)15

and (5), in order to provide an adequate number of data points which exist within the e-
folding scale (D2

ig/L
2 +F 2

ig/φ
2 < 1, see Sect. 2.5). 1000 km, the horizontal length scale

for the first mapping stage, incorporates about 9◦ in the Meridional direction. Since the
gyre generally spans about 10–15◦ in the Meridional direction, a larger length scale
would draw on data from outside the gyre, thus reducing the quality of the mapping.20

In order to reduce the correlation length scales as is sensibly possible in obtaining
a gyre-scale view of the Weddell Gyre hydrography, while at the same time assessing
variability in a temporal context, a compromise is reached by way of creating temporal
composites of three time periods. Regardless, the mapping errors are relatively large
in regions of sparse data coverage within the gyre across all three time periods. This is25

most prevalent in the first time period, 2002–2005, where the mapping error (Fig. 15d)
across the west and north-west sector of the gyre is masked out in Fig. 15a due to
failure of the masking criterion (i.e. masked by transparency; see Sect. 2.6); the largest
mapping error of this region is 0.65 ◦C. This can be directly associated with little data
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availability in Fig. 2b. There are also areas of limited data coverage in the time period
2006–2009 (Fig. 2c) and in the time period 2010–March 2013 (Fig. 2d), both at about
20◦ E, south of 60◦ S, which lead to maximum mapping errors of 0.035 and 0.06 ◦C in
Fig. 15e and f respectively. Thus, while steps were made to optimise the quality of the
objective mapping based on the limited data available (e.g. Fig. 8), it is important to5

assess the corresponding mapping errors when interpreting the gridded fields of data,
particularly the sub-sets of the three time periods, especially due to regions of limited
data availability. Furthermore, across all maps, the region of most prevalent mapping
errors occurs at the northern boundary of the gyre. Where the meridional gradients of
the sub-surface temperature maximum are largest defines the northern boundary of10

the gyre, which coincides with these regions of relatively large mapping errors. There-
fore it is important to acknowledge that the definition used for the northern boundary in
this study is sensitive to the associated mapping error variances in Fig. 10c.

Mapping errors vary according to the corresponding pressure level. Figure 17a and
b shows the vertical variation of the error mask limits (based on the 95 % error value,15

i.e. 95 % of grid points have a smaller error than the 95 % limit; for an explanation of the
error masks, see Sect. 2.6) for conservative temperature and absolute salinity respec-
tively. While the error limits are relatively invariant below 400 dbar, there is a consid-
erable change in shallower waters. With the exception of the time period 2002–2005,
where the error limit monotonically increases in magnitude from about 200 to 50 dbar20

for temperature, and from about 400 to less than 200 dbar for salinity, the remaining
time periods show a peak in error limit at about 120–180 dbar and a relatively small
minimum at about 70 dbar for temperature. Regarding salinity, the error limit more or
less increases with decreasing pressure, although a peak maximum (minimum) error
occurs at about 100 (70) dbar for the time period 2010–2013, and 180 (100) dbar for25

the entire time period. This coincides with the region of Winter Water, where the peak
in the error limit for temperature occurs at the approximate depth of the lower bound-
ary (e.g. see Fig. 3 in Behrendt et al., 2011). Thus seasonal signals may have led to

530

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the increase of the mapping errors in the shallower mapped surfaces, which should be
taken into account when interpreting the mapped surfaces above 200 dbar.

In addition to regions of dynamic hydrography and regions of low data density, a fur-
ther potential factor influencing the mapped data output is linked to the selection pro-
cess of N representative profiles for each grid point objective estimate. Many studies5

incorporate a decision process whereby one third of the profiles are randomly se-
lected from within the e-folding scale of the covariance function in Eqs. (4) and (5);
(i.e. D2

ig/L
2 + F 2

ig/φ
2 < 1), one third are selected with the smallest distance within the

large correlation length scales, and the remaining third of profiles are selected with the
shortest spatial and temporal separation distances (e.g. Rabe et al., 2011; Böhme and10

Send, 2005). This was done in order to remove potential bias by selecting nearby pro-
files, such as, for example, those from along repeat hydrographic sections, which are
closely spaced in both distance and time. In this study, only data within the e-folding
scale of stage 1 are selected, in accordance with the studies above. Where there are
more than N(N = 40) profiles available, the N profiles with the smallest spatial sepa-15

rations are simply selected. This is justified because the only data utilized comes from
Argo floats, which are independent of repeat-ocean transects. Furthermore, it is a nec-
essary compensation due to limited data availability (and thus the necessity of large
correlation scales).

