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Abstract. New high-resolution data sets for near-surface daily air temperature (minimum, maximum and mean)
and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the
purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project,
which aims to develop decadal climate predictions. The main input data sources are SYNOP observations, partly
supplemented by station data from the ECA&D data set (http://www.ecad.eu). These data are quality tested
to eliminate erroneous data. By spatial interpolation of these station observations, grid data in a resolution of
0.044° (=~ Skm) on a rotated grid with virtual North Pole at 39.25° N, 162° W are derived. For temperature in-
terpolation a modified version of a regression kriging method developed by Kridhenmann et al. (2011) is used.
At first, predictor fields of altitude, continentality and zonal mean temperature are used for a regression ap-
plied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from
the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new
method based on the concept used for temperature was developed, involving predictor fields of exposure, rough-
ness length, coastal distance and ERA-Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is
estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of
the final daily grid data, cross validation is performed. Variance explained by the regression ranges from 70 to
90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final
daily grid data amounts to 1-2K and 1-1.5ms™~! (depending on season and parameter) for daily temperature
parameters and daily mean wind speed, respectively. The data sets presented in this article are published at

doi:10.5676/DWD_CDC/DECREGO0110v2.

1 Introduction

In climate research, data of meteorological observations are
preferably provided in the form of continuous regular grids.
In this way the data can be used for regional or global cli-
mate monitoring as well as for a comparison with the outputs
from numerical weather prediction models and climate mod-
els. One of the main and most reliable initial data sources are
measurements taken at ground station networks like SYNOP
(synoptic observations recommended by the World Meteoro-
logical Organization, WMO). Interpolation or averaging pro-
cedures are used to transform such point data to values rep-
resentative for grid cells of regular size and distance.

Published by Copernicus Publications.

For the near-surface temperature a variety of gridded ob-
servational data is available. One of the most prominent
global data sets is the HadCRUT4 data set provided by the
UK Met Office Hadley Centre and the Climatic Research
Unit (CRU) at the University of East Anglia (Morice et al.,
2012), covering monthly values in 5° spatial resolution since
1850. In recent years several more global temperature data
sets have been published (e.g., Smith et al., 2008; Hansen
et al., 2010; Rohde et al., 2013). On a regional scale, tem-
perature data sets with higher resolutions in space (e.g.,
Hogewind and Bissolli, 2011) and time have been produced.
For Europe the E-OBS project has set up an archive of grid-
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ded daily data in a horizontal resolution of 0.25°, starting in
1950 (Haylock et al., 2008). Since regional models increas-
ingly realize even higher resolutions, reference data sets with
resolutions below 0.25° are more and more requested. So far,
such data are only produced on a national or sub-regional
scale.

In addition to the pure observational data sets, so-called
reanalysis data represent alternative sources. Measurements
from surface stations, radiosondes and satellite data of dif-
ferent meteorological parameters serve as input data for the
assimilation scheme of weather prediction models. Three-
dimensional gridded data for a variety of parameters describ-
ing the initial status of the atmosphere are obtained. How-
ever, the dependency on model physics makes reanalysis data
unsuitable for the evaluation of model forecasts.

Concerning the near-surface wind speed, the availability
of gridded observational data is currently very low. On a na-
tional level a few efforts have been made to calculate hori-
zontal wind fields based on station reports (e.g., Luo et al.,
2008; Gerth and Christoffer, 1994; Walter et al., 2006). For
larger regions like Europe no such data fields are available at
present.

Within DecReg (decadal regional predictability), a subpro-
ject of MiKlip (decadal climate predictions), the predictive
skill of regional climate models on a decadal timescale is
investigated using hindcast experiments. Independent grid-
ded observational data sets for the European region are used
as reference. In order to meet the spatial scale of these
models (& 7km for the COSMO-CLM model; http://www.
clm-community.eu/), new reference data with resolutions be-
low the 25 km realized by E-OBS are required. This request
represents a big challenge because the grid size is limited by
the density of station observations. More complex interpola-
tion methods are needed to maintain a certain quality on a rel-
atively fine grid. As contribution to DecReg, the Deutscher
Wetterdienst (DWD) aims to provide gridded observational
data of daily temperature and wind speed in high resolution
for the time period 1961-2010.

A variety of interpolation methods can be used to de-
rive continuous field data based on point measurements (see
overview given by, for example, Li and Heap, 2008). In cases
of relatively coarse grid sizes (with a high number of sam-
ples per grid cell) simple averaging techniques are sufficient.
For relatively fine grids the value at a given point has to be
estimated on the basis of information of surrounding data
points. Deterministic interpolation methods are based on the
assumption of a certain function, which describes the spa-
tial changes of the target variable. For example, linear re-
gression on the coordinates x and y using least-squares fit-
ting represents a simple form of a deterministic interpolator.
A very prominent deterministic approach is the inverse dis-
tance weighting method (IDW), in which the information of
nearby stations is used to determine the value at certain tar-
get coordinates, expecting a decrease of influence with in-
creasing distance. An interpolation method involving proba-
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bilistic elements (often called a stochastic or geostatistic ap-
proach) is so-called kriging (after Daniel G. Krige, further
developed by Matheron, 1963). Compared to IDW, in krig-
ing the geographic distribution of the surrounding data points
is considered (solving the cluster problem) and the weights
are optimized by considering the spatial correlation observed
for the target variable. In contrast to deterministic methods,
kriging directly provides uncertainty estimates for each grid
point. Many meteorological parameters depend on certain lo-
cal characteristics (like temperature and pressure on the alti-
tude or wind speed on the surrounding vegetation and topog-
raphy). Such secondary information can be included in the
interpolation procedure by a regression approach.

In this work a combination of regression and kriging is
used to compute gridded data in 0.044° (= 5km) horizontal
resolution of daily mean 10 m scalar wind speed and daily
2 m air temperatures (minimum, maximum and mean). Here,
the results for the decade 2001-2010 are presented. Earlier
decades are planned to be added to this new data record in
the future.

2 Input data

2.1 Data sources

The main input data sources used in this work are SYNOP
reports. Daily minimum temperatures (7pin, observed be-
tween 18:00 and 06:00 UTC) and daily maximum temper-
atures (Tmax, 06:00 to 18:00 UTC) are taken from the daily
SYNOP reports at 06:00 and 18:00 UTC, respectively. For
the calculation of daily mean temperature (T,ve) and daily
mean wind speed (Vayg), hourly reports (current tempera-
ture; 10 min before time of synoptic message; wind speed
averaged over last 10 min before time of message) between
00:00 to 00:00 UTC of the following day are used. The Euro-
pean Climate Assessment & Dataset project (ECA&D, Klein
Tank et al., 2002) offers additional station measurements
for Europe and North Africa (data and metadata available
at http://www.ecad.eu). The 62 participating countries have
provided quality-checked data records for numerous weather
stations. For temperature the ECA&D record is used to ex-
tend the input data in areas with low coverage by SYNOP
stations. Due to the issue of partly deviating daily observa-
tion periods for the three parameters (a discussion will fol-
low in Sect. 2.3), we apply a selection algorithm for the in-
clusion of ECA&D data. In this way we aim to avoid incon-
sistencies with the input data based on SYNOP. The accu-
racy of the meteorological data from both archives is lim-
ited by the precision of the reports (i.e., number of decimal
places), which typically depends on the underlying measure-
ment accuracy. Thus, basic uncertainties of 0.1 K and approx.
0.5ms~! (1 knot) can be assumed for the two parameters.
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Figure 1. (a) SYNOP stations with hourly data in target DecReg EU domain for January 2010. The color code indicates the frequency of
reports (between 1 and 6 h). The station records marked green contain hourly data but show gaps for the main dates: 00:00, 03:00, 06:00 UTC,
etc. (b) SYNOP data for Tayg (blue) in January 2001 and added ECA&D data using selection algorithm described in the text.

2.2 Hourly SYNOP reports

Figure 1a shows the distribution of SYNOP stations report-
ing at least every 6h (see color code for different frequen-
cies) throughout the target domain for January 2010. In total,
2230 stations are found. Most of the regions in the target do-
main (indicated by the red frame) are well covered; only for
Africa are larger regions without data identified.

