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Abstract. River runoff is an essential climate variable as it is directly linked to the terrestrial water balance and
controls a wide range of climatological and ecological processes. Despite its scientific and societal importance,
there are to date no pan-European observation-based runoff estimates available. Here we employ a recently
developed methodology to estimate monthly runoff rates on regular spatial grid in Europe. For this we first
assemble an unprecedented collection of river flow observations, combining information from three distinct
databases. Observed monthly runoff rates are subsequently tested for homogeneity and then related to gridded
atmospheric variables (E-OBS version 12) using machine learning. The resulting statistical model is then used
to estimate monthly runoff rates (December 1950–December 2015) on a 0.5◦× 0.5◦ grid. The performance
of the newly derived runoff estimates is assessed in terms of cross validation. The paper closes with example
applications, illustrating the potential of the new runoff estimates for climatological assessments and drought
monitoring. The newly derived data are made publicly available at doi:10.1594/PANGAEA.861371.

1 Introduction

River flow is one of the best monitored components of the ter-
restrial water cycle (Hannah et al., 2011; Fekete et al., 2012,
2015) and has therefore been included in the collection of es-
sential climate variables that is featured by the World Mete-
orological Organization (Bojinski et al., 2014). However, de-
spite its societal relevance (e.g. Vörösmarty et al., 2010) and
key role in the earth system, there is to date no publicly avail-
able dataset that provides observation-based estimates of this
variable at the pan-European scale. This situation stands in
contrast to that of atmospheric variables, for which gridded
estimates of, for example, precipitation and temperature (e.g
Haylock et al., 2008) have been developed in the last decades.
Despite the fact that gridded observations are usually lim-
ited in terms of their spatiotemporal resolution, they have
the distinct advantage that they provide consistent estimates
of relevant variables at every location within a spatial do-
main. As a consequence, gridded estimates of atmospheric
variables have proven to be of great value for both scientists
and practitioners in several fields (e.g. Hirschi et al., 2011;
Gottfried et al., 2012).

In this paper we present a new monthly estimate of the
amount of water draining from 0.5◦× 0.5◦ grid cells in Eu-
rope over the time period December 1950–December 2015.
This quantity is referred to as gridded runoff estimate and
eventually contributes to the discharge of large rivers (Gud-
mundsson and Seneviratne, 2015, referred to as GS15 from
here onwards). To achieve this we employ a recently devel-
oped methodology (GS15) that combines observed river flow
with gridded estimates of precipitation and temperature us-
ing machine learning. Consequently, the presented gridded
runoff dataset is solely derived from observations and does
not rely on strong modelling assumptions. Similar techniques
have been proven successful for producing global estimates
of land–atmosphere fluxes, such as evapotranspiration and
gross primary production (Jung et al., 2011) and long-term
streamflow characteristics, such as mean annual flow and the
base flow coefficient (Beck et al., 2015).

In contrast to GS15, in which we developed and tested the
methodology, we focus here on expanding the observational
basis. More specifically, we assemble an unprecedented col-
lection of observed river flow data which is subject to au-
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tomated quality control and statistical homogeneity assess-
ment. In addition we rely on the latest generation of station-
based precipitation and temperature grids to estimate gridded
runoff time series for Europe. Finally, the accuracy of the de-
rived runoff estimates is assessed in terms of cross validation
and its potential limitations are discussed in the context of
example applications.

2 Note on terminology

This paper presents a dataset that estimates the monthly
amount of water draining from 0.5◦× 0.5◦ grid cells. This
quantity is referred to as “monthly runoff” and equates to
the amount to water contributing to the discharge of large
(continental-scale) river basins (GS15). Note that this defini-
tion is also consistent with the total grid cell runoff computed
by continental- to global-scale models.

To estimate this quantity we rely on river- and stream-
flow observations from relatively small catchments (catch-
ment area ≤ 500 km2), which are converted to runoff rates
per unit area and aggregated to monthly mean values. We
note that daily streamflow is subject to processes like chan-
nel routing and therefore somewhat different from the above
mentioned runoff rates. However, as the spatial and temporal
scales of the associated processes are well below the reso-
lution of the presented data product, these are not expected
to impair the reliability of the presented monthly runoff esti-
mates (see GS15 for details).

3 Data sources

3.1 Streamflow data

The presented dataset is developed using a collection of
streamflow observations that is assembled from three ma-
jor databases. Two of these are international collections
which contain observations from many European countries
(Sects. 3.1.1 and 3.1.2). As data from Spain are not up to
date in these international collections, we additionally ac-
quired the digital hydrological year book from this country
(Sect. 3.1.3).

Prior to further computations daily and monthly river flow
time series were converted into daily runoff rates, expressed
in millimetres per day, using catchment areas provided by the
respective databases.

3.1.1 The Global Runoff Data Base (GRDB)

The Global Runoff Data Centre (GRDC; http://grdc.bafg.de,
last access: 9 May 2016) hosts the Global Runoff Data
Base (GRDB), which is the largest international collection
of river- and streamflow data. Although the GRDB is freely
accessible, the GRDC is not permitted to distribute the com-
plete database at once. Therefore we restricted our order to
stations fulfilling the following set of criteria:

Stations should

1. be located in the WMO region 6 (Europe);

2. be within the following geographical domain: 25◦W–
70◦ E and 25–75◦ N;

3. not be located in Spain (see Sects. 3.1.3 and 4.4.1 for
details on Spanish data);

4. have a minimum of 10 years of observations.

