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Abstract. Lake Superior is one of the largest freshwater lakes on our planet, but few optical observations have
been made to allow for the development and validation of visible spectral satellite remote sensing products. The
dataset described here focuses on coincidently observing inherent and apparent optical properties along with bio-
geochemical parameters. Specifically, we observe remote sensing reflectance, absorption, scattering, backscatter-
ing, attenuation, chlorophyll concentration, and suspended particulate matter over the ice-free months of 2013–
2016. The dataset substantially increases the optical knowledge of the lake. In addition to visible spectral satellite
algorithm development, the dataset is valuable for characterizing the variable light field, particle, phytoplankton,
and colored dissolved organic matter distributions, and helpful in food web and carbon cycle investigations. The
compiled data can be freely accessed at https://seabass.gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/.

1 Introduction

Lake Superior is the largest of the Laurentian Great Lakes;
it is the largest lake on Earth in area and the third largest
lake on Earth by volume. Direct observations of Lake Supe-
rior are rare for nearly half of the year due to the long win-
ter climatic conditions in the region. In situ observations are
scarce from November through April, and in many years Oc-
tober and May are also precluded as seasonal storms and ice
coverage hinder ship-based observations for long periods of
time. As such, remote sensing is an important observational
platform for observing the lake.

Remote sensing of the inland and coastal waters requires
continued investment for in situ sampling to fully capture
the dynamic range of parameter values and shifting relation-
ships due to responses to climate change (Dierssen, 2010),
anthropogenic stress, and invasive species (Mouw et al.,
2015). Remote sensing efforts on the lake initially focused
on estimating chlorophyll concentration with band-ratio al-
gorithms (Budd and Warrington, 2004; Li et al., 2004) and
met with limited success. More recently, Mouw et al. (2013)
evaluated a variety of semi-analytical algorithms to identify

the best performing for refinement. They found that the re-
trieval of chlorophyll concentration was not possible via in-
version since errors in derived colored dissolved organic mat-
ter (CDOM) absorption were greater than the total contribu-
tion of phytoplankton to the overall absorption budget. How-
ever, they did demonstrate success in retrieving absorption
due to CDOM. In light of the challenge of retrieving chloro-
phyll concentration, Trochta et al. (2015) classified remote
sensing reflectance spectra into optical water types and con-
nected the spatial and temporal variability in the water types
to the physical processes of the lake.

In situ observations are an essential component of re-
mote sensing satellite algorithm development and validation.
When Mouw et al. (2013) completed their evaluation of al-
gorithms, there were only eight stations with coincident ob-
servations of radiometry, absorption, and scattering for Lake
Superior (Peng et al., 2009; Effler et al., 2010; O’Donnell
et al., 2013). To enable the continued development of re-
mote sensing algorithms for Lake Superior, a greater invest-
ment in optical observations was needed. Here we describe
a dataset of coincident inherent and apparent optical prop-
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Figure 1. Station locations for the Lake Superior dataset sampled during 2013–2016 and grouped by month. The locations are colored by
year and shaded by longitude from dark to light running east to west as shown in the legend (a). Depth contours are shown in gray.

erties collected throughout Lake Superior over the ice-free
months of 2013 to 2016. Inherent optical properties (IOPs;
i.e., absorption and scattering or backscattering) depend on
in-water dissolved and particulate constituents, while appar-
ent optical properties (AOPs; i.e., reflectance and attenua-
tion) are dependent on both in-water constituents and the
ambient light field. Collectively, these properties include re-
mote sensing reflectance, absorption, scattering, backscatter-
ing, attenuation, pigment concentrations, and total suspended
matter. Beyond satellite algorithm development, the dataset
is valuable for characterizing the variable light field, particle,
phytoplankton, and colored dissolved organic matter distri-
butions, and helpful in food web and carbon cycle investiga-
tions.

2 Data and methodology

2.1 Study site

Containing approximately 10 % of the Earth’s surface fresh-
water, Lake Superior (Fig. 1) is the largest freshwater body
on the planet in area (8.21× 104 km2) and the third largest by

volume (1.21× 104 km3). The cold temperatures and low nu-
trient concentrations of Lake Superior (Sterner, 2011), com-
pared to the other Laurentian Great Lakes, result in olig-
otrophic conditions (e.g., Matheson and Munawar, 1978;
Munawar and Munawar, 1973; Weller, 1978; Barbiero and
Tuchman, 2001) with low primary production (Sterner, 2010)
and low species richness (Hubbs and Lagler, 2004). Supe-
rior is the fastest warming of all the Great Lakes (Mason
et al., 2016), with summer surface temperatures rising faster
than the temperature of the surrounding atmosphere (Austin
and Allen, 2011; Austin and Colman, 2007; Lenters, 2004).
This trajectory puts Lake Superior close to the upper range
of global lake warming trends (O’Reilly et al., 2015). These
warming trends impact the lake’s energy balance, hydrology,
ice cover, and mixing dynamics, which in turn impacts bi-
otic and biogeochemical responses. The previous and lim-
ited optical observations of Lake Superior reveal that light
absorption is dominated by colored dissolved organic matter
(CDOM; ≥ 75 % of the total absorption at 440 nm; Effler et
al., 2010) and the majority of the backscattering in the lake is
attributed to organic rather than minerogenic sources (Peng
et al., 2009).
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2.2 In situ optical observations

Optical and biogeochemical data were collected in Lake Su-
perior during the ice-free months (May–October) of 2013
through 2016 (Fig. 1). The dataset consists of a full suite of
coincident IOPs and AOPs. Observed IOPs include absorp-
tion due to water itself (aw(λ), m−1), phytoplankton (aph(λ),
m−1), non-algal particles (aNAP(λ), m−1), colored dissolved
organic matter (aCDOM(λ), m−1), and backscattering due to
water itself (bbw(λ), m−1) and particles (bbp(λ), m−1). Ob-
served AOPs include downwelling and surface irradiance
(Ed(λ) and Es(λ), respectively; µW cm−2) along with up-
welling radiance (Lu(λ), µW cm−2 sr−1), which were used
to retrieve remote sensing reflectance (Rrs(λ), sr−1) and the
downwelling and upwelling diffuse attenuation coefficients
(Kd(λ) andKu(λ), m−1, respectively). A summary of the pa-
rameters and units can be found in Table 1.

2.2.1 Apparent optical properties

Radiometric measurements were made with three Hyper-
OCR spectral radiometers (Satlantic Inc.) that measure be-
tween 350 and 800 nm with approximately 3 nm of resolu-
tion (137 total wavelengths). In-water Ed(λ) and Lu(λ) Hy-
perOCR sensors were attached to a free-falling Profiler II
frame (Satlantic Inc.), while the Es(λ) sensor was mounted
on top of the ship to allow for the correction of the other
measurements due to changing sky conditions. At each sta-
tion, the system was deployed for three cast types: surface,
multi-profile, and full profile. To characterize the air–water
interface, a floatation collar on the profiler frame enabled the
continuous measurement of Lu(λ) approximately 20 cm be-
low the water surface for 5 min (surface profile). The flota-
tion collar was removed and the profiler was then deployed
in free-fall mode, measuring five consecutive profiles from
the surface to 10 m to characterize the near-surface light field
(multi-profile). Finally, the profiler was allowed to free fall to
the 1 % light level or to within 10 m of the bottom, whichever
was shallower (full profile).

All methods and analysis follow the NASA ocean optics
protocols for satellite ocean color sensor validation (Mueller
et al., 2003a). Ed(λ), Lu(λ), and Es(λ) were dark corrected
and quality controlled to exclude data collected at high in-
strument tilt (> 4◦). Es(λ) was smoothed over a 15 s interval
and Ed(t , λ) and Lu(t , λ) were normalized to the ratio of
Es(t0, λ)/Es(t , λ) to account for variability in surface irra-
diance throughout each profile measurement. Data from sur-
face, multi-profiles, and full profiles were binned to 1 m.

Using binned multi-profile data, normalized Ed(z, λ) and
Lu(z, λ) were natural-log transformed and fit as a function
of depth to retrieve the attenuation coefficients Kd(λ) and
Ku(λ), respectively (Smith and Baker, 1984, 1986):

ln[X(z,λ)] = ln [X (zm,λ)]− (z− zm)K (zm) , (1)

Table 1. Summary of parameters.

Found in dataset

anw(λ) spectral non-water absorption (m−1)
ap(λ) spectral particulate absorption (m−1)
aph(λ) spectral phytoplankton absorption (m−1)
aNAP(λ) spectral non-algal particle absorption (m−1)
aCDOM(λ) spectral colored dissolved organic matter absorption (m−1)
bb(λ) spectral total backscattering (m−1)
bbp(λ) spectral particulate backscattering (m−1)
cnw(λ) spectral non-water attenuation (m−1)
Ed(λ) downwelling irradiance (µW cm−2)
Es(λ) surface irradiance (µW cm−2)
Lu(λ) upwelling radiance (µW cm−2 sr−1),
[Chl] chlorophyll a concentration (mg m−3)
[Phaeo] phaeopigment concentration (mg m−3)
SPM total suspended particulate matter (mg L−1)
SPMi inorganic suspended particulate matter (mg L−1)
SPMo organic suspended particulate matter (mg L−1)

Not in dataset but used in calculations

at(λ) spectral total absorption (m−1)
aw(λ) spectral water absorption (m−1)
bt(λ) spectral total scattering (m−1)
bw(λ) spectral water scattering (m−1)
bbw(λ) spectral water backscattering (m−1)
ct(λ) spectral total attenuation (m−1)
Lw(λ) water-leaving radiance (µW cm−2 sr−1)
Rrs(λ) spectral remote sensing reflectance (sr−1)
R(λ) spectral reflectance (sr−1)
Kd(λ) spectral downwelling diffuse attenuation coefficient (m−1)
Ku(λ) spectral upwelling diffuse attenuation coefficient (m−1)

where X is either Ed or Lu, z is depth, zm is a central refer-
ence depth, and K is either Kd or Ku. This method assumes
that K is uniform across the depth interval used in the re-
gression. For the majority of the Lake Superior dataset, the
upper 8 m of the water column was typically utilized for the
retrieval of K , as recommended by Smith and Baker (1984,
1986). However, some locations near river outflows show
shallow layers with distinct optical changes, reducing the
uniform depth interval to about 5 m.

Using K-regression results, Ed(λ) and Lu(λ) were prop-
agated to just below the surface (Ed(0−, λ) and Lu(0−, λ)).
Water-leaving radiance (Lw(λ)) was calculated from Lu(0−,
λ) according to

Lw(λ)= 0.543 ·Lu
(
0−λ

)
, (2)

where 0.543 accounts for the net effects of surface re-
flectance and the refractive index of seawater as light travels
across the sea–air interface (Lee et al., 2002; Mobley, 1994).
Rrs(λ) was then retrieved as

Rrs(λ)=
Lw(λ)
Es(λ)

. (3)
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2.2.2 Inherent optical properties

IOPs were collected via a vertically profiled bio-optical pack-
age that measures absorption, attenuation (Wetlabs AC-S),
and backscattering (Wetlabs ECO-BB9) along with concur-
rent temperature, salinity (Sea-Bird CTD 37-SI), and fluo-
rometeric chlorophyll a (Wetlabs ECO-FL3). All methods
and analysis followed the NASA ocean optics protocols for
satellite ocean color sensor validation (Mueller et al., 2003b).
The ECO-FL3 was calibrated on a yearly basis, regressing
in situ chlorophyll a fluorescence with an extracted chloro-
phyll a concentration ([Chl]; mg m−3) derived from discrete
field samples.

Total absorption and attenuation (at(λ) and ct(λ), m−1, re-
spectively) were resolved at 81 wavelengths between 400 and
750 nm. CTD data were used to correct at(λ) and ct(λ) for
temperature and salinity effects using the coefficients of Sul-
livan et al. (2006). The AC-S was calibrated before and af-
ter each cruise with ultrapure water (ion, particle, and bub-
ble free). This pure-water absorption and attenuation (aw(λ)
and cw(λ)) was subtracted to retrieve the contribution of non-
water components (anw(λ) and cnw(λ)). Data were corrected
for scattering effects using the proportional method of Zan-
eveld et al. (1994). The bio-optical package was deployed
for two successive casts: total and filtered. For the filtered
cast, the AC-S intake was fit with a 0.2 µm filter (Pall; Maxi
Capsule Filter 12112) to allow for the measurement of dis-
solved components only (aCDOM(λ), m−1). During deploy-
ment, the package was lowered at 0.2 m s−1 or as slow as
possible. All data were binned to 1 m during analysis. Partic-
ulate absorption (ap(λ), m−1) was retrieved by the difference
between the total and filtered casts (=] anw(λ)− aCDOM(λ)).
Pure-water absorption and attenuation as measured by Pope
and Fry (1997) was then added to anw(λ) and cnw(λ) to return
to total values.

The ECO-BB9 measures the volume scattering coefficient
(βt, m−1 sr−1) for an acceptance angle of 124◦ at nine wave-
lengths: 412, 440, 488, 510, 532, 595, 650, 676, and 715 nm.
Instrument calibration was performed at Wetlabs in Nar-
ragansett, RI using 0.1 µm NIST-traceable beads (Thermo
Fisher Scientific 3100A; bead lot number 43585) at 9 ◦C fol-
lowing the procedure of Sullivan et al. (2013). Processed AC-
S measurements were interpolated to BB9 wavelengths and
backscattering data were corrected for absorption:

β = βte
(l−at), (4)

where l is the pathlength of the BB9 (= 0.0391 m). The vol-
ume scattering function (βw; m−1 sr−1) and total scatter-
ing (bw; m−1) of pure water was retrieved from tempera-
ture and salinity measurements using the model of Zhang
and Hu (2009). The backscattering of pure water (bbw; m−1)
was considered half of total scattering (= bw/2). The volume
scattering of the particulate fraction (βp; m−1 sr−1) was then
retrieved by difference (=β −βw). Particulate backscatter-

ing was calculated by taking the acceptance angle into ac-
count (Sullivan et al., 2013):

bbp = 2πχβp, (5)

where χ = 1.076 for a 124◦ measurement angle. Total
backscattering (bb; m−1) was then retrieved as the sum of
particulate and water components (= bbp+ bbw).

