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Abstract. The increase in global mean temperatures resulting from climate change has wide reaching conse-

quences for the earth’s ecosystems and other natural systems. Many studies have been devoted to evaluating the

distribution and effects of these changes. We go a step further and propose the use of the heat index, a measure

of the temperature as perceived by humans, to evaluate global changes. The heat index, which is computed from

temperature and relative humidity, is more important than temperature for the health of humans and animals.

Even in cases where the heat index does not reach dangerous levels from a health perspective, it has been shown

to be an important factor in worker productivity and thus in economic productivity.

We compute the heat index from dew point temperature and absolute temperature 2 m above ground from the

ERA-Interim reanalysis data set for the years 1979–2013. The described data set provides global heat index ag-

gregated to daily minima, means and maxima per day (doi:10.1594/PANGAEA.841057). This paper examines

these data, as well as showing aggregations to monthly and yearly values. Furthermore, the data are spatially

aggregated to the level of countries after being weighted by population density in order to facilitate the analysis

of its impact on human health and productivity. The resulting data deliver insights into the spatiotemporal de-

velopment of near-ground heat index during the course of the past three decades. It is shown that the impact of

changing heat index is unevenly distributed through space and time, affecting some areas differently than others.

The data can serve as a basis for evaluating and understanding the evolution of heat index in the course of climate

change, as well as its impact on human health and productivity.

1 Introduction

The essential cause of climate change is the additional en-

trapment of thermal energy in the earth’s many natural sys-

tems through carbon dioxide from anthropogenic sources.

The speed at which this is occurring is, on climatological

and geological timescales, extremely rapid, often requiring

faster adaptation than would be expected under normal cir-

cumstances.

This additional heat energy has manifold consequences,

many of them indirect. All of them, in one way or another,

affect humans. For example, additional heat modifies the

earth’s water household, reducing agricultural yields and in

this way affecting human health and well-being (Calzadilla

et al., 2010). More directly, additional heat load has been

shown to affect the economy by reducing worker productiv-

ity through requiring workers to work more slowly and take

more breaks (Kjellstrom et al., 2009). Extreme heat can have

serious health consequences, especially among the sick and

the elderly. In the last decade, more than 10 000 deaths in

a single month in France were directly attributed to a heat

wave (Poumadère et al., 2005). This list could easily be ex-

panded to include other events and regions, and several stud-

ies have shown not only that extreme heat events can be

expected with higher frequency and intensity but also that

heat load in general should increase in the future (Beniston,

2004; Schär et al., 2004; Intergovernmental Panel on Climate

Change, 2014).
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Many studies have analyzed the effects of climate change

on global temperatures and their distribution in space and

time (e.g., Vose et al., 2005; Diffenbaugh and Ashfaq, 2010;

Diffenbaugh and Scherer, 2011; Alexander and Arblaster,

2009; Meehl et al., 2009; Smith et al., 2005; Sherwood et al.,

2008). They show that changes in the earth’s thermal energy

household affect the flow of both latent and sensible heat

and are thus the most directly relevant for human physiol-

ogy. The body rids itself of thermal energy partially through

the evaporation of sweat. This process becomes less effi-

cient with higher humidity. For this reason, most metrics that

measure heat exposure take both temperature and humidity

into account. For example, the wet-bulb globe temperature

(WBGT), which incorporates the effect of temperature, hu-

midity, wind speed and radiation into a metric for heat stress

in humans, has been used in several health and safety stan-

dards measure heat loads and prevent heat illnesses (e.g.,

International Organization for Standardization, 2010; Na-

tional Institute for Occupational Safety and Health, 1986).

Although WBGT is an accurate metric for heat load on hu-

mans, the number of variables needed to compute it hinder its

applicability for regional- or global-scale applications. Other

examples include, among others, the Klima-Michel model

for apparent temperature, which uses not only temperature,

wind speed and air moisture but also activity level and cloth-

ing to determine the apparent temperature for an average per-

son (Jendritzky et al., 1990). In the field of meteorology, a

much more common metric is apparent temperature, mea-

sured using the heat index (Anderson et al., 2013). This met-

ric has seen wider adoption in the health and meteorological

communities due to its dependence solely on humidity and

temperature (e.g., Perry et al., 2011; Kysely and Kim, 2009;

El Morjani et al., 2007; Burkart et al., 2011; Basara et al.,

2010).

We present a new data set of globally gridded heat index

values computed from reanalysis results for the years 1979–

2013. These values are aggregated on several temporal and

spatial scales. The data are presented in the context of global

climate change and its direct effects on human health. We

several temporal and spatial scales. Furthermore, we describe

the effects of climate change on the global distribution of

heat index and investigate these effects for different countries

through the study’s time period. The data are available for

further use by the scientific community (Lee, 2014). It is our

hope that these data can serve as a basis for further studies

to evaluate and understand changes in heat index over the

course of climate change and how it impacts different areas

of human society.

2 Material and methods

2.1 Data source

High-quality, consistent data measured at the same place over

climate-scale time periods are extremely difficult to obtain.

For this reason, we use reanalysis data in order to create the

data set on heat index.

Reanalysis data are not an equivalent to observation data

and should be used carefully (Thorne and Vose, 2010).

Nonetheless, for our purpose, reanalysis data seem to be the

most appropriate choice. A priority is to produce spatially

and temporally continuous data of a consistent quality for

the entire globe over a long period of time. In addition, as

many high-quality observations should be incorporated into

the data as possible, without introducing anomalous signals

into the data, for example through changes in observation

techniques and shifts in observation locations.

The ERA-Interim reanalysis by ECMWF is well suited for

this task. It uses the same data assimilation system and dy-

namic modeling core over a long period of time – from 1979

extended up until the present. The model used to produce the

reanalysis, the ECMWF’s Integrated Forecast System (IFS),

uses three fully coupled components for atmosphere, land

surface and ocean waves. This improves accuracy especially

for areas surrounded mostly by ocean. Because the model

was used to produce a reanalysis, which did not have to be

published in a time critical fashion, observations from all

over the globe could be assimilated, even if they were only

available after a normal forecast model’s cutoff time. These

observations can be quality-controlled before being assimi-

lated into the model. Using a model rather than, for exam-

ple, a simpler interpolation approach makes it possible for

the model to propagate information obtained through obser-

vations through variable domains, space and time (Dee et al.,

2011). All of these criteria made ERA-Interim an intuitive

choice as a basis for our study (Dee et al., 2011).

The ERA-Interim reanalysis used four assimilation cycles

per day, at 00:00, 06:00, 12:00 and 18:00 UTC. The original

data were produced on a reduced Gaussian grid with approx-

imately uniform spacing for surface fields of 79 km (Berris-

ford et al., 2009).

We use data from the entire available time period of 1979–

2013. The data were downloaded after interpolation from

the Gaussian onto a regular 0.75◦× 0.75◦ latitude–longitude

grid to ease processing in various GISs. Two variables were

downloaded: air temperature and dew point temperature,

both at 2 m height above ground.

2.2 Computing gridded heat index

Heat index has been computed using a variety of algo-

rithms in different studies. We chose the currently opera-

tional method used by the National Weather Service (2014a),

which was developed by Rothfusz (1990) based on work by

Steadman (1979), because it is used widely in the opera-

tional production of weather warnings in real-life situations

and demonstrates the best agreement among heat index al-

gorithms with the original equations (Anderson et al., 2013).

All calculation was done using GRASS GIS (GRASS Devel-

opment Team, 2012).
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The chosen algorithm uses relative humidity and tempera-

ture in ◦F at 2 m above ground as input. While temperature is

given in the ERA-Interim reanalysis data, relative humidity

had to be calculated. Of the many possible ways to compute

relative humidity from dew point temperature (see, for exam-

ple, Lawrence, 2005), we decided to follow the methodology

of the National Weather Service (Murphy, 2006) for the sake

of consistency with the method of computing heat index. It

is computed as follows:

RH=

(
112− 0.1T + Td

112+ 0.9T

)8

, (1)

with RH as relative humidity, T as temperature in ◦C and Td

as dew point temperature in ◦C.

Heat index was computed using an algorithm beginning

with a simple approximation:

HI=
T + 61.0+ ((T − 68.0) · 1.2)+ (RH · 0.094)

2
, (2)

where HI is heat index in ◦F, T the temperature in ◦F and RH

the relative humidity.