Daily Tyg and Vi, are derived by averaging the available
hourly data, while assigning only half of the regular weight
to the measurements at 00:00 UTC (of current and follow-
ing day). Depending on the availability of hourly data, daily
sample sizes vary between 25 (1-hourly, type 1), 16 (1-/2-
hourly in Sweden, type 2), 9 (3-hourly, type 3) and 5 (6-
hourly, type 4). To evaluate the consistency between daily
means based on different sample sizes, these values were
compared at stations with full daily records of 25 samples. In
Fig. 2 daily means of types 3 and 4 in January 2001 are com-
pared with type 1 for temperature (Fig. 2al, a2) and wind
speed (Fig. 2bl, b2) respectively. For temperature we find
a high consistency of daily means even for type 4 (Fig. 2a2),
with a standard deviation of the error of 0.21 K. For wind
speed the precision in the determination of the daily mean
decreases considerably with the number of samples per day
(0 =0.40ms™~! for type 4). However, compared to the rel-
atively high basic uncertainty of 0.5ms~! for wind speed
data and the strong influence of, for example, local roughness
conditions on the measurements, these potential discrepan-
cies are found acceptable. For daily means of type 1 up to
two missing or non-valid data in a daily record of 25 values
were accepted. In the calculation of the daily means these
gaps were filled by the mean of the two adjacent dates. Daily
records of types 2-4 were rejected when missing values or
inhomogeneities (see Sect. 2.4) occurred.

www.earth-syst-sci-data.net/8/491/2016/

3-hourly reports
wind speed
SD:0.10

b

r T T T 1 r T T T 1
-1.0 -0.5 0.0 05 1.0 0 -0.5 0.0 0.5 1.0

(@1) i (b1)

4000 6000
3000 4000

Frequency
Frequency
2000

2000
1000

0

Deviation [K] Deviation [ms™]

6-hourly reports
wind speed

(a 2) 6-hourly reports

temperature

SD: 0.40
SD:0.21

Frequency

Frequency
1000 2000 3000 4000

—_
0 500 1000 1500 2000 2500 c'
N
~

0

T T T T 1
-1.0 -05 0.0 05 1.0

T T
-0.5 0.0

T 1
0.5 1.0

!
o

Deviation [K] Deviation [ms™]

Figure 2. Accuracy of daily mean temperatures (al, a2) and daily
mean wind speeds (b1, b2) in January 2001 for different frequencies
of observation (3 and 6h) using 1-hourly data as reference. The
standard deviations, denoted SD, are added to the histograms.

2.3 Integration of ECA&D archive for temperature

The national weather agencies contributing data to ECA&D
determined daily temperature parameters based on partly
deviating observation intervals. This leads to potential dis-
crepancies between SYNOP (using consistent intervals; see
Sect. 2.1 and 2.2) and ECA&D, as illustrated in Fig. 3 for
January 2010. Daily data from both archives were com-
pared at stations with identical coordinates and altitudes. In
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Figure 3. Differences of daily temperature data from SYNOP and
ECA&D for January 2010 at stations with identical coordinates.
Mean and maximum absolute daily deviation for minimum temper-
ature (al, a2), maximum temperature (b1, b2) and mean tempera-
ture (cl, c2).

panels al and bl the mean and maximum absolute differ-
ences between daily Tinin according to ECA&D and SYNOP
are shown. For most of the countries, observation intervals
in ECA&D (in many cases 24h intervals, e.g., 00:00 to
00:00 UTC or 06:00 to 06:00 UTC; van den Besselaar et al.,
2012) disagree with the 12 h period in SYNOP, which results
in maximum daily deviations of more than 4 K at most of
these stations in this winter month. In contrast, the ECA&D
data of some countries in eastern and southern Europe are
indicated to be derived consistently with SYNOP. Qualita-
tively similar results are found for Ti,x (Fig. 3b1 and b2). For
Tavg (Fig. 3¢l and c¢2) the consistency of both data sources is
high in the Netherlands and Germany (00:00 to 00:00 UTC
in both archives). In all other countries, deviating intervals
and/or calculation methods are apparent for ECA&D. Over-
all, root mean square deviations (RMSD) of 1.9K (Tpin),
1.7K (Tiax) and 0.9 K (Tyyg) are found in January 2010. In

Earth Syst. Sci. Data, 8, 491-516, 2016

spring and summer RMSD are usually smaller (0.8, 1.1 and
0.6 K for Trin, Tmax and Tayg, respectively, in July 2010), as
a result of increased insolation and more pronounced daily
cycles.

To take account of this consistency problem, an algorithm
was designed to include suitable data from the ECA&D
archive, considering the density of SYNOP reports in each
target area and by data comparison at identical stations (with
same coordinates and altitudes). The differences at these sta-
tions were used as indicator for the consistency in the target
region for each day. Depending on the presence of SYNOP
station data in a certain area, different thresholds for con-
sidering or rejecting ECA&D station data were used (e.g.,
daily deviation required to be smaller than 1K if at least
one SYNOP station found within radius of 0.75° (& 80km)).
In cases where no SYNOP data were available in an area
of £3° (= 330km) around a target ECA&D station and no
comparison was possible in a somewhat larger area of +4.5°
(=~ 500km), ECA&D station data were included without any
further testing. In such distances to other data points (about
half of the ranges shown in Table 3; compare discussion on
variogram ranges in Sect. 3.2), independent station data add
essential information to the data field.

In Fig. 1b the station coordinates of a combined data set of
SYNOP (blue) and ECA&D (red) for T,y in January 2001
are shown. The chosen ECA&D data add valuable informa-
tion in Scandinavia, Spain and Greece. The total station num-
ber is increased here by about 100.

The temporal evolution during 2001-2010 of input data
for the different parameters is illustrated in Fig. 4. The dot-
ted lines show the fraction of SYNOP reports; the solid lines
display the total number of station records used. For wind
(grey curve) only SYNOP reports were used, as the num-
ber of wind data archived in ECA&D is currently very low.
Towards earlier years the availability of SYNOP reports de-
creases. This decrease is considerable for the Scandinavian
region and for many countries around the Mediterranean Sea
(compare Fig. 1a and b). ECA&D data contribute especially
in these early years. The availability of SYNOP data is usu-
ally higher for Thin and Tax than for the daily mean values
Tayg and Viy,.

2.4 Quality control and assurance

All input data (the hourly data of each day and the daily
data of each month) were quality checked regarding different
types of inhomogeneities: (1) outliers, (2) significant shifts
in the time series, (3) constant data over longer intervals and
(4) exceedance of climatological thresholds. In the follow-
ing a closer description of the strategies for the example of
hourly temperature data is given.

For type 1 the minima and maxima of each daily cycle
at a target station are subtracted from the mean of the cy-
cle while omitting the extremes in the averaging. These test
values (denoted dtn and dtx in the program) are considered

www.earth-syst-sci-data.net/8/491/2016/
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Figure 4. Temporal evolution of total input data used for the inter-
polations 2001-2010 (see color code). The dotted curves show the
basic number made up by SYNOP stations. The differences indi-
cate the increase by the inclusion of ECA&D data. SYNOP data are
used for the interpolations for wind speed only.

absolutely (adding notation 1) and relatively (divided by the
standard deviation of the daily values without extremum, no-
tation 2). Based on experiments with data of several exam-
ple months, empiric thresholds were determined to decide
whether a value is considered an outlier or not. Depending
on the number of the daily values and the comparison of ab-
solute vs. relative test value these thresholds range between
8 and 14K for dfn/drx, and 4 and 8 for dtn; /dtx;.

For inconsistencies of types 2 and 3 a running standard de-
viation (SDy) of five consecutive measurements is calculated.
If the minimum of SD; (denoted SD;, in the program) reaches
zero, at least five identical values in a row are indicated. For
a daily series of in total five values (6-hourly data), such an
event is highly unlikely and therefore considered a result of
erroneous data. In the case of hourly reports the threshold for
a rejection is increased to nine identical values in a row. Our
sample data showed that certain conditions in winter allow
nearly unchanged temperatures over several hours. Also, the
change of SD; for each time step is recorded (the maximum
difference is denoted dSDy) to identify sudden shifts in the
common temperature level. Corresponding tests with data of
several example months indicated clear inhomogeneities for
dsdx above 7 K. Climatological thresholds were determined
month-wise for 19 subregions using the full ECA&D archive
for 1961-2010. The subregions were defined by combining
countries of similar climate. For the Scandinavian countries
and Russia an additional separation by latitude was applied.
If subregions were insufficiently represented by ECA&D sta-
tions, the upper and lower thresholds were slightly increased
and decreased, respectively, to achieve realistic temperature
limits. Additionally, an adjustment of temperature with al-
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titude (assuming 0.65K 100m~" according to International
Standard Atmosphere) is carried out to consider stations of
high altitude possibly not represented by corresponding data
of ECA&D.