2.3 Laboratory analysis of discrete water samples

Whole water samples were taken from multiple depths rep-
resentative of the surface (5 m) and at a mid-depth of the eu-
photic zone often coincident with the deep chlorophyll maxi-
mum if one was present (11–50 m). During well-mixed times
of year, when a deep chlorophyll layer was not observed,
samples are only taken in the surface layer. Collected wa-
ter was stored in the dark on ice and was processed within
8 h. Discrete water samples are used for determining [Chl],
ap(λ), aNAP(λ), aph(λ), aCDOM(λ), and the organic and in-
organic components of suspended particulate matter (SPMO
and SPMI, respectively; mg L−1).

Samples for [Chl] and ap(λ) were filtered in triplicate onto
Whatman glass fiber filters (GF/F; 0.7 µm nominal pore size),
stored in liquid nitrogen while at sea, and moved to a−80 ◦C
freezer in the lab until analysis. Samples for aCDOM(λ)
were filtered through an acid-washed 0.2 µm membrane filter
(Whatman; Nuclepore 111106) and the filtrate was stored in
clear borosilicate bottles (Qorpak; GLC-01151) in a refriger-
ator until analysis. Directly prior to each cruise, borosilicate
bottles were acid washed and muffled at 450 ◦C for 4 h to
remove any potential contaminants.

Spectral CDOM, particulate, non-algal, and phyto-
plankton absorption were measured spectrophotometrically
(PerkinElmer; Lambda 35 UV/Vis dual beam) for wave-
lengths between 300 and 800 nm. Absorption of CDOM
filtrate was measured in a 10 cm cuvette following the
NASA ocean optics protocols (Mueller et al., 2003b) us-
ing a slit width of 2 nm and a scan rate of 240 nm min−1.
For particulate and non-algal absorption, we followed the
transmission-reflectance (T-R) method (Tassan and Ferrari,
2002; Lohrenz, 2000; Lohrenz et al., 2003) that utilizes an
integrating sphere to correct measurements for the contri-
bution of scattering. Daily blanks were prepared by filter-
ing 25 mL of ultrapure water (ion and particle free) onto a
GF/F and used to normalize T-R data during analysis. Fil-
ters were placed on a quartz slide at the entrance (transmit-
tance) and exit (reflectance) of the sphere and scanned at a
speed of 120 nm min−1 with a slit width of 2 nm both be-
fore (ap) and after (aNAP) exposure to sodium hypochlorite.
It should be noted that while methanol extraction is common
for this step in marine samples (Mitchell et al., 2003), the
use of sodium hypochlorite is preferred in freshwater due to
the resistance of some cyanobacterial pigments to methanol
extraction (Porra, 1990; Binding et al., 2008). The difference
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between these measurements is the contribution due to phy-
toplankton (aph= ap− aNAP). Absorption is calculated fol-
lowing Lohrenz (2000).

Extracted [Chl] and phaeopigments were determined fol-
lowing the NASA ocean optics protocols (Trees et al., 2003)
for both instrument calibration and sample analysis. Work-
ing in the dark, filtered samples were placed in prechilled
90 % acetone and sonicated for 20 to 30 s to break cells open.
Sonicated samples were stored in the freezer (−20 ◦C) and
allowed to extract for 24 h prior to analysis. Samples were
brought to room temperature and centrifuged at 3000 RPM
for 20 min to remove filter particulates. Fluorescence was
measured before and after the addition of 50 µL of 10 % HCl
on a Turner Designs 10AU fluorometer (optical kit 10-037R).
Blanks of 90 % acetone were measured daily. The fluorome-
ter was calibrated yearly with a dilution series of pure chloro-
phyll a (Sigma-Aldrich; C6144) extracted in 90 % acetone.
Field samples were analyzed within 6 months of fluorometer
calibration. [Chl] was retrieved from blank-corrected fluores-
cence as

[Chl] =
(Fb−Fa)
FR

·
τ

τ − 1
·
VS

VF
, (6)

and phaeopigment concentration ([Phaeo], mg m−3) was cal-
culated as

[Phaeo] =
(Faτ −Fb)

FR
·
τ

τ − 1
·
VS

VF
, (7)

where Fb and Fa (FSU) are the fluorescence measured before
and after acidification, respectively, FR (FSU (mg m−3)−1)
is the slope of the fluorometer calibration, τ (unitless) is the
acid ratio of the fluorometer calibration, and VS and VF (mL)
are the volume of the solvent and filtered water sample, re-
spectively.

