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Abstract. Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified

as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an

essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes

are not observed or only on a non-regular basis making these observations insufficient for climate monitoring.

Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to

analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR)

is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least

ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-

based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on

the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University

of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18,

-19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing

and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making

use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from

the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared

with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and

RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits

of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and

satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-

resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases

in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was

found to be within ∼ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ

measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in

the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows

lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method

to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at

doi:10.1594/PANGAEA.831007.
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1 Introduction

The interest in lake surface water temperature (LSWT) is

manifold. The temperature of lakes is an important param-

eter for lake ecosystems influencing the dynamics of physio-

chemical reactions, the concentration of dissolved gazes (e.g.

oxygen), and vertical mixing (Delpla et al., 2009). Even

small temperature changes may already have irreversible ef-

fects on the lacustrine system due to the high specific heat

capacity of water. All these effects will finally influence the

quality of lake water depending on parameters like lake size

and volume (Delpla et al., 2009, and references therein).

Numerous studies (e.g. Adrian et al., 2009; Williamson

et al., 2009) mention lake water temperature as an indicator

of climate change and within the Global Climate Observing

System (GCOS) implementation plan (GCOS-138, 2010),

it is stated that “observing the surface temperature of lakes

[. . . ] can serve as an indicator for regional climate monitor-

ing”. Recent studies (e.g. Austin and Colman, 2007; Schnei-

der and Hook, 2009, 2010; Lenters et al., 2012) have shown

that many lakes are getting warmer more rapidly than the

ambient air temperature and more work is needed to explain

these differences. This warming trend also affects the onset

of freezing and duration of ice cover of many lakes, espe-

cially in northern latitudes and mountainous regions (Jensen

et al., 2007; Dibike et al., 2011).

Beside the climate and ecological importance of wa-

ter temperatures, LSWT is also of interest for modelling

purposes, since sufficiently large water bodies influence

mesoscale weather development and LSWT can be assimi-

lated in regional numerical weather prediction models (Bal-

samo et al., 2012) to make regional forecasts more precise.

In contrast to in situ observations, satellite imagery offers

the possibility do derive spatial patterns of LSWT variabil-

ity. Moreover, although for some European lakes long in

situ time series exist (e.g. Livingstone and Dokulil, 2001;

Livingstone, 2003), the temperatures of many lakes are not

monitored or only on a non-regular basis making these ob-

servations insufficient for climate monitoring. In GCOS-154

(2011) it is further stated that trial products of satellite-based

LSWT would be desirable.

The Remote Sensing Research Group at the University of

Bern (RSGB), Switzerland, is hosting a large data set from

the Advanced Very High Resolution Radiometer (AVHRR),

a heritage instrument which has now been flown for almost

35 years on the National Oceanic and Atmospheric Adminis-

tration (NOAA) Polar Operational Environmental Satellites

(POES) and on the Meteorological Operational Satellites

(MetOp) from the European Organisation for the Exploita-

tion of Meteorological Satellites (EUMETSAT). It will be

carried on for at least ten more years, thus offering a unique

opportunity for satellite-based climate studies.

Nowadays, several different satellite-based LSWT data

sets are available (e.g. Politi et al., 2012; MacCallum and

Merchant, 2012; Schneider and Hook, 2010), but most

Figure 1. Clear-sky summer composite of the European Alps show-

ing all lakes included in the proposed data set. Numbers 1–25 cor-

respond to the list of lakes in Table 1.

of them cover only large lakes (with a surface area of

> 500 km2). Oesch et al. (2005) successfully demonstrated

that LSWT can also be retrieved for smaller lakes like

the majority of the European water bodies in or near the

Alps. This data set, however, is only available for a limited

time period and more importantly, the technique applied has

been developed for the retrieval of sea surface temperatures

(SSTs) which may lead to biases in the retrieved temper-

atures. More modern retrievals (e.g. MacCallum and Mer-

chant, 2012; Hulley et al., 2011) are lake specific taking the

lake altitude (i.e. thickness of the atmosphere) and local me-

teorological conditions into account.

The data set presented herein is based on a region-

ally optimised technique and covers lakes with sizes of

> 14 km2 for the period 1989–2013. The Radiative Transfer

for TOVS (RTTOV) software package and European Centre

for Medium-range Weather Forecasts (ECMWF) reanalysis

data were used to improve the retrieved LSWT by correcting

for atmospheric water vapour effects.

The following section specifies the lake locations and data

used to derive the proposed data set. Section 3 explains the

LSWT retrieval in more detail. In Sect. 4, we present a com-

parison of the satellite-based LSWTs with in situ measure-

ments for various sample lakes and with another satellite

product. Section 5 addresses the issue of compiling a time

series from several satellites. The last section summarises the

findings and gives a short outlook on future activities.

2 Data

This section lists the Central European lakes included in the

proposed data set, the lakes for which in situ data is available

for the comparison with the LSWT retrieval, other satellite

data which were used for a inter-satellite comparison, and

provides a detailed description of the satellite data used for

deriving LSWT.
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Table 1. List of European lakes in or near the Alps included in the data set showing their area, volume, and altitude according to Dokulil

(2007), Bavarian Lakes, LfU Bayern (2014), Beiwl and Mühlemann (2008), and Swiss Lakes, BFS (2014). The numbers in the first column

(ID) indicate the position of the lake in Fig. 1. The geographic co-ordinates indicate the position in the lake (centre of a 3× 3 pixel matrix)

for which the satellite data was extracted to create the proposed LSWT data set.

ID Lake name Lake area Volume Altitude Latitude Longitude

[km2] [×106 m2] [m a.s.l.]

1 Lake Geneva 582 88 900 372 46◦24′52′′ N 06◦24′57′′ E

2 Lake Constance 535 48 400 395 47◦36′35′′ N 09◦25′38′′ E

3 Lake Garda 370 49 000 65 45◦32′19′′ N 10◦38′33′′ E

4 Lake Neuchâtel 215 14 170 429 46◦57′18′′ N 06◦56′05′′ E

5 Lake Maggiore 213 37 700 194 45◦53′51′′ N 08◦33′54′′ E

6 Lake Como 146 22 500 198 46◦00′50′′ N 09◦15′45′′ E

7 Lake Lucerne 114 12 280 434 47◦01′07′′ N 08◦22′20′′ E

8 Lake Zurich 88 3767 407 47◦13′15′′ N 08◦43′33′′ E

9 Lake Chiem 80 2048 518 47◦53′07′′ N 12◦28′08′′ E

10 Lake Iseo 62 7600 186 45◦44′13′′ N 10◦04′21′′ E

11 Lake Starnberg 56 2999 584 47◦53′47′′ N 11◦18′26′′ E

12 Lake Lugano 49 6500 271 45◦59′29′′ N 08◦58′10′′ E

13 Lake Ammer 47 1750 533 47◦59′01′′ N 11◦07′41′′ E

14 Lake Thun 48 6500 558 46◦41′45′′ N 07◦42′32′′ E

15 Lake Atter 46 3945 469 47◦53′31′′ N 13◦32′55′′ E

16 Lake Bourget 45 3600 232 45◦44′26′′ N 05◦51′54′′ E

17 Lake Biel 39 1240 429 47◦05′01′′ N 07◦10′28′′ E

18 Lake Zug 38 3200 413 47◦09′24′′ N 08◦29′04′′ E

19 Lake Brienz 30 5200 564 46◦44′32′′ N 08◦00′05′′ E

20 Lake Annecy 27 1120 447 45◦51′43′′ N 06◦10′07′′ E

21 Lake Traun 24 2303 422 47◦53′00′′ N 13◦47′34′′ E

22 Lake Walen 24 2420 419 47◦07′15′′ N 09◦13′47′′ E

23 Lake Murten 23 600 429 46◦55′51′′ N 07◦04′51′′ E

24 Lake Sempach 14 624 504 47◦08′34′′ N 08◦09′18′′ E

25 Lake Mond 14 510 481 47◦49′31′′ N 13◦22′44′′ E

2.1 Lakes

The data set includes all major lakes located in or near the

European Alps (25; cf. Fig. 1 and Table 1) with sizes from

14 km2 (Lake Sempach) to 580 km2 (Lake Geneva). Includ-

ing lakes with various sizes and thus different morphological

characteristics in a regional area could, for instance, be in-

teresting for investigations on whether these lakes react in a

similar way to the changing climate. Global satellite-based

LSWT data sets (e.g. Schneider and Hook, 2010), however,

include only the two largest (> 500 km2) of them, whereas

18 out of 25 lakes presented herein have sizes between 14

and 100 km2 and 5 of them cover areas between 100 and

370 km2. Another global data set from the ARC-Lake project

(ATSR Reprocessing for Climate: Lake Surface Water Tem-

perature & Ice Cover; MacCallum and Merchant, 2012) has

recently been extended to include some of the larger lakes

with sizes < 500 km2.

Artificial water bodies or lakes used for hydro-electric

power generation are not included. In addition, Lake Woerth

has also been excluded from the data set, since AVHRR is

not able to properly resolve this narrow and elongated lake.

According to the European Environment Agency (Stanners

and Bourdeau, 1995), about 16 000 lakes in Europe are larger

then 1 km2 with ∼ 2000> 10 km2, ∼ 150 of them between

100 and 400 km2 (without man-made reservoirs) and 24 of

them covering areas > 400 km2. With this study we want to

demonstrate the potential to derive LSWT for climatologi-

cal studies from satellite data for the many lakes in Europe

within the size range between approximately 15 (depending

on the shape) and 500 km2, which is the limit used in the

study of Schneider and Hook (2010). Of course, such a data

set can hardly be provided on a global scale (with ∼ 12 300

inland waters in the range of 10 to 100 km2; Reynolds, 2007),

but it offers great potential for regional or even continental

scale climate analyses.

2.2 In situ data

The lakes in Switzerland are a representative sample for

all Central European lakes in terms of size, shape, altitude,

and climatic conditions. Therefore, the comparison of the re-

trieval of LSWT was done only for Swiss lakes.

Table 2 lists the lakes and locations with in situ data which

were available for the comparison with the LSWT retrieved

values. In contrast to the lakes of the proposed data set (Ta-

ble 1) for which the temperature has been extracted from the

lake centre, the locations with in situ observations (Table 2)
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Table 2. Summary of lakes and locations with in in situ observations of water temperatures used for the inter-comparison with the satellite

retrieval. The two values for the size of Lake Constance indicate the area of the entire lake and the area of the subsection of Lake Überlingen.

Abbreviations for the various locations are used to easily identify the chosen data set.

Lake Lake size Location Position Time Sampling Depth Abbreviation

[km2] period rate

Geneva 580
46.46◦ N, 6.40◦ E 100 m offshore 2000–2011 hourly 1 m EPFL

46.37◦ N, 6.45◦ E shoreline 1991–2011 Tmin, Tmax 1 m INRA

Constance 535 (60)

47.76◦ N, 9.13◦ E,
1 km offshore

1987–2001 hourly 0.5 m KONS

Lake Überlingen 2004–2007 hourly 0.5 m KONS

47.51◦ N, 9.75◦ E,
shoreline

1989–1996 daily mean 0.5 m BDS1

Harbour of Bregenz 1997–2009 hourly 0.5 m BDS2

Neuchâtel 215 46.90◦ N, 6.84◦ E mid-lake 2001–2012 monthly surface NBS

Zurich 88
47.30◦ N, 8.57◦ E mid-lake 1989–2008 1–2 weeks surface ZUE1

47.35◦ N, 8.53◦ E shoreline 2008–2012 daily 0.5 m ZUE2

Thun 48 46.68◦ N, 7.73◦ E mid-lake 1994–2012 monthly surface TNS

Murten 23 46.93◦ N, 7.09◦ E mid-lake 1989–2011 monthly surface MRS

Sempach 14 47.14◦ N, 8.15◦ E mid-lake 1989–2010 monthly surface SPS

represent a heterogenous data set in terms of both spatial and

temporal sampling. Some sites are placed near-shore, other

measurements were taken from the centre of the lake. The

sampling frequency ranges from hourly, daily minimum and

maximum, daily (one measurement per day), weekly (once

per week) to monthly (one observation per month).

For the largest lakes (Geneva, Constance) several locations

with hourly or daily bulk measurements (0.5–1 m depths)

covering most of the period between 1989 and 2013 were

usable. The other (smaller) lakes are usually probed verti-

cally once per month, except for Lake Zurich with daily to bi-

weekly probes. Although many of the lakes which are probed

once per month provide observations since the late 80s or

early 90s, only few coincident in situ and satellite observa-

tions were found.

2.3 MODIS data

Comparing in situ measurements with satellite-based LSWT

can give a first impression of the quality of a satellite re-

trieval, however, such a comparison includes several ele-

ments of uncertainty: (i) different scale of observations (point

vs. spatial measurement), (ii) differing depth of the mea-

surement (bulk vs. skin temperature), (iii) difference in time

and/or space (e.g. near-shore in situ observations). For these

reasons, we also performed an inter-comparison between

the standard Terra and Aqua Moderate Resolution Imag-

ing Spectroradiometer (MODIS) Land Surface Temperature

and Emissivity (LST/E) 5-Minute Level 2 Swath 1 km data

set (MOD_L2 and MYD_L2, Version 5; Wan and Dozier,

1996) and the AVHRR-based LSWT data set proposed in

this study for the years between 2000 (2002 for Aqua) and

2011. MODIS has similar characteristics as AVHRR in terms

of spatial and temporal resolution, scan angle, and swath

width. One major difference is the more accurate calibration

of MODIS (Wu et al., 2009) and higher amount of spectral

channels (36 vs. 5 or 6 for AVHRR) which can be used to

discriminate between cloudy and clear-sky pixels.