In February 2016 this resulted in a total of 1722 sta-
tions with daily values and 2047 stations with monthly val-
ues which were ordered from the GRDC. In many cases
monthly data are computed by the GRDC on the basis of
available daily values. There are, however, instances were
only monthly data that were not computed by the GRDC are
available (referred to as originally monthly). After filtering
out monthly series that were computed on the basis of daily
observations, the number of originally monthly series was
found to be 860 and retained for further analysis. Monthly
values calculated by the GRDC were discarded. Finally, one
daily entry with missing information in catchment area was
removed, resulting in 2046 daily time series.

3.1.2 The European Water Archive (EWA)

The EWA has been assembled by the European Flow
Regimes from International Experimental and Network Data
(Euro-FRIEND) project (http://ne-friend.bafg.de/servlet/is/
7413/, last access: 9 May 2016) and is also held by the
GRDC. A subset of the EWA was selected using the same
criteria as for the GRDB (Sect. 3.1.1), resulting in a total
of 3492 stations with daily and 3527 stations with monthly
values. Only 56 originally monthly series were found and re-
tained for further analysis. Removing entries with missing
information on catchment area resulted in 3481 daily and 55
monthly records.

3.1.3 Anuario de aforos digital 2010–2011 (AFD)

Spanish streamflow data were retrieved from the digital
hydrological year book (Anuario de aforos digital 2010–
2011, AFD), which provides observations until 2010–2011
and is freely accessible online (http://ceh-flumen64.cedex.es/
anuarioaforos/default.asp, last access: 25 May 2016). As this
online platform does not allow for access to the full collec-
tion at once, we contacted the Spanish authorities and ob-
tained a DVD containing the full database (Ministerio de
Agricultura, Alimentación y Medio Ambiente, 2013). This
database contains, among other information, streamflow data
from 1197 gauging stations. Removing entries with missing
information on catchment area reduced the number of time
series to 1187.
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3.2 Atmospheric data

Gridded observations of precipitation and temperature were
obtained from the E-OBS (version 12) dataset (Haylock
et al., 2008). E-OBS version 12 ranges from January 1950
to June 2015 and was extended to December 2015 using
monthly data files that are provided for the remaining months
at the time of the analysis. The E-OBS dataset provides in-
terpolated station observations on regular spatial grids in dif-
ferent geographical projections. Here we chose data with a
0.5◦× 0.5◦ resolution on a regular latitude–longitude grid,
which is consistent with GS15. Prior to further assessment,
the daily E-OBS data were averaged to monthly mean values.

4 Streamflow data selection and preprocessing

4.1 Quality control of daily values

As the considered data stem from heterogeneous data
sources, it is likely that individual daily observations differ
in quality. To get first-order estimates of their credibility, all
daily river flow observations were flagged according to a set
of rules. As we are not aware of quality control (QC) pro-
cedures for runoff that are applicable to a large number of
time series and are documented in the scientific literature,
we adapt QC techniques that were developed for climatolog-
ical records. More specifically, the set of rules described be-
low is based on criteria mentioned by Reek et al. (1992) and
(Project Team ECA&D and Royal Netherlands Meteorolog-
ical Institute KNMI, 2013, referred to as EAC&D13 from
here onward), which were adapted to the special characteris-
tics of streamflow. In the following Q is used to denote daily
runoff rates:

1. Days for which Q< 0 are flagged as suspect. The ra-
tionale behind this rule is that negative values are not
physical.

2. Days for which

log(Q)−mean(log(Q))> 5×SD(log(Q))

are flagged as suspect. The aim of this rule is to catch
extreme outliers that might be caused by instrument
malfunction or processing errors, while not flagging ex-
treme floods. Under the assumption that log(Q) is ap-
proximately normal distributed, this rule excludes out-
liers with a ≈ 2.8× 10−7 occurrence probability.

3. Values with ≥ 10 consecutive equal days for which
Q> 0 are flagged as suspect. The rationale underlying
this criterion is a trade-off between the fact that con-
secutive equal values can be caused by artifacts (e.g. in-
strument failures, flow regulation, ice jams) but can also
reflect the true observation (e.g. related to low sensor
sensitivity in the case of small day-to-day fluctuations).

4.2 Computing monthly means from daily values

As the presented data product is derived on the basis of
monthly values, daily time series were aggregated to monthly
means. Prior to the computation of monthly mean runoff
rates daily values flagged as suspect are set as missing.
Monthly mean runoff rates are only calculated if at least
25 days of the month are available, following the recom-
mendations of EAC&D13. Imposing this restriction reduced
the number of time series for which at least one monthly
value could be computed (number of monthly time series
calculated from daily values with at leat one monthly value:
GRDB, 1707; EWA, 3296; AFD, 1184).

4.3 Combining daily and monthly river flow time series

Both GRDB and EWA provide data in daily as well as
monthly resolution. In order to increase the spatial and tem-
poral coverage of the observations underlying the presented
data product, we aim at using originally monthly data to fill
in missing values in monthly time series that were computed
on the basis of quality controlled daily values (Sect. 4.2, re-
ferred to as originally daily). Unfortunately, the rules under-
lying the processing of the originally monthly series are not
documented, which can lead to inhomogeneities if originally
daily and originally monthly data are combined. To reduce
the risk of such inhomogeneities the following set of rules
is applied if merging originally daily and originally monthly
series:

1. Include the unmodified originally daily values in the fi-
nal collection if only these are available.

2. Include the unmodified originally monthly values in the
final collection if only these are available.

3. If originally monthly data are available at time steps
without originally daily data:

a. Determine the number of overlapping time steps
(nover) and the squared Pearson correlation coeffi-
cient (R2

over) between both the originally monthly
and the originally daily time series.

