
Earth Syst. Sci. Data, 4, 31–35, 2012
www.earth-syst-sci-data.net/4/31/2012/
doi:10.5194/essd-4-31-2012
© Author(s) 2012. CC Attribution 3.0 License.

History of 
Geo- and Space 

SciencesO
p
en

 A
cc

es
s

Advances in 
Science & Research
Open Access Proceedings

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data

D
iscu

ssio
n
s

Drinking Water 
Engineering and Science 

Open Access 

Drinking Water 
Engineering and Science 

DiscussionsO
pe

n 
A
cc

es
s

Social  

Geography

O
p
en

 A
cc

es
s

D
iscu

ssio
n
s

Social  

Geography

O
p
en

 A
cc

es
s

CMYK RGB

Twenty-one years of mass balance observations along
the K-transect, West Greenland

R. S. W. van de Wal, W. Boot, C. J. P. P. Smeets, H. Snellen, M. R. van den Broeke, and J. Oerlemans

Institute for Marine and Atmospheric research Utrecht, Utrecht University, The Netherlands

Correspondence to:R. S. W. van de Wal (r.s.w.vandewal@uu.nl)

Received: 6 April 2012 – Published in Earth Syst. Sci. Data Discuss.: 14 May 2012
Revised: 20 July 2012 – Accepted: 26 July 2012 – Published: 29 August 2012

Abstract. A 21-yr record is presented of surface mass balance measurements along the K-transect. The se-
ries covers the period 1990–2011. Data are available at eight sites along a transect over an altitude range
of 380–1850 m at approximately 67◦ N in West Greenland. The surface mass balance gradient is on average
3.8×10−3 m w.e. m−1, and the mean equilibrium line altitude is 1553 m a.s.l. Only the lower three sites within
10 km of the margin up to an elevation of 700 m experience a significant increasing trend in the ablation over
the entire period. Data are available at:doi:10.1594/PANGAEA.779181.

1 Introduction

Over the last 10 yr, our understanding of the mass balance
of the Greenland ice sheet has improved considerably due to
satellite observations. The analysis of gravity field, radar al-
timetry and interferometry data combined with regional cli-
mate models has contributed to this (e.g. Rignot and Kana-
garatnam, 2006; Thomas et al., 2008; Wouters et al., 2008;
Van den Broeke et al., 2009). Longer records of the surface
mass balance are sparse, in particular for the ablation region.
Here we present a compilation of data from ground obser-
vations as measured along the K-transect over the last 21 yr.
Figure 1 shows the K-transect where 21 yr ago IMAU (Insti-
tute for Marine and Atmospheric research Utrecht) started
with mass balance observations, GPS measurements and
later observations by automatic weather stations. It is the
longest record of ground-based surface mass balance mea-
surements in Greenland. Several short series of observations
exist (e.g. Thomsen, 1987; Braithwaite and Olesen, 1989;
Reeh, 1991; Van As et al., 2011), but they are all temporally
limited in length. Nevertheless, