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Abstract. We report on data from an oceanographic cruise in the Mediterranean Sea on the German research

vessel Poseidon in April 2014. Data were taken on a west–east section, starting at the Strait of Gibraltar and

ending south-east of Crete, as well on sections in the Ionian and Adriatic Sea. The objectives of the cruise were

threefold: to contribute to the investigation of the spatial evolution of the Levantine Intermediate Water (LIW)

properties and of the deep water masses in the eastern Mediterranean Sea, and to investigate the mesoscale

variability of the upper water column. The measurements include salinity, temperature, oxygen and currents

and were conducted with a conductivity, temperature and depth(CTD)/rosette system, an underway CTD and an

acoustic Doppler current profiler (ADCP). The sections are on tracks which have been sampled during several

other cruises, thus supporting the opportunity to investigate the long-term temporal development of the different

variables. The use of an underway CTD made it possible to conduct measurements of temperature and salinity

with a high horizontal spacing of 6 nm between stations and a vertical spacing of 1 dbar for the upper 800 m of

the water column.

Data coverage and parameter measured

Repository reference:

doi:10.1594/PANGAEA.838923 (for CTD)

doi:10.1594/PANGAEA.838924 (for UCTD)

doi:10.1594/PANGAEA.838934 (for ADCP)

Coverage: 34–43◦ N, 6◦W–26◦ E

Location name: the Mediterranean Sea

Date/time start: 3 April 2014

Date/time end: 28 April 2014

1 Introduction

The Mediterranean Sea is a marginal sea, as it is partly

isolated from the Atlantic Ocean through the narrow Strait

of Gibraltar. It consists of two sub-basins, the western

(WMed) and the eastern (EMed) Mediterranean, which com-

municate through the broad (145 km) and shallow (maxi-

mum depth 550 m) Sicily Channel. Due to its dimensions

(2 500 000 km2) and position, i.e. enclosed by continents,

it can rapidly be affected by atmospheric forcing and an-

thropogenic influences (Schroeder et al., 2013). Several

forces drive the circulation – external ones like wind stress,

strong topographic constraints and internal dynamic pro-

cesses (Robinson et al., 2001; Pinardi et al., 2013). The

emerging Mediterranean general circulation, therefore, en-

closes three predominant and interacting spatial scales: basin

scale, sub-basin scale and mesoscale. Free and boundary cur-

rents and jets, permanent and recurrent, sub-basin-scale, cy-

clonic and anticyclonic gyres populate both basins (Robin-

son et al., 2001). The associated eddy field to the mesoscale

circulation consists of semi-permanent eddies with a spatial

scale of about 120 km in diameter (Hecht et al., 1988).

The WMed and EMed show distinct differences, both

in their hydrography and circulation. Different attempts to

schematize surface as well as intermediate and deep paths

of the circulation have been made in the past, based on ob-

servational evidence (see e.g. Malanotte-Rizzoli et al., 1997,
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1999; Robinson et al., 2001; Roether et al., 2007; Schroeder

et al., 2012).

The heat and freshwater budgets in the Mediterranean Sea

are negative with a net loss of about 5 W m−2 and 0.7 m yr−1.

The deficits are balanced by exchanges through the Strait

of Gibraltar. The steady state is balanced at multi-decadal

timescales; at seasonal and interannual timescales heat loss

and gain is possible due to single wintertime large evapo-

ration events (Garrett et al., 1993; Pettenuzzo et al., 2010;

Pinardi et al., 2013). However, it might be questionable if a

steady state is a reliable assumption for the Mediterranean

Sea circulation. As known, the EMed has been through dras-

tic changes in the past. The largest climatic event, named

Eastern Mediterranean Transient (EMT), took place in the

EMed during the end of the 1980s and beginning of the

1990s, where the deep-water formation switched from the

Adriatic to the Aegean Sea. This episode changed the ther-

mohaline characteristics of the outflow through the Sicily

Channel significantly, which consequently modified the char-

acteristics of the WMed (Millot et al., 2006; Schroeder et al.,

2006). Thus, since 2005 the deep waters of the WMed have

experienced significant physical changes which are compa-

rable to the EMT, both in terms of intensity and observed

effects (Schroeder et al., 2008). This event is often called the

Western Mediterranean Transient (WMT). Therefore, the ex-

istence of both transients contradicts this assumption. On the

other hand, it was proven that the EMT had never been ob-

served before (Roether et al., 2013).

The water mass formation cycle is characterized by the

inflow of low-salinity Atlantic Water (AW) in the upper

100 m of the water column and with identification values

of S= 36.0–36.5 psu in the Strait of Gibraltar (Said et al.,

2011), and a return flow of the salty Levantine Intermedi-

ate Water (LIW), formed in the Levantine Basin and posi-

tioned in the intermediate layer (typically at a depth of 200–

600 m). The depth variability of the LIW salinity maximum

is largely regional; generally, depths increase westward. The

Sicily Channel, with a depth lower than 550 m, acts as a nat-

ural barrier between the WMed and EMed. Deep and inter-

mediate water formation takes place in each of the basins.

In the WMed, the abyssal water mass is produced by shelf

and open-ocean convection in the Gulf of Lyons, namely

the Western Mediterranean Deep Water (WMDW, see e.g.

Leaman and Schott, 1991). The EMed is instead character-

ized by two deep-water formation regions, where the Adri-

atic Deep Water (AdDW) and the Cretan Deep Water (CDW)

are produced. Thus, the predominant water mass of the bot-

tom layers, filling the abyssal plains of the Ionian and Lev-

antine basins, namely the Eastern Mediterranean Deep Wa-

ter (EMDW), is a mixture of AdDW, CDW and shallower

water masses. Detailed descriptions of the general circula-

tion and hydrography of the EMed can be found in Las-

caratos et al. (1999), Hamad et al. (2005), Rubino and Hain-

bucher (2007), Klein et al. (2010), Gačić et al. (2011), Cardin

et al. (2015) and others.

The principal scientific objective of the cruise is threefold:

1. to add knowledge to the understanding of the disper-

sion of LIW water masses from the eastern basin of the

Mediterranean Sea to the Strait of Gibraltar

2. to investigate the mesoscale variability of the upper wa-

ter columns of the two basins of the Mediterranean Sea

3. to continue the documentation and to contribute to

the understanding of the evolution of the deep water

masses in the EMed since the appearance of the East-

ern Mediterranean Transient.

According to the Med-Ship program (CIESM Monographs

43, 2012) the cruise supports the investigation of its relevant

objectives which are, amongst others, engaged in the deter-

mination of changes and of long-term variability of hydro-

graphic parameters in the Mediterranean Sea. Although most

of the data of this campaign are not “full water column obser-

vations”, this survey is a valuable contribution to improve the

database of the Mediterranean Sea for a better understanding

of the variability on multiple timescales and for numerical

model evaluations.

To our knowledge, just one further campaign exists which

covers an east–west transect through the whole Mediter-

ranean Sea, but with a much lower sampling rate (Meteor

cruise M84-3, Tanhua et al., 2013). More frequently, sev-

eral campaigns at the level of sub-basin for both the WMed

(Schroeder et al., 2008) and the EMed (Cardin et al., 2015)

have been carried out during the past decades.

2 Data source

The survey was carried out on the German RV Poseidon from

3 to 28 April 2014. The cruise started in Portimão, Portugal,

and ended in Bari, Italy (Fig. 1). The data set is composed

of three components: profiles from a conductivity, temper-

ature and depth (CTD) system, profiles from an underway

CTD (UCTD) and velocity profiles from an acoustic Doppler

current profiler (ADCP) (Table 1). Figures 2, 3 and 4 show

examples for the calibrated and quality-controlled data from

the UCTD, CTD and ADCP.

3 Methods and quality control

The most recent campaign (April 2011), including an east–

west transect through the whole Mediterranean Sea, was the

RV Meteor cruise M84/3 (Tanhua et al., 2013). On M84/3

CTD and ADCP measurements were conducted. In addition

to the physical parameters, chemical variables like nutrients,

helium, tritium, SF6, CFC-12 and others were taken. Com-

pared to the cruise in this paper, the sampling rate of M84-3

was coarse, accommodating the demand to take a variety of

parameters during a reasonable time. Contrariwise, the cam-

paign of Poseidon was restricted to measurements of physical
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Table 1. List of parameters from Poseidon cruise P468 as seen in the PANGAEA database. PI (Principal Investigator): Dagmar Hainbucher.

Parameter name Short name Unit Method Comments

DATE/TIME Date/time Geocode

LATITUDE Latitude Geocode

LONGITUDE Longitude

Pressure, water Press dbar CTD, SEA_BIRD SBE 911plus

Temperature, water Temp ◦C CTD, SEA_BIRD SBE 911plus

Salinity Sal CTD, SEA_BIRD SBE 911plus PSU

Oxygen O2 µmol L−1 CTD calibrated with attached oxygen sensor, corrected using Winkler titration

Pressure, water Press dbar Underway CTD (UCTD), Oceanscience

Temperature, water Temp ◦C Underway CTD (UCTD), Oceanscience

Salinity Sal Underway CTD (UCTD), Oceanscience PSU

DEPTH, water Depth water m Geocode

Current velocity east–west UC cm s−1 Shipboard Acoustic Doppler Current Profiling (SADCP)

Current velocity north–south VC cm s−1 Shipboard Acoustic Doppler Current Profiling (SADCP)
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Figure 1. Cruise track of P468 with CTD stations marked in red

and UCTD stations marked in blue.

components, but with the aim of achieving a high horizontal

resolution in order to resolve hydrographic phenomena on

mesoscales.

3.1 CTD/rosette

During the cruise, altogether 37 full depth standard hy-

drographic stations (Fig. 1) were collected with a 24 Hz

sampling Sea-Bird SBE 911plus CTD, fastened to a 12-

bottle SBE 32 Carousel Water Sampler. The instrument was

equipped with double conductivity and temperature sensors

and two SBE 43 dissolved oxygen sensors. Specifications for

the CTD sensors are given in Table 2.

At almost all stations water samples were taken at 12 pre-

defined depths along the water column for oxygen analysis

and three of which also for salinity analysis. The salinity

samples were analysed on board using a Guildline Autosal

Salinometer. The batch no. of the standard seawater samples

is 38H11 and they have a K15-factor of 1.07631 (24 ◦C). An

explanation of standard seawater definitions can be found in

Bacon et al. (2007).

Temperature and salinity CTD data were post-processed

by applying standard Seabird software and MATLAB rou-

tines. At this stage spikes were removed, 1 dbar averages

were calculated and the downcast profiles of temperature and

salinity were corrected with regression analysis. Data from

Table 2. CTD instrument and sensors used. Owners of instruments

are either the University of Hamburg, Germany (IFM-CEN) or the

National Institute of Oceanography and Geophysics (OGS), Italy.

Instrument/sensor Serial number (owner)

SBE 911plus/917plus CTD 285 (IFM-CEN)

Temperature 1: SBE-3-02/F 1294 (IFM-CEN)

Conductivity 1: SBE-4-02/2 1106 (IFM-CEN)

Pressure 410K-105 50633 (IFM-CEN)

Temperature 2: SBE-3-02/F 1717 (OGS)

Conductivity 2: SBE-4-02/2 3442 (OGS)

Altimeter PSA 916D 885 (IFM-CEN)

Oxygen 1 SBE 43 1761 (IFM-CEN)

Oxygen 2 SBE 43 2513 (OGS)

the double sensors were correlated, and the salinity measure-

ments were additionally corrected by comparison with the

discrete salinity water samples to improve the level of pre-

cision. Since the corrections to the parameters were negli-

gible, the data quality was excellent. Overall accuracies are

within expected ranges: 0.002 ◦C for temperature and 0.003

for salinity.

Dissolved oxygen samples were analysed on board by

means of the Winkler potentiometric method. The dissolved

oxygen CTD data were treated in the same way as for tem-

perature and salinity. A comparison between CTD oxygen

sensors and the discrete water samples was carried out also

for this parameter. The accuracy of the data reached approx-

imately 2 µmol kg−1.

All procedures fit the guidelines of the GO-SHIP Repeat

Hydrography Manual (McTaggart et al., 2010)

3.2 Underway CTD

Underway measurements of pressure, temperature and con-

ductivity profiles were made with an Oceanscience UCTD

system in order to increase the spatial resolution of the sur-
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Table 3. UCTD sensors used.

Probe 1 Device type Serial number (owner)

0068 90560 UCTD/SBE49 FastCat CTD 70200068 (IFM-CEN)

0155 90745 UCTD/SBE 37 MicroCat 70200155 (IFM-CEN)

0183 90745 UCTD/SBE 49 FastCat CTD 70200183 (IFM-CEN)

vey, but without having to perform several additional time-

consuming CTD casts. Altogether, we took 378 casts (Fig. 1).

Initially we used three probes (s/n 0068, 0155 and 0183), but

after the loss of a probe right at the beginning of the cruise,

we decided to use only the tow-yo (Ullman and Hebert, 2014)

deployment procedure in the following, where no spooling

on the probe’s spindle was carried out. The sampling strat-

egy included a sampling distance between UCTD casts of

approximately 6 nm or about 1 h keeping a ship’s speed of

6 knots. The ship reduced speed to 2–3 knots, while the

probe was falling for a maximum of 480 s. The ship en-

hanced speed again to 6 knots during the recovery of the

probe. We reached maximum depths of around 850 m, mini-

mum depths of 500 m. The average depth was approximately

650 m. Specifications for the UCTD sensors are given in Ta-

ble 3.