b. If nover ≥ 24 (sufficient data) andR2
over ≥ 0.99 (suf-

ficiently similar): assume that time series can be
merged reliably and merge them as follows:

i. Use cumulative distribution function (CDF)
matching (Leroux et al., 2014) to transform the
distribution of the originally monthly series to
match the distribution of the originally daily se-
ries. This is motivated by the common practice
in remote sensing where CDF matching is used
to combine time series stemming from differ-
ent satellite-borne sensors (Leroux et al., 2014).
The CDF matching is fitted only at locations
where both originally monthly and originally
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daily data are available but is used to transform
all originally monthly data that were used to in-
fill missing values in the originally daily series.

c. Use the transformed originally monthly data to
infill missing values of the originally daily se-
ries.

(a) If nover < 24 andR2
over < 0.99: assume that time se-

ries cannot be merged reliably and keep only the se-
ries with the larger number of non-missing monthly
values.

This procedure resulted in a total of 1892 monthly time
series for GRDB and 3320 monthly time series for EWA that
combine information from the originally daily and the origi-
nally monthly data.

4.4 Combining the river flow databases

4.4.1 Data from Spain

Spanish data are available directly from the Spanish author-
ities (see Sect. 3.1.3). Therefore, Spanish data contained in
the GRDB and EWA were not considered, and the data stem-
ming from AFD were directly entered into the final collection
of European streamflow records.

4.4.2 Linking GRDB and EWA data

The GRDB and the EWA are to some extent populated
with data from the same gauging stations. Therefore both
databases need to be linked in order to avoid duplicated in-
formation. Unfortunately, linking the two databases is not
straightforward, as there is no common database identifier.
In addition, differences in naming conventions, inconsistent
spelling of river and station names, round-off errors in sta-
tion coordinates and typographical errors hamper the unam-
biguous linkage of the EWA and the GRDB. Further, both
the GRDB and the EWA exhibit duplicated entries, which
is likely related to their complex history, including irregular
manual updates.

To overcome these issues we employ deduplication and
record linkage techniques (Christen, 2012; Herzog et al.,
2007) which are based on analysing the statistical similar-
ity between the records. Although deduplication and record
linkage techniques are quantitative methods, they usually de-
pend on choices made by the analyst (Christen, 2012; Her-
zog et al., 2007). Such choices include, for example, (i) the
data fields that are evaluated, (ii) the metrics used to quan-
tify similarity, and (iii) quantitative thresholds that are used
to make decisions. These choices have been identified exper-
imentally by applying different combinations and evaluating
the results carefully, which is common practice in dedupli-
cation and record linkage (Christen, 2012). In the following
the final procedure for deduplication and record linkage is
documented.

4.4.3 Procedure for deduplication and record linkage

Almost the same procedure is used for deduplication and
record linkage. For convenience the following description is
formulated for the deduplication task, in which the entries
of a single database are compared to each other (for record
linkage, the entries of two different databases are compared;
differences for the deduplication and record linkage will be
highlighted in Step 3):

Step 1. Meta-data similarity: the first step of deduplica-
tion is based on analysing the similarity of the river
names, the similarity of the station names and the ge-
ographical proximity of all station pairs from the same
country. Stations located in different countries are as-
sumed to be different. These similarities are quantified
using following distance measures:

a. The similarity between the river names and the sta-
tion names is measured using the Jaro–Winkler dis-
tance, dJW (Christen, 2012; van der Loo, 2014).
The Jaro–Winkler distance is a popular measure
for evaluating the similarity of character strings
and ranges between dJW = 0 (identical) to dJW = 1
(no matching characters). In the following, dJW,river
refers to the similarity of river names and dJW,station
refers to the similarity in the station names.

b. The geographical proximity was quantified using

dG =

{
1 if dGCD > 5

0 otherwise,
(1)

where dGDC is the great circle distance in kilome-
tres calculated from the geographical coordinates
of the station pairs. If the stations are not more than
5 km apart, dG takes a value of 0, indicating simi-
larity. The rationale for this threshold is that small
geographical differences between stations can be
related to roundoff errors in the coordinate values
(e.g. 39.49214◦ N vs. 39.49◦ N).

To get an overall evaluation of the similarity of station
pairs we finally compute the mean distance,

dm =
1
3

(dJW,river+ dJW,station+ dG). (2)

Candidate duplicates are then defined as those pairs for
which dm ≤ 0.25. In the case of multiple assignments,
only the pair with the minimum dm value is retained.
The threshold value was identified experimentally, aim-
ing at minimising false assignments, while not missing
too many duplicates.
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Step 2. Time series similarity: in a second step, the
monthly river runoff series of the candidate duplicates
that were identified in Step 1 are analysed in terms of
their temporal overlap and their coefficient of deter-
mination (squared correlation coefficient), R2. Based
on the following set of criteria, database entries were
classified as either “very likely identical” and “very
likely different”:

a. Time series do not overlap→ very likely different.
The rationale behind this choice is that both time
series are independent and may, for example, rep-
resent time series before and after repairing or up-
grading of a gauging station.

b. R2 > 0.99→ very likely identical. Correlations
close to one, indicate identical time series. Minor
departures from R2

= 1 may occur, for example,
due to rounding errors in the data files.

c. R2 < 0.90→ very likely different. This value has
been identified experimentally.

d. dJW,river+ dJW,station≤ 0.01→ very likely identical.
Small positive values of dJW,river and dJW,station usu-
ally stem from minor typographical differences.