Both organic and inorganic SPM were quantified follow-
ing the methodology of APHA, AWWA, and WEF (2005)
and the recommendations of Boss et al. (2009) and Woźi-
nak et al. (2011). Whatman GF/F filters (47 mm; 0.7 µm pore
size) were prepared by washing with ∼ 100 mL of ultrapure
water to rinse away any loose glass fibers. They were then
dried at 103–105 ◦C for 1 h, muffled at 550 ◦C for 4 h, and
allowed to cool in a desiccator. Filters were pre-weighed on
a high-precision balance (WF; mg). Duplicate samples were
filtered with a minimum of 3 L of collected water and stored
at −80 ◦C until analysis. Samples were removed from the
freezer, dried at 103–105 ◦C for 1 h, and placed in a des-
iccator to cool. Dried filters were then weighed within 2 h
of removal from the oven (WR; mg). Filters were muffled
at 550 ◦C for 1 h, returned to the desiccator to cool, and re-
weighed (WI; mg). Total and inorganic SPM were retrieved
as

SPM= (WR−WF)/V, (8)
SPMI = (WI−WF)/V, (9)

where V is the volume filtered (L). The organic component
can be retrieved by difference (SPMO=SPM−SPMI).

3 Results

Data were collected from 106 stations from May through
October of 2013 to 2016. Collection was aimed at maxi-
mizing spatial and temporal variability and dynamic range.
Thus, repeat stations were only found for six locations. The
range, mean, and standard deviation for all parameters are
reported in Table 2. Most of the observations were made in
July (n= 29) and August (n= 28) but also show reasonable
distribution in the early spring (May n= 12; June n= 8) and
fall (September n= 16; October n= 13). Data were only col-
lected in US waters; thus the Canadian waters encompassing
the northern reaches of the lake were not observed. To some
extent, the sampling locations were dependent on the home
port of the research vessels. The western basin (41 %) and
the central basin, near the Keweenaw Peninsula (41 %) of
the lake, were well observed. The eastern basin was observed
only during July 2015 and at a single site in July 2013, Au-
gust 2014, and September 2013 (Fig. 1).

The lake is dimictic (Assel, 1986) and develops a strong
thermocline and deep chlorophyll maximum (DCM; Barbi-
ero and Tuchman, 2004) in the summer months. The water
column was completely mixed in May and June in all years
(Fig. 2a and b). A thermocline was evident in nearly all lo-
cations by July (Fig. 2c), becoming stronger and deeper in
August (Fig. 2d). Depending on the location and year, the
thermocline either deepened or shallowed in September and
October, with evidence of a fully mixed water column in
some locations in October (Fig. 2e and f). In the fluoromet-
ric [Chl] profiles shown in Fig. 2, [Chl] was slightly lower in
the near-surface water in May and June due to fluorescence
quenching when the water column was well mixed (Fig. 2g
and h). When [Chl] was derived from absorption, the profiles
were uniform at this time of year (not shown). The forma-
tion of a DCM follows the development of the thermocline.
As the thermocline sets up in July, the DCM develops and
becomes more pronounced and deeper in August as the ther-
mocline deepens (Fig. 2i and j). The DCM was still evident
in September, but became weaker in magnitude and began
to shallow (Fig. 2k). By October, when the lake was begin-
ning to become fully mixed, [Chl] remained low in the near-
surface waters and slightly elevated in mid-depths where the
DCM was previously found (Fig. 2).

Discrete absorption samples partitioned into water, phyto-
plankton, non-algal particles, and CDOM display contribu-
tions from riverine inputs and broad lake processes near the
surface and at mid-depth (Fig. 3). The St. Louis River en-
ters Lake Superior in its western arm. Absorption was fairly
evenly distributed there between water, phytoplankton, and
CDOM, with some contributions of NAP in May. By June
and July, the surface waters were dominated by CDOM and
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Table 2. Data product range, mean, and standard deviation for the entire dataset. Parameter definitions and units can be found in Table 1.
Spectral data products are presented for the closest measurement to 443 nm.

Surface (≤ 5 m) Mid-depth (10–50 m)

Parameter Min Max Mean SD Min Max Mean SD

D
is

cr
et

e

anw(443) 0.063 9.704 1.150 1.302 0.077 1.916 0.868 0.645
ap(443) 0.017 0.596 0.061 0.082 0.213 0.553 0.058 0.057
aph(443) 0.014 0.457 0.045 0.053 0.020 0.439 0.049 0.045
aNAP(443) 0.001 0.203 0.015 0.032 0.001 0.114 0.008 0.013
aCDOM(443) 0.025 2.211 0.185 0.355 0.039 1.827 0.112 0.204
[Chl] 0.30 9.72 1.27 1.16 0.65 3.13 1.54 0.61
SPM 0.25 7.89 0.78 1.24 0.05 13.78 0.77 1.81
SPMi 0.18 1.54 0.40 0.22 0.05 1.57 0.40 0.22
SPMo 0.00 6.35 0.39 1.05 0.00 12.21 0.38 1.65