In the case of wind speed, similar techniques, but with ad-
justed thresholds, were developed to consider erroneous data.
Concerning climatological thresholds, a global upper value
of 65ms~! for hourly data was defined. Here, an approach
considering season and region is not helpful, as strong wind
events can occur in all regions and throughout the year.

For the time series of daily values similar tests following
the strategies for the hourly data are applied. This quality
check is particularly important for the SYNOP extreme val-
ues and for all ECA&D data because related hourly data are
often not available. For stations where both extreme values
and hourly raw data are available, a consistency check be-
tween extremes based on these hourly data and the aggre-
gated extremes (denoted “hrl” and “agg” in the following) is
made (e.g., minimum T;?f is not expected to be above min-
imum of corresponding hourly data Té‘lﬂl). For temperature
the consistency between the three parameters Tpin, Tmax and
Tavg (€.2., Tmin expected to be smaller than Tyy) is checked
for each day, if available.

The hourly data are also used to fill gaps in monthly time
series of the extremes, if the overlap between, for exam-
ple, T]iigf and TmhfL is sufficiently long (more than 10 data
points in a month) and the maximum discrepancy between
these series is below 2 K. The estimates from the hourly raw
data (e.g., Té‘lﬁ) are corrected by the mean deviation between
both monthly time series to replace missing data of, for ex-
ample, T;%f. Similarly, ECA&D data are used for filling up
incomplete monthly SYNOP series if the same coordinates
and a high consistency (maximum deviation below 1 K) are
found.

During the interpolation process a monthly background
field for each parameter is first created. Therefore, only time
series with no more than six missing values within a consid-
ered month are used. To achieve a more precise estimate of
the monthly mean, missing values are reconstructed by lin-
ear regression with neighboring stations (depending on avail-
able stations search radii increased stepwise to a maximum
of £2.5°, ~280km). If no suitable stations in the neighbor-
hood are detected and the number of missing data is two or
smaller, the mean of the values for the two adjacent dates is
used to fill a gap. The values reconstructed in this way are
only used to determine the monthly means. For the daily in-
terpolation step, missing data are left unchanged because the
interpolation scheme is expected to reproduce missing data
more accurately than the rough assumptions used here for
the calculation of monthly means.

Earth Syst. Sci. Data, 8, 491-516, 2016
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3 Interpolation procedure temperature

For temperature interpolation, a regression kriging approach
(strategy proposed by Ahmed and de Marsily, 1987, and
Odeh et al., 1995) adapted from Krdhenmann et al. (2011) is
used. The interpolation is done in four steps: a regression of
station monthly means depending on three predictor parame-
ters (altitude, continentality and zonal monthly mean temper-
atures), followed by interpolation of the regression residuals
using kriging to obtain gridded monthly means, a daily ad-
justment of regression on altitude and, finally, the kriging of
daily deviations from station monthly means.

The steps are performed separately in seven overlapping
regions (see Fig. 5; 2.5°, & 280km, overlap). The separation
roughly follows the climate classification after Képpen and
Geiger (e.g., Sanderson, 1999), and thus relatively homoge-
neous conditions for temperature are expected within each
region. Compared to Krdhenmann et al. (2011), slight modi-
fications were made in the partitioning of the regions in order
to adapt them to the DecReg domain dealt with in this work.

Earth Syst. Sci. Data, 8, 491-516, 2016

By considering regions instead of the whole domain, a better
adjustment of the regression model and of the kriging param-
eters (a closer description will follow) during interpolation
is achieved. The regional temperature fields of the seven re-
gions are finally merged by linear weighting in the overlap
areas (see Fig. 5). This procedure ensures a continuous tran-
sition of the data fields between two regions.

3.1 Regression

As the first step, a multiple linear regression of the
monthly means for each station against data fields of alti-
tude (using elevation data from the shuttle radar topography
mission (SRTM; see http://dds.cr.usgs.gov/srtm/version2_1/
SRTM3/) — above 60° N complemented by data from the
United States Geological Survey (USGS; see https://lta.
cr.usgs.gov/GTOPO30)) — continentality (after Gorczynski,
1920) and zonal monthly mean temperature (climatology
1961-1990 based on CRU TS 3.00; Mitchell and Jones,

www.earth-syst-sci-data.net/8/491/2016/
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2005) is applied (see corresponding fields in Fig. 6).

T (x) =ko+ k1 x alt(x) + kp x con(x) + k3 x zon(x)
+res(x), (1)

where T (x) is temperature at station x, alt is altitude, con is
continentality index, zon is zonal mean temperature and res
is residuum. These so-called predictor fields explain a ma-
jor part of the spatial variation of monthly temperatures
(Krdhenmann et al., 2011). In order to receive a region-
specific regression model, usually only data from stations
within the core region (weight one; compare Fig. 5) are used
to calculate the regression coefficients. Due to the relatively
sparse data density in regions 1, 3 and 7, station data from
the overlap areas are also considered here.

Among the three predictors, altitude is the most crucial be-
cause temperature typically strongly depends on it and alti-
tude changes in space occur on very small scales. Thus, linear
regression against altitude can substantially improve the final
interpolation results in regions with pronounced orographic
characteristics. In a new setup applied in this work the depen-
dency of monthly temperature from altitude is determined
first and independently from the two other predictors on the
basis of station data from mountainous areas. This strategy
was chosen because height coefficients derived from the stan-
dard multiple regression are potentially affected by strong
horizontal temperature contrasts. For example, if mountain
stations are concentrated in a part of a region with relatively
low temperatures, lapse rates tend to be overestimated in the
previous setup. Implausible lapse rates were diagnosed under
such conditions, especially for the Scandinavian region. We
could solve this issue with an independent regression step
on altitude based on station data from valleys and moun-
tains in relatively close distance. The orange dots in Fig. 5
mark stations used for this initial regression step. Depend-
ing on the region, different criteria (minimum distance to
coast, minimum altitude and regional weight) are applied to
receive representative subsets. Due to the absence of station
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data suitable for this approach in regions 3 and 7, the regres-
sion coefficients for altitude determined in regions 2 and 6,
respectively, are used here.

A second modification in the altitude regression setup was
implemented in this work. Also daily temperature—altitude
dependencies are estimated using the same strategy as above.
In this way variations from day to day, which occur espe-
cially in winter, can be considered.

For 2010 we compared the height coefficients according
to the previous setup (setup 1, involving all predictors and
station data) and the new setup (setup 2, separate regression
with subsets). Reference lapse rates were calculated using the
regional averages of representative data pairs from mountains
(highest available station in a target area, at least 700 m a.s.1.)
and nearby valleys. The data of up to two suitable valley sta-
tions (at least 400 m below height of mountain station) were
used for each mountain station to receive a robust average. A
minimum distance of 0.8 ° (= 90km) between adjacent refer-
ence mountain stations was chosen to avoid clusters in moun-
tain areas with high station coverage. In Fig. 7 a comparison
of the different setups is shown for region 2 and parameter
Tayg. The outcomes from the two setups clearly differ for
the winter months (Fig. 7b). Compared to the monthly refer-
ence lapse rates (green curve) a clear overestimation of more
than 0.5K 100m~"! is found for setup 1 (black) in winter,
while for setup 2 (orange) a good agreement with the refer-
ence values (mostly within 0.1 K 100m™~!) is indicated. For
comparison, setup 1 was also used in a single regression on
altitude (grey). As expected, this approach yields more unre-
alistic lapse rates. It is apparent that the impact of relatively
warm coastal waters in winter, especially at the Norwegian
coastline (with many data points), leads to the calculation
of overly pronounced vertical temperature gradients. The in-
volvement of continentality (containing the effect of temper-
ature moderation by the oceans) in the multiple regression
approach is not capable to fully balance this effect in Scan-
dinavian winter.
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Figure 7. Comparison of regression setups used to estimate temperature lapse rates for mean temperature in Scandinavia. (a) Stations used
in different setups; (b) monthly lapse rates in 2010; (¢) daily lapse rates for January 2010.

