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Abstract. The coastDat data sets were produced to give a consistent and homogeneous database mainly for
assessing weather statistics and climate changes since 1948, e.g., in frequencies of extremes for Europe, es-
pecially in data sparse regions. A sequence of numerical models was employed to reconstruct all aspects of
marine climate (such as storms, waves, surges, etc.) over many decades. The acronym coastDat stands for
the set of consistent ocean and atmospheric data, where the atmospheric data where used as forcing for the
reconstruction of the sea state. Here, we describe the atmospheric part of coastDat2 (Geyer and Rockel, 2013;
doi:10.1594/WDCC/coastDat-2_COSMO-CLM). It consists of a regional climate reconstruction for the entire
European continent, including the Baltic Sea and North Sea and parts of the Atlantic. The simulation was done
for 1948 to 2012 with the regional climate model COSMO-CLM (CCLM) and a horizontal grid size of 0.22
degree in rotated coordinates. Global reanalysis data of NCEP1 were used as forcing and spectral nudging was
applied. To meet the demands on the coastDat data set about 70 variables are stored hourly.

1 Motivation

The precursor of coastDat2, coastDat1 (Weisse et al., 2009),
was widely used. About 50 % of the coastDat1 users were
commercial, while 25 % were academic and another 25 %
were from the authorities. Applications range from assess-
ing long-term variability and change to risk assessment and
design, for example of offshore wind farms. As coastDat1
terminated in 2007, and as there were strong requests for
an upgrade comprising the most recent years at higher spa-
tial resolution, the coastDat2 effort was implemented. The
atmospheric part of coastDat2 described in this paper was
produced with the community model COSMO-CLM on the
current super computer of the German Climate Computing
Center (DKRZ). It is the successor of the coastDat1 regional
atmospheric simulation done with REMO5.0 (Feser et al.,
2001; Jacob et al., 2001). For coastal areas the higher res-
olution is the main advantage. The overall advantage is the
availability of the last 5 years.

2 Model setup

For the reconstruction the COSMO model in CLimate
Mode (COSMO-CLM) version 4.8_clm_11 (Rockel et al.,
2008; Baldauf et al., 2011; Steppeler et al., 2003) was
used. The COSMO model is the non-hydrostatic opera-
tional weather prediction model applied and further devel-
oped by the national weather services affiliated in the COn-
sortium for SMall-scale MOdeling (COSMO). The climate
mode is applied and developed by the Climate Limited-
area Modelling Community (http://www.clm-community.
eu). The use of the model is well supported by the
members of the community and documented mainly via
the COSMO documentation (http://www.cosmo-model.org/
content/model/documentation/core/default.htm).

The simulation was done on a regular grid in rotated co-
ordinates with a rotated pole at 170.0◦W and 35.0◦ N with
a resolution of 0.22◦, a time step of 150 s and hourly out-
put. Figure1 presents the model domain; 40 vertical levels
up to 27.2 km height and 10 soil levels down to 11.5 m depth
were used. Spectral nudging aftervon Storch et al.(2000)
was applied for large-scale wind speed components in the
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Figure 1. Orography [m] of model domain of cpastDat2-CCLM
(colored area). The white frame indicates the 10 pixel wide sponge
zone. The red boxes define the borders of the eight European stan-
dard evaluation domains defined byRockel and Woth(2007).

upper levels (above 850 hPa) to enforce the observed large-
scale circulation. Every fifth time step, in both directions, the
information of the five largest wavelengths was nudged with
a nudging factor of 0.5. A detailed description of the tech-
nique was provided byMüller (2003, p. 50). At the lateral
boundaries the relaxation scheme byDavies(1976) was ap-
plied. The affected 10 grid boxes, the sponge zone, are cut
off for all time series data of the set.

