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Abstract

Accurate representations of mean climate conditions, especially in areas of complex
terrain, are an important part of environmental monitoring systems. As high-resolution
satellite monitoring information accumulates with the passage of time, it can be in-
creasingly useful in efforts to better characterize the earth’s mean climatology. Current5

state-of-the-science products rely on complex and sometimes unreliable relationships
between elevation and station-based precipitation records, which can result in poor
performance in food and water insecure regions with sparse observation networks.
These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical re-
gions for humanitarian drought monitoring. Here, we show that long period of record10

geo-synchronous and polar-orbiting satellite observations provide a unique new re-
source for producing high resolution (0.05◦) global precipitation climatologies that per-
form reasonably well in data sparse regions.

Traditionally, global climatologies have been produced by combining station observa-
tions and physiographic predictors like latitude, longitude, elevation, and slope. While15

such approaches can work well, especially in areas with reasonably dense observation
networks, the fundamental relationship between physiographic variables and the target
climate variables can often be indirect and spatially complex. Infrared and microwave
satellite observations, on the other hand, directly monitor the earth’s energy emissions.
These emissions often correspond physically with the location and intensity of precipi-20

tation. We show that these relationships provide a good basis for building global clima-
tologies. We also introduce a new geospatial modeling approach based on moving win-
dow regressions and inverse distance weighting interpolation. This approach combines
satellite fields, gridded physiographic indicators, and in situ climate normals. The result-
ing global 0.05◦ monthly precipitation climatology, the Climate Hazards Group’s Pre-25

cipitation Climatology version 1 (CHPclim v.1.0, http://dx.doi.org/10.15780/G2159X),
is shown to compare favorably with similar global climatology products, especially in
areas with complex terrain and low station densities.
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1 Introduction

Systematic spatial variations in climate have been studied since at least the first cen-
tury AD, when Ptolemy’s Geographia identified the earth’s polar, temperate, and equa-
torial temperature zones. Analysis of these climatological surfaces continues to be an
important aspect of environmental monitoring and modeling. In the 1960s, comput-5

ers enabled the automatic interpolation of point data, and several important algorithms
such as Shepard’s modified inverse distance weighting function (Shepard, 1968) and
optimal surface fitting via kriging (Krige, 1951; Matheron, 1963) were developed. The
value of spatially continuous ancillary data, such as elevation, was soon recognized
(Willmott and Robeson, 1995) and the current state-of-the-science climatologies all10

use background physiographic indicators combined with in situ observations. The most
widely used current global climatologies, such as those produced by the University of
East Anglia’s Climatological Research Unit (CRU) (New et al., 1999), and the Worldclim
(Hijmans et al., 2005) global climate layers, typically base their estimates on elevation,
latitude, and longitude. Daly et al. (1994) used locally varying regressions fit to the15

topographic facets, while the CRU and Worldclim climatologies use thin-plate splines
(Hutchinson, 1995) to minimize the roughness of the interpolated field, with the degree
of smoothing determined by generalized cross validation.

While these approaches have proven to be very useful, as the depth of the satellite
record approaches “climatological” lengths, the satellite estimates of precipitation and20

land surface temperatures also appear to be good candidates for auxiliary predictors.
Such predictors may be especially helpful in data sparse regions with complex terrain,
areas like East Africa or southwest Asia, where the climate is complicated and station
density is low.

In Africa, Climate Hazards Group (CHG) scientists have demonstrated the utility of25

satellite fields as a source of ancillary data for climatological precipitation and air tem-
peratures surfaces (Funk et al., 2012; Knapp et al., 2011). This new approach com-
bines satellite fields, gridded physiographic indicators, and in situ climate normals us-
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ing local moving window regressions and inverse distance weighting interpolation. Ex-
panding from our work in Africa, we have produced a global 0.05◦ monthly precipitation
climatology, the Climate Hazards Group Precipitation Climatology version 1 (CHPclim
v.1.0, http://dx.doi.org/10.15780/G2159X). This paper summarizes our statistical ap-
proach and modeling results, and presents a validation of the resulting dataset. The5

CHPclim, Worldclim, and CRU climatologies are compared with independent sets of
station normals for Colombia, Afghanistan, Ethiopia, the Sahel, and Mexico.