In comparison to the daily reference lapse rates (Fig. 7c,
for January 2010), considerable deviations were found for
both setups, with mean absolute deviations of 0.9 and
0.3K100m™! (Typn) for setup 1 (theoretical consideration,
since no daily regression implemented in the previous work)
and 2, respectively. Nevertheless, a clear improvement is
achieved with the new setup in this problematic region. The
periods of significant temperature inversions, indicated by
the reference stations in the first half of the month, are not
captured by the regression according to setup 1. However, it
should be noted that none of the simple approaches shown
here sufficiently describe the spatial variation of temperature
in mountain regions during winter (see discussion in Sect. 7).
Apart from this problematic region 2, no significant differ-
ences in the results according to the two setups occurred in
the tested months. In those regions absolute deviations from
the reference lapse rates lie in the range of 0.1 K 100m~! or
below for monthly and daily data.

Latitudinal changes of the solar radiation as well as land—
sea distribution and atmospheric dynamics (preferentially
leading to a zonal air mass exchange) affect the predictor pa-
rameter of the long-term zonal monthly mean temperature.
Continentality reflects the buffering effect of the oceans on
annual temperature changes. In contrast to altitude, these two
predictor fields exhibit moderate spatial changes. Their po-
tential for improving the interpolation is thus important in
regions with a low observation density, e.g., in North Africa.

Another modification compared to Krdhenmann et al.
(2011) is the use of station monthly means instead of cli-
matological monthly values as input data for the monthly
temperature analysis. In our work monthly hindcast periods
are considered instead of current days (as in Krihenmann
et al., 2011); therefore the values of the entire month are
available. By using current monthly means as basis for the
linear regression a potentially better adjustment of the regres-
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Table 1. Whole-domain averages of spatial variance explained by
single predictors (%) for monthly mean temperature and 4 tested
months. In the bottom row the results for the multiple regression
model involving all predictors are given.

Predictor Jan 2001  Jan 2010  Jul 2001  Jul 2010
Altitude 40 23 38 41
Continentality 28 33 52 53
Zonal mean 30 37 41 25
temperature

All 85 84 84 83

sion model to the mean weather conditions observed in this
month is achieved and the amplitude of the regression resid-
uals is reduced.

In Table 1 the predictive skills of the three predictors for
monthly mean temperature are shown. Listed are the rela-
tive explained variances in a regression with single predic-
tors. The corresponding results for the multiple regression
model is shown in the last row. All three parameters show
a high capacity to predict T,yg on a monthly basis. Overall,
more than 80 % of the spatial variance can be explained by
the three predictors.

3.2 Monthly and daily kriging

The monthly regression residuals (observations minus values
according to regression model) are interpolated on a 0.011° x
0.011° (= 1.25km) rotated basic grid (virtual North Pole at
39.25°N, 162° W) using simple kriging. Simple kriging is
the least complex kriging algorithm (see, for example, Stahl
et al., 2006, for a comparison of the different algorithms).
It requires a normal distribution of the data and thus an ab-
sence of spatial trends of the mean. This assumption is ful-
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filled, provided that most of the systematic variance has been
removed by the regression step. However, a normal-score
transformation (following Deutsch and Journel, 1998, attain-
ing a standard normal distribution) is applied to the residuals
prior to the interpolation. After interpolation and back trans-
formation, block averaging is used to calculate the data on
the final rotated target grid of 0.044° x 0.044° (=~ Skm). The
sum of regression field and monthly residual field results in
the monthly temperature field.

In the final step the differences between daily and monthly
temperatures are interpolated following the same concept
as above. Before this daily interpolation all daily anoma-
lies are height-normalized using the daily regression coef-
ficients (correcting deviations from monthly mean) for the
temperature—altitude relationship determined in step one.
The daily temperature field is eventually calculated as the
sum of monthly temperatures, daily height-normalized resid-
uals and the reversal of the height normalization.

An important aspect in the interpolation using kriging is
the adjustment of the kriging parameters (for details see,
for example, Deutsch and Journel, 1998). These parameters
estimate the change of correlation between nearby stations
with distance. The related function considered in kriging is
the semivariance y, describing half the variance between all
pairs of data points Z(x;), Z(x; + h) at a certain distance, A,
to each other.

1 N(h)

_ R . 2
y(h)—zN(h);{zm) Z(xi +h)} )

The corresponding graph, illustrated in Fig. 8, is called
a variogram. The variogram parameters are sill (the maxi-
mum semivariance observed in far distance from the origin),
nugget (minimum semivariance observed at the origin) and
range (the distance at which the semivariance levels off at
the maximum). Stations outside the range are not expected
to carry relevant information for a target point at the origin.
The nugget, taking on values between zero and the sill, de-
fines the noise of the data at the origin. Thus, it sets a basic
uncertainty of all final gridded data in the considered region.
This nugget effect can be understood as a result of measure-
ment error and fluctuations below the spatial scale resolved
by the stations. Different functions can be used to describe
the change of the semivariance with distance. Here, a spher-
ical model is assumed, following Kridhenmann et al. (2011).

Several strategies of fitting the variogram function to the
station data in each region were tested in this work. First,
a “null” variogram is defined based on experiments with
data from 4 example months (January 2001, July 2001, Jan-
uary 2010, July 2010). Using cross validation, thus leaving
out subsequently one data point and reproducing it based on
the information from the remaining stations, different com-
binations of the three parameters are tested. The parameter
values performing best, define the “null” variogram. An au-
tomated function for fitting variograms (Pebesma, 2004) is
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Figure 8. Idealized variogram with the parameters nugget, sill and
range (after Deutsch and Journel, 1998). See description in the text.

afterwards used to further optimize the variogram. Our tests
showed that, on average, both the “null” variogram based on
cross-validation results and the variogram based on the auto-
mated fitting perform equally well, but in rare cases the auto-
mated fitting algorithm fails to determine reasonable results
due to a missing convergence in the fitting based on least
squares (Pebesma, 2004). In the final setup we decided to
use the “null” variogram as a robust basis and allow a slight
adjustment of the parameters in cases where clear differ-
ences between the two models occur. The parameters nugget
and range of this “null” variogram are listed in Table 3 for
monthly and daily kriging of T,y in the seven regions. The
nugget values can be interpreted as percentage of the back-
ground noise measured at the origin. For T,y relatively low
nugget-to-sill ratios between 0.1 and 0.3 were determined.
Thus, a relatively strong spatial dependence of the residual
fields is indicated. The ranges, within which station data are
correlated, are between 5 and 8° on the rotated grid (= 550
to 900 km).

4 Interpolation procedure wind speed

For the interpolation of daily wind speed a new method based
on the concept used for temperature was developed. Differ-
ent predictor fields correlated with wind speed were tested
and chosen. Again, the seven regions displayed in Fig. 5 are
applied. In addition, a new region for the Alps is introduced
(Fig. 9). The motivation for this new region will be outlined
in the next section.

4.1 Regression

After testing a variety of potential predictor fields, four pa-
rameters were chosen for the linear regression (see Fig. 10).

V(x)=ko+k x exp(x)o'5 + ky x In(coa(x)+ 1)

+ k3 x In

10 + k4 x era(x) +res(x), ®)
zo(x)

where V (x) is wind speed at station x, exp is exposure or rel-
ative altitude, coa is coastal distance, z¢ is surface roughness
length, era is ERA-Interim 850 hPa reanalysis wind speed
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Figure 9. Alpine region (denoted region 8 in the following) intro-
duced for the interpolation of wind speed.

and res is residuum. The use of relative altitude (in the fol-
lowing the term exposure will be used as a synonym) was
motivated by Walter et al. (2006), who found good correla-
tions with 10 m wind speed in Germany for altitude at a given
point transformed to exposure by dividing it with the mean
altitude of the surrounding area of 10km x 10km. Here, we
calculated corresponding fields on a 1km grid using eleva-
tion data (same sources as in Sect. 3.1) and applying a ra-
dius of 5km for the determination of surrounding mean al-
titude. Block averages were calculated to obtain data for the
final target grid of Skm x Skm. For station data the exact
altitude reported is used in comparison with the 1km grid
of mean altitudes described above. We tested different func-
tions to find the most suitable relationship between exposure
and 10 m wind speed (e.g., linear, logarithmic and different
power functions). On average, exposure to the power of 0.5
(equal to square root) showed highest correlations.

Coastal distance is also of high relevance for the mean
wind speed in 10m since the very low roughness across
the sea surface, related to very low friction, leads to typi-
cally stronger winds in the vicinity of coastlines. Our tests
showed the best performance when using the logarithm of
the coastal distance in the form In(coa+ 1) and defining max-
imum coastal distances (higher values are reduced to that
constant) between 20 and 100 km. This maximum distance is
chosen individually for each month and region on the basis
of the lowest root mean square error (RMSE) for a regression
on coastal distance.

Surface roughness describes the deviations of a surface
from an ideal smooth form. On the Earth’s surface obsta-
cles such as bushes, trees or buildings increase the surface
roughness and thus affect the movement of air. According
to theory the wind speed change with distance from the sur-
face shows the following simplified dependency (under neu-
tral stability conditions) on the roughness length zg (see, for
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example, Holton and Hakim, 2012):

v(2) == xIn=, )
K 20

where v(z) is wind speed at height z, von Karman constant
is « and shear velocity is v,. Based on this equation we ap-
ply the roughness length in the regression step as In(10/z¢)
because linear dependency on v is expected if v, is assumed
constant (valid in the lowest 10 m considered here). Here, we
use roughness length data in 1 km resolution derived from the
global land cover data set GLC2000 (Bartholome and Bel-
ward, 2005).

In addition to the three “static” predictor parameters
above, the use of meteorological field data can provide
valuable information for regions with low station coverage.
Krihenmann and Ahrens (2013) showed that the inclusion of
remote sensing data from satellite observations as a predic-
tor in regression kriging substantially improves the gridding
of surface temperature over the Iberian Peninsula. For wind
speed, relevant satellite measurements of high quality are
currently not available. However, air pressure fields, as the
initial driving force of large-scale air movement, are well an-
alyzed in weather models. Here, we tested ERA-Interim re-
analysis data provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). These data are avail-
able in 6-hourly resolution on a reduced Gaussian grid with
a grid point distance of approximately 80 km, from 1979 un-
til today (Dee et al., 2011) at http://apps.ecmwf.int/datasets/
data/interim-full-daily/. In order to maintain independence
from the other three predictors, corresponding model fields
of geopotential height as well as the direct output for wind
speed in pressure levels between 850 and 700 hPa (reflect-
ing conditions in the nearly “free” atmosphere, undisturbed
by surface impacts) were examined as predictor. Horizontal
gradients derived from geopotential height and model wind
speeds showed best correlations with surface station wind
speed for the lowest tested level 850 hPa. This level corre-
sponds with altitudes of around 1500 m; thus in high moun-
tain areas like the Alpine region the data fields intersect with
the land surface and therefore are affected by surface effects.
In these cases an independence from the predictor fields of
exposure and roughness length is not ensured. In the 700 hPa
pressure level the influence of high mountains nearly van-
ishes but the correlations are generally weaker. For the fi-
nal regression setup we decided to use ERA-Interim wind
fields at 850 hPa. Scalar wind speeds are derived from the
two vector components u and v. Daily means are calculated
in the same way as described in Sect. 2.2. For grid points
above 1000 m reanalysis data are eliminated and afterwards
re-estimated by the information of adjacent data points. Fi-
nally, daily and monthly ERA-Interim scalar wind speed data
fields are interpolated to the target DecReg grid using bilin-
ear interpolation.

Despite the filter algorithm applied for reanalysis data in
regions of high altitudes, a slight dependency of reanalysis
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Figure 10. Predictor fields of exposure (a), coastal distance (b), roughness length (¢), ERA-Interim mean scalar wind velocity in 850 hPa

(d; here January 2001).

data on exposure and roughness length remains for areas like
the Alps, the Atlas Mountains, the Caucasus and parts of
Turkey. Thus, for the Alps, where a good coverage with sta-
tion data is available, a new region (Fig. 9) was set up, for
which regression on reanalysis wind speed is omitted. All
grid points above 1500 m in this area receive regional weight
one. An overlap to adjacent regions was determined and the
regional weights of the adjacent regions were adjusted. Tests
indicate a slight improvement of the overall explained vari-
ance in 3 out of 4 tested months (January/July 2001/2010)
for this new configuration.

The four predictors are used for the regression of the data
of monthly mean wind speed. In contrast to temperature,
wind speed data tend to produce a logarithmic distribution.
Therefore, ratios between monthly wind data and the cor-
responding area mean of the related region are considered.
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Table 2. Whole-domain averages of the spatial variance explained
by single predictors (%) for monthly mean wind speed and 4 tested
months. The bottom row shows the result for the multiple regression
model involving all predictors.

Predictor Jan 2001  Jan 2010  Jul 2001  Jul 2010
Exposure 24 20 18 17
Coastal distance 28 35 27 28
Roughness length 23 28 22 24
ERA-Interim 850 hPa 10 13 11 21
All 58 58 51 53

Core regions relevant for the determination of the regression
coefficients in each region were defined in the same way as
for temperature. For the new region 8, weights above 0.5 de-
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Table 3. Regional variogram parameters nugget (relative to sill) and range (° rot. grid) based on experiments with temperature data Tayg of 4
example months (January 2001, July 2001, January 2010 and July 2010). Listed are the regional averages for monthly and daily interpolation.

Parameter Region1 Region2 Region3 Region4 Region5 Region6 Region7
Monthly

Nugget 0.1 0.1 0.1 0.1 0.1 0.2 0.1
Range 5 5 7 6 8 6

Daily

Nugget 0.3 0.1 0.1 0.2 0.1 0.2 0.1
Range 6 6 8 7

Table 4. Regional variogram parameters nugget (relative to sill) and range (° rot. grid) based on experiments with wind speed data Vyyg of 4
example months (January 2001, July 2001, January 2010 and July 2010). Listed are the regional averages for monthly and daily interpolation.

Parameter Region1 Region2 Region3 Region4 Region5 Region6 Region7 Region 8§
Monthly

Nugget 0.8 0.5 0.7 0.3 0.6 0.6 0.8 0.3
Range 2 4 3 5 6 2 2 4
Daily

Nugget 0.7 0.4 0.5 0.3 0.4 0.4 0.5 0.7
Range 2 4 5 3 4 3 4 1

fine its core area. The test results of the monthly regression
for the 4 example months are listed in Table 2. Each of the
parameters explain a considerable part of the spatial variance
of Vaye. Overall, around 55 % of the variance of the monthly
mean is captured by the regression model. The values are
somewhat lower than those obtained for temperature regres-
sion. This can partly be explained by the high dependency
of wind speed on local characteristics not captured by the
regression.

Also, linear regression on a daily basis was tested, fo-
cusing especially on the predictive skill of the daily ERA-
Interim reanalysis data. Thereby we found good correlations
between ERA-Interim and the daily observations. On aver-
age, 31 % of daily variance could be explained by ERA-
Interim over 4 tested months (same as above). Thus, an addi-
tional regression step on a daily basis is applied using daily
anomalies of ERA-Interim 850 hPa wind data from the cor-
responding monthly means.

4.2 Monthly and daily kriging

Following the same scheme as described for temperature, the
normal-score transformed residuals of the monthly regres-
sion are interpolated using simple kriging. Again, a “null”
variogram optimized on the basis of cross-validation exper-
iments for 4 tested months (same as above) was determined
for monthly and daily means in each region. The results are
shown in Table 4. Compared to temperature the nuggets are
somewhat larger and the ranges smaller. Thus, for wind speed
the noise of the regression residuals at the origin of each tar-

Earth Syst. Sci. Data, 8, 491-516, 2016

get grid point is, on average, relatively large and the interpo-
lation uncertainty relatively high. Regional signals vanish at
distances of 2 to 6° (= 220 to 670 km).

After normal-score back transformation the gridded
monthly residuals are added to the gridded regression values
and multiplied by the absolute mean wind speed of the con-
sidered region (correcting the normalization applied before
regression) to obtain the monthly field of Vyy,.

In the daily kriging step the daily anomalies with respect
to the monthly mean at each station are interpolated. Here,
ratios instead of absolute deviations are considered, respect-
ing the characteristics of wind speed distribution. As noted in
Sect. 4.1, an additional regression with regard to daily ERA-
Interim 850 hPa wind speed is performed prior to the interpo-
lation. The final daily wind field is calculated involving the
daily regression field, the back transformed daily anomaly
ratios and the monthly field of Vay.

4.3 Uncertainties of interpolation

For each of the three interpolation steps uncertainty estimates
are recorded. For the two kriging steps the kriging variance is
used as a measure of uncertainty. Kriging variance is known
to lack precision on a local scale, since local variation of
the data is not considered in the estimation of uncertainty.
More sophisticated approaches were suggested by Deutsch
and Journel (1998) and Yamamoto (2000). However, due to
the enormous increase in computing time, as observed in
tests using the approach by Yamamoto (2000), we rely on
the easily available kriging variance in this work. Regression
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Figure 11. Steps in the interpolation of daily mean temperature for 31 July 2010. (a) Monthly regression field; (b) monthly regression residu-
als; (¢) monthly mean temperature; (d) daily anomaly with respect to monthly mean temperature; (e) daily mean temperature; (f) interquartile

range of daily mean temperature.

and kriging errors (kriging variance and semivariance at the
origin) are combined according to error propagation to deter-
mine total uncertainties. Finally, interquartile ranges (IQRs;
range between 0.25 and 0.75 quantile, thus containing 50 %
of the data) are recorded for all monthly and daily gridded
data sets.
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Furthermore, cross validation for all data within the exam-
ple years 2001 and 2010 is applied to receive error estimates
for all station coordinates. In Sect. 5.5 a comparison between
cross-validation results and the uncertainty estimates based
on kriging variance is presented.
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Figure 12. Steps in the interpolation of daily mean wind speed for 28 February 2010. (a) Monthly regression field; (b) monthly regression
residuals; (¢) monthly mean wind speed; (d) ratio daily to monthly mean wind speed; (e) daily mean wind speed; (f) interquartile range of
daily mean wind speed.
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Figure 13. Detailed image of central Europe for (a) daily mean temperature (31 July 2010) and (b) daily mean wind speed (28 February

2010).

5 Results and discussion

5.1 Example outputs

In Fig. 11 the basic interpolation steps for the generation
of the gridded field of daily mean temperature are illus-
trated. The monthly field (Fig. 11c¢) is calculated as the sum
of regression field (Fig. 11a) and the interpolated residuals
(Fig. 11b). The interpolated daily anomalies (Fig. 11d) from
the monthly data are used to determine the final grid of daily
mean temperature (e, here for 31 July 2010). The uncertain-
ties of the daily data are characterized by the IQR fields
shown in Fig. 11f. In the central and northwestern part of
the domain the quality is indicated to be very high, with IQR
around 1.0 K. In other regions, where the coverage of station
measurements is lower (compare Fig. 1), higher IQRs partly
exceeding 3 K are recorded.

Corresponding results for daily mean wind speed on
28 February 2010 are shown in Fig. 12. Instead of absolute
daily anomalies here the ratios to the monthly means are in-
terpolated (Fig. 12d). Note that the intermediate step of daily
regression on 850 hPa reanalysis winds (as for daily regres-
sion on altitude in temperature scheme in Fig. 11) is not dis-
played here. The uncertainties of the final daily wind speed
data are relatively high in areas of high wind speeds. In con-
trast to temperature, the dependency on the station density
is lower because a considerable amount of the spatial vari-
ability is not captured by station measurements and predictor
fields (see discussion on the nugget effect in Sect. 3.2). To
illustrate the small-scale characteristics of the interpolation
products, the two example outputs for daily mean temper-
ature and daily mean wind speed are displayed for central
Europe in Fig. 13.
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Figure 14. Relative explained variance for monthly mean wind
speed and for the monthly mean of the three temperature param-
eters (see color code) for 2001-2010.

5.2 Regression

In the following the results of the monthly regression anal-
ysis for the full decade 2001-2010 are presented for wind
speed and for the three temperature parameters. In Fig. 14
the spatial variance explained by the predictors (EV) is dis-
played for the entire decade of 2001-2010. Highest values of
up to around 90 % are reached for Tayg. For Tmin and Tinax
the EV values fluctuate at slightly lower levels of around
80 %. Concerning wind speed, the EV values are consider-
ably lower (around 55 %). Nevertheless, taking into account
its high degree of small-scale variability, the EV values real-
ized here for wind speed represent a promising result. Over
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Figure 15. Annual cycles (means 2001-2010) of relative explained variance for monthly mean temperature (al, see color code of the
parameters) and wind speed (b1) and corresponding spatial variability (1o) before and after regression (a2, b2). All data are given as means
over all regions. The error bars display the temporal standard deviation over the 10 years.

the 10 years no visible trend as a result of the trend in the
number of station data is found. However, the curves indicate
annual cycles caused by seasonal changes in spatial variance
and/or the predictive capacity of the predictor fields.

This aspect is investigated more closely in Fig. 15. Here,
annual cycles based on the statistics over the 10 years for EV
and the spatial variability (standard deviation) of the raw data
and the regression residuals are displayed. For temperature
(Fig. 15al, a2; see color code of the three parameters) a gen-
erally higher spatial variability during winter is observed. For
Tmax an additional summer maximum is visible, the unex-
plained variance even peaks in summer for this parameter.
However, the high predictive capacity of the three predictors
leads to a strong reduction of the residual variability for tem-
perature.

For wind speed (Fig. 15b1, b2) similar annual cycles with
winter maxima are indicated. After regression the remaining
spatial variance is considerably reduced.

5.3 Interpolation — cross validation

For two years, 2001 and 2010, the quality of the final interpo-
lation product is evaluated by applying “leave one out” cross
validation (as defined in Sect. 3.2). Combining the cross-
validation results for the monthly and the daily interpolation
yields uncertainty estimates of the gridded data near each tar-
get station. Figure 16 displays corresponding results for Jan-
uary 2010 (Fig. 16al, a2) and July 2010 (Fig. 16b1, b2) for
daily mean temperature. Figure 16al and bl show the mean
absolute error of the 31 daily values at each station (see color
code). The corresponding statistics over all days and stations
are summarized in Fig. 16a2 and b2.

The RMSE is 1.68 K in January and 1.00 K in July. Thus,
interpolation of mean temperature is, on average, consider-
ably more accurate for the summer month considered here.
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This finding is consistent with the relatively low variability of
the regression residuals in summer (compare with Fig. 15).
However, the regional distribution of the errors exhibits clear
spatial differences: while in the north a tendency towards
higher errors in winter is found, the southern regions reveal
highest errors mainly in summer. This can possibly be ex-
plained by the relatively low predictive capacity for night
temperatures during cold winter periods (especially in com-
plex terrain; e.g., cold air pools) and for day temperatures un-
der high insolation in summer (affected by clouds, convective
precipitation, coastal waters). This assumption is supported
by the annual cycles of the regression residuals in Fig. 15.
Especially during periods of temperature inversion in winter
the simple linear regression approach on altitude is not capa-
ble of reproducing the spatial temperature variation in moun-
tainous regions satisfactorily (e.g., Frei, 2013). A discussion
on this aspect will follow in Sect. 7. Overall, very accurate
interpolation results are found in regions with a high obser-
vation density and low topographic complexity.

Hofstra et al. (2008) have compared the skill scores
for daily temperature interpolation results based on differ-
ent methods. The RMSEs calculated in our study for the
same domain are in the same range as found for the best-
performing methods tested in Hofstra et al. (2008). For in-
stance, the three-dimensional thin-plate splines method used
(in combination with external drift kriging) for the E-OBS
temperature grid record (Haylock et al., 2008) showed RM-
SEs of 1.12 and 1.40 K for summer and winter half, respec-
tively. A direct comparison between E-OBS grid data and the
temperature data of our study is presented in Sect. 5.4.

Figure 17 shows the results of the cross validation for
daily mean wind speed. Again, January (Fig. 17al, a2) and
July 2010 (Fig. 17b1, b2) were investigated. As observed for
daily mean temperature, also daily mean wind speed shows
a somewhat larger spread in the error distribution in January
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Figure 16. Cross-validation results for daily mean temperature data in January 2010 (al, a2) and July 2010 (b1, b2). The color code indicates
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(RMSE of 1.42 compared to 1.06ms™! in July). However,
seasonal differences can partly be attributed to the higher
mean wind speeds occurring in January 2010 (mean over
all stations: 3.37 compared to 3.05ms~! in July). Relatively
high absolute errors are found for stations in coastal and
mountainous areas and thus at sites with high wind speeds.
Nevertheless, the discrepancies diagnosed for highly exposed
stations on the top of mountains typically show a systematic
underestimation compared to the observed values (not illus-
trated in the figure, as absolute deviations are given). Thus,
systematic variance caused by the topography is not satis-
factorily explained by the regression for areas of very high
exposure.