Meteorological initial and boundary conditions were taken
from the 6 hourly NCEP1 reanalysis data (Kalnay et al.,
1996; Kistler et al., 2001). The simulation was initialized on
first of January 1948 with interpolated fields for the air tem-
perature, zonal and meridional wind component, specific wa-
ter vapor content, specific cloud water content, surface spe-
cific humidity, skin temperature for sea points, thickness of
surface snow amount and volume fraction of soil moisture.
The interpolation to the coastDat2-CCLM grid was done by
the model chain part int2lm v1.9_clm5 (Schättler, 2011). The
soil moisture values of the coarse NCEP grid require more
spin up time than the few days required by atmospheric fields
(Denis et al., 2002). Therefore it is necessary to run the model
for a certain time and to restart with the gained soil moisture
fields. Figure 2 shows the development of the moisture for
area means of layers 1–8 for the European standard evalua-
tion areas (Rockel and Woth, 2007) adopted by Christensen
and Christensen (2007, p. 22). The layers 9–10 are hydro-
logically not active, the water draining through layer 8 was

Figure 2. Soil moisture content [m] for the eight European sub-
regions of Fig.1. Crosses: initial value; dashed lines: monthly mean
of spin up run; solid: monthly mean of the final (restarted) simula-
tion. The colors belong to the soil levels.

added to the runoff. Layer 7 and 8 have the same start value of
0.33 m. The end of the spin up period is where both soil mois-
ture fields (soil moisture content of spin up simulation and
soil moisture content of coastDat2-CCLM) converge. The re-
quired time depends on the accuracyof the initial condition
and therefore differs between the regions. The largest spin
up time of 5 years can be found for eastern Europe. There-
fore we choose 1948–1952 as spin up time and restarted the
coastDat2-CCLM simulation on the first of January 1948 as
before with the same initial conditions except for soil mois-
ture, where we used the gained values from the spin up sim-
ulation.

Land surface processes were parameterized with the
TERRA-ML scheme (Schrodin and Heise, 2001; Doms et al.,
2011). For sea points the NCEP1 skin temperatures were
used as lower boundary condition. Cumulus convection was
parameterized using the Tiedtke scheme (Tiedtke, 1989).
Clouds were determined by the prognostic variables cloud
water and cloud ice. We used a fifth order Runge–Kutta time
integration scheme.

The hourly output was written in netCDF following the
CF-conventions 1.4 (Eaton et al., 2009). In the appendix (Ta-
bleA1) all output variables are listed.

3 External data

Beside the meteorological lateral boundary conditions in-
formation on climatologically constant data has to be pre-
scribed in the model: the surface height and orographic
roughness length were taken from the gtopo30 data set of the
Distributed Active Archive Center (US Geological Survey,
2004), the land–sea fraction, parameters of vegetation, leaf
area, and root depth from the Global Ecosystems V2.0. The
soil type was taken from the Food and Agriculture Organi-
zation of the United Nations (FAO). The climatological deep
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Figure 3. Mean differences of monthly mean 2 m air temperatures [K] from 1950 to 2012: coastDat2-CCLM minus E-OBS8.0.

soil temperature was taken from the CRU (Climate research
Unit at the University of East Anglia). To generate a file with
the merged information on the model grid, the so-called PrE-
Processor (PEP) was used. Detailed information on the data
as well as the preprocessor is given bySmiatek et al.(2008).
The list of used climatological input variables are included in
TableA1.

4 Evaluation

The evaluation was done for several parameters. The user de-
mands are manifold, ranging from coastDat-internal forcing
for the wave model via air chemistry models to research in
the field of wind energy. In this paper we show data set com-
parisons for the most user-requested quantities: 2 m tempera-
ture, total precipitation, wind speed, cloud cover, and height
of boundary layer.

4.1 Reference data sets

The evaluation of the data set for air temperature, precipi-
tation, wind, and cloud cover was done by using common
gridded data sets: E-OBS of the ENSEMBLES project ver-
sion 8.0 (van den Besselaar et al., 2011; Haylock et al.,
2008), CRU version ts_3.2 (Jones and Harris, 2011), GPCC

(Global Precipitation Climatology Centre), version 6 (Rudolf
et al., 2010), and REGNIE from Deutscher Wetterdienst (Di-
etzer, 2000). For comparison of the height of boundary layer
we used station data for Lindenberg, Germany (Beyrich and
Leps, 2012).

4.2 Near-surface air temperature

Figure 3 shows the mean differences between the monthly
means of air temperature at 2 m height of coastDat2-CCLM
and E-OBS8.0 for 1950–2012. The E-OBS data were inter-
polated to the rotated grid of CCLM.

From April to September, the differences are between
−1 ◦C and 1◦C for wide areas of mid-Europe. High differ-
ences with values up to−6 and+6 ◦C occur over Iceland
(in winter) and North Africa (in summer), respectively. After
Einarsson(1984), the highest Icelandic climatological sta-
tion is at Hveravellir at 642 m – the CCLM model orogra-
phy reaches to 1560 m around Vatnajökull. This can be a
reason for the huge deviation between model and gridded
observation. Similar toBromwich et al.(2005), who were
using Polar-MM5 for their 8 km resolution Iceland simula-
tion, we have mean January 2 m temperatures for 1991–2000
of −12◦C. Bromwich found a cold bias of up to 1 K during
winter in the northern part of Iceland in his simulations.
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Figure 4. Correlations between coastDat2-CCLM and E-OBS8.0 of monthly mean 2 m air temperatures from 1950 to 2012.

Figure 5. Differences of mean diurnal temperature range [K] from 1950 to 2012: coastDat2-CCLM minus E-OBS8.0.
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Figure 6. Differences of mean monthly sums of total precipitation [mm] from 1950 to 2012: coastDat2-CCLM minus E-OBS8.0.

For Africa Kothe et al.(2014) found that the used albedo
values are to low compared to satellite data (Kothe et al.,
2014, Fig. 2), which leads to higher temperatures in summer.
At the time when the coastDat2-CCLM simulation was
started the new albedo data set was not yet available. The
statistical significance on the 0.05 % level of the 2 m tem-
perature differences was tested separately for 12 month to
avoid auto correlation. It yields for large regions statistically
significant values between observation and CCLM simula-
tion. This result is, however, not surprising because of in-
herent model biases of the forcing NCEP1 data. To give an
additional hint on the quality of the time series in Fig.4, the
correlations between CCLM and E-OBS8.0 are shown. Here
the correlations are over large areas statistically significant
and coastDat2-CCLM represents a large part of the observed
variance.

The precursor data set, coastDat1, was used as forcing
for biosphere models (e.g., (Jung et al., 2007) or (Vetter
et al., 2008)), where the diurnal cycle has major impor-
tance. Therefore, we determined the differences of the di-
urnal temperature range. It was calculated as the difference

between daily maximum 2 m air temperature and daily min-
imum 2 m air temperature. The means of the monthly mean
differences between coastDat2-CCLM and E-OBS8.0 for the
period 1950–2012 are shown in Fig.5.

There is a tendency to underestimate the diurnal temper-
ature range for wide areas all over the year, except for the
part of North Africa contained in the model domain. The
differences in the maximum 2 m air temperature are highest
for April–August. In the North African part the coastDat2-
CCLM temperatures are several degrees higher than the val-
ues of E-OBS and in the northeastern parts of Europe they
are several degrees lower than the observations (not shown).
The differences between the two data sets in minimum 2 m
air temperature are much smaller, with the highest deviations
occurring for Africa from June to August (not shown). The
main source for the differences in the diurnal temperature
range is the difference in maximum 2 m air temperature.

4.3 Precipitation

Figure 6 shows the mean differences between the monthly
sums of total precipitation of coastDat2-CCLM and
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Table 1. Seasonal-mean minimal differences of precipitation [%] over land between coastDat2-CCLM and the ensemble of the three obser-
vational data (E-OBS, CRU, GPCC) for 1950–2010 and the eight European sub-regions of Fig.1: British Islands (A1), Iberian Peninsula
(A2), France (A3), mid-Europe (A4), Scandinavia (A5), Alps (A6), Mediterranean (A7), eastern Europe (A8). Values less than 10 % are
printed bold.

A1 A2 A3 A4 A5 A6 A7 A8

DJF −1.2 3.9 6.4 15 20 7.8 −0.3 24
MAM 2.1 0.2 1.1 7.7 43 9.5 −1.8 11
JJA −9.6 −34 −29 −23 2.1 −17 −42 −33
SON −9.4 −17 −14 −6.7 7.0 −14 −23 −16

Figure 7. Differences of mean monthly sums of total precipitation [mm] from 1950 to 2010: coastDat2-CCLM minus GPCC6.

E-OBS8.0. The basis is the period 1950–2012, the E-OBS
data are interpolated to the rotated grid of CCLM. Main de-
viations occur on the one hand in spring over Scandinavia
and the northeastern part of the model domain, with more
simulated precipitation than E-OBS reconstructed. On the
other hand, we have less precipitation in southeastern Europe
in summer. The tendency to precipitation values higher than
E-OBS8.0 in Northern Europe is stronger and occurs over
the entire year in the precursor atmospheric simulation with
REMO-SN (belonging to coastDat1) as well as the lower val-

ues in July to September in southern part of mid-Europe (not
shown).

To give a hint which patterns of differences depend on
the choice of the gridded observational data set, we added
the plot of mean differences between the monthly sums
of total precipitation of CCLM and GPCC6 (Fig.7). The
basis is the period 1950–2010, the GPCC data are inter-
polated to the rotated grid of CCLM. The lower summer
values for southeastern Europe are more pronounced in
this comparison than in the comparison with E-OBS8.0, as
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Figure 8a. Area mean monthly sums of total precipitation of December, January, and February of 1950–2010: coastDat2-CCLM (red), range
of GPCC6, E-OBS8.0 and CRU3.2 for each season (gray filled).

GPCC6 shows 5–10 mm higher monthly summer precipita-
tion in eastern Europe (not shown). Strong deviations be-
tween GPCC6 and E-OBS8.0 occur for Iceland from Octo-
ber to April and Turkey from December to February, with
up to 100 mm month−1 and up to 60 mm month−1, respec-

tively, more precipitation in E-OBS8.0. Less precipitation is
indicated in E-OBS8.0 with 60 to 100 mm month−1 in win-
ter for Sistema Central and Adriatic coast respectively. For
November to April the Alpine precipitation deviates with up
to 100 mm month−1 more precipitation in E-OBS8.0.
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Figure 8b. Area mean monthly sums of total precipitation of March, April, and May of 1950–2010: coastDat2-CCLM (red), range of
GPCC6, E-OBS8.0 and CRU3.2 for each season (gray filled).

To use the information on the spread of the data sets based
on observations (E-OBS, GPCC and CRU), we calculated the
mean minimal differences between coastDat2-CCLM and the
three observational data sets and listed them as percentages
in Table1.

To summarize the results, we find especially good agree-
ment for December–May for the British Islands (A1), Iberian
Peninsula (A2), France (A3), the Alps (A6) and Mediter-
ranean (A7); deviations are below 10 % of mean observa-
tional value. The main systematic negative deviations occur
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Figure 8c. Area mean monthly sums of total precipitation of June, July, and August of 1950–2010: coastDat2-CCLM (red), range of GPCC6,
E-OBS8.0 and CRU3.2 for each season (gray filled).

from June to August for the Iberian Peninsula (A2), June
to November for Mediterranean (A7) and June to August
in eastern Europe (A8), while systematic highest positive
deviations are found from December to May in Scandinavia
(A5). In addition to the table, we show the monthly mean

time series of the eight regions for coastDat2-CCLM and for
the range of all the three observational data sets. The months
are sorted by season in Fig.8a–d. Each season of each year
consist of a red line from CCLM-values and a gray area for
the range of the three monthly mean observational values. As
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Figure 8d. Area mean monthly sums of total precipitation of September, October, and November of 1950–2010: coastDat2-CCLM (red),
range of GPCC6, E-OBS8.0 and CRU3.2 for each season (gray filled).

some users of our data set are interested in especially dry or
wet seasons, we show absolute values. It becomes clear, that
the deviations between the observational data sets are huge
(e.g., for Mediterranean from June to November or the Alps

in summer). But nevertheless the model mean is outside the
gridded observational data set range in various cases.

The REGNIE data set has a very high spatial resolution
of 1 km grid spacing covering the entire geopraphic region
of Germany. As the data are daily resolved we have the
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Figure 9. Histogram of Germany mean daily precipitation sums [mm] from 1951 to 2009: REGNIE (red bars), coastDat2-CCLM (blue
bars), and E-OBS8.0 (shaded).The frequency is given in %.

Figure 10. Validation of near-surface wind speeds: quantile–
quantile plot for Atlantic offshore conditions (left: 2007–2012, plat-
form K1 height corrected) and near-shore Mediterranean conditions
(right: 2000–2012, buoy Athos).

possibility of statistics on a daily basis. Figure9 shows a his-
togram of area mean daily precipitation for Germany. The
borders of the classes were chosen following the recommen-
dation of the Global Precipitation Climatology Project.

The shape of the REGNIE distribution function is gener-
ally well reproduced in coastDat2-CCLM. However, only for
the two classes from 1.7 to 3 mm day−1 for all seasons the
three data sets (REGNIE, coastDat2-CCLM and E-OBS8.0)
show the same frequencies. For all other classes no consis-
tent statement concerning relation between the data sets is
possible.

4.4 Wind

The modified Brier skill score was calculated followingWin-
terfeldt et al. (2010). They found an added value of the
regional atmospheric simulation of coastDat1, done with
REMO5.0, compared to the forcing reanalysis of NCEP with
satellite data of quikScat near the coasts. These findings were
reproduced for the coastDat2-CCLM data set. Important for
users of our wind data is the proofed good offshore quality
of the surface wind data, although the Brier skill score for
wide offshore fields is negative, meaning that NCEP1 data
has a higher agreement with observations than coastDat2-
CCLM. As shown for the precursor data set, coastDat1, by
Sotillo et al.(2005, Fig. 7), the quality (e.g., at platform K1)
is very good. Following the idea ofSotillo et al., our Fig.10
shows the quantile–quantile plot of observation vs. model
data (blue coastDat2-CCLM and red NCEP1). On the left
hand side, results are for Atlantic buoy K1 (at 48.701◦ N,
12.401◦W) and on the right hand side for Aegean Buoy
Athos (at 39.97◦N, 24.72◦ E). K1 observations were interpo-
lated from anemometer height of 3 m to 10 m. A logarithmic
wind profile was assumed, and the roughness length was cal-
culated with the Charnock relation depending on the wind
speed (Stull, 1988). The NCEP1 data were linearly interpo-
lated in time to hourly values. For the Mediterranean buoy
Athos NCEP1 data were interpolated to the measurement
output interval of 3 h. The quality of the wind fields from
coastDat1 and coastDat2 is comparable with the tendency of
better representation of high wind speeds in coastDat2.

www.earth-syst-sci-data.net/6/147/2014/ Earth Syst. Sci. Data, 6, 147–164, 2014



158 B. Geyer: High-resolution atmospheric reconstruction: coastDat2

Figure 11. Differences of mean monthly means of total cloud cover [1] from 1950 to 2010: coastDat2-CCLM minus CRU3.2.

4.5 Total Cloud Cover

The comparison of the total cloud cover of coastDat2-CCLM
and CRU data is shown in Fig.11. For most of the months
and most of the areas the differences are below 10 %. The
highest differences occur from June to August over North
Africa and March to August over Scandinavia. For most of
the year, the differences for Greenland are high.

4.6 Height of planetary boundary layer

Observational data for the height of the boundary layer are
hardly available. As this variable is especially important
when the coastDat data set is used for air chemistry ap-
plications (i.e., to simulate the transport of harmful sub-
stances), we show at least a comparison for a short-term
period (2003–2012) at a single station (Lindenberg, WMO
no. 10393, 52.21◦ N, 14.10◦ E). As the height of the boundary
layer shows a strong diurnal cycle, the data set was divided
into four sets depending on the start time of the soundings.
The start time of the soundings is 45 to 75 min prior to the re-
porting time at 00:00, 06:00, 12:00, and 18:00 UTC. There-

fore the corresponding values from 23:00, 05:00, 11:00, and
17:00 UTC of the simulated data were selected. The observa-
tions are flagged with quality status flags, which were derived
by the use of four different methods to calculate the height of
the PBL (Beyrich and Leps, 2012). From both data sets the
values with observation quality flag “good” were extracted.
For comparison both values were related to ground height,
because real elevation is 112 m while the model height is
63 m.

Figure 12 shows the frequency distribution of boundary
layer heights from model and observation by launch time and
season. The classes refer to the model levels.

Both frequency distributions show the shift to higher val-
ues during noon for all seasons. In general the accordance of
the distributions is highest for the noon soundings. The ten-
dency to wider spread distributions at 18:00 UTC is given for
both data sets. Most of the 16 distribution functions of simu-
lated values show a bimodal shape, while the observed value
functions have clear maxima, for non-noon soundings mostly
beneath 213 m. The simulated frequencies in the lowest five

Earth Syst. Sci. Data, 6, 147–164, 2014 www.earth-syst-sci-data.net/6/147/2014/



B. Geyer: High-resolution atmospheric reconstruction: coastDat2 159

Figure 12. Frequency distribution of the planetary boundary layer height [m] of coastDat2-CCLM and observation from 2003 to 2012.

Table 2. Statistical parameters of the comparison between observed
and simulated PBL height, split for sounding times in column 3 to
6, and seasons in rows according to the abbreviation in column 2.
Listed are the number and the median of used observed values (me-
dian O), median of simulated values (median S), and the differences
of the medians. Unit of the last three variables is m.

00:00 06:00 12:00 18:00

number

DJF 490 647 678 598
MAM 486 630 665 633
JJA 574 700 690 641
SON 424 396 505 509

median O

DJF 220 136 98 127
MAM 202 136 125 124
JJA 384 1166 1310 661
SON 232 829 917 109

median S

DJF 356 258 258 258
MAM 356 258 258 258
JJA 475 1409 1669 964
SON 356 778 1174 258

difference

DJF 136 122 160 131
MAM 154 122 133 134
JJA 91 243 359 303
SON 124 −51 257 149

model levels (in the height of 213 m) are clearly lower than
the observations.

In Table2 the numbers of good-flagged deduced heights of
PBL are listed per season and sounding time, the according
medians of these and the CCLM simulated heights, as well
as the differences of these values are shown.

All midnight to noon simulated median values are higher
than those observed within a range of 90–260 m. Only the
autumn 06:00 UTC simulated value is less than the one
observed. Particular high are the differences for June to Au-
gust 12:00 and 18:00 UTC soundings with more then 300 m.

5 Conclusions

To our knowledge, the data set described represents the
longest regional reconstruction based on global atmospheric
reanalyses at such a high spatial and temporal detail. It covers
more than 60 years and shows good agreement with observa-
tions, although there are regions where better performance
would be desirable. The comparison of the variables near-
surface air temperature, diurnal temperature range, precipi-
tation, cloud cover, near-surface wind speed, and height of
the planetary boundary layer with observations indicate on
exemplary the quality of the data set. The main advantages
of the data set are the huge number of available consistent
variables for the entire European continent over the entire
time period of 1948–2012.

www.earth-syst-sci-data.net/6/147/2014/ Earth Syst. Sci. Data, 6, 147–164, 2014



160 B. Geyer: High-resolution atmospheric reconstruction: coastDat2

The data of the atmospheric part of coastDat2, coastDat2-
CCLM, (Geyer and Rockel, 2013) are downloadable from
doi:10.1594/WDCC/coastDat-2_COSMO-CLM.
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Appendix A

Table A1. List of output variables of coastDat2 data set. The time series published byGeyer and Rockel(2013) are marked in column
“ts/fix” with a cross. Time independent variables are labeled with “f” and “c” and were merged in the files coastDat2_COSMO-CLM_fx and
coastDat2_COSMO-CLM_cl, respectively. The latter are climatological CCLM input data produced by PEP.

Variable name Unit Long name Standard name ts/fix

1 AEVAP_S kg m−2 surface evaporation water_evaporation_amount x
2 ALB_RAD 1 surface albedo surface_albedo x
3 ALHFL_S W m2 av. surface latent heat flux surface_downward_latent_heat_flux x
4 ALWD_S W m2 downward long wave radiation at the surface – x
5 ALWU_S W m2 upward long wave radiation at the surface – x
6 APAB_S W m2 av. surface photosynthetic active radiation surface_downwelling_photosynthetic

_radiative_flux_in_air
x

7 ASHFL_S W m2 av. surface sensible heat flux surface_downward_sensible_heat_flux x
8 ASOB_S W m2 av. surface net downward shortwave radiation surface_net_downward_shortwave_flux x
9 ASOB_T W m2 av. TOA net downward shortwave radiation net_downward_shortwave_flux_in_air x
10 ASOD_T W m2 av. solar downward radiation at top – x
11 ASWDIFD_S W m2 diffuse downward sw radiation at the surface – x
12 ASWDIFU_S W m2 diffuse upward sw radiation at the surface – x
13 ASWDIR_S W m2 direct downward sw radiation at the surface – x
14 ATHB_S W m2 av. surface net downward long wave radiation surface_net_downward_long

wave_flux
x

15 ATHB_T W m2 av. TOA outgoing long wave radiation net_downward_long wave_flux_in_air x
16 AUMFL_S Pa av. eastward stress surface_downward_eastward_stress x
17 AVMFL_S Pa av. northward stress surface_downward_northward_stress x
18 CAPE_CON J kg−1 specific convectively avail. potential energy atmosphere_specific_convective_available

_potential_energy
x

19 CLCH 1 high cloud cover cloud_area_fraction_in_atmosphere_layer
20 CLCL 1 low cloud cover cloud_area_fraction_in_atmosphere_layer
21 CLCM 1 medium cloud cover cloud_area_fraction_in_atmosphere_layer
22 CLCT 1 total cloud cover cloud_area_fraction x
23 DURSUN s duration of sunshine duration_of_sunshine x
24 FC 1 s−1 coriolis parameter coriolis_parameter f
25 FIS m2 s−2 surface geopotential surface_geopotential f
26 FOR_D – ground fraction covered by deciduous forest – f,c
27 FOR_E – ground fraction covered by evergreen forest – f,c
28 FR_LAND 1 land–sea fraction land_area_fraction f,c
29 H_SNOW m thickness of snow surface_snow_thickness x
30 HBAS_CON m height of convective cloud base convective_cloud_base_altitude
31 HHL m height altitude f
32 HMO3 Pa air pressure at ozone maximum air_pressure
33 HPBL m Height of boundary layer – x
34 HSURF m surface height surface_altitude f,c
35 HTOP_CON m height of convective cloud top convective_cloud_top_altitude
36 HZEROCL m height of freezing level freezing_level_altitude
37 LAI 1 leaf area index leaf_area_index
37 LAI_MN 1 leaf area index resting period leaf_area_index_resting_period c
37 LAI_MX 1 leaf area index vegetation period leaf_area_index_vegetation_period c
38 MFLX_CON kg m−2 s−1 convective mass flux density atmosphere_convective_mass_flux
39 P Pa pressure air_pressure
40 PLCOV 1 vegetation area fraction vegetation_area_fraction
41 PLCOV_MN 1 vegetation area fraction resting period vegetation_area_fraction_resting_period c
42 PLCOV_MX 1 vegetation area fraction vegetation period vegetation_area_fraction_vegetation_period c
43 PMSL Pa mean sea level pressure air_pressure_at_sea_level x
44 PP Pa deviation from reference pressure difference_of_air_pressure_from_model

_reference
45 PS Pa surface pressure surface_air_pressure x
46 QC kg kg−1 specific cloud liquid water content mass_fraction_of_cloud_liquid_water_in_air
47 QI kg kg−1 specific cloud ice content mass_fraction_of_cloud_ice_in_air
48 QR kg kg−1 specific rain content mass_fraction_of_rain_in_air
49 QS kg kg−1 specific snow content mass_fraction_of_snow_in_air
50 QV kg kg−1 specific humidity specific_humidity
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Table A1. Continued.