2 Data

2.1 Precipitation normals

Two sets of monthly precipitation normals (long term averages) were used to create10

the CHPclim. The first set was a collection of 27 453 monthly station averages ob-
tained from the Agromet Group of the Food and Agriculture Organization of the United
Nations (FAO). This extensive collection has a fairly detailed level of representation in
many typically data sparse regions, but suffers from a limitation. The FAO database
does not provide the period of record used to calculate the long term averages, al-15

though most observations roughly correspond to averages over the 1950s through the
1980s. This data set, therefore, was augmented with 20 591 station climate normals
taken from version two of the Global Historical Climate Network (GHCN) (Peterson
and Vose, 1997). We compensated for the FAO database’s varied coverage in time by
supplementing it with averages from a less dense but more temporally consistent infor-20

mation source – the GHCN. The more extensive FAO normals were used to build the
preliminary climate surfaces (as described below in Sect. 3). The differences between
this surface and GHCN 1980–2009 averages were then estimated and interpolated,
and then used to adjust the final monthly surfaces to a 1980–2009 time period.

404

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/401/2015/essdd-8-401-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/401/2015/essdd-8-401-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.15780/G2159X


ESSDD
8, 401–425, 2015

A global satellite
assisted precipitation

climatology

C. Funk et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.2 Satellite surfaces

Monthly means of five satellite products were evaluated as potential background cli-
mate surfaces: Tropical Rainfall Measuring Mission (TRMM) 2B31 microwave precipi-
tation estimates (Huffman et al., 2007), the Climate Prediction Center morphing method
(CMORPH) microwave-plus-infrared based precipitation estimates (Joyce et al., 2004),5

monthly mean geostationary infrared (IR) brightness temperatures (Janowiak et al.,
2001), and Land Surface Temperature (LST) estimates (Wan, 2008). The TRMM and
CMORPH precipitation estimates are based primarily on passive microwave observa-
tions from meteorological satellites in asynchronous orbits. The monthly mean infrared
brightness temperatures, on the other hand, are derived from a combination of multi-10

ple geostationary weather satellites. The LST estimates are derived from multispectral
observations from Moderate Resolution Imaging Spectrometers (MODIS) aboard the
Terra and Aqua satellites. The LST fields are global, while the CMORPH, TRMM, and
IR brightness temperatures span 60◦ N/S. For each month, for all available years (typi-
cally ∼2001–2010), the satellite data were averaged. All four products were convolved15

to a common 0.05◦ grid. A fifth predictor was created based on the average of the
CMORPH and TRMM precipitation fields.

2.3 Topographic and physiographic surfaces

Mean 0.05◦ elevation, slope, compound topographic index, flow accumulation, aspect,
and slope were calculated from global 30 arcseconds GTOPO30 elevation grids follow-20

ing the methodology developed for the HYDRO1K (Verdin and Greenlee, 1996). While
the utility of all the topographic fields was explored, only elevation and slope were used
in the final analysis because they proved to be the most robust predictors. Latitude and
longitude were also included as potential predictor variables.
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3 Methods – the CHG climatology modelling process

The modelling methodology involved three main steps that were repeated for each
month for a set of 56 modelling regions. The extent of the regions were based on
(a) station density, (b) homogeneity of predictor response, and (c) availability of the
predictor fields. The first step used a series of moving window regressions (MWR) to5

create an initial prediction of a 0.05◦ precipitation grid. The second step calculated the
at-station residuals from step 1 (station observations minus regression estimates), and
then interpolated these values using a modified inverse-distance weighting (IDW) inter-
polation scheme to create grids of MWR model residuals. The gridded MWR estimates
and gridded residuals were combined, to create an initial set of climatological surfaces10

based on the FAO normals. In the third step, these surfaces were then adjusted us-
ing the 1980–2009 GHCN station averages. The differences (ratios) from 1980–2009
GHCN climate normals were computed and used to produce final surfaces correspond-
ing to a 1980–2009 baseline period.

3.1 Localized correlation estimates15

Our process relies heavily on local regressions between our target variable and back-
ground field. We begin by explaining the bivariate standardized case of this process,
which corresponds to a localized correlation. At a certain location we can sample
a number of points and background variables that fall within a certain distance (dmax)
and calculate their distance weighted (localized) correlation. The localized correlation20

process finds a set of n neighbouring points (within dmax), and estimates their weighted
correlation. This study uses a cubic function of the distance (d ) and a user-defined,
regionally-variable, maximum distance (dmax).

w(d ) = 0,d > dmax

w(d ) =
[
1− (d/dmax)3

]3
,d ≤ dmax (1)25
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These weights are then used to estimate a localized correlation.

rx, y = (n−1)−1

(
n∑
i=1

w(di )

)−1 n∑
i=1

w(di )
[
(xi −x)σ−1

x

][
(yi − y)σ−1

y

]
(2)