Finally, the remaining candidate duplicates were evalu-
ated in a clerical review (Christen, 2012; Herzog et al.,
2007) and manually classified into very likely identical
and very likely different.

Step 3. Merging the records : different merging proce-
dures were applied for deduplication and record link-
age:

Deduplication: if duplicated entries were identified,
the entry with more data points in the streamflow
time series was kept. The other entry was discarded.
No attempts to merge the time series have been
made, as this was found to only affect a small num-
ber of stations with similar record length.

Record linkage: if two entries of GRDB and EWA
were found to be very likely identical the time se-
ries were merged as follows:

i. nover, the number of overlapping months, was
identified.

ii. If nover ≥ 24, the shorter of both time series was
used to fill in missing values of the time se-
ries with more data points. The meta-data of
the time series with more data points were kept.
To reduce the risk of inhomogeneities, CDF
matching was used to transform the series that
was used to fill in missing values. Note that this
procedure was also used for combining origi-
nally monthly and originally daily time series
(see Sect. 4.3).

Figure 1. Locations of streamflow stations, stemming from the
three considered data collections. Records from the EWA and the
GRDB that were identified as very likely identical are indicated by
black circles

iii. If nover < 24, the entry with more data points in
the monthly runoff time series was kept.

4.4.4 Deduplication and record linkage results for
GRDB and EWA

The deduplication procedure identified 18 very likely dupli-
cates in the EWA and 16 very likely duplicates in the GRDB
collection. Linking the deduplicated records from GRDB and
EWA resulted in the identification of 4384 unique stations.

4.4.5 A combined European monthly runoff database
(ERDB)

The 4384 linked records from the EWA and the GRDB were
combined with the 1184 stations from AFD (Fig. 1). The to-
tal number of available stations contributing to this European
runoff database (ERDB) is 5568. Figure 2 shows the spatial
and temporal coverage of the available streamflow observa-
tions. Generally, observations are most abundant throughout
the second half of the twentieth century. The month with the
largest number of available streamflow observations (4336)
is May 1980. Figure 3 provides information on the fraction of
missing months in the combined dataset together with infor-
mation on the seasonal distribution of missing values. Over-
all the fraction of missing months increases for more arid
conditions. In addition, it is interesting to note that there is
a general tendency for most missing values to occur in win-
ter in cold regions (e.g. Scandinavia and the Alps), whereas
late summer months are more likely to have the highest frac-
tion of missing values in other regions. This is also reflected
in the seasonal cycle of the total number of missing months,
which has two distinct peaks: one in winter and one in late
summer. Table 1 lists further summary statistics on the frac-
tion of missing values, time series length and the catchment
areas of the final collection of monthly runoff series.
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Table 1. Percentiles of selected statistics of the monthly runoff database. Shown are the fraction of missing months (Fraction missing), the
time series length in months (Length) as well as the catchment area in square kilometres (Area).

Percentile 0 % 10 % 25 % 50 % 75 % 90 % 100 %

Fraction missing 0.00 0.00 0.01 0.05 0.20 0.41 0.96
Length 1 132 240 432 648 951 2496
Area 0.07 42 112 333 1421 7211 1.36× 106

Figure 2. Spatial and temporal coverage of available streamflow observations. The top row shows the date of the first and the date of the last
available observation at each station. The bottom panel shows the total number of stations with observations for each month.

4.5 Homogeneity testing

Climate records can exhibit changes which do not reflect
real climatic or environmental change. In the context of
river flow, such breakpoints could, for example, be re-
lated to changes in instrumentation, gauge resaturation, re-
calibration of rating curves, flow regulation or channel en-
gineering. In the climatological literature such effects are
commonly referred to as inhomogeneities. While a substan-
tial body of literature is devoted to the treatment of inho-
mogeneities in atmospheric variables (e.g. Buishand, 1982;
Alexandersson, 1986; Peterson et al., 1998; Wijngaard et al.,
2003; Reeves et al., 2007; Costa and Soares, 2009; Vicente-
Serrano et al., 2010; Domonkos, 2013), there is only limited
literature concerned with the homogeneity testing of stream-
flow time series using automated methods (Buishand, 1984;
Chu et al., 2013).

Identification of inhomogeneities in large data collections
is usually based on tests that aim at identifying breakpoints in
the considered time series. Such breakpoints can, for exam-
ple, be a sudden shift in the mean, variance or higher-order

moments. For the presented data product the test battery for
inhomogeneity detection that is used by EAC&D13 is em-
ployed:

1. Standard normal homogeneity test (Alexandersson,
1986),

2. Buishand range test (Buishand, 1982),

3. Pettitt test (Pettitt, 1979),

4. Von Neumann ratio test (von Neumann, 1941).

The power of this test battery has been evaluated for tem-
perature and precipitation series in Europe (Wijngaard et al.,
2003), which increases the confidence in the reliability of
these methods.

The considered tests are based on the assumption that the
data points of the time series are independent and identi-
cally distributed (iid). To approximate this assumption, the
monthly mean time series (Sect. 4.2) were preprocessed as
follows, aiming at de-trending, de-seasonalising and pre-
whitening the data:
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Figure 3. Overview on the spatial and seasonal distribution of missing months. Shown are the fraction of missing months at each station
(left), the month which has on average most missing values at each station (centre) and the regional frequency distribution of the months
with the most missing values (right). NM indicates no missing values.

1. As runoff usually has a skewed distribution, the monthly
time series were log-transformed. As the logarithm is
not defined for zero values, 0.01 was added before trans-
formation.