The data are logged internally and are downloaded to a

computer after recovery of the instrument. No processing is

done internally. Since the probes are not georeferenced, ship

navigation data were used. During processing one has to ac-

count for mainly two factors which cause inaccuracies: dif-

ferent probes show different offsets to the CTD, and the ac-

curacy of results depends on the variable descent rate dur-

ing deployment. For the correction of the offset we used data

from CTD stations, as we carried out a UCTD measurement

at each CTD position. Additionally, we run one CTD station

with the remaining two UCTD probes installed at the CTD

rosette. For each probe we determined the mean deviation

from the UCTD with respect to the CTD casts and corrected

all UCTD results accordingly. To account for the variable

descent rate, we carried out the steps suggested by Ullman

and Hebert (2014). Hence, we corrected for a descent-rate-

dependent alignment of temperature and conductivity, for the

effect of viscous heating and for the conductivity cell thermal

mass.

3.3 Shipborne ADCP

Underway current measurements were taken with a vessel-

mounted 75 kHz Ocean Surveyor (ADCP) from RDI in nar-

row band mode covering approximately the top 600–800 m

of the water column. The bin size was set to 8 m. The in-

strument was controlled by computers using the conventional

VMDAS software under a MS Windows system. Pinging

was set as fast as possible. No interferences with other used

acoustical instruments were observed. The ADCP data were

post-processed with the software package ossi14 (ocean sur-

a)

b)

Figure 2. Temperature and salinity distribution along a west–east

section through (a) the western Mediterranean Sea and (b) the east-

ern Mediterranean Sea. Data are recorded by an underway CTD.

Inner panels show the location of UCTD stations. White areas: data

are out of instrument range.

veyor sputum interpreter) developed by the Leibniz Institute

of Marine Sciences (GEOMAR, Fischer, 2011), Kiel, which

also corrects for the misalignment angle. The misalignment

angle was calculated at approximately −3.5◦.

4 Discussion and conclusion

The temperature-salinity (TS) diagram (Fig. 3) gives an

overview of the TS characteristics in the whole Mediter-

ranean Sea during April 2014. The results are comparable

to those we found already in April and June 2011 on cruises

with RV Meteor and RV Poseidon (Hainbucher et al., 2014),

and they highlight the differences which exist between the

EMed and WMed. The horizontal distance between CTD sta-

tions was too coarse to consider the transects reliable, yet, the
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Figure 3. TS diagram determined by CTD data. The inner panel

shows the location of CTD stations. The colours correspond to the

colours of the profiles.

high resolution of UCTD (Fig. 2) and ADCP data (Fig. 4)

show nicely the mesoscale variability in both basins dur-

ing the cruise. Both Alboran gyres and high eddy activity

along the section through the WMed can be identified. Some

of these structures can be related to well-known features

like the Almeria-Oran Gyre or the South-western Tyrrhenian

Gyre (Pinardi et al., 2013). In the EMed we found a lot of

mesoscale eddies along the track between Sicily and Crete.

Presumably, we touched, amongst others, the Western Cretan

Cyclonic Gyre and the Ierapetra Gyre (Pinardi et al., 2013).

Hence, some of the positions of the gyres that we found have

confirmed those already present in the literature by observa-

tions or results of models. But not all of the gyres can be re-

lated to well-known features. We conclude from this fact that

a lot of the gyres are non-permanent and that even the loca-

tion of the permanent eddies are subject to high spatial vari-

ability. This has to be concretized and proofed further. The

tool for the investigation of such highly variable phenom-

ena was up to now numerical models, but with such UCTD

measurements it is possible to resolve the structures with a

reasonable effort in terms of time and money.

The salinity distribution (Fig. 2) furthermore reflects the

spatial development of LIW from east to west. The LIW sig-

nal is stronger in the EMed than in the WMed and can be

identified by the salinity maximum in the 100–600 m depth

layer.

Figure 4. Velocity distribution of the upper 400 m of the water

column along a west–east section through (a) the western Mediter-

ranean Sea and (b) the eastern Mediterranean Sea. Data are recorded

by a shipborne ADCP. Shown are the east–west and north–south ve-

locity component, respectively. Inner panels indicate the location of

the ship track. White areas: no data are available. x axes: east–west

distance (km). y axes: depth (dbar).

5 Data access

Data are published in the information system PAN-

GAEA; doi:10.1594/PANGAEA.838923 for CTD data,

doi:10.1594/PANGAEA.838924 for UCTD data and

doi:10.1594/PANGAEA.838934 for ADCP data.
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