To compare the two data sets, a 3× 3 pixel matrix in the

centre of the lakes (cf. lake locations in Table 1) was ex-

tracted and the average values of this area was compared for

all concurrent overpasses which had a maximum time dif-

ference of1t =±15 minutes. Since the MOD_L2/MYD_L2

data sets do not include a water mask, only the largest lakes

were investigated to omit the presence of land pixels in the

MODIS pixel matrix.

2.4 AVHRR data

The NOAA and MetOp AVHRR data from NOAA-11, -12, -

14, -16, -17, -18, -19, and MetOp-A (M02) between 1989 and

2013 at full resolution (1.1 km× 1.1 km at nadir) have been

used for this data set. NOAA-15 has not been considered,

since the data has been found to be of lower quality than

that from the other satellites (e.g. Cao et al., 2001; Wu et al.,

2009). MetOp-B was only launched in September 2012 and

has not been considered in the current data set. Figure 2 gives

an overview of data availability per satellite and month for

this period in the archive of the Remote Sensing Research

Group at the University of Bern. The current version of the

algorithm contains both daytime and night-time data. Up to

NOAA-14, the satellites carried the five channel AVHRR/2

sensor (0.6, 0.8, 3.7, 11.0, 12.0 µm), as of NOAA-15, the six

channel AVHRR/3 (0.6, 0.8, 1.6, 3.7, 11.0, 12.0 µm) has been

flown.
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Figure 2. Number of available satellite overpasses per satellite and month for the period between 1989 and 2013. Shown are all NOAA

satellites from NOAA-11 to NOAA-19 and MetOp-A. Due to quality issues, NOAA-15 data has been excluded. MetOp-B data is also not

included in the current version of the data set, since it has only been launched in September 2012. Further data (as of 1984 and for the whole

of Europe) are available in the archive of the Remote Sensing Research Group at the University of Bern, which are currently being prepared

in an ongoing project.

For the lake surface water temperature retrieval, channel

4 (T4; ∼ 11 µm) and channel 5 (T5; ∼ 12 µm) are used in

the split-window equation (cf. Sect. 3), whereas channel 1

(∼ 0.6 µm; R0.6), channel 2 (∼ 0.8 µm; R0.8), and channel 3

(∼ 3.7 µm; T3) provide additional information for the cloud

mask and quality assessment. The pre-processing of the data,

including calibration of the visible channels, geocoding, or-

thorectification, cloud and cloud shadow detection, is de-

scribed by Hüsler et al. (2011) and Khlopenkov et al. (2010)

in more detail. For the retrieval of LSWT, thermal calibration

and stability is a key issue and the procedure to convert the

data from the raw sensor counts to the final brightness tem-

perature differs from the description in these publications.

These differences and associated effects will be discussed in

the following section.

Thermal calibration

In contrast to AVHRR channels 1 (R0.6) and 2 (R0.8), which

use vicarious calibration (Yu and Wu, 2009) based on sta-

ble reflectance targets and inter-satellite comparisons (Hei-

dinger et al., 2010), the thermal channels (3/3B, 4, and 5)

offer the possibility of on-board calibration making use of

two reference measurements, one against an internal cali-

bration target and the other by measuring into deep space

(Goodrum et al., 1999). From this, a high quality output sig-

nal would be expected. However, due to errors during the sig-

nal transmission and reception, solar contamination during

the measuring cycle (at low sun elevation), the sensor signal

might be corrupted substantially (e.g. Trishchenko, 2002; Wu

et al., 2009). The standard calibration technique of NOAA

(Goodrum et al., 1999) does only consider minor fluctuations

by averaging the calibration information (sensor signal from

measuring into deep space and an internal calibration target,

temperature measurement of the internal calibration target)

over a few scan cycles. Thus, such corruptions of the sig-

nal will partially or fully propagate into the final brightness

temperatures and may lead to errors of up to a few Kelvin

(Trishchenko, 2002).

Despite the lack of independent information to estimate

signal errors, the calibration information (signal from deep

space and internal calibration target measurement, as well as

the measured temperature of the target) provided during each

scan cycle can be analysed for consistency since the nature

of the calibration targets should lead to rather stable calibra-

tion signals with slow rates of change in time (Trishchenko,

2002). Thus, Trishchenko (2002) proposed a method to bet-

ter control unwanted fluctuations during the calibration cycle

by using a multi-stage filtering technique, which is a com-

bination of robust statistical methods and Fourier transform

filtering. For more details the reader is referred to the original

publication.

In the proposed data set, we implemented this technique

and compared the resulting brightness temperatures for chan-

nel 4 (T4) and 5 (T5) as well as the effect onto the final

LSWT retrieval. Figure 3 shows the differences in the re-

sulting channel brightness temperatures for NOAA-16 be-

tween 2001 and 2004 by comparing the average scene bright-

ness temperatures (from North Cape/Scandinavia to North-

ern Africa) when using the standard calibration method of

NOAA (orig.) and the adjusted calibration (filt.) after Tr-

ishchenko (2002). It becomes obvious that periods with sig-

nal corruptions frequently occur and the different calibration

techniques lead to temperature differences of several Kelvin.

It should be noted, however, that the data from NOAA-16

exhibits more of these spikes than other satellites which

www.earth-syst-sci-data.net/7/1/2015/ Earth Syst. Sci. Data, 7, 1–17, 2015
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Figure 3. Mean difference of the scene average brightness temperatures for AVHRR channel 4 (a) and 5 (b) for NOAA-16 between 2001

and 2004 by using the original NOAA (orig.) and adjusted (filt.) calibration according to Trishchenko (2002).

might be related to the problems with the scan motor this

satellite had (cf. NOAA Satellite and Information System,

Office of Satellite Operations, NOAA-16 AVHRR Subsys-

tem Summary, http://www.oso.noaa.gov/poesstatus/). Most

of the AVHRR-carrying satellites used for this data set show

intermittent periods with corrupted signal. Figure 4 demon-

strates the effect of using either the original NOAA (orig.) or

the adjusted (filt.) calibration methods onto the final LSWT

for a sample period in January 2002. The observations high-

lighted with the orange circle were corrupted and the ad-

justed method is capable of retaining a reliable signal. The

proposed data set has been prepared with the adjusted cali-

bration technique described above.

3 Lake water temperature retrieval

3.1 Split-window approach

The top-of-atmosphere spectral radiance Ltoa measured by

a satellite sensor can be formulated in a simplified way as

(Anding and Kauth, 1970) (for the sake of brevity wave-

length λ is omitted)

Ltoa = εLsfc(T )τ +Latm, (1)

where ε is the surface emissivity, Lsfc(T ) is the emitted

blackbody radiance at temperature T , τ is the transmittance

of the atmosphere, and Latm is the radiance emitted by the

atmospheric constituents.

Water acts almost as a black body in the thermal infra-

red (TIR) region with ε ∼ 0.99 at 11 µm (Masuda, 2006). If

the atmosphere were totally transparent, LSWT would di-

rectly be measured as the water-leaving radiation making

use of a single TIR measurement. Atmospheric trace gases

(mainly water vapour), however, act as absorbers and emit-

ters and alter the water-leaving radiation leading to a com-

bined atmosphere–surface-signal at sensor level which is

why atmospheric correction becomes necessary. Anding and

Kauth (1970) found that the differences of two neighbour-

ing TIR channels (e.g. T4 and T5) are proportional to the

correction needed which is the basis for the so-called “split-

window” technique.

Linear and non-linear correction approaches have been

proposed in the past (e.g. Walton et al., 1998). Results from

several studies (e.g. Li et al., 2001; Oesch et al., 2005)

have shown that the linear version of the multi-channel split-

window equation gives slightly better results (lower biases)

than the non-linear equation of Walton et al. (1998). Thus,

we use similar to Hulley et al. (2011) the linear multi-channel

equation

LSWT= a+bT4+c(T4−T5)+d(T4−T5)[1−sec(2v)], (2)

where T4 and T5 are the brightness temperatures of AVHRR

channel 4 (∼ 11 µm) and 5 (∼ 12 µm), sec(2v) is the secant

of the viewing angle 2v, and coefficients a to d depict the

split-window coefficients.

Earth Syst. Sci. Data, 7, 1–17, 2015 www.earth-syst-sci-data.net/7/1/2015/
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Figure 4. Comparison of lake temperatures measured in situ (solid line) and retrieved from satellite (symbols) by employing the original

(left, Goodrum et al., 1999) and adjusted (right, Trishchenko, 2002) calibration methods to NOAA-16 AVHRR data in January 2002. RT

and NN stand for the RTTOV-10 and NOAA NESDIS based retrieval of lake surface water temperature (LSWT), respectively. Encircled in

orange is a case for which the sensor signal has been corrupted during the on-board calibration procedure.

Deriving coefficients a to d can be done either by ap-

plying a fit between in situ and satellite observations (in

situ-based) or by applying radiative transfer (RT) codes with

a set of representative LSWTs to create a database of simu-

lated satellite observations (radiative transfer-based) and fit-

ting these two parameters. Various studies (e.g. Oesch et al.,

2005; Politi et al., 2012) have shown that LSWT over Eu-

rope can be derived with reasonable accuracy making use of

global split-window approaches designed for SST retrievals

by comparing in situ observations of ocean water tempera-

ture with satellite data. These methods, however, are intended

to match the global atmospheric conditions over ocean sur-

faces which may substantially differ from the continental

conditions found over some inland water bodies. Therefore,

other studies (e.g. Hulley et al., 2011; MacCallum and Mer-

chant, 2012) have elaborated more accurate methods to re-

trieve LSWT by utilising radiative transfer codes and atmo-

spheric data from numerical weather prediction (NWP) re-

analyses and/or analyses data to better reproduce the atmo-

spheric conditions in such regions and also account for the

lake specific altitude. In addition, the latter methods have the

advantage of being completely independent of in situ data

and therefore are also applicable to situations far away from

in situ observations, whereas Politi et al. (2012), for instance,

use in situ observations to adapt their retrievals for local ef-

fects.

In order to derive coefficients a to d of Eq. (2) for the

proposed data set, we made use of a simulation-based data

set for the European lakes in or near the Alps. For this,

we used a representative set of LSWTs together with at-

mospheric profiles (21 pressure levels) of temperature and

relative humidity as well as the mean sea level pressure at

lake height and 10 m wind speed. These data are available

from the European Centre for Medium-range Weather Fore-

casts (ECMWF) ERA-Interim reanalysis data (Dee et al.,

2011) and were fed into the fast Radiative Transfer for TOVS

Version 10 (RTTOV-10; Saunders et al., 2012) to create

a database of simulated satellite observations. For the LSWT

input into RTTOV-10, we used the NWP 2 m-temperature

T2 m±10 K with increments of 5 K of every cloud-free satel-

lite overpass. This was done for different regions to the north

and south of the Alps. In addition, for each overpass we used

eight different values of 2v (from 0 to 60◦). Changes in the

emissivity of lake water due to varying view geometry or en-

hanced wind speed are considered in the RTTOV-10 simula-

tions.

Finally, we derived daily split window coefficients for the

period of 1989–2013 by applying a robust multiple linear re-

gression analysis between the simulated satellite data and the

LSWT including ±180 days of simulations for the calcula-

tion of the coefficients for each day. We tried shorter and

longer time periods, but found the most accurate results (low-

est bias) for this time interval. To account for differences in

the atmospheric stratification during daytime and night-time

(especially close to the ground), we derived the coefficients

for both periods of the day separately. The intrinsic error of

the split-window equation using the above mentioned time

window (±180 d) is mostly in the range of 0.1 to 0.25 K with

a few cases up to 0.4 K.

In contrast to in situ-based split-window approaches, for

which the retrieved temperature from a satellite instrument

reflects the fitted bulk water temperatures (Tbulk), a RT-based

approach will retrieve the water temperature of a layer close

to the surface (within a few µm), the so-called skin tem-

perature (Tskin). Depending on the meteorological conditions

(e.g. incoming solar radiation, sensible and latent heat flux,

wind, etc.; Fairall et al., 1996a) and the depth of the bulk

measurement, the temperature difference 1T = Tskin−Tbulk

can be up to a few Kelvin (e.g. Wilson et al., 2013). Several

parameterisations exist to correct for this effect (e.g. Fairall

et al., 1996b), but additional input data to describe the me-

teorological conditions are necessary and are most often not

www.earth-syst-sci-data.net/7/1/2015/ Earth Syst. Sci. Data, 7, 1–17, 2015



8 M. Riffler et al.: European Alpine lake surface water temperatures

available in the needed accuracy. Herein, we use the sim-

ple wind-speed-dependent parameterisation of Minnett et al.

(2011)

1T =−0.130− 0.724exp(−0.350U10), (3)

where1T is the skin-to-bulk temperature difference andU10

is the wind speed 10 m above ground taken from the ERA-

Interim data set. Although this correction has been derived

from ocean data and may not be appropriate under all cir-

cumstances for lakes, it reduces the bias by ∼ 0.2 K between

LSWT and in situ observations in the study region. Wilson

et al. (2013) found a different behaviour of the skin effect on

the high altitude Lake Tahoe than those reported in Minnett

et al. (2011). The surroundings and valleys of the European

Alps, however, experience more moist conditions than Lake

Tahoe.

3.2 Quality testing

After the retrieval of LSWT, several tests examined on the

data ensure that the resulting temperatures are not contam-

inated with cloudy or land surface pixels. These tests en-

compass the information generated from the Cloud and sur-

face parameter retrieval (CASPR; Key, 2002), from the cloud

shadow mask (Simpson and Stitt, 1998), and additional tests,

which have been introduced to enhance the quality of cloud

and land detection over (small) inland water bodies. Dur-

ing daytime, water surfaces are generally characterised by

low reflectance values in the visible (R0.6) and near-infra-

red (R0.8) with R0.8 <R0.6 caused by higher absorption of

radiation for longer wavelength, whereas over land surfaces

chlorophyll absorption leads to R0.6 <R0.8. This informa-

tion can be used for a simple discrimination of land and wa-

ter pixels during daytime. A threshold of R0.8 < 0.08 turned

out to be appropriate for the study region and removed most

part of non-detected cloud pixels. We applied an additional

test to identify mixed (land and water) pixels making use

of the ratio between the R0.8 and R0.6 channel (cf. Schwab

et al., 1999). For cloud-free pixels fully covered with water,

the R0.8/R0.6-ratio is typically less then unity. Schwab et al.

(1999) applied a threshold of 0.75 to exclude cloudy pixels.

In our study region, this value turned out to be too strict, es-

pecially for small water bodies the ratio for cloud-free con-

ditions (visual inspection of the data) was often found to

be between 0.75 and 1.0. Therefore, we adjust this thresh-

old to 1.0, although this might cause some misclassification

over large lakes. The land-water-mask has been derived from

a combination of a Moderate Resolution Imaging Spectro-

radiometer (MODIS) reference image and the Global Self-

consistent, Hierarchical, Highresolution Shoreline Database

(GSHHS; Wessel and Smith, 1996). Pixels not fully cov-

ered by water are masked out. The LSWT retrieval is re-

stricted to −5 ◦C≤LSWT≤ 35 ◦C, which is a meaningful

range for the investigated area and colder surfaces are either

cloudy, frozen, or caused by sensor errors (Kilpatrick et al.,

Table 3. Statistical results of the scatter plots in Fig. 5 showing the

comparison between in situ observations (OBS) and the regional

LSWT-retrieval based on RTTOV-10 (RT-lswt) for various in situ

locations (cf. Table 2). Shown are the slope (k) and offset (d) of

the linear regression equation; the coefficient of determination as

square of the correlation coefficient (R2); the root-mean-square er-

ror (RMSE); the bias as the mean temperature difference and stan-

dard deviation (1T ± σ1T ) between OBS and RT-lswt; and the

number of coincident observations (N ).

Sat k d R2 RMSE Bias N

Lake Geneva, EPFL

N14 1.02 0.08 0.97 1.23 −0.52± 1.09 210

N17 1.02 0.08 0.97 1.21 −0.49± 1.11 1063

Lake Constance, KONS

N14 1.03 −0.21 0.98 1.09 −0.21± 1.07 317

N17 1.04 −0.43 0.95 1.33 −0.11± 1.33 206

Lake Constance, BDS_Bregenz

N14 0.98 −0.05 0.97 1.17 0.44± 1.08 407

N17 0.98 0.13 0.98 1.11 0.34± 1.06 838

Lake Sempach

All 1.07 −1.43 0.94 1.70 0.17± 1.70 61

Lake Murten

All 1.11 −2.12 0.95 1.64 0.30± 1.63 50

Lake Thun

All 1.02 −0.28 0.95 1.27 −0.26± 1.25 113

2001). The local standard deviation σ3×3 is calculated for

each pixel, if at least 2 out of 9 pixels are available in the

3× 3 pixel matrix. The higher the value of σ3×3, the more

likely a pixel is contaminated with clouds. Similar to Schnei-

der and Hook (2010), we apply a threshold of σ3×3 ≤ 1.0 K

to the data. As highlighted in other studies (e.g. Oesch et al.,

2005; Kilpatrick et al., 2001), increasing 2v leads to erro-

neous retrievals due to the increased instant field-of-view

(IFOV; with a pixel size of ∼2.2 km along scan direction at

2v > 45◦) causing distortions towards the edges of satellite

imagery, increased errors in the split-window equation, and

longer atmospheric path length of the lake-leaving radiance.

Therefore, retrievals with 2v > 45◦ were discarded from the

further analysis.

Specular reflection of sunlight – sun glint – over water sur-

faces leads to highly reflecting regions under particular ob-

servation and sun geometries. This effect is mostly harmful

in the visible and short wave infra-red region, whereas the

influence in the spectral range of AVHRR channel 4 (11 µm)

and 5 (12 µm) is almost negligible. In rare cases, sun glint

might cause a temperature deviation of a few tenths of a

Kelvin. We evaluated the effect by comparing in situ observa-

tions and satellite-based water temperatures with and without

sun glint. Excluding the sun glint area lowers the root mean
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Figure 5. Scatter plots with the comparison between in situ observations and the regional LSWT-retrieval based on RTTOV-10 (RT-lswt).
The upper and middle panel show the comparison between individual satellites and in situ measurement, whereas in the lower panel all
satellites together are shown, since for these lakes only few in situ measurements were available. Shown are the linear regression equation
(dash-dotted), the 95 % confidence interval of the regression line, the coefficient of determination as square of the correlation coefficient
(R2), the root-mean-square error (RMSE), the Bias as the mean temperature difference and standard deviation (∆T ±σ∆T ) between OBS and
RT-lswt, and the number of coincident observations. In situ locations are indicated in the graph titles and are explained in Table 2.
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square error (RMSE) and bias by 0.1 to 0.2 K, however, the

exclusion of these pixels brings along a substantial reduction

(> 50 %) in usable LSWTs. For this reason, we decided to

keep pixels affected by sun glint.

4 Inter-comparison with in situ and MODIS data

4.1 In situ data

The proposed data set was extensively compared with in situ

data from various lakes (cf. Table 2) with sizes between 14

and 580 km2. For this, satellite-based LSWT values in the

vicinity of the in situ locations were averaged over 3×3 pix-

els if at least 2 out of 9 clear-sky pixels were available. At in

situ locations with hourly data (cf. Table 2), the two closest

in situ observations were linearly interpolated to match the

satellite overpass. For all other in situ sampling rates (daily,

weekly, monthly), we compared measurements which were

registered on the same day as the satellite overpass. This can

cause a time difference of several hours between both mea-

surements. Possible impacts of this difference will be dis-

cussed below.

Applying the optimised split-window approach based on

RTTOV-10 (RT-lswt) reduces the bias of the retrieved LSWT

www.earth-syst-sci-data.net/7/1/2015/ Earth Syst. Sci. Data, 7, 1–17, 2015
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Figure 6. (a) Daily temperature spread (Tmax− Tmin) at 0.5 m water depth at Lake Überlingen and (b) hourly temperature differences

between 0.5 and 0.9 m water depth.

compared to a global SST approach (e.g. Oesch et al., 2005).

To demonstrate this effect, we also applied the split-window

approach presented in Oesch et al. (2005) which is based

on the global NOAA National Environmental Satellite, Data,

and Information Service (NESDIS) SST product.

First, we want to focus on the inter-comparison between

RT-lswt and in situ observations. Figure 5 and Table 3 show

a few results for various satellites and locations by applying

RT-lswt. The upper row presents the scatter plots between

NOAA-17 (AVHRR/3) LSWT-retrievals and hourly in situ

measurements from Lake Geneva (left, cf. EPFL in Table 2),

Lake Constance at the location of Lake Überlingen (centre,

KONS) and the Harbour of Bregenz (right, BDS1). The cen-

tre row exhibits the results for the same in situ locations,

but for the data of NOAA-14 carrying the AVHRR/2 sensor.

Overall, these plots demonstrate good agreement between in

situ (OBS) and satellite (SAT) temperatures with a coeffi-

cient of determination (R2) of 0.95 or higher. The bias, cal-

culated here as the mean differences and standard deviation

between OBS and SAT, can be found between 0.3± 1.1 K at

BDS1 and−0.5±1.1 K at EPFL for NOAA-17, and between

−0.5±1.2 K (EPFL) and 0.4±1.1 K (BDS1)for NOAA-14,

respectively. Negative biases mean that satellite-derived val-

ues are higher than in situ observations. EPFL and BDS1 re-

flect the retrievals for large lakes, whereas the station KONS

is located in a fjord-like part of Lake Constance, called Lake

Überlingen, which is merely 2 to 3 km wide and about 21 km

long (∼ 60 km2). This clearly demonstrates the potential of

the AVHRR-based retrieval by using the 1 km resolution data

set and even for such a narrow water body reasonable and ac-

curate temperature retrievals are possible.

Even smaller lakes or lakes with more complex topo-

graphic conditions can be used for LSWT retrieval, due

to precise geocoding and orthorectification. This is demon-

strated with the results from Lake Sempach (SPS; 14 km2),

Lake Murten (MRS; 23 km2), or Lake Thun (TNS; 48 km2).

The scatter plots from the lower row highlight the com-

parison between in situ profiles taken once per month and

satellite-derived temperatures of these three water bodies.

As stated in Sect. 2, due to the low observations frequency,

only few coincident data points have been found and, there-

fore, all satellites are put together into a single figure and

the statistics were calculated using all data pairs. Again, val-

ues of R2 > 0.94 prove that the satellite retrievals are rea-

sonable, although it has to be stated that due to the limited

number of coincident pairs the robustness of the statistics is

limited (higher confidence intervals than for hourly obser-

vations). The biases (−0.3± 1.3 K to 0.3± 1.6 K) are mod-

erately higher than for larger lakes. We attribute part of the

larger error to the fact that these comparisons are based on

observations taken on the same day, even if the time differ-

ence was several hours. Although this introduces a larger un-

certainty then the comparison with hourly data, this gives at

least a hint about the performance of the LSWT retrieval. If

the comparison was restricted to a smaller time difference,

this would have resulted in almost no concurrent data points.

The results from the narrow Lake Überlingen with a sim-

ilar size and shape like these three small lakes (cf. KONS

in Fig. 5) support the assumption that the larger error might

be caused by the potentially larger time difference between

the observations. To further assess the impact of such a time

difference, we used the hourly resolved data set at KONS

to calculate the spread between daily minimum and maxi-

mum temperature at 0.5 m depth. The resulting range is typ-

ically between 1 and 3 Kelvin and can be up to 4 to 5 Kelvin

(cf. Fig. 6a), especially during summer months and is mostly

driven by the radiation budget and the meteorological condi-

tions (Hook et al., 2003; Minnett et al., 2011). Periods with

Earth Syst. Sci. Data, 7, 1–17, 2015 www.earth-syst-sci-data.net/7/1/2015/
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Figure 7. Scatter plots with the comparison between the MODIS Terra and Aqua Land Surface Temperature and Emissivity data set and
the AVHRR LSWT-retrieval based on RTTOV-10 (RT-lswt). The upper panel shows the comparison between NOAA-16 and MODIS Aqua,
the central panel shows NOAA-17 and MODIS Terra, the lower panel shows NOAA-18 and MODIS Aqua. Statistical results include the
linear regression equation (dash-dotted), the 95 % confidence interval of the regression line, the coefficient of determination as square of
the correlation coefficient (R2), the root-mean-square error (RMSE), the Bias as the mean temperature difference and standard deviation
(∆T ±σ∆T ) between MODIS and RT-lswt, and the number of coincident observations (within ±15 minutes). The position of the lakes is
shown in Table 1 and Fig. 1.
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large amounts of incoming solar radiation and/or calm situa-

tions will cause large diurnal temperature variations, whereas

cloudy (low incoming solar radiation) or windy days will re-

distribute the energy more evenly in the uppermost layers

leading to a lower spread (Oesch et al., 2005). Therefore,

the uncertainty introduced into the inter-comparison by using

the data with time differences of several hours is larger than

for the hourly resolved data. In addition, the amount of data

pairs is biased toward summer observations, because periods

with persistent coverage of low level clouds can frequently

be found during winter months. Comparing night-time data

would generally lead to lower differences (e.g. Wilson et al.,

2013), however, the monthly profiles were all taken during

daytime.

Not only do differences in the observational times intro-

duce uncertainty to the analysis, but also physical reasons

behind the measurement techniques. Whereas in situ mea-

surements are often carried out in a depth of 0.5 to 1.0 m,

satellite sensors observe a sub-micron (skin) layer at the wa-

ter surface. Although we did not have in situ profiles from the

water surface (skin layer) to deeper layers available to exactly

quantify the resulting difference, some information about the
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Table 4. Statistical results of the comparison between Terra/Aqua

MODIS LST/E (MOD11_L2/MYD11_L2) and the regional

AVHRR-based LSWT-retrieval for various lakes (cf. Table 1).

Shown are the slope (k) and offset (d) of the linear regression equa-

tion; the coefficient of determination as square of the correlation co-

efficient (R2); the root-mean-square error (RMSE); the bias as the

mean temperature difference and standard deviation (1T ± σ1T )

between AVHRR and MODIS; and the number of coincident obser-

vations (N ).