2. To remove the seasonal cycle and to reduce the influ-
ence of monotonic trends, the log-transformed monthly
time series were detrended for each month separately.
For this, a linear least-squares trend was fitted to all
Januaries, Februaries, etc. and subsequently subtracted
from the corresponding months.

3. The detrended runoff residuals can still exhibit a high
degree of serial correlation, violating the iid assump-
tion. Therefore the residuals were further pre-whitened.
For this we followed previous studies (Chu et al., 2013;
Burn and Hag Elnur, 2002) and considered the residuals
of a lag-1 autocorrelation model fitted to the data.

The four tests were subsequently applied to the prepro-
cessed time series. Following EAC&D13, the credibility of
time series is classified based on the number of tests that re-
ject the null hypothesis of no breakpoint:

1. useful: 0 or 1 test rejects the null hypothesis at the 1 %
level.

2. doubtful: 2 tests reject the null hypothesis at the 1 %
level.

3. suspect: 3 or 4 tests reject the null hypothesis at the 1 %
level.

The test battery was applied to monthly runoff series that
had at least 24 monthly values from 1950 onwards, corre-
sponding to the time window of the presented data product.
Figure 4 shows the number of rejected null hypothesis for
each station. Table 2 shows the total number of rejections.

Table 2. Number of stations for which 0, 1, . . . , 4 of the consid-
ered tests reject the null hypothesis of no breakpoint (1 % level)
at monthly resolution. Stations with more than one rejection are
marked as suspect.

No. rejections 0 1 2 3 4

No. stations 1049 3780 618 121 0

Figure 4. Homogeneity testing: number of tests that reject the null
hypothesis of no breakpoint at each station considered at the 1%
level. Stations marked blue (zero or one rejection) are considered
useful. Stations marked red (more rejections) are considered sus-
pect.

4.6 Assigning monthly runoff rates to the 0.5◦×0.5◦

grid of the E-OBS data

The methodology for estimating runoff at ungauged loca-
tions proposed by GS15 relies on assigning gauging stations
with relatively small catchments to regular spatial grids. Here
the monthly mean runoff rates of the selected stations were
assigned to the 0.5◦× 0.5◦ grid defined by the E-OBS data
using the following steps:
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Figure 5. Assigning stations to the 0.5◦× 0.5◦ grid cells defined by the E-OBS data. Left: selected stations fulfilling all selection criteria
(see Sect. 4.6). Centre: number of stations per grid cell. Right: fraction of months with no or insufficient data.

1. Select stations:

a. Only stations with catchment areas ≤ 500 km2 are
selected. This threshold roughly corresponds to half
the area of a grid cell at 71◦ N and aims at reducing
the catchment area that is not located within the grid
cell.

b. Only stations with at least 24 non-missing months
from 1950 onwards are selected

c. Only stations that are labelled useful in the homo-
geneity analysis (Sect. 4.5) are selected.

d. Only stations with a long-term mean runoff less
than 10 000 mm year−1 are selected as larger val-
ues are deemed to be physically very unlikely.

2. Assign stations to the grid cells which include the sta-
tion coordinates.

3. Compute the weighted mean runoff rate of all stations
within a grid cell, using the catchment areas of the avail-
able stations as weights. The weights are calculated for
each time step separately to account for irregular tem-
poral coverage of the stations.

This procedure resulted in a total of 2771 selected stations
which were assigned to 1073 grid cells, implying that there
are on average 2.5 stations assigned to each grid cell. Fig-
ure 6 shows the frequency distribution of the number of sta-
tions that were assigned to grid cells. The selected stations
are shown in Fig. 5. Figure 5 also shows the number of sta-
tions in each grid cell as well as the fraction of non-missing
months. Figure 7 provides a general overview on the spatial
and temporal coverage of the gridded station data.

As the above-described procedure can assign data from
several stations with different temporal coverage to one grid
cell, it can happen that the resulting time series exhibits sud-
den jumps or other inhomogeneities. To reduce the influence
of such artifacts the homogeneity testing that was applied to

Figure 6. Frequency distribution of grid cells with 1, 2, . . . , 24
stations.

Table 3. Number of grid cells for which 0, 1, . . . , 4 of the con-
sidered tests reject the null hypothesis of no breakpoint (1 % level)
at monthly resolution. Grid cells with more than one rejection are
excluded from the analysis.

No. rejections 0 1 2 3 4

No. stations 90 871 82 30 0

the station data (Sect. 4.5) was also applied to the gridded
observations.

Table 3 shows the total number of rejections of the test
battery. Grid cells for which more than one test rejected the
null hypothesis at the 1 % level were excluded from further
analysis. Figure 8 shows the shows the final selection of 961
grid cells.

5 Observational gridded runoff estimates for Europe

5.1 Estimating runoff on a regular spatial grid

The technique used to estimate gridded runoff time series
is identical to the approach introduced by GS15. For conve-
nience we provide here a brief overview of this method. For
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Figure 7. Spatial and temporal coverage after assigning the monthly runoff series to the 0.5◦× 0.5◦ defined by the E-OBS data. The top row
shows the date of the first and the date of the last available observation at each station. The bottom panel shows the total number of stations
with observations for each month.

Figure 8. Final selection of grid cells with observations. Only grid
cells with homogeneous time series were selected. See text for de-
tails.

a full description of the employed methods we refer to GS15.
Following GS15 we aim at modelling the monthly runoff rate
Qx,t at the grid location x and at time step t as a function of
gridded precipitation, Px,t , and temperature, Tx,t . For this we
assume that

Qx,t = h(τn(Px,t ),τn(Tx,t ), (3)

where τn(Xx,t )= [Xx,t ,Xx,t−1, . . .,Xx,t−n] is a time lag op-
erator that gives access to the past n time steps. As in GS15,
we chose n= 11, implying that monthly runoff rates are esti-

mated on the basis of the precipitation and temperature evo-
lution of the preceding year. The function h represents a ran-
dom forest (RF; Breiman, 2001). RFs are flexible machine
learning tools that are based on classification and regression
trees that are grown on bootstrap samples of the data. For es-
timating monthly runoff on the 0.5◦× 0.5◦ grid of the E-OBS
data the model (Eq. 3) was trained using the selected grid
cells with observed monthly runoff rates and E-OBS precip-
itation and temperature. The fitted model was subsequently
applied to all grid cells of the E-OBS data to derive a pan-
European estimate of monthly runoff.

5.2 Model selection and validation

5.2.1 Cross-validation experiments

As in GS15 the model selection and validation is conducted
using two independent cross-validation experiments. For the
first experiment, the grid cells with observations were ran-
domly split into 10 equally sized subsamples. The model was
then trained using 9 of the 10 subsamples and subsequently
used to predict the remaining subsample. This procedure was
repeated until each subsample has been left out once and
is referred to as cross validation in space. This focuses on
the accuracy of estimates at locations that were not used for
model training. The second experiment focuses on the accu-
racy at time steps that were not used for model training. For
this the available data where split into 10 consecutive time
blocks. The model was then trained using 9 of the 10 time
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blocks and subsequently used to predict the time block that
has been left out. This procedure was repeated until each time
block has been left out once.

5.2.2 Model selection

As any other machine learning tools, RFs have a number of
parameters that control the trade-off between the flexibility
and the reliability of the resulting model. While GS15 used
the default parameters recommended by Hastie et al. (2009),
we found that this led to a in slight overfitting of the model
for the extended observational basis used in this study. One
of the control parameters is the minimum node size, n, which
determines the number of observations retained in the final
branches of the individual regression and classification trees
contributing to the RF (see GS15 Sect. 3.2 for an overview of
the algorithm and Breiman, 2001, or Hastie et al., 2009, for
further details). Generally speaking, RFs are more flexible
for smaller n, implying the possibility of achieving better fits.
This, however, also means that the model is more prone to
overfitting the data, i.e. an increased risk of fitting the model
to noise instead of to the true signal. An additional feature
of RFs is that they rely on an ensemble of B classification
and regression trees that are grown on bootstrap samples of
the data. Generally, RFs become more stable as B increases.
However, depending on the size of the training problem, very
large B may become prohibitive.

To investigate the effect of different values of n on the
model accuracy we performed the above-described cross-
validation experiments for n= 10, 20, . . ., 50. Note that
n= 10 was used in GS15. In addition, we also assess the
effect of B on the stability of the estimate, aiming at deter-
mining whether a reduced B also yields stable results. More
specifically we assess B = 1000, 500, 250, where B = 1000
was used in GS15.

As in GS15 model selection is based on the global root
mean square error (RMSE), computed over all time steps and
grid cells. Uncertainty in the RMSE is quantified in terms of
95 % bootstrap confidence intervals (2000 replications). The
optimal values of n and B is then selected as follows, aiming
at identifying the least flexible model (larger n) of which the
performance is close to the performance of the most flexible
model (smallest n) while reducing the computational require-
ments (smaller B):

Step 1. Choose optimal n value. For all B values:

a. Identify RMSEn=10 the RMSE for the smallest n=
10 value.

b. Choose any larger n value for which the RMSE is
within the 95 % confidence bound of RMSEn=10.

c. If the results between cross validation in space and
cross validation in time differ, choose the smaller n
value.

Figure 9. Cross-validation error different values of the nose size
parameter (n) and different number of trees (B). The two panels
show results for cross validation in space (top) and cross validation
in time (bottom). Shown is the root mean square error (RMSE) to-
gether with 95 % confidence intervals. Vertical lines indicate 95 %
confidence interval of the RMSE. Dashed horizontal lines indicate
the upper confidence interval for n= 10.

Step 2. Choose B optimal value. Choose the smallest B
value for which the RMSE lies within the 95 % confi-
dence value of the RMSE for B = 1000

Figure 9 shows the RMSE for both cross validation in time
and cross validation in space, as well as for all considered
values of n and B. Based on the criteria described above, n=
20 and B = 250 were selected for the final data product. In
the remainder of the article, only results for these parameters
are shown.

5.2.3 Accuracy of the runoff estimates

We employ here the same performance metrics that have
been used by GS15 to quantify the accuracy of the gridded
runoff estimate. For convenience we reproduce here the defi-
nition of the considered metrics, where ot refers to a time se-
ries of observed runoff rates at a grid cell and mt represents
the corresponding model estimate. For a detailed discussion
of the different measures we refer the reader to GS15.
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Figure 10. Spatial distributions and box plots (whiskers: 10th and 90th percentiles; box: interquartile range; bar: median) of Sseas, MEf and
BIAS for both cross-validation experiments.

1. The seasonal cycle skill score (Wilks, 2011)

Sseas = 1−
∑
t (mt − ot )

2∑
t (mt − seas(ot ))2 , (4)

where seas(ot ) refers to the long-term mean runoff for
each month. Sseas ranges from −∞ to one (best value)
and positive values indicate that mt is on average closer
to the observations than the long-term mean seasonal
cycle.