The localized correlation (rx, y ) at some location (x, y) corresponds with the standard-
ized cross-product of the neighboring points, weighted by their distance. This process
can be used to generate correlation maps (Fig. 1). Typically, the direct physical re-5

lationship between the station normals and a satellite field, such TRMM/CMORPH
precipitation, results in a stronger correlation pattern than that which is produced by
an indirect physiographic indicator such as elevation. Figure 1 provides an example of
this by contrasting the local correlations between station precipitation, elevation and
TRMM/CMORPH precipitation.10

3.2 Localized moving window regressions

The core of the CHG climatology modeling process is based on a series of local regres-
sions between in situ observations and spatially continuous predictor fields. For each
location, a set of neighboring observations is obtained, and a regression model con-
structed using weighted least squares, with the weight of each observation determined15

by its distance from the regression centroid (Eq. 1).
For each region and month, a grid of center points is defined on a regular 1◦ grid

over land-only locations. Figure 2 shows the modeling regions. At each center-point,
station values within the radius (dmax) are collected, and a regression model is fit based
on weights determined by Eq. (1). The dmax values are defined individually for each20

model region, varying from 650 km for the larger or data sparse regions (e.g. Australia,
northwest Asia) to 300 km for Central America and the Galapagos.
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3.3 Model fitting

For each modeling region and month, regression models were determined through
a combination of automated regression subset selection and visual inspection of the
output. In some cases, visual inspection indicated that a combination of statistically
powerful predictors produced obvious artifacts. In these cases, the selection pool was5

reduced by hand. Based on the boundaries of the interpolation window, certain predic-
tors were omitted (TRMM, CMORPH, IR) because the satellite range did not extend
northward or southward enough for these areas.

3.4 Interpolation of model residuals

Following the MWR modeling procedure, at-station anomalies (the arithmetic differ-10

ence between the FAO station normals and the nearest 0.05◦ regression estimate) are
calculated and interpolated using a modified IDW interpolation procedure. For each
0.05◦ grid cell, the cube of inverse distances is used to produce a weighted average
of the surrounding station residuals, r . This value is then modified based on a local
interpolation radius, dIDW and the distance to the closest neighboring station (dmin).15

r∗ =
(

1−
dmin

dIDW

)
r (3)

This simple thresholding procedure forces the interpolated residual field to relax to-
wards zero, based on the distance to the closest station. The dmin values were defined
by modeling region, and ranged from 350 to 100 km, based on station density.

3.5 Rescaling by GHCN ratios20

In the final stage, for each month, the regional tiles are composited on a global 0.05◦

grid and compared with 1980–2009 GHCN climate normals. The ratio of the GHCN
and gridded climatology is calculated at each station location. These ratios are capped

408

http://www.earth-syst-sci-data-discuss.net
http://www.earth-syst-sci-data-discuss.net/8/401/2015/essdd-8-401-2015-print.pdf
http://www.earth-syst-sci-data-discuss.net/8/401/2015/essdd-8-401-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESSDD
8, 401–425, 2015

A global satellite
assisted precipitation

climatology

C. Funk et al.

Title Page

Abstract Instruments

Data Provenance & Structure

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

between 0.3 and 3.0, and interpolated to a 0.05◦ grid for each month. The values were
capped to limit the potential influence of poor station data. A modified IDW procedure,
similar to Eq. (3), is used, but instead of relaxing to zero, the interpolation is forced
to a ratio of 1 (no change) as the distance to the minimum neighbour reaches dIDW.
This ratio grid is multiplied against the sum of the MWR and interpolated residuals,5

producing the final CHG Climatology field.

3.6 Cross-validation

Selection bias can inflate the estimated accuracy of statistical estimation procedures,
producing artificial skill (Michaelsen, 1987). To limit such inflation, this study uses
cross-validation. This technique removes 10 % of the station data, fits the model using10

the remaining 90 % of the values, and evaluates the accuracy for the withheld locations.
This process is repeated ten times, eventually withholding all of the data, to produce
a robust estimate of the model accuracy.

3.7 Independent validation studies

As additional validation, high quality climatology data sets were obtained for five focus15

regions: Afghanistan, Colombia, Ethiopia, Mexico, and the Sahel region of western
Africa (Senegal, Burkina Faso, Mali, Niger and Chad). Means, spatial R2 values, mean
bias errors (MBE [mm]), mean absolute errors (MAE [mm]), percent MBE, and percent
MAE statistics were evaluated. These regions (as opposed to the continental United
States or Europe) were chosen to represent challenging estimation domains.20
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4 Results

4.1 Model fitting results

Figure 2 shows the best predictor for each individual modeling region and the FAO
station locations. For regions between 60◦ N and 60◦ S, the combined CMORPH and
TRMM field tended to be the most useful predictor. The TRMM-only precipitation was5

selected, however, for southern Africa. Regions beyond 60◦ N and 60◦ S could not be
modeled with the TRMM or CMORPH means. These regions were generally best fit
with LST, slope, or elevations from a digital elevation model (DEM).