In Fig. 18 the outcomes of cross validation are summarized
for the entire annual cycles of 2001 and 2010 for the four pa-
rameters: (a) Vayg, (b) Tavg, (€) Tinin and (d) Tmax. The black
and the blue curves illustrate the two cycles of daily RMSE.
For comparison the time series of daily standard deviation
over all station observations are displayed in brown and or-
ange. In addition to the daily values curves of monthly means
are shown. As indicated in Figs. 16 and 17, the interpola-
tion accuracy is clearly higher during warmer seasons for the
daily means of wind speed and temperature. Only for T,y is
a tendency towards higher errors in summer indicated. The
interpolation quality is generally somewhat lower for the ex-
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treme temperatures (see grey curves for Ty added to the
plots ¢ and d for comparison). The temporal averaging used
to calculate daily means leads to a reduction of unexplained
variance (compare with in Fig. 15a2) and thus increases the
accuracy of the interpolation.

The variability curves in Fig. 18 can be interpreted as the
RMSE for the simple assumption in which the mean over all
station data is assigned to each station location. Thus, the dif-
ference between lower and upper curves can be understood
as a measure for the skill of the interpolation method. For
wind speed this skill is much lower than for temperature due
to the large fraction of unexplained variance.

Besides the accuracy of the interpolation, expressed here
in the global measure RMSE, its ability to preserve the ob-
served spatial variability is also of importance. Some meth-
ods tend to smooth small-scale features (Luo et al., 2008).
Regression kriging is known to preserve spatial variance
well, provided that the predictors can explain a major part of
the observed variance (e.g., Krdhenmann et al., 2011). Here,
the cross-validation results were used to assess this aspect.
Figure 19 shows the time series of relative variance, defined
here as the ratio of spatial variance of interpolated and ob-
served station data, for the years 2001 and 2010 (see color
code indicating the different parameters and years). For the
variance of the temperature parameters a good agreement be-
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tween observations and interpolation results is found. Only
for Thin are significantly underestimated variances detected
during certain periods. For wind speed the relative variances
fluctuate around a level slightly below 0.7 (outliers for sin-
gle days in April 2001 due to very low number of station
data). This low variance ratio is caused by the high degree of
unexplained variance observed on very small scales (nugget
effect, Sect. 4.2). The reproduction of a data value at a cer-
tain station by a weighted average of surrounding values with
a large spread leads, on average, to a reduced signal at this
station.

5.4 Comparison with E-OBS grid data

To assess the characteristic of the temperature data set in
comparison with the daily E-OBS grid data (version 13.0;
Haylock et al. (2008); www.ecad.eu/download/ensembles/
ensembles.php), the data fields of daily mean temperature
were compared for 2010. To meet the lower resolution of E-
OBS (0.22°), the DecReg data were transferred to the E-OBS
grid using first-order conservative remapping. For 31 January
2010 (Fig. 20) we find very similar temperature fields of T,y
for DecReg (Fig. 20a) and E-OBS (Fig. 20b) in most parts
of the domain. However, the difference field DecReg minus
E-OBS (Fig. 20c) reveals major discrepancies in Russia and
in mountain regions around the Mediterranean Sea.
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As shown in Sect. 2.3, deviating observation intervals
and/or calculation methods (in the case of T,yg) occasionally
cause considerable differences of the daily station data used
for the two data sets (mainly ECA&D for E-OBS, mainly
SYNOP for DecReg), especially in winter. The correspond-
ing comparison (SYNOP minus ECA&D at stations with
identical coordinates) for the investigated day is shown in
Fig. 20d. The differences of the grid data found in eastern Eu-
rope are well explained by the deviating source data. In con-
trast, the station data in the Mediterranean region are found
consistent for this day. Here, differences in the assumed lapse
rates lead to varying results for grid cells of high altitudes.
Since in E-OBS these dependencies are calculated locally
(see Haylock et al., 2008), there is a potentially better re-
flection of small-scale changes; however, this strategy lacks
robustness in cases of missing representation by local sta-
tion data. The maps of mean daily deviation (Fig. 20e) and
mean absolute daily deviation (Fig. 20f) between DecReg
and E-OBS indicate persistent differences in mountain re-
gions around the Mediterranean.

To evaluate the temperature grid data in mountain re-
gions, a comparison with ERA-Interim reanalysis tem-
peratures at 850hPa (http://apps.ecmwf.int/datasets/data/
interim-full-daily/; Dee et al. (2011)) was made. Daily mean
model fields were calculated from the 6-hourly raw data by
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averaging in the same way, as described in Sect. 2.2. The data
fields were interpolated to the E-OBS and the DecReg grid
using bilinear remapping. All grid points at altitudes near
the level of 850hPa — a range between 1200 and 1800 m
was defined — were compared with ERA-Interim. To cor-
rect for temperature differences caused by height deviations,
observational grid data were normalized (for each day and
grid point) to the actual geopotential height at 850 hPa (from
daily ERA-Interim field) by assuming linear lapse rates de-
termined on the basis of the eight surrounding grid cells.
The outcomes of this comparison for January 2010 are
shown in Fig. 21. For the difference E-OBS minus ERA-
Interim at 850hPa (Fig. 21a), mean daily deviations vary
between —3 and +8 K. A clear overestimation of mountain
temperatures is indicated for the Atlas Mountains, the Sierra
Nevada (southern Spain) and for the French Alps. Consis-

www.earth-syst-sci-data.net/8/491/2016/

tency with ERA-Interim is high in Turkey, central and north-
ern Spain and parts of the Alps. Mountain data in Norway
and Romania tend to be underestimated for most of the days.
The DecReg data (Fig. 21b) are very consistent with ERA-
Interim in the Alps, the mountains in southeastern Europe
and in Iceland. However, significant negative biases of up
to —5K are indicated for, e.g., the Atlas and Scandinavian
mountains and elevated areas of the Middle East. For eight
grid points (encircled in Fig. 21a and b) a daily comparison
was made for the entire year 2010. Corresponding time series
of the monthly mean of daily deviations from ERA-Interim
are displayed for E-OBS (Fig. 21c) and DecReg (Fig. 21d).
Considerable discrepancies partly exceeding 5K are diag-
nosed for the E-OBS grid points in Morocco, the Sierra
Nevada and the French Alps (compare legend and color code
of circles in Fig. 21a and b) throughout the year. At the other
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single grid points the consistency between E-OBS and ERA-
Interim is relatively high, with only occasional negative bi-
ases above 3 K occurring in winter months. The DecReg data
show constant negative biases compared with ERA-Interim
of around 2-3K at the grid points in Morocco, Spain and
Syria. For the other mountain regions the data agree rela-
tively well, except for single winter months with clear nega-
tive biases.

In a further analysis the ERA-Interim temperatures at
850 hPa were compared with SYNOP station data to evalu-
ate the representativeness of the model data (initial resolution
of ~ 80km) for the relatively fine grids of E-OBS (& 25km)
and DecReg (=~ 5km). The data of up to three suitable moun-
tain stations (heights between 1200 and 1800 m) within a ra-
dius of 2.5° (= 280km) around the single grid points ana-
lyzed above were compared with the nearest ERA-Interim
grid point (interpolated; 0.044°). Similarly to the procedure
above, station temperatures were normalized to the 850 hPa
geopotential height for each day (based on lapse rates deter-
mined from DecReg). The results of this comparison in the
environment of the single grid points are shown in Fig. 21e.
The consistency between station data and ERA-Interim (no
station data available for grid points in Spain) is very high
for most time of the year 2010. Daily deviations are typically
within the range of £2 K. For the grid points in Norway and
Turkey, similar negative biases are observed as for E-OBS
and DecReg for the winter months (Fig. 21¢ and d). Thus,
the reanalysis data tend to be incorrect or not representative
in some of the mountain regions during winter. Reversely, the
observational grid data of E-OBS and DecReg are indicated
to be consistent with the observations for these areas, even in
winter.
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Overall, E-OBS and DecReg mountain temperatures at
around 1500 m are in an acceptable agreement with ERA-
Interim reanalysis data and station observations. However,
the interpolation procedure used for E-OBS fails to repro-
duce temperature changes with altitude sufficiently in areas
without suitable observations. The regression approach pre-
sented in this study is indicated to be slightly more reliable
in these problematic areas but is incapable of representing lo-
cal deviations from the lapse rate determined for each region.
Additionally, both approaches are incapable of dealing with
nonlinear lapse rates.

Regarding the observation intervals of the daily E-OBS
data, no consistency throughout the domain is ensured, which
is a result of deviating procedures applied by the national
weather agencies providing data to ECA&D. The SYNOP
input data used in DecReg are based on the same daily in-
tervals. Thus, potential discontinuities of temperature fields
near national borders are avoided and comparability with
model data for defined intervals ensured.