Variable name Unit Long name Standard name ts/fix

51 QV_2M kg kg−1 2 m specific humidity specific_humidity x
52 QV_S kg kg−1 surface specific humidity surface_specific_humidity
53 RAIN_CON kg m−2 convective rainfall convective_rainfall_amount x
54 RAIN_GSP kg m−2 large-scale rainfall large_scale_rainfall_amount x
55 RELHUM_2M % 2 m relative humidity relative_humidity x
56 RLAT ◦ latitude latitude
57 RLON ◦ longitude longitude
58 ROOTDP m root depth root_depth c
59 RUNOFF_G kg m−2 subsurface runoff subsurface_runoff_amount x
60 RUNOFF_S kg m−2 surface runoff surface_runoff_amount x
61 SNOW_CON kg m−2 convective snowfall convective_snowfall_amount x
62 SNOW_GSP kg m−2 large-scale snowfall large_scale_snowfall_amount x
63 SNOWLMT m height of the snow fall limit in m above sea level altitude
64 SOBS_RAD W m2 surface net downward shortwave radiation surface_net_downward_shortwave_flux
65 SOILTYP 1 soil type soil_type f,c
66 SSO_GAMMA – anisotropy of sub-grid scale orography – f,c
67 SSO_SIGMA – mean slope of sub-grid scale orography – f,c
68 SSO_STDH m standard deviation of height standard_deviation_of_height f,c
69 SSO_THETA ◦ angle between principal axis of orography and east – f,c
70 T K temperature air_temperature
71 T_2M K 2 m temperature air_temperature x
72 T_2M_AV K 2 m temperature air_temperature x
73 T_CL K deep soil temperature soil_temperature c
74 T_G K grid mean surface temperature surface_temperature
75 T_S K soil surface temperature – x
76 T_SNOW K snow surface temperature surface_temperature_where_snow
77 T_SO K soil temperature soil_temperature
78 TD_2M K 2 m dew point temperature dew_point_temperature x
79 TD_2M_AV K 2 m dew point temperature dew_point_temperature x
80 TDIV_HUM kg m−2 atmosphere water divergence change_over_time_in_atmospheric_water

_content_due_to_advection
81 THBS_RAD W m2 surface net downward long wave radiation surface_net_downward_long

wave_flux
82 TKE_CON J kg−1 convective turbulent kinetic energy –
83 TMAX_2M K 2 m maximum temperature air_temperature x
84 TMIN_2M K 2 m minimum temperature air_temperature x
85 TOT_PREC kg m−2 total precipitation amount precipitation_amount x
86 TQC kg m−2 vertical integrated cloud water atmosphere_cloud_liquid_water_content x
87 TQI kg m−2 vertical integrated cloud ice atmosphere_cloud_ice_content x
88 TQV kg m−2 precipitable water atmosphere_water_vapor_content x
89 TWATER kg m−2 total water content atmosphere_water_content x
90 U m s−1 U-component of wind grid_eastward_wind
91 U_10M m s−1 U-component of 10 m wind grid_eastward_wind x
92 V m s−1 V-component of wind grid_northward_wind
93 V_10M m s−1 V-component of 10 m wind grid_northward_wind x
94 UVlat_10M m s−1 U and V-component of 10 m wind x
95 VGUST_CON m s−1 maximum 10 m convective gust wind_speed_of_gust x
96 VGUST_DYN m s−1 maximum 10 m dynamical gust wind_speed_of_gust x
97 VIO3 Pa vertical integrated ozone amount equivalent_pressure_of_atmosphere_ozone

_content
98 VMAX_10M m s−1 maximum 10 m wind speed wind_speed_of_gust x
99 W m s−1 vertical wind velocity upward_air_velocity
100 W_I m canopy water amount canopy_water_amount
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Table A1. Continued.

Variable name Unit Long name Standard name ts/fix

101 W_SNOW m surface snow amount lwe_thickness_of_surface_snow_amount
102 W_SO m soil water content lwe_thickness_of_moisture_content_of _soil_layer x
103 W_SO_ICE m soil frozen water content lwe_thickness_of_frozen_water_content_of _soil_layer x
104 WDIRlat_10M ◦ x
105 WSS_10M m s−1 wind_speed x
106 Z0 m surface roughness length surface_roughness_length x
107 Z0 m backround surface roughness length surface_roughness_length c
108 Z0_VEG m surface roughness length due to vegetation surface_roughness_length_due_to_vegetation c
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