Figures 3 and 4 show the proportion of modeled cross-validated variance for the
MWR and interpolated residuals components for each of the modeling regions. These10

results are averaged across the twelve months. For most regions, the MWR accounted
for over 80 % the total variance. The interpolated residuals typically accounted for an-
other 10–25 %. Most regions of the globe had average monthly percent errors of be-
tween 15 and 25 % (Fig. 5).

4.2 Validation studies15

We next present results from our validation studies for Afghanistan, Colombia, Ethiopia,
Mexico, and the Sahel (Senegal, Burkina Faso, Mali, Niger, and Chad). In each case,
additional high quality gauge data were obtained from national meteorological agencies
(Table 1). These data were screened, and only values not in the FAO or GHCN archive
were retained. Table 1 summarizes the number of independent stations and presents20

the monthly validation statistics, averaged across all twelve months. For each validation
station, the closest CHPclim, CRU, or Worldclim grid cell was extracted. The CHPclim
percent biases were substantially smaller in magnitude than the CRU or Worldclim bi-
ases, ranging between −2 to +5 %, as compared to −28 to +16 % (CRU) or −16 to
0 % (Worldclim). While all the climatologies did well in regions with a large number of25

stations (e.g. Mexico and Colombia), CHPclim’s performance was substantially better
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in data sparse areas like the Sahel, Ethiopia, and Afghanistan. Averaged across the
study regions, the CHPclim/CRU/Worldclim datasets had overall mean absolute error
(MAE) values of 16, 26 and 20 mmmonth−1, respectively. The average spatial R2 val-
ues for the three climatologies were 0.77 (CHPclim), 0.58 (CRU), and 0.67 (Worldclim).
Overall, the CHPclim compared favorably to both the CRU and Worldclim data sets.5

Plotting the monthly validation statistics provides more temporal information. Figure 6
shows monthly time series of the MAE values for each region and for each set of
climatological estimates. In Afghanistan, data was only obtained for the rainy season.
The low spatial correlations with the CRU and Worldclim estimates (Table 1) translate
into high MAE scores (Fig. 6). In Colombia, the spatial R2 (Table 1) and MAE time10

series of the CHPclim and Worldclim are similar – both perform well. In Ethiopia, the
Worldclim and CRU MAE peak in concert with the seasonal rainfall maxima, while the
CHPclim values remain substantially lower. This pattern is recreated for the Sahel and,
to a lesser extent, for Mexico. We postulate that the CHPclim performance benefits
from the fact that satellite precipitation estimates do a good job of representing heavy15

convection in these countries during the heart of the precipitation season. Conversely,
the thin plate spline fitting procedure, combined with low gauge density in Ethiopia and
the Sahel, may make it difficult to statistically represent precipitation gradients in these
countries, degrading the performance of the CRU and Worldclim climatologies.

Figure 7 shows similar time series for the spatial R2 statistics. In Afghanistan,20

Ethiopia, and the Sahel, the CHPclim appears substantially better at representing spa-
tial gradient information. In Colombia and Mexico, CHPclim and Worldclim performance
is similar. This may relate to the number of climate normals available in each region
(cf. Fig. 2). In Colombia and Mexico, relatively dense gauge networks result in similar
Worldclim and CHPclim performance. In regions with fewer stations, the correlation25

structure of the satellite precipitation data (Fig. 1) probably helps boost the relative
performance of CHPclim.
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5 Discussion

This paper has introduced a new climatology modeling process developed by the CHG
to support international drought early warning and hydrologic modeling. While this pro-
cess has been applied to African rainfall and temperatures (Funk et al., 2012; Knapp
et al., 2011), we report here for the first time global results, and evaluate the relative5

accuracy of the CHPclim v1.0 (http://dx.doi.org/10.15780/G2159X). The CHPclim is
one part of the CHG’s overall strategy to provide improved drought early warning infor-
mation (Fig. 8). Working closely with early warning scientists from the U.S. Geological
Survey’s Center for Earth Resources Observation and Science (EROS), the CHG de-
velops improved earth science tools to support food security and disaster relief for the10

US Agency for International Development’s Famine Early Warning System Network
(FEWS NET).

These activities fall into two main categories: analytic studies focused on understand-
ing the relationship between local climate variations and large scale climate drivers
(Funk et al., 2008, 2014; Hoell and Funk, 2013a, b; Liebmann et al., 2014), and the de-15

velopment of integrated datasets and tools supporting agro-climatic monitoring in the
developing world. While early precipitation efforts focused on the use of a model (Funk
and Michaelsen, 2004) to represent orographic precipitation (Funk et al., 2003), the
potential issues produced by spurious model-based trends led us to focus on the use
of high resolution climatologies as proxies for orographic precipitation enhancement20

(Funk et al., 2007). The global 0.05◦ CHPclim presented here is the global expansion
of that work.

CHPclim provides the first component of our global precipitation monitoring sys-
tem, which is built on the Climate Hazard Group Infrared Precipitation with Stations
(CHIRPS, Fig. 8). The monthly CHPclim fields, described and evaluated here, have25

been temporally disaggregated to pentadal (five-day) means. These pentadal mean
fields are then combined with 1981-near present 0.05◦ 60◦ S–60◦ N IR brightness
(Janowiak et al., 2001; Knapp et al., 2011) precipitation estimates to produce the Cli-
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mate Hazards Group Infrared Precipitation fields (CHIRP). A modified inverse distance-
weighting procedure is then used to blend these fields with global precipitation gauge
station data to produce the CHIRPS (Funk et al., 2014b). These data, which bene-
fit from the high resolution CHPclim climatology, can be used to drive a gridded crop
Water Requirement Satisfaction Index model (WRSI) (Verdin and Klaver, 2002), force5

a special Land Data Assimilation System developed for the U.S. Agency for Interna-
tional Development’s FEWS NET (the FLDAS), or populate interactive early warn-
ing displays like the Early Warning eXplorer (EWX, http://earlywarning.usgs.gov/fews/
ewxindex.php). Improved background climatologies can enhance the efficacy of crop
models, increasing their drought monitoring capacity.10

Ongoing efforts are being directed towards linking seasonal forecast information with
historical CHIRPS archives (Shukla et al., 2014a, b). In East Africa, for example, daily
0.05◦ rainfall values are used to force a hydrologic model. These results can then be
combined with precipitation forecasts that translate large-scale climate conditions into
region-specific predictions of CHIRPS rainfall. These rainfall forecasts can be used to15

drive crop and hydrologic models. In this way, for some high priority regions like East
Africa, CHG scientists hope to combine the climatological constraints described by high
resolution climatologies like the CHPclim, historic precipitation distributions (Husak
et al., 2013), the latent information contained in the land surface state as represented
by land surface models (Shukla et al., 2014b, 2013), and the foreshadowing of future20

weather provided by climate forecasts (Funk et al., 2014a; Shukla et al., 2014a, b). The
CHPclim, described here, has been designed to provide a good foundation for this, and
similar, hydrologic modeling and monitoring systems. The CHPclim and CHIRPS data
sets are available at http://dx.doi.org/10.15780/G2RP4Q and http://chg.geog.ucsb.edu.
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Precipitation Index supporting the US Drought Portal and the Famine Early Warning System
Network”.
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Table 1. CHPclim validation results.

Region N-stns Station Mean Climatology Mean MBE MAE Pct MBE Pct MAE R2

CHPclim Colombia 194 168 159 8 30 5 18 0.84
Afghanistan 22 35 34 1 9 3 25 0.53
Ethiopia 76 97 94 3 10 4 10 0.91
Sahel 28 55 53 0 6 0 10 0.93
Mexico 1814 77 78 −1 23 −2 30 0.65

CRU Colombia 194 168 174 −6 47 −4 28 0.59
Afghanistan 22 35 45 −10 20 −28 57 0.18
Ethiopia 76 97 101 −4 23 −4 24 0.68
Sahel 91 55 65 −11 14 16 21 0.87
Mexico 1814 77 75 2 24 2 31 0.60

Worldclim Colombia 194 168 178 −11 31 −6 19 0.82
Afghanistan 22 35 41 −6 18 −17 52 0.18
Ethiopia 76 97 97 0 20 0 21 0.72
Sahel 28 55 65 −10 14 −16 22 0.86
Mexico 1814 77 79 −2 18 −2 23 0.78
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Figure 1. Local correlations with July station means. (a) Elevation. (b) Combined
TRMM/CMORPH precipitation.
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Figure 2. Best predictor, by model region, with station locations.
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Figure 3. Percent of variance explained by cross-validated moving window regression.
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Figure 4. Percent of variance explained by cross-validated inverse distance weighting.
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Figure 5. Percent standard error explained by cross-validation.
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Figure 6. Mean absolute error time series [mmmonth−1].
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Figure 7. Spatial R2 time series.
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Figure 8. Schema of CHG analysis and prediction activities.
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