Apart from the causes discussed above, differences in the
distribution of the input station data used in E-OBS and De-
cReg can also lead to deviating grid data. This aspect is im-
portant for regions where the density of stations is generally
low, as observed around the Mediterranean Sea, especially in
the early years of the decade (compare Fig. 1).

5.5 Evaluation of uncertainty estimates

As mentioned in Sect. 4.3, uncertainty fields based on re-
gression error and kriging variance were determined for each
monthly and daily data field. In the following, a compari-
son of these estimates with the findings from cross valida-
tion is presented. We use daily cross-validation results (as
shown in, for example, Fig. 16) and the monthly mean of
daily IQR at the nearest adjacent grid points. For each station
the number of interpolated data within the IQR error interval
is counted for the 2 example months January and July 2010.
The results of this experiment are displayed in Fig. 22 for
daily mean temperature. Blue colors indicate point data for
which more daily data lie outside the range of error than ex-
pected. Grey dots mark data for which the monthly statistic
fairly agrees with the definition of IQR (50 &£ 10 %). Loca-
tions with more accurate data than indicated by the IQR are
colored red. Additionally, corresponding frequency distribu-
tions are displayed for the 2 months (Fig. 22a2, b2).

The outcomes for Ty, show that IQR uncertainty lev-
els are, on average, relatively consistent with the cross-
validation results. Nevertheless, small-scale changes of the
uncertainty, as for mountainous areas, are not well reflected
in the data fields of IQR. As a consequence, a tendency
towards overestimation of the error in topographically ho-
mogeneous regions is observed, while in regions with com-
plex terrain errors tend to be underestimated. For July 2010
the distribution is less symmetric than for January 2010. As
noted in Sect. 4.3, local changes of uncertainty as a result
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E-OBS Tyyg January 2010.

of a relatively low or relatively high local variability of the
input data are not considered in the kriging variance. This
measure mainly depends on the variogram parameters — re-
flecting average changes of the correlation between adjacent
data values with distance — and the station density. For cer-
tain months the basic variogram parameters determined for
each region (“null” variogram, see Sect. 3.2) can deviate sig-
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nificantly from the real data characteristics in that specific
month. The restriction of the automated variogram fitting (to
avoid unstable variogram models, Sect. 3.2) can lead to mean
IQR estimates deviating from the mean errors based on cross
validation.

For wind speed (Fig. 23) qualitatively similar results are
indicated. On average, the IQR defines a reasonable uncer-
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tainty range. However, also here the spatial variation is very
high. In contrast to temperature, the distribution of signifi-
cantly outlying data values is less systematic for wind speed
(Fig. 23a2, b2). This can be explained with its relatively high
spatial variability on small scales.

6 Summary

In this work interpolation schemes for daily station data of
minimum, maximum and mean temperature as well as daily
mean wind speed in 0.044° (= Skm) resolution for Europe
(rotated grid, virtual North Pole at 39.25° N, 162° W) are
presented. To achieve a high data consistency, temperature
extremes are based on the same 12 h intervals of night (18:00
to 06:00 UTC) and day (06:00 to 18:00 UTC), and a consis-
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tent 24 h interval starting at 00:00 UTC is used for the calcu-
lation of daily means. A regression kriging approach using
predictors altitude, continentality and zonal monthly mean
temperature, based on the work by Krihenmann et al. (2011),
is applied for the temperature parameters. Modifications and
further developments were implemented to adapt the exist-
ing routine to the special demands of our project. For wind
speed a new regression kriging procedure involving the pre-
dictor variables exposure, coastal distance, roughness length
and 850 hPa ERA-Interim reanalysis wind speeds was devel-
oped.

As an important prerequisite for the interpolation, a pre-
processing to derive daily means from hourly SYNOP data
in combination with a profound quality control was estab-
lished. Also for the other input data, daily extreme temper-
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atures and the data of the ECA&D archive, detailed quality
control procedures were developed. In order to maintain con-
sistency with SYNOP, a selection algorithm, controlling the
integration of ECA&D data in regions where SYNOP data
are sparse and consistency between the two sources is high,
was implemented.

For the time period 2001-2010 the spatial variation of the
monthly means can be well explained by the predictors. We
obtain relative explained variances in the range of 80-90 %
for the temperature parameters and about 50-60 % for wind
speed.

Cross validation is performed for the years 2001 and 2010
to assess the quality of the daily interpolation products. For
daily mean temperature, RMSEs of about 1-2K are diag-
nosed. The accuracy for the daily extremes is typically lower,
with values around or slightly below 2 K. In winter interpola-
tion accuracies tend to be reduced compared to summer. For
daily maximum temperatures an additional summer reduc-
tion in gridding accuracy is detected. The RMSE for daily
mean wind speed lies in the range of 1-1.5ms~!. Here, an
annual cycle, with the higher values occurring in winter, is
also indicated.
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Concerning the conservation of spatial variance, very good
performance is found for the temperature parameters. In the
interpolation products 90-100 % of the observed variance is
typically preserved. Only for minimum temperature are at
times lower values recorded. For daily wind speed, a fraction
of 60-80 % of the original variance is preserved after interpo-
lation. The relatively high degree of unexplained small-scale
variance leads to a smoothing of the wind data.

The cross-validation results are also used to evaluate the
quality of the gridding uncertainty based on kriging variance
and regression errors. On average, a reasonable consistency
between these data is found. Nevertheless, temporal and spa-
tial variations of uncertainty occurring on small scales are
not adequately reflected in the gridded uncertainties.

In comparison with the E-OBS temperature data occa-
sional discrepancies of more than 5 K between the two data
sets occur. These are caused, on one hand, by country-
specific deviations in the daily observation intervals and,
in certain regions, by a different availability of the input
data. On the other hand, different approaches to derive lapse
rates lead to larger deviations in mountain regions. Both data
sets fail to match ERA-Interim reanalysis temperatures at
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850 hPa satisfactorily in areas without sufficient data from
mountain stations.

7 Conclusions

The regression kriging approaches used in this work for the
interpolation of daily temperature and wind speed observa-
tions on a grid size of 0.044° (=~ 5km) show good perfor-
mance in terms of accuracy and variance preservation. With
the inclusion of suitable predictor variables small-scale char-
acteristics of the meteorological parameters can be well cap-
tured.

For the dependency of temperature on altitude more reli-
able regression results are obtained by performing this re-
gression separately and on the basis of representative sta-
tions. Also, day-to-day variations of this dependency are
considered in the new setup used in this study. Neverthe-
less, the linear regression approach applied to the relatively
large areas of each region is not capable to reflect nonlinear
vertical temperature changes and spatial differences of this
parameter within a region. More complex approaches con-
sidering this issue in the calculation of high-resolution grid
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data in mountainous regions have been published (e.g., Frei,
2013). However, these specialized strategies require the pres-
ence of stations representative for a certain area and altitude
level. For the relatively large domain dealt with in our work,
where many mountain regions are insufficiently represented
by station data, the inclusion of radiosonde data might offer
a promising strategy in this respect.

Concerning the regression of wind speed, a considerable
part of spatial variance on a monthly basis (40-50 %) re-
mains unexplained by the predictors used in this work. For
predictor fields of exposure, coastal distance and roughness
length it would be more realistic to take into account the cur-
rent wind direction and local predictor conditions determined
for this wind direction. This strategy would introduce further
complexity in the calculations. However, the percentage of
variance explained by predictors as well as the final interpo-
lation accuracy could likely be increased.

The gridded error estimates calculated for the daily and
monthly products are, on regional average, reasonable, but
for certain days and areas these estimates are found to be
unrealistic. An alternative approach yielding more reliable
errors (Yamamoto, 2000) was not implemented due to the
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enormous increase in computing time. Thus, the determina-
tion of accurate uncertainty estimates remains an issue for
data sets of high resolution in space and time.

However, users of these grid data are recommended to con-
sider the IQR uncertainty fields provided in separate files in
their analyses. Especially in parts of North Africa the uncer-
tainties are usually very high due to very sparse observations.
To deal with this issue, IQR thresholds tolerable for a specific
analysis could be defined to exclude regions with less reliable
data.

8 Data availability

The data sets presented in this article are published
at doi:10.5676/DWD_CDC/DECREGO0110v2 (Brinckmann
and Bissolli, 2016). Elevation data of the DecReg grid are
available at ftp://ftp-cdc.dwd.de/pub/CDC/help/.
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