If HI is < 80 ◦F, this approximation is kept as the final re-

sult. Otherwise, it must be computed with a more precise re-

gression:

HI=− 42.379+ 2.04901523 · T + 10.14333127

·RH− 0.22475541 · T ·RH

− 0.00683783 · T 2
− 0.05481717 ·RH2

+ 0.00122874 · T 2
·RH+ 0.00085282 · T ·RH2

− 0.00000199 · T 2
·RH2

+ adjustment, (3)

with the adjustment conditionally given by

adjustment=


13−RH

4
·

√
17− |T − 95|

17
if RH < 0.13 and 80 < T < 112

RH− 85

10
·

87− T

5
if RH > 0.85 and 80 < T < 87

0 else

.

(4)

2.3 Limitations of the approach

It should be noted that the heat index, which was created for

the purpose of measuring physiological stress due to high

heat loads, is not adapted for measuring stress due to cold-

ness. Also, above a certain level the heat index is oversatu-

rated, so that no additional information can be gained from

it. For this reason, we rounded extreme heat index values

into the range of 40–140 ◦F in our visualizations. This cor-

responds with the lower bounds of the heat index equation

(Anderson et al., 2013) and the rough upper bounds of danger

levels derived from heat index (National Weather Service,

2014b). The published raw data, however, are not rounded,

so that users can decide whether or not they wish to reduce

its value range (Lee, 2014).

2.4 Temporal and spatial aggregation

The primary reason that heat index is so relevant in the con-

text of climate change is its direct and indirect effects on hu-

man health and the anthropogenic systems connected to it.

Thus, we expect that our data on the heat index can and will

be used in many further studies, in which they will be con-

nected to other data.

The heat index is calculated for each grid point and for

each point in time for which the ERA-Interim reanalysis is

available. However, using the calculated heat index in further

studies usually implies that data on a daily or even monthly

or yearly basis are necessary. Therefore, we aggregated the

heat index to daily levels. For each day, the four assimila-

tions were combined in order to produce gridded daily min-

ima, means and maxima. We consider this a good approxima-

tion of the nighttime heat index, which represents the daily

minimum in most cases; the actual local mean heat index

over the course of the day; and the daily midday heat index,

which is the maximum in most cases. In addition to produc-

ing these daily aggregates, the daily metrics were aggregated

to monthly and yearly temporal levels.

In addition to the temporal aggregate, the combination

with other data will also make a spatial aggregation neces-

sary in many studies. Other data are often given on a regional

or national level. Therefore, we also examine the heat index

on the level of countries. For studying the effect on humans

and human activities, the heat index in populated areas is es-

pecially relevant, as dangerous heat exposure in areas where

no people are affected is at most tangentially connected to

human well-being.

The Global Rural-Urban Mapping Project (GRUMP)

(Center for International Earth Science Information Network

– CIESIN – Columbia University; International Food Pol-

icy Research Institute – IFPRI; The World Bank; Centro In-

ternacional de Agricultura Tropical – CIAT, 2011) provides

high-quality gridded population data. The data set consists of

estimates of human population for the years 1990, 1995 and

2000 on a 30 arc-second grid (meaning a horizontal resolu-

tion of approximately 1 km) for the entire globe. GRUMP is

based on work originally done for the Gridded Population of

the World (GPW) data set (Center for International Earth Sci-

ence Information Network – CIESIN – Columbia University;

International Food Policy Research Institute – IFPRI; The

World Bank; Centro Internacional de Agricultura Tropical

– CIAT, 2004), which was produced by resampling census

and survey data for administrative units onto a regular grid.

The population was temporally interpolated between sam-

pling points to the above-mentioned snapshot years. GRUMP

refined the original data by identifying urban areas with the

help of administrative data and nighttime satellite data. Pop-

ulation was then redistributed inside administrative areas to

the respective urban and rural areas in order to match the pro-

portion of urban–rural population described by data from the

United Nations (Balk et al., 2010).

www.earth-syst-sci-data.net/7/193/2015/ Earth Syst. Sci. Data, 7, 193–202, 2015



196 D. Lee et al.: Global changes in perceived temperature: An analysis of global heat index from 1979 to 2013

Because of the large number of changes in administrative

boundaries and population distribution in the years follow-

ing the dissolution of the Soviet Union in 1991, the authors

of GRUMP were often forced to combine heterogeneous data

sources into their results (Balk and Yetman, 2004). Although

this was done with a high degree of care and in-depth knowl-

edge of each individual case, the uncertainties that this pro-

duced prompted us to consider the estimates from 1990 to

be the best compromise between quality, consistency and the

required accuracy for our analyses. Thus, we only use the

GRUMP data for 1990 to aggregate our data to the national

level.