2. The model efficiency (Wilks, 2011; Nash and Sutcliffe,
1970)

MEf= 1−
∑
t (mt − ot )

2∑
t (mt −mean(ot ))2 , (5)

where mean(ot ) refers to the long-term mean of the
observation. MEf ranges between −∞ and one (best
value). Positive values indicate that mt is closer to the
observations than the observed long-term mean.

3. The relative model bias

BIAS=
mean(mt − ot )

mean(ot )
, (6)

which has an optimal value of zero. Positive and nega-
tive values indicate overestimation and underestimation
respectively.

4. The coefficient of determination (squared correlation
coefficient), R2. R2 ranges from zero to one (best
value).

5. The coefficient of determination between the observed
and the modelled mean annual cycle, R2

CLIM. R2
CLIM

ranges from zero to one (best value).

6. The coefficient of determination between the monthly
anomalies (i.e. monthly time series with the long-term
mean of each month removed), R2

ANO. R2
ANO ranges

from zero to one (best value).

Figures 10 and 11 display the results of both cross-
validation experiments. Shown are the spatial patterns as well
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Figure 11. Spatial distributions and box plots (whiskers: 10th and 90th percentiles; box: interquartile range; bar: median) of R2, R2
CLIM and

R2
ANO for both cross-validation experiments.

as the overall distribution of all considered performance met-
rics. Generally, the accuracy of the presented dataset is in line
with GS15, including the fact that the performance for the
cross validation in space is somewhat higher than the per-
formance for the cross validation in time. For both cross-
validation experiments there is no clear spatial pattern of
Sseas. This shows that the overall performance of the esti-
mate does not depend on the region. The fact that the median
of Sseas is well above zero shows that the runoff estimates are
closer to the observations than mere repetitions of the mean
annual cycle at most considered locations. The situation is
similar for MEf, highlighting the consistency between both
measures. The relative bias also exhibits some spatial pat-
terns, with a tendency for increased underestimation toward
the south. However, the median of this measure is approxi-
mately zero, showing that the runoff estimates developed are
approximately unbiased. This is a slight improvement over
GS15 and may be related to the increased number of consid-
ered stations or to the different atmospheric data used. The
coefficient of determination, R2, is generally highest in the
centre of the spatial domain, which coincides with the re-
gion with the highest station density. The median R2 values
are relatively high, highlighting the ability of the estimate to

capture the temporal dynamics of the observations. In general
there is little spatial variability in the coefficient of determi-
nation between the observed and the estimated climatologies,
R2

CLIM. This, together with the fact that medianR2
CLIM is very

high, highlights that the gridded runoff estimate is capable
of capturing the mean seasonal cycle with a high degree of
accuracy. Also, the anomaly correlation, R2

ANO, has a weak
spatial pattern, with a tendency towards increased correlation
in the centre of the spatial domain. Overall the anomaly cor-
relation is somewhat lower than R2, owing to the fact that the
regular mean annual cycle has been removed. Nevertheless,
median R2

ANO is larger than 0.5 for cross validation in space
and close to 0.5 for cross validation in time, highlighting that
the estimates can capture more than half of the variance of
the anomalies.

5.3 Properties and limitations of the observation-based
gridded runoff estimates

The final observation-based gridded runoff dataset is created
by first training the model using all available stations and E-
OBS precipitation and temperature. Subsequently the model
is used to estimate monthly runoff rates [mm day−1] at all
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Figure 12. Long-term mean of the presented gridded runoff field as well as the month of the maximum and minimum of the mean annual
cycle.

grid cells of the E-OBS forcing. This procedure results in
the following features and limitations which should be con-
sidered for any application of the newly developed gridded
runoff estimates for Europe:

1. The spatial and temporal extent of the data is deter-
mined by the coverage of the forcing data.

2. A consequence of the time-lag operator in Eq. (3) is that
any missing month in the forcing data will result in 12
missing months in the runoff estimates.

3. Most station data are located in central and western Eu-
rope, suggesting that the data will have the highest de-
gree of accuracy in these regions. In other regions the
reliability of the data is expected to decrease gradually.
Therefore special care should be taken if analysing the
data in regions with low station coverage.

4. The E-OBS dataset also covers parts of the Caspian
Sea and other large inland water bodies. Although it
might not be physically meaningful to provide runoff
estimates for these locations, we opted not to remove
the corresponding grid cells from the dataset. The ra-
tionale underlying this decision is that the definition of
shorelines in gridded data products depends on several
assumptions and we want to allow the users to make
such choices corresponding to their needs.

5.4 Example applications

In the following we present two example applications of the
newly developed dataset. These applications closely follow
the ones presented in GS15.

5.4.1 Long-term mean runoff statistics

Figure 12 shows the long-term mean of the gridded runoff es-
timates as well as the month with the maximum and the min-
imum of the mean annual cycle. The map of the long-term

Figure 13. Standardised runoff anomalies for selected drought
events in Europe.

mean highlights that central and northern Europe have high-
est mean annual runoff rates, whereas the south and the east
are generally drier. The maps displaying the months with the
maximum and the months with the minimum of the mean an-
nual cycle show distinct regional differences. In western and
southern Europe, the peak of the seasonal cycle occurs in the
winter months, followed by a summer minimum. In northern
Europe, the minimum runoff occurs in the winter months,
followed by a peak in spring. In eastern Europe, maximum
runoff rates occur in spring and are followed by a minimum
in summer.