Another source of error which must be taken into consideration concerns the winter20

profiles that have become available since 2007, when a “sea-ice sensing” algorithm
allowed for the survival of floats in regions of sea-ice cover (Klatt et al., 2007). While
these floats provide profiles that would otherwise be unavailable due to sea-ice, an
important assumption has been made regarding the corresponding “under-ice” profile
positions. The position of these profiles is estimated by linear interpolation between the25

last known position of the float before it enters the sea-ice zone, and the first known
position of the float upon exiting the sea-ice zone. Thus, the positions of these floats are
clearly incorrect. Examples of such profiles can be seen in Fig. 2d: there are profiles
that are distributed along straight lines, particularly in the south west sector of the gyre.
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It is therefore a priority to improve the position estimates of such floats. However, such
profiles within the gyre interior do not appear to increase the mapping error of the
mapped surfaces, reflective of the stable, relatively invariant gyre interior. The regions
where these profiles may increase the mapping error are along the Antarctic coastline
where complex bathymetry, lack of available profiles, and interaction between the flow5

of the incoming Circumpolar Deep Water and the cold, westward Antarctic coastal
current also play a role in increasing the mapping error.

4.2 Mapping the sub-surface temperature maximum:
two approaches compared

When mapping to the level of the sub-surface temperature maximum, there are two10

approaches one can make. One approach is to extract the corresponding pressure,
temperature and salinity values at the sub-surface temperature maximum for every
float profile in the dataset and map each variable independently. This is the approach
outlined in Sect. 2.2. Another approach is to extract the pressure of the sub-surface
temperature maximum for each float profile and apply objective mapping to the pres-15

sure variable alone in order to determine a regular gridded dataset of pressure at the
level of the sub-surface temperature maximum. For each grid point, one then selects
the N closest profiles, from which the temperature and salinity values are extracted at
the pressure level provided by the mapped field previously determined. Thus, the re-
sulting mapped fields of temperature and salinity are dependent on the mapped pres-20

sure of the sub-surface temperature maximum rather than the individual profiles them-
selves. Both approaches were investigated and compared for the entire time period
from 2002 to March 2013. The resulting mapped field of temperature and the corre-
sponding mapping error are shown in Fig. 10b and c respectively for the first approach,
and in Fig. 18a and b respectively for the second approach. The mapped temperature25

fields for the two approaches are similar. The differences between the two temperature
maps is less than 0.2 ◦C throughout the Weddell Gyre, with the exception of regions at
the gyre periphery where the differences can be as high as 0.4 ◦C (Fig. 19). The first
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approach typically yields warmer values than the second approach throughout most of
the region (hence the map in Fig. 19 is largely negative (blue), as it shows temperature
from approach 2 w.r.t temperature from approach 1). The second approach leads to
slightly larger mapping errors, in particular along the Antarctic coastline. Thus, the first
approach, where the temperature, salinity and pressure of the sub-surface temperature5

maximum are independently mapped, is the approach followed in this study.
Pressure at the level of the sub-surface temperature maximum has the largest cor-

responding mapping errors of all mapped surfaces, despite the relatively small errors
in the mapping of conservative temperature at the sub-surface temperature maximum.
This is because it is subjective to allocate a specific point at which the temperature has10

reached its maximum in many of the profiles. Although a statistical method is employed
here (see Sect. 2.2), the processes that influence the position of the temperature max-
imum are too complex for the method to be extremely accurate, and the number of
profiles are too numerous to identify each peak manually. Some profiles do not have
a pronounced sub-surface temperature maximum. The peak temperature then occurs15

with a small vertical gradient, so a small change in temperature could shift the peak
temperature by 100s of meters. Thus, while the mapping of the sub-surface temper-
ature maximum is relatively successful, caution needs to be made when considering
the pressure at the level of the sub-surface temperature maximum. It is primarily for
this reason that the second approach described above was not used in the mapping20

process.