Pr
ofi

le
d

anw(441) 0.049 1.485 0.201 0.227 0.072 1.204 0.169 0.116
ap(441) 0.007 0.690 0.077 0.083 0.000 1.070 0.071 0.096
aCDOM(441) 0.023 0.716 0.118 0.103 0.043 0.326 0.102 0.043
bb(440) 0.0039 0.2906 0.0151 0.0307 0.0044 0.3560 0.0146 0.0337
bbp(440) 0.0022 0.2889 0.0134 0.0307 0.0027 0.3543 0.0129 0.0337
cnw(444) 0.205 10.200 0.699 1.049 0.1133 16.4248 0.680 1.336
Ed(443) 0.0157 121.1417 37.4051 27.8633 0.0000 45.3424 2.2060 2.4373
Es(442) 4.7938 133.1492 78.8109 40.5818 – – – –
Lu(442) 0.00046 0.6128 0.1812 0.1371 0.0000 0.2065 0.0103 0.0117
Rrs(442) 0.00022 0.0051 0.0023 0.0008 – – – –
Kd(442) 0.0847 2.0759 0.2829 0.2712 – – – –
[Chl] 0.00 7.21 0.87 0.95 0.00 4.26 1.40 0.44

Figure 2. Profiles of temperature (a–f) and [Chl] retrieved from in situ fluorescence (g–l) for the Lake Superior dataset. The profiles are
colored by year and shaded by longitude as in Fig. 1. Data are binned by 1 m. Note the compressed x-axis limits for temperature profiles in
May and June (a, b). Throughout the region, water column stratification is not observed until July or even August (c, d) and is eroded in the
fall (f). Absolute [Chl] levels are low throughout the lake, even during spring and summer months (g–l).

a growing contribution from phytoplankton. This was pre-
sumably due to the spring melt entering the lake. In August
there was an overall decline in absorption as this is a time of
lower river flow with a greater transition toward phytoplank-

ton dominance in September and October when fall storms
generate more runoff and the river serves as a nutrient de-
livery conduit to the lake (Fig. 3). The surface waters of the
central region of the lake remained dominated by water year-

Earth Syst. Sci. Data, 9, 497–509, 2017 www.earth-syst-sci-data.net/9/497/2017/



C. B. Mouw et al.: Expanding understanding of optical variability in Lake Superior with a 4-year dataset 503

Figure 3. Absorption for discrete water samples taken at 5m and mid-depth throughout Lake Superior grouped by month. The outer diameter
for each station marker is relative to total absorption with the contribution of water, CDOM, non-algal particles, and phytoplankton indicated
by the relative size of the concentric circles.

round with a significant CDOM contribution near the Onton-
agon River outlet and within the Keweenaw Peninsula water-
way that contains Portage Lake. Samples at mid-depth were
not targeted when the water column was well mixed in May
and June. The mid-depth becomes progressively dominated
by phytoplankton between July and September as the DCM
develops and declines. By October, surface and mid-depth
absorption were similar (Fig. 3). Considering the absorption
budget, CDOM was by far the largest contributor (50–80 %),
followed by phytoplankton, while NAP made up a less than
15 % contribution across all stations. Phytoplankton made up
a greater percentage of mid-depth absorption, while CDOM
was more variable in surface waters. NAP contributions were
only slightly lower in the mid-depth (Fig. 4).

To display the spectral variability observed in the absorp-
tion budget, three stations were selected in different regions
throughout the lake (Fig. 5). As aCDOM(λ) absorbs most
strongly in the ultraviolet and blue region of the spectrum, its
contribution decreases exponentially with increasing wave-
length. Phytoplankton also absorb strongly in the blue region
of the spectrum, with a peak near 443 nm and a secondary
peak at 687 nm. While phytoplankton accounted for a larger
proportion of absorption at mid-depth compared to the sur-
face, they comprised < 50 % of the total absorption budget
in blue wavelengths at all depths (Fig. 5). NAP was a larger
contributor in the surface, particularly for the sites near river
outlets (Fig. 5a and c).

The particulate portion of absorption (NAP and phyto-
plankton) was further explored by SPMi and SPMo. All non-
phytoplankton particles are included in aNAP(λ), while SPMi
includes only minerogenic particles. Similar to absorption,
the greatest SPM loads were found near the outlet of the
St. Louis River with a magnitude varying with the season

Figure 4. Ternary plots of the contribution of CDOM, non-algal
particles, and phytoplankton to total non-water absorption at 443 nm
from discrete water samples taken at 5 m (a) and mid-depth (b). The
markers are colored by year and shaded by longitude as in Fig. 1.
The system is CDOM dominated, especially near the surface; phy-
toplankton contributed more than 50 % in only two cases for the
entire dataset.
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Figure 5. Spectrally resolved contribution of water, CDOM, non-algal particles, and phytoplankton to total absorption for discrete water
samples taken at 5 m (a, c, e) and at mid-depth (b, d, f) from the western basin (a, b; light purple marker on map inset in b), Ontonagon River
outflow (c, d; blue marker on map), and the South Shore (e, f; dark purple marker on map) of Lake Superior in the summer of 2014–2015.
The black lines indicate a 50 % cumulative contribution for visual reference.