Furthermore, for the sake of consistency, we aggregated

the population data into current political boundaries (Pat-

terson and Kelso, 2014), rather than adjusting the data to

accommodate the modification, addition or dissolution of

national borders over time. Therefore, all statements about

changes in the climate of given countries in this study should

be interpreted as referring to the geographic areas currently

officially occupied by the country in question, rather than the

possibly dynamic geographic area occupied by the country

over the study period.

The following steps were used to aggregate our data to the

country level. First, the heat index data for the areas cov-

ered by each country were rasterized onto the same coordi-

nate system as the GRUMP data. This made it possible to

discretely sum the population inside each country according

to the GRUMP estimates. Per-grid-point population weights

were produced by calculating the proportion of population

within that country that contained the grid point in question,

as follows:

pweight =
ptotal

pcount

, (5)

where pweight is the cell’s population weight inside the coun-

try, ptotal the country’s total population and pcount the popu-

lation count for the grid point.

The per-country weighted mean heat index was then com-

puted as follows:

HIweight =

∑
pweight ·HI. (6)

Weighted means were produced for each country with

available data and each temporal aggregation level, as out-

lined in Sect. 2.4.

3 Application: heat index and global climate change

As mentioned above, we expect that the heat index as it is cal-

culated here can and will be used in many future studies. To

give some first impression we discuss the change of the heat

index between the time periods 1979 and 1999 and 2000 and

2013. Although neither of these periods represents a typical

30-year climate period, this was considered a good compro-

mise which placed the bulk of the data in the 1970–1999 and

Table 1. Heat index danger levels according to National Weather

Service (2014b).

◦F Danger level

> 80 Caution

> 91 Extreme caution

> 103.5 Danger

> 126 Extreme danger

2000–2029 climate periods while splitting the data into tem-

poral chunks of similar lengths. All data visualization is done

using ggplot2 (Wickham, 2009).

3.1 Global heat index

Figure 1 shows the heat index metrics for the entire globe on

a typical day in summer in the Northern Hemisphere. Dan-

gerous heat index levels can be seen both in the daytime max-

imum, as well as during the night in hot, moist regions near

the Equator. The diurnal cycle is especially high for hot and

moist regions, high for dry areas in which the temperature

fluctuates highly in the course of the diurnal cycle, and low

in drier areas with relatively small diurnal temperature cy-

cles.

The change between both reference periods is shown in

Fig. 2. The maximum heat index shows large changes in

both directions for single grid points. This is due to the fact

that the maximum heat index for each entire reference pe-

riod stems from single, significant events that are highly spe-

cific in both time and space. This causes spatial shifts in the

occurrence of extreme heat index events to produce large

deviances between reference periods, similar to the double-

penalty problem encountered when computing skill scores

for high-resolution forecast models (Mass et al., 2002). Mean

and minimum heat indices increase almost across the globe

between both reference periods, with the most notable differ-

ences in minimum heat index over continents in the Northern

Hemisphere.

An evaluation of the change in monthly mean heat in-

dex across the globe for both reference periods, as shown in

Fig. 3, offers a glimpse into the temporal distribution of heat

index changes in the course of the year. The monthly means

of heat index clearly increase across the globe, most visibly

at higher latitudes.

One of the most important applications of our data is the

evaluation of danger due to high heat loads. We classified

danger due to high heat index according to the criteria out-

lined in Table 1.

For each reference period and each of the classification cri-

teria shown above we calculate the probability that the peak

heat index of each day exceeds the threshold for extreme dan-

ger in each month. Then, we compare the exceedance likeli-

hood between the two reference periods. The results, shown

in Fig. 4, demonstrate that the likelihood of heat index values
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Figure 1. Typical heat index for an exemplary day (2 June 1996). Upper left: maximum heat index; lower left: minimum heat index; upper

right: mean heat index; lower right: diel range of heat index.
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Figure 2. Differences between yearly temporal statistics for each reference period (1979–1999, 2000–2013). The left column shows, from

top to bottom, the differences in maximum, mean and minimum heat index for the entire year for the entire globe. The right column shows

the frequencies of heat index changes worldwide in number of cells for each aggregate statistic. Continents are added for orientation (South,

2011; Bivand and Rundel, 2014).

reaching levels that indicate “extreme danger” has increased

worldwide in every month. South America during southern

summer and the Gulf of Mexico in northern summer had

especially large increases in likelihood of extreme danger.