4.3 Objective Mapping to float profile locations

In addition to objectively mapping Argo float data to a grid to create a spatially regular
field of data variables, the profile data were also objectively mapped to the locations of
the profiles themselves, in order to assess the performance of the objective mapping25

procedure. It is important to note that the resulting maps should not precisely match
the profile data, due to the assumption of noise in the dataset (〈η2〉; Eq. 7). While the
objective mapping was carried out at the level of the sub-surface temperature maxi-
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mum as well as at 800 dbar, only the latter is presented here. Figure 20a shows the
original profile data of conservative temperature at 800 dbar for the entire time period
2002–2013. Figure 20b shows the objectively mapped field estimate, mapped to the
profile locations, while Fig. 20c shows the difference, where the mapped profile data
has been subtracted from the original data (i.e. Fig. 20a minus Fig. 20b). The mapping5

process performs well particularly within the gyre centre, where the differences for the
profile locations within the gyre are less than ±0.2 ◦C. The differences are larger north
of the gyre (mostly north of 60◦ S), especially in the bathymetrically complex region
west of 15◦W (i.e. approaching Drakes Passage). This is outside of the Weddell Gyre
region, yet may influence the accuracy of the northern boundary of the gyre. Taking10

into account all data points shown in Fig. 20c, 87 % of the data points have differences
between the original data and the mapped data that are within ±0.2 ◦C (Fig. 21a). Fur-
thermore, by considering only profiles within the gyre itself (using the northern bound-
ary definition described in Sect. 2.2), 89 % of the mapped data points differ from the
original data points by ±0.2 ◦C (Fig. 21b). Regarding sub-surface temperature maxi-15

mum (Fig. 22), 82 % (84 %) of the mapped data points differ to the original data by
utmost ±0.2 ◦C for the entire data set (for only those profiles within the Weddell Gyre).
Lastly, for pressure at the sub-surface temperature maximum, 77 % of the mapped data
points differ from the original data points by ±100 m (Fig. 23a); this value increases to
84 % when considering just those profiles within the Weddell Gyre (Fig. 23b).20

5 Concluding remarks

The objective of this paper was to provide a spatially gridded dataset of the upper
2000 m of the water column properties of the entire Weddell Gyre region. Objective
Mapping was applied in a two-step process to Argo float profile data spanning Decem-
ber 2001 to March 2013 and to sub-sets of the float data for the 2002–2005, 2006–200925

and 2010–March 2013 periods. Maps of pressure, conservative temperature and ab-
solute salinity are provided at the level of the sub-surface temperature maximum, and
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maps of conservative temperature and absolute salinity are provided at 41 standard-
ized pressure levels ranging from 50 to 2000 dbar. The corresponding mapping errors
are also provided. The resulting mapped fields provide a more complete as well as
more detailed view of the pertinent features of the Weddell Gyre, such as the doming
of the gyre centre owing to its cyclonic rotation and the associated relatively cool gyre5

interior, than existed before. The relatively warm incoming source water at the eastern
sector of the southern limb is also visible, along with the variability of water properties
owing to bathymetric features such as Maud Rise. The mapping errors corresponding
to the mapped field variables are relatively small, with the exception of regions where
the bathymetry is complex, or where data coverage is limited. The mapping errors vary10

with pressure, where the overall largest mapping errors coincide with the region of Win-
ter Water, particularly within the vicinity of its lower boundary (about 120–180 dbar). In
order to gauge the performance of the mapping procedure, objective mapping was also
applied to the location of the float profiles themselves. The objective mapping success-
fully represents the Weddell Gyre in its entirety, whereby 89 % of mapped profiles within15