5.4.2 Drought monitoring

As runoff reflects the excess water that is available to ecosys-
tems, it is an interesting candidate for drought monitoring. To
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assess droughts, we follow previous studies (Zaidman et al.,
2002; GS15) and use standardised runoff anomalies as a
drought index. These are computed by first log-transforming
the runoff time series at each grid cell. Subsequently the 30-
year long-term mean of each month at each grid cell is sub-
tracted from the log-transformed time series (base period:
1961–1990). Finally, the time series is divided by the 30-year
standard deviation of each month.

Figure 13 shows the standardised runoff anomalies for
four well-documented events with exceptionally dry condi-
tions. Drought conditions in 1976 were among the most se-
vere in Europe throughout the course of the 20th century
(Tallaksen and Stahl, 2014). Summer 2003 is well known for
its exceptionally hot and dry conditions (Schär et al., 2004;
Andersen et al., 2005; Seneviratne et al., 2012). Spring 2010
shows dry conditions in the advent of the intense heatwave
that struck Russia a few months later (Barriopedro et al.,
2011; Orth and Seneviratne, 2015; Hauser et al., 2016). In
summer 2015 large parts of Europe exhibited extremely hot
and dry conditions (Hoy et al., 2016), which is reflected,
for example, in reported extreme low-flow return periods
(> 20 years) for a large number of catchments in central Eu-
rope (Van Lanen et al., 2016).

6 Conclusions

In conclusion, we presented an observational dataset that
provides monthly pan-European runoff estimates and ranges
from December 1950 to December 2015. The data are a sig-

nificant update of our previous assessment (GS15), which
only included data ranging to 2001. The dataset is based on
an unique collection of streamflow observations from small
catchments which were upscaled on a 0.5◦× 0.5◦ grid on the
basis of gridded precipitation and temperature data using ma-
chine learning. Two cross-validation experiments document
the overall performance of the newly developed estimates.
These experiments show that the accuracy of the data is in
line with previous results (GS15), highlighting the robust-
ness of the estimation technique used. The two example ap-
plications highlight the utility of the newly developed pan-
European runoff estimates, for both climatological assess-
ments and drought monitoring. These examples show that the
presented gridded dataset allows for an unprecedented obser-
vational view on large-scale features of runoff variability in
Europe, especially in regions with limited observational cov-
erage.

7 Data availability

The data are publicly available in NetCDF format (Gud-
mundsson and Seneviratne, 2016) and can be downloaded
from http://dx.doi.org/10.1594/PANGAEA.861371. A table
documenting the considered stations is available as a supple-
ment and described in Appendix A.
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Appendix A: Meta-data of the considered stations

The streamflow observations collected in the ERDB
(Sect. 4.4.5) provide an unprecedented opportunity for
observation-based freshwater research in Europe. As the data
are protected by copyright, we cannot make this collection
publicly available. Instead, we include a meta-data table of
all considered stations, which should allow other researchers
to reproduce the collection if they have access to the original
databases (Sect. 3.1).

In the following the different fields of this meta-data table
are briefly described. For convenience, we partition the de-
scription of the meta-data into three blocks, labelled Part A
to Part C:

Part A. Basic station information: summarises informa-
tion on names, spatial location and temporal coverage:

ERDB.id The database identifier used to organ-
ise ERDB. This identifier is structured as
AA_XXXXXXX, where AA is the country code
and XXXXXXX a running number.

country Country code.

river Name of the river or stream.

station Name of the station.

longitude Longitude of the station in decimal degrees.

latitude Latitude of the station in decimal degrees.

altitude Altitude of the station in metres above sea
level.

area Catchment area in square kilometres.

start.date Date of the first entry in the time series.

end.date Date of the last entry in the time series.

length Time series length in number of months.

number.months Number of months with non missing
data.

frac.missing The fraction of missing months.

Part B. Record linkage results: summarises the results of
the record linkage procedure described in Section 4.4.3.
Note: if both the fields EWA.no and GRDB.no con-
tain values, this indicates that the records of EWA and
GRDB have been linked.

EWA.no Database identifier of EWA, if any EWA
record is assigned to the entry.

GRDB.no Database identifier of GRDB, if any GRDB
record is assigned to the entry.

AFD.no Database identifier of AFD, if any AFD record
is assigned to the entry.

river.dist The value of dJW,river, if more than one
database was used to generate the record.

station.dist The value of dJW,station, if more than one
database was used to generate the record.

latlon.dist The value of dGCD in kilometres, if more
than one database was used to generate the record.

latlon.bin.dist The value of dG in kilometres, if more
than one database was used to generate the record.

mean.dist The value of dm (Eq. 2), if more than one
database was used to generate the record.

Part C. Homogeneity testing: summarises the results of
the homogeneity assessment (Sect. 4.5). Note that the
homogeneity assessments have only been conducted
from 1950 onwards.

SNHtest The results of the standard normal homogene-
ity test. Following values are possible: "NS", the
test does not reject the null hypothesis of no break
point; "p5", the test rejects the null hypothesis,
p < 0.05; "p1", the test rejects the null hypothe-
sis, p < 0.01; "NSD", insufficient data (fewer than
24 months).

BHRtest The results of the Buishand range test. See
SNHtest for possible values.

PETtest The results of the Pettitt test. See SNHtest for
possible values.

VONtest The results of the Von Neumann ratio test.
See SNHtest for possible values.

www.earth-syst-sci-data.net/8/279/2016/ Earth Syst. Sci. Data, 8, 279–295, 2016



294 L. Gudmundsson and S. I. Seneviratne: Gridded runoff (E-RUN)

The Supplement related to this article is available online
at doi:10.5194/essd-8-279-2016-supplement.
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