West Africa also had increased likelihood of dangerous heat

index levels the year round, as did northern Eurasia for most

months. Most parts of Asia, especially northern Asia, showed

increases in heat index throughout most of the year. Two no-
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Figure 3. Changes between both reference periods (1979–1999, 2000–2013) in monthly mean heat index. The inset numbers refer to the

mean increase in heat index for the month in question between both reference periods. Continents are added for orientation (South, 2011;

Bivand and Rundel, 2014).
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Figure 4. Change in the probability that the maximum heat index will exceed the threshold for “extreme danger” for a given day in each

month in 2000–2013 compared to 1979–1999 (National Weather Service, 2014b). Continents are added for orientation (South, 2011; Bivand

and Rundel, 2014).
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table exceptions are northern Eurasia and Alaska, which both

showed decreases in heat index during northern winter.

3.2 Classifying countries according to heat index

Another interesting application of the new data set is the clas-

sification of countries according to their heat index clima-

tologies. We use the population-weighted heat index minima,

means and maxima in each month and apply an iterative k-

means cluster identification (Hartigan and Wong, 1979), im-

plemented in the statistical software R (R Core Team, 2014).

After each iteration, the sum of squared distance between

points in each cluster was examined in order to determine the

point at which additional clusters no longer produced useful

information (Everitt and Hothorn, 2010, p. 251).

The clustering is applied to both reference periods: eight

clusters are created. This number of clusters matched both

reference periods well – more clusters did not seem to pro-

duce any substantial gains, whereas fewer clusters would

have meant a larger sum of squared distance between points

inside individual clusters.

The clusters were examined using ordination plots based

on the methods by Oksanen et al. (2014). The clusters created

by the data for each reference period are similar, but not iden-

tical. The changes between both reference periods are shown

more clearly in Fig. 5. Most changes are in Africa, southern

Europe and Asia. A first visual analysis indicates that sub-

tropical heat index climates have expanded away from the

Equator and toward the poles. Especially cool, dry or humid

areas retain their climatology across both reference periods.

4 Conclusions

In this paper, we introduce a new data set containing gridded

heat index values 2 m above ground for the entire globe at

00:00, 06:00, 12:00 and 18:00 UTC of each day for the years

1979–2013. Due to the widespread use of heat index as an in-

dicator for dangers to human health caused by heat loads, we

believe that these data will be of great use in future studies

concerning heat stress in the course of climate change. Our

data set is new in the sense that it makes heat index values

available on a high spatiotemporal resolution and on a con-

tinuous grid for the entire planet. We show its potential for

further studies by performing some initial, straightforward

analyses that provide a first glimpse into the data.

It is shown that, for the two periods chosen for our

study (1979–1999, 2000–2013), the distribution of heat in-

dex across the globe has changed. The worldwide mean heat

index has risen, both for the entire year and for each month.

The likelihood of daytime heat index values that indicate “ex-

treme danger” has also increased across the globe since the

20th century. This analysis is meant as an example usage of

these data and could be repeated for different thresholds, with

a finer quantile resolution, or focused on more specific geo-
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Figure 5. Countries and the clusters they were grouped into. The

map at the top shows country clusters for the first reference period,

and the map in the middle shows county clusters for the second. The

map at the bottom indicates whether the cluster that a country was

grouped into changed between both periods.

graphic areas or time periods in order to obtain more mean-

ingful information.

It is also shown that heat index data can be used for stud-

ies on the country level, e.g., for classifying countries into

heat index “climate zones”. Such a country-level analysis is

only a first example of possible ways of using these data. Ex-

amining them on a finer spatiotemporal scale and combining

them with additional data could reveal more information and

aid in analyzing, understanding and predicting the connec-

tion between heat index and various components of human

systems.

The data are available for general use (Lee, 2014) and

the scientific community is encouraged to take advantage of

them in studies evaluating heat index, its distribution through

space and time, and its connections to and influences on hu-

man systems.
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