the Weddell Gyre differ from the original profile values (for temperature at 800 dbar) by
less than 0.2 ◦C. Caution should be taken in consideration of the increased error vari-
ances at the gyre periphery, in regions of limited data coverage, and due to the fact
that all mapped fields are spatially gridded temporal composites. The work presented
here provides the prerequisite technical component of investigations into the variabil-20

ity of Weddell Gyre water mass properties, providing further insight to the role of the
Weddell Gyre in a changing climate.
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Table 1. Standardized pressure levels (dbar) to which all profiles are linearly interpolated. The
vertical levels within the corresponding mapped variable matrices are highlighted in bold (i.e.
the shape of the matrices are as follows: latitude× longitude×pressure).

Standardized Pressure Levels (dbar)

1 50 15 280 29 800
2 60 16 300 30 900
3 70 17 320 31 1000
4 80 18 340 32 1100
5 90 19 360 33 1200
6 100 20 380 34 1300
7 120 21 400 35 1400
8 140 22 450 36 1500
9 160 23 500 37 1600
10 180 24 550 38 1700
11 200 25 600 39 1800
12 220 26 650 40 1900
13 240 27 700 41 2000
14 260 28 750
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Table 2. List of netCDF filenames where the mapped field variables for the different time com-
posite periods are found.

Name of netCDF files

WeddellGyre_OM_Period2001to2013.nc
WeddellGyre_OM_Period2001to2005.nc
WeddellGyre_OM_Period2006to2009.nc
WeddellGyre_OM_Period2010to2013.nc
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Table 3. List of variable names in the accompanying netCDF file. The mapped variables listed
are provided in the form of grids structured by latitude × longitude × pressure level, where fill
values are NaNs. The asterisk (∗) indicates variables which are not found in the netCdf file of
the entire 11 year time period, WeddellGyre_OM_Period2001to2013.nc.

Variables provided in the netCDF files

Pressure Levels (dbar)
Latitude (DegN)
Longitude (DegE)
Tmax Conservative Temperature (DegC)
Tmax Absolute Salinity (gPERkg)
Tmax Pressure (dbar)
Tmax RHO (kgPERm3)
Tmax Conservative Temperature mapping error (DegC)
Tmax Absolute Salinity mapping error (gPERkg)
Tmax Pressure mapping error (dbar)
Tmax RHO mapping error (kgPERm3)
Conservative Temperature (DegC)
Absolute Salinity (gPERkg)
RHO (kgPERm3)
Conservative Temperature mapping error (DegC)
Absolute Salinity mapping error (gPERkg)
RHO mapping error (kgPERm3)
Tmax Conservative Temperature mask based on Period2002to2013
Tmax Absolute Salinity mask based on Period2002to2013
Conservative Temperature mask based on Period2002to2013
Absolute Salinity mask based on Period2002to2013
Tmax Conservative Temperature mask based on Period of file∗

Tmax Absolute Salinity mask based on Period of file∗

Conservative Temperature mask based on Period of file∗

Absolute Salinity mask based on Period of file∗
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AABW 

CDW 

Atmosphere-Sea-ice-
ocean interactions 

Shallow shelf sea 
processes 

WSDW 
WSBW 

Antarctic Peninsula 

Antarctic continent 

Antarctic coastal current 

WDW 

Figure 1. Schematic of Weddell Gyre circulation. The underlying 3-D map shows ocean bot-
tom depth (GEBCO). Relatively warm Circumpolar Deep Water (CDW) enters from the east,
becoming Warm Deep Water (WDW) which circulates in a cyclonic direction throughout the
gyre, cooling on route, due to mixing with surrounding waters and interaction with the atmo-
sphere and sea-ice processes. Shallow shelf sea processes leads to the formation of cold,
high salinity water which, upon leaving the shelf, sinks below WDW to form Weddell Sea Deep
and Bottom Water (WSDW and WSBW); WSDW exits the gyre to the north to become Antarctic
Bottom Water (AABW).
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Figure 2. Argo float profile locations for (a) December 2001-March 2013; (b) 2002–2005;
(c) 2006–2009 and (d) 2010–March 2013.