Location k d R2 RMSE Bias N

NOAA-16 AVHRR and Aqua MODIS

Lake Geneva 1.06 −0.25 0.99 0.9 −0.4± 0.8 30

Lake Constance 1.06 −0.50 0.99 0.9 −0.5± 0.8 37

Lake Maggiore 1.04 −0.79 0.99 0.9 0.2± 0.8 30

NOAA-17 AVHRR and Terra MODIS

Lake Geneva 1.05 −0.17 0.99 0.8 −0.5± 0.7 98

Lake Constance 1.05 −0.24 0.99 0.9 −0.5± 0.7 85

Lake Maggiore 1.01 −0.01 0.99 0.7 −0.2± 0.6 72

NOAA-18 AVHRR and Aqua MODIS

Lake Geneva 1.01 −0.26 0.99 0.6 −0.1± 0.6 63

Lake Constance 1.02 −0.06 0.99 0.7 −0.3± 0.7 53

Lake Maggiore 1.00 −0.06 0.97 0.9 0.1± 0.9 42

potential impact can be seen from Fig. 6b. The curve de-

picts the instantaneous temperature differences between 0.5

and 0.9 m depth at KONS for the period 2004–2007, which

frequently exceed values of 0.5 K, especially during summer

months. The differences are largest for calm and cloud-free

situations with high incoming solar radiation. Thus, we ap-

plied a skin-to-bulk correction (Minnett et al., 2011), as de-

scribed in Sect. 3, which lowers the bias (∼ 0.2 K) between

in situ and satellite-based temperature in order to adjust the

satellite-based retrieval towards the bulk temperatures.

A third factor of uncertainty arises from the fact that some

of the in situ measurements used for the inter-comparison

are close to or directly captured at the shore of the lakes.

Although the corresponding satellite pixels were extracted as

near as possible, these two locations might be separated a few

kilometres from each other, depending on the complexity of

the shoreline structure. To estimate the impact of this uncer-

tainty, several measurements in a specific region would be

necessary. However, such a data set was not available for this

study.

4.2 MODIS data

To overcome some of the uncertainties in the comparison

between in situ observations and satellite retrieval, we also

compared the proposed data set with the MOD11_L2 (Terra)

and MYD11_L2 (Aqua) LST/E data set. Figure 7 displays

all concurrent (±15 min) and valid satellite observations, Ta-

ble 4 exhibits the corresponding statistics. Both retrievals

are in good agreement with RMSEs between 0.6 and 0.9 K

Figure 8. Comparison of monthly mean water temperatures derived

from in situ and satellite observations at Lake Constance between

1989 and 2009. The statistical parameters are described in Fig. 5.

and biases between −0.5 and 0.2 K. AVHRR-based LSWTs

tend to be slightly warmer than MODIS-based temperatures

with a slope between 1.0 and 1.06. The inter-comparison be-

tween in situ measurements and AVHRR does not indicate

that AVHRR-based temperatures are generally warmer dur-

ing summer time.

The remaining differences between AVHRR and MODIS

could be a slightly different performance of the split-window

algorithm (intrinsic error), differences due to calibration ac-

curacy, or different performance of the automated cloud clas-

sification. For the latter, we found several scenes by visual

inspection for which clouds were not properly detected in

the MODIS LST/E product during night-time. These scenes

were excluded in the comparison. Likewise, the AVHRR

cloud detection scheme also misclassified cloudy pixels as

clear-sky in some cases. These scenes were not excluded

from the comparison.

5 Multi-satellite time series

To generate a time series of LSWT for the period between

1989 and 2013, the data from several AVHRRs, flown on

various NOAA and MetOp satellites, is necessary. As a con-

sequence, the stability of the retrieval (consistency of the

resulting data) is crucial. In addition, especially the early

satellites (NOAA-11, -12, and -14) experienced a strong or-

bital drift (Ignatov et al., 2004). For the afternoon platforms

like NOAA-11 and NOAA-14 this could lead to an artificial

trend, as over the lifespan of the satellites the local time of

observation tended to shift toward late afternoon or evening.

Both effects will be discussed in the following paragraphs.
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Table 5. Statistical parameters for all satellites at Lake Constance (BDS1 and BDS2) and Lake Geneva (EPFL) by using the regional LSWT-

retrieval based on RTTOV-10 (RT-lswt) and NOAA NESDIS (NN-lswt; Oesch et al., 2005). Shown are the coefficient of determination as

square of the correlation coefficient (R2); the root-mean-square error (RMSE); the bias as the mean temperature difference and standard

deviation 1T ±σ1T between OBS and LSWT; and the number of coincident observations. The comparison for NOAA-11 and -12 at EPFL

is missing due to the lack of in situ data for that time.

Sat
RTTOV-10 NOAA NESDIS

N

R2 RMSE Bias R2 RMSE Bias

Lake Constance, BDS1 and BDS2

N11 (BDS1) 0.95 1.6 0.3± 1.5 0.95 1.7 0.1± 1.7 362

N12 (BDS1) 0.95 1.4 0.9± 1.1 0.97 1.2 0.2± 1.2 224

N14 (BDS1) 0.98 1.2 0.2± 1.1 0.97 1.4 −0.5± 1.3 167

N12 (BDS2) 0.98 1.2 0.8± 1.0 0.98 1.1 −0.1± 1.1 116

N14 (BDS2) 0.97 1.2 0.4± 1.1 0.97 1.2 −0.3± 1.3 407

N16 (BDS2) 0.98 1.1 0.4± 1.0 0.97 1.2 0.3± 1.3 444

N17 (BDS2) 0.98 1.1 0.3± 1.1 0.97 1.2 0.4± 1.2 838

N18 (BDS2) 0.98 1.1 0.6± 0.9 0.97 1.1 0.1± 1.1 431

N19 (BDS2) 0.98 1.2 0.8± 1.0 0.97 1.0 0.2± 1.0 87

M02 (BDS2) 0.98 0.8 0.4± 0.8 0.98 0.8 −0.1± 0.8 176

All 0.97 1.2 0.6± 1.1 0.97 1.3 0.2± 1.3 3251

Lake Geneva, EPFL

N11 – – –

N12 – – –

N14 0.97 1.2 −0.5± 1.2 0.97 1.7 −1.3± 1.2 201

N16 0.97 1.3 −0.5± 1.1 0.97 1.5 −0.6± 1.3 556

N17 0.97 1.2 −0.5± 1.1 0.96 1.4 −0.5± 1.3 1063

N18 0.97 1.1 −0.1± 1.1 0.97 1.3 −0.4± 1.3 830

N19 0.97 1.1 −0.2± 1.1 0.96 1.4 −0.6± 1.4 395

M02 0.96 1.1 −0.4± 1.0 0.97 1.4 −0.9± 1.1 280

All 0.97 1.2 −0.4± 1.1 0.97 1.4 −0.6± 1.3 3101

To evaluate the general cross-platform stability of the re-

trieval, Table 5 shows an overview of the inter-comparison

statistics for the regional adapted retrieval (RT-lswt) for each

satellite. In addition, the results for the global approach

(based on NOAA NESDIS, NN-lswt; Oesch et al., 2005) are

listed as well to enable the comparison between both meth-

ods. Although the results for Lake Constance at BDS1 and

BDS2 are rather similar, the regional method RT-lswt gener-

ally outperforms the global approach NN-lswt indicated by

lower biases and RMSEs (this also holds true for all other

lakes and locations). The drop of the RMSE at Lake Con-

stance for the comparison between BDS1 and BDS2 can

be attributed to the change from daily (BDS1) to hourly

(BDS2) in situ data. Considering the EPFL data compar-

ison for NOAA-14, -16, -17, -18, -19, and MetOp-A, for

which period time sampling and location of the in situ lo-

cation have not changed, one can see that across the different

satellites the LSWT retrieval is stable within∼ 0.3 K (RMSE

and bias). The same comparison for NN-lswt exhibits a sta-

bility within∼ 0.6 K. One problem with the NOAA NESDIS

approach is that the split-window coefficients have not been

calculated for all satellites in a consistent manner resulting in

uncertainties of the final LSWTs.