Figure 6. Suspended particulate matter for discrete water samples taken at 5 m and mid-depth for the Lake Superior dataset grouped by
month. The outer diameter of each station marker indicates total SPM with the concentric circles representing the relative contributions of
organic and inorganic components.

(Fig. 6). The high volumes of spring melt also delivered or
stimulated growth, resulting in high SPMo in June. By July,
freshwater entering the lake from the river was warm enough
to cause a density gradient, at which the warm river water
sat on top of the colder lake water; thus, SPM was signif-
icantly lower at the mid-depth. In August, SPM magnitude
was relatively similar across the lake and between surface
and mid-depth, but SPMi contributed a greater proportion of
SPM at depth. By September and October, the depth distri-
butions of SPMi and SPMo were similar, but the magnitude

of SPM in the western arm was much greater in October due
to runoff and water column mixing from fall storms. At this
time of year, the riverine water cools faster than the lake, re-
sulting in a submerged river plume; thus the greatest SPM
was observed in the mid-depth.

In addition to the discrete measurements, in situ profiles
of ap(λ), aCDOM(λ) and bbp(λ) were collected. Figure 7 dis-
plays examples of these spectral data for the same three sta-
tions as in Fig. 5. The St. Louis River inflow in the western
basin was seen in ap(λ) in the surface of the water column
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Figure 7. In situ IOP for select stations throughout Lake Superior in the summer of 2014 and 2015 (see inset map in j). Profiles of
ap(λ) (a, c, e) and aCDOM(λ) (b, d, f) for the western basin (a, b), Ontonagon River outflow (c, d), and South Shore (e, f). Note the
different color scales for the ap(λ) and aCDOM(λ) profiles. Examples of individual spectra at 5 and 25 m are shown in (g)–(j) along with in
situ particulate backscattering (k, l). Data are binned to 1 m.

(Fig. 7a) and the DCM at mid-depth. The presence of the
phytoplankton in ap(λ) was evidenced by a secondary spec-
tral peak near 683 nm. Riverine impact was also seen where
aCDOM(λ) was elevated in the near-surface waters but slightly
deeper than ap(λ) due to CDOM photobleaching (Fig. 7b).
In the Ontonagon outflow, the riverine signal was also seen
in ap(λ) and ag(λ), with a large deep chlorophyll contribu-
tion to ap(λ) at mid-depth. Below the deep chlorophyll layer,
aCDOM(λ) was elevated, possibly from bloom degradation
and sinking (Fig. 7c and d). Along the South Shore, there
was no significant riverine source; thus ap(λ) was low in the
surface and high at depth associated with the DCM. Through-
out the water column, aCDOM(λ) was uniform and signifi-
cantly lower than the riverine-impacted sites (Fig. 7e and f).
Spectra were extracted from the profiles at 5 m and 25 m
to show an alternative view of the spectral site comparison.
Given the low contribution of aNAP(λ) to the overall absorp-
tion budget (Fig. 5), variability in the spectral shape of in situ
ap(λ) could generally be attributed to differences in the phy-
toplankton community between the three locations (Fig. 7g
and h). The most distinct difference was the presence of a
peak at green wavelengths (centered at 550 nm) for the loca-
tion in the western basin, which was not present at the other
two sites. The variability in the slope of aCDOM(λ) was re-
lated to the molecular weight of the source carbon (Helms et

al., 2008). The slopes of aCDOM(λ) were slightly lower at 5 m
than 25 m, suggesting proportionately more terrestrial mate-
rial in surface waters than water at depth (Fig. 7i and j). The
bbp(λ) magnitude indicates the amount of particulate matter
in the water, while the slope is related to the size of the par-
ticles, with steeper slopes associated with smaller particles
(Reynolds et al., 2001). The magnitude of bbp(λ) at 5 m was
directly proportional to the particle delivery to that location,
with the St. Louis River followed by the Ontonagon River
outflow contributing significant particle loads. The bbp(λ) of
the western basin and the South Shore were nearly identical
at 25 m, suggesting a similar size of phytoplankton at these
locations. The bbp(λ) at the Ontonagon outflow at 25 m was
higher and had a greater slope (Fig. 7k and l) due to a greater
abundance of phytoplankton (Figs. 1 and 2) and a different
community composition.