545

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 3. The number of profiles per year (line) and per month (bar) for (a) south of 50◦ S to the
Antarctic continent and (b) south of 60◦ S to the Antarctic continent, between 70◦W and 40◦ E.
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Figure 4. Argo float profile density (i.e. the number of profiles per 3◦×3◦ grid cell) for (a) 2002–
2005; (b) 2006–2009 and (c) 2010–2013.
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Figure 5. A random sample of pressure (dbar) – conservative temperature (◦C) profiles from
Argo floats within the region 15 to 30◦W and 55 to 60◦ S (a) and the corresponding locations
of the profiles (b). The sub-surface temperature maximum of each profile is marked with an
enlarged symbol.
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Figure 6. In objective mapping, the profile data are weighted based on their distance D to the
grid point g, as well their distance to neighbouring profiles. Thus, while profiles x1, x2 and x3
are all equally distanced from the grid point g, x2 and x3 are more closely spaced to each other
than they are to x1. Thus, the weight of x1 would be equivalent to the sum of weights for x2 and
x3 (i.e. W (x1) =W (x2)+W (x3)).
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Figure 7. The fractional distance in potential vorticity (F ) as a function of the difference in
bottom ocean depth (H) between two locations. This is the generalised distance used in the
decay scale of the covariance function in order to take into account cross-isobath separation
(see text for explanation: Sect. 2.4).
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Figure 8. The percentage of grid cells with at least 40 profiles within an area of different radii,
for different horizontal distances (km).
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Figure 9. Conservative temperature (◦C) at 800 dbar for 2002 to March 2013: histogram of the
percentage of grid cells binned according to the mapping error variance (bar) and as a cumu-
lative sum (line). (b) shows the same, zoomed in to lower error values.
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Figure 10. Conservative Temperature (◦C) at the sub-surface temperature maximum for the
entire time period from 2002 to 2013, where (a) shows the original float data, (b) shows the
objectively mapped field and (c) shows the mapping error for the mapped field. The transparent
regions in Fig. 10b mask regions where the mapping error is larger than the mapping error of
95 % of the grid cells (i.e. these regions fail the error mask criterion). For further information
refer to Sect. 2.6. The error mask is applied to all contour plots of mapped variables.
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Figure 11. Pressure (dbar) at the sub-surface temperature maximum for the entire time period
from 2002 to 2013, where (a) shows the original float data, (b) shows the objectively mapped
field and (c) shows the mapping error for the mapped field. The transparent regions in Fig. 11b
mask regions where the associated sub-surface temperature maximum mapping error is larger
than the mapping error of 95 % of the grid cells (i.e. these regions fail the error mask criterion).
For further information refer to Sect. 2.6. The error mask is applied to all contour plots of
mapped variables.