Calculating the total bias over all satellites results in

0.6± 1.1 (RT-lswt) and 0.2± 1.3 (NN-lswt) for Lake Con-

stance (BDS1/2), respectively, and −0.4± 1.1 (RT-lswt) and

−0.6±1.3 (NN-lswt) for Lake Geneva (EPFL), respectively.

The bias of all satellites combined at Lake Zurich is 0.1±1.2

(RT-lswt) and −0.8± 1.7 (NN-lswt), respectively. At Lake

Neuchâtel we get 0.1± 1.2 (RT-lswt) and −0.3± 1.3 (NN-

lswt), respectively. NN-lswt generally exhibits slopes of the

regression equation around 1.1 meaning that especially dur-

ing summer months temperature is overestimated with the

NOAA NESDIS coefficients in use, whereas for RT-lswt the

slope is close to unity.

Analysing only the scatter plots can mask the effect of or-

bital drift, since concurrent observations with the smallest

time difference are ideally compared with each other (ex-

cept for daily or monthly data). Consequently, a resulting

time series will be more useful to evaluate whether or not

artificial warming or cooling trends can be detected in the

satellite-retrieved surface water temperatures. For this rea-

son, a monthly mean temperature time series out of the data

www.earth-syst-sci-data.net/7/1/2015/ Earth Syst. Sci. Data, 7, 1–17, 2015
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Figure 9. Seasonal mean water temperature and linear trends derived from in situ (dash-dotted) and satellite (solid) observations at Lake

Constance for the period 1989 to 2009. Seasons are defined as JFM (January-February-March, winter), AMJ (April-May-June, spring), JAS

(July-August-September, summer), and OND (October-November-December, autumn).

from BDS1 and BDS2, which covers the period from 1989 to

2009, was created and compared with the satellite time series

for the same location and time period. Similar to Schneider

and Hook (2010), we also used the robust locally weighted

regression smoothing (LOWESS; Cleveland, 1979) to over-

come the issue of sampling biases due to data gaps in the

LSWT time series caused by cloud cover.

Figure 8 displays the comparison of the monthly means

at Lake Constance between in situ measurements (BDS1

and BDS2) and the LOWESS filtered satellite time series.

The agreement is very good with R2
= 0.99, the RMSE and

bias are 0.9 K and 0.5± 0.7 K, respectively. We then ar-

ranged the monthly means into seasonal means computing

the average of January-February-March (winter), April-May-

June (spring), July-August-September (summer), October-

November-December (autumn) following the procedure of

Schneider and Hook (2010). Finally, the trends were esti-

mated by an ordinary linear regression analysis. Figure 9

shows the seasonal means and linear trends for Lake Con-

stance, solid lines indicate the satellite-derived seasonal av-

erages and linear trends, the dash-dotted lines the ones de-

rived from the in situ data. The observed differences be-

tween in situ and satellite trends are similar to the differences

presented by Schneider and Hook (2010). The observed

trends between +0.01 ◦Cyr−1 (summer) and +0.12 ◦Cyr−1

(spring) are slightly lower then the ones from Schneider and

Hook (2010), but the presented time series is shorter and

these trends fit well in the range of the study of Adrian et al.

(2009), who found a temperature increase of 0.054 ◦Cyr−1

based on in situ measurements over the last 30 years. Ac-

cording to these results, the drifting orbits of the satellites do

not have an effect onto the final LSWT data set.

6 Summary and conclusions

The radiative transfer-based LSWT retrieval presented herein

is a state-of-the-art method to derive lake water temperature

from daytime and night-time AVHRR sensor data indepen-

dently of in situ measurements. Similar to other studies, we

have shown that such an approach will lead to more accu-

rate LSWT retrievals than with a method designed for global

SST retrieval. Initially, the pre-processing of AVHRR data

is an important step and, although the thermal channels of

AVHRR feature on-board thermal calibration, special treat-

ment of the sensor signal is needed to guarantee a good qual-

ity of observed brightness temperatures.

The inter-comparison with in situ observations exhibits bi-

ases in the range of −0.5 to 0.6 K and RMSEs of 1.0 to

1.6 K. Potential error sources are the intrinsic error of the

split-window equation in use (0.1–0.4 K), uncertainties in the

spatio-temporal match-up between satellite and in situ mea-

surements, and undetected cloud pixels (especially thin cir-

rus clouds). Results for small (> 14 km2) and medium-sized

lakes are similar to large lakes like Lake Constance and Lake

Geneva which also highlights the need for precise geocoding

and orthorectification of AVHRR data. A comparison with

the Terra/Aqua MODIS LST/E product shows good agree-
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ment between both data sets with RMSEs between 0.6 and

0.9 K and biases between −0.5 and 0.2 K, respectively.

Creating a time series of data from several satellites re-

quires good cross-platform consistency. The stability of the

LSWT retrieval is found in the order of ∼ 0.3 K. Moreover,

orbital drift, which was especially observed with the early

satellites (NOAA-11 and NOAA-14), could potentially intro-

duce artificial warming or cooling trends. However, we were

able to demonstrate with data from Lake Constance that no

artificial trend due to orbital drift is visible in the data if both

daytime and night-time data are used together and that the

resulting trends are similar to the one observed in other stud-

ies. Thus, the proposed data set could help to analyse the

warming trends of the lakes in or near the Alps over the past

25 years and how lakes with different morphological charac-

teristics react to climate change.

The inter-comparison with in situ data demonstrated that

AVHRR data not only provide spatially consistent informa-

tion on LSWT, but also enable the extension of in situ time

series back in time. Therefore, this data set can be seen as

an important contribution to climate observations; e.g. many

lakes in Switzerland are only monitored on an irregular basis.

The current version of the data set is available for all ma-

jor lakes in or near the European Alps with sizes between

14 and 580 km2 for the time from 1989 to 2013. Further im-

provements to the data set will be the expansion back in time

(early 1980s) and spatially to the main water bodies in the

whole of Europe since AVHRR is the only sensor offering

such long time series. The influence of volcanic aerosols to

the retrieval will also be evaluated.
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