Absorption and scattering processes impact the under-
water light field and the light exiting the water column
(i.e., Rrs(λ)). Rrs(λ) is the parameter that a satellite radiome-
ter observes. Figure 8 displays Rrs(λ) from in-water mea-
surements at the surface, across all observation months, and
light field variability with depth for the three stations also
highlighted in Figs. 5 and 7. There were groups of simi-
larly shaped Rrs(λ), with peaks near 490 or 570 nm and vary-
ing magnitudes (Fig. 8a–f). The magnitude of Rrs(λ) is re-
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Figure 8. Rrs(λ) (=Lw(λ)/Es(λ)) retrieved from combined near-surface multi-cast AOP profiles (a–f). The spectra are colored by
year and shaded by longitude as in Fig. 1. Example spectral multi-cast AOP profiles for downwelling irradiance (Ed(λ)) and re-
flectance (R(λ)=Lu(λ)/Ed(λ)) for the three locations from Figs. 5 and 7 (g–l).

lated to particulate abundance. The shape of Rrs(λ) is pri-
marily related to the variations in the relative contributions
and composition of phytoplankton, NAP, and CDOM. The
spectra with the highest Rrs(λ) were found in the St. Louis
River outflow. The underwater light field also varies spec-
trally depending on the abundance and type of optical con-
stituents. The spectrally dependent depth of light penetration
(i.e., Ed(λ)) and the spectral light at depth (ratio of Lu(λ)
to Ed(λ)) showed significant variability across the three ex-
ample sites (Fig. 8g–l). The least amount of light was avail-
able in the western basin with most available light at 510 nm,
while light penetrates the deepest near the South Shore and
the most available light is at 490 nm. The diffuse attenuation
coefficient at 490 nm (Kd(490)) was mapped to show geo-
graphic variability (Fig. 9). The shortest attenuation lengths
(highestKd(490)) were found in the western basin; the great-
est lengths were found in the central basin away from land in
August.

While we followed widely accepted standard protocols
here, as with any observations, there are always limitations
to the approach. We used laboratory and in situ fluoro-
metric measurements of chlorophyll concentration. While
fluorometric observations are widely used, these measure-
ments are subject to larger measurement errors than high-
performance liquid chromatography (HPLC) chlorophyll
analyses (Van Heukelem et al., 2002). However, we did not
have access or resources to carry out HPLC measurements

for these samples. Sosik (1999) evaluated the storage of par-
ticulate absorption samples prior to their analysis. She found
that storage in liquid nitrogen was the most reliable, while
storage at −80 ◦C was also satisfactory. However, increases
in absorption were noted at ultraviolet wavelengths under all
storage conditions. Thus, it is ideal to run particulate absorp-
tion analysis immediately after sampling; however, this was
not practical for our field sampling. Stramski et al. (2015)
evaluated the methods of transmittance (T), transmission-
reflection (T-R; used here), and integrating sphere (IS) for
measuring filter-pad particulate absorption. They ranked the
superiority of these methods in descending order as follows:
IS, T-R, and T. At the time of this analysis, we only had ac-
cess to a 60 mm integrating sphere that did not allow for IS
measurements, and this method is not yet widely used.

4 Data availability

The dataset contains coincident observations of total, par-
ticulate, phytoplankton, and CDOM absorption, total scat-
ting, total and particulate backscattering, attenuation, remote
sensing reflectance, chlorophyll concentration, and total sus-
pended matter from 106 stations collected between 2013
and 2016. The compiled data are available from the National
Aeronautics and Space Administration SeaWiFS Bio-optical
Archive and Storage System (SeaBASS): https://seabass.
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Figure 9. Kd(490) (m−1) for the Lake Superior dataset grouped by month. The stations are colored by year and shaded by longitude as in
Fig. 1.

gsfc.nasa.gov/archive/URI/Mouw/LakeSuperior/ (Mouw et
al., 2017).

5 Conclusions

This dataset has increased the number of coincident optical
observations in Lake Superior from 8 observed in July 2006
(Effler et al., 2010) to 106 stations sampled during the ice-
free season (May through October) from 2013 to 2016. In ad-
dition to greatly expanding the temporal resolution of avail-
able data, the spatial (geographic and depth) distribution has
grown to cover the western basin, the central lake, and the
southern shore of the eastern basin. In a system that is chal-
lenging to observe with direct methods for half the year due
to prolonged winter conditions, remote sensing is an im-
portant tool. The data presented here are essential for re-
mote sensing algorithm development and validation and this
dataset will go a long way toward improving and ensuring
that quality scientific satellite products are produced for the
interpretation of lake processes. Additionally, this dataset is
valuable for characterizing the variable light field, particle,
phytoplankton, and colored dissolved organic matter distri-

butions, and helpful in food web and carbon cycle investiga-
tions.
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