554

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 509–566, 2015

Objective mapping of
Argo data in the

Weddell Gyre

K. A. Reeve et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 12. (a) Mean Meridional temperature distribution (◦C) at the sub-surface temperature
maximum extracted from the mapped field in Fig. 10b, for longitude bins encompassing the
Prime Meridian. The meridional gradient of the temperature maximum is shown in (b). The
large, solid, circular symbols mark where the magnitude of the gradient is largest – this marks
the latitude of the northern boundary of the gyre for this longitude.
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Figure 13. Conservative Temperature (◦C) at 800 dbar for the entire time period from 2002
to 2013, where (a) shows the original float data, (b) shows the objectively mapped field and
(c) shows the mapping error for the mapped field. The transparent regions in Fig. 13b mask
regions where the mapping error is larger than the mapping error of 95 % of the grid cells (i.e.
these regions fail the error mask criterion). For further information refer to Sect. 2.6. The error
mask is applied to all contour plots of mapped variables.
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Figure 14. Absolute Salinity (gKg−1) at 800 dbar for the entire time period from 2002 to 2013,
where (a) shows the original float data, (b) shows the objectively mapped field and (c) shows
the mapping error for the mapped field. The transparent regions in Fig. 14b mask regions where
the mapping error is larger than the mapping error of 95 % of the grid cells (i.e. these regions
fail the error mask criterion). For further information refer to Sect. 2.6. The error mask is applied
to all contour plots of mapped variables.
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Figure 15. Conservative Temperature (◦C) at 800 dbar for (a) 2002–2005; (b) 2005–2009 and
(c) 2010–2013. The associated mapping errors for the corresponding time periods are shown
in (d–f) respectively. The transparent regions in Fig. 15b mask regions where the mapping error
is larger than the 2002–2013 mapping error of 95 % of the grid cells (i.e. these regions fail the
error mask criterion). For further information refer to Sect. 2.6. The error mask is applied to all
contour plots of mapped variables.
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Figure 16. Absolute Salinity (gkg−1) at 800 dbar for (a) 2002–2005; (b) 2005–2009 and
(c) 2010–2013. The associated mapping errors for the corresponding time periods are shown
in (d–f) respectively. The transparent regions in Fig. 15b mask regions where the mapping error
is larger than the 2002–2013 mapping error of 95 % of the grid cells (i.e. these regions fail the
error mask criterion). For further information refer to Sect. 2.6. The error mask is applied to all
contour plots of mapped variables.
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Figure 17. The vertical pressure profile of the 95 % error mask limits for (a) conservative tem-
perature (◦C) and (b) absolute salinity (gkg−1) respectively; for the time periods 2002–2013
(black square), 2002–2005 (blue cross), 2006–2009 (red circle) and 2010–(March) 2013 (green
star). The 95 % error limit denotes the value at which 95 % of all grid cells have smaller error
variance (see Sect. 2.6 for full details).
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Figure 18. Conservative Temperature (◦C) at the sub-surface temperature maximum for the
entire time period from 2002 to 2013, where (a) shows the objectively mapped field based on
the second approach (i.e. using the mapped pressure of the sub-surface temperature maximum
to extract the temperature data points). The mapping error is shown in (b). For more details,
refer to Sect. 4.2.
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Figure 19. Comparing methods of mapping the sub-surface temperature maximum: this map
shows the temperature difference (◦C) where the output in the first approach in Fig. 10b is
subtracted from the output of the second approach in Fig. 18a. Bold contour lines at 0 ◦C.
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Figure 20. Conservative Temperature (◦C) at 800 dbar for the entire time period from 2002 to
2013, where (a) shows the original float data, (b) shows the float data objectively mapped to
the profile locations and (c) shows the difference where the output in (b) is subtracted from the
original data in (a).
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Figure 21. A histogram showing the percentage of data points binned by temperature residuals
(◦C) at 800 dbar, where the float data objectively mapped to the profile locations (i.e. Fig. 20b)
are subtracted from the original profile data points (i.e. Fig. 20a), for (a) the entire dataset and
(b) for those data points within the “defined” Weddell Gyre region only.
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Figure 22. The percentage of data points binned by temperature residuals (◦C) at the sub-
surface temperature maximum, where the float data objectively mapped to the profile locations
are subtracted from the original profile data points, for (a) the entire dataset and (b) for those
data points within the “defined” Weddell Gyre region only.
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Figure 23. The percentage of data points binned by pressure residuals (dbar) at the level of
the sub-surface temperature maximum, where the float data objectively mapped to the profile
locations are subtracted from the original profile data points, for (a) the entire dataset and (b) for
those data points within the “defined” Weddell Gyre region only.

566

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/509/2015/essdd-8-509-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

	Introduction
	Methods
	Data: pre-mapping processing
	Sub-surface temperature maximum
	Approach to objective mapping
	Objective mapping
	Choosing appropriate length scales (L,F) and selecting N surrounding data points to a grid point
	Masking grid cells of high error variances

	Results
	Data format: gridded fields of upper Weddell Gyre water properties
	Sub-surface conservative temperature maximum
	An example:  and SA at 800dbar

	Discussion
	Objective mapping performance
	Mapping the sub-surface temperature maximum: two approaches compared
	Objective Mapping to float profile locations

	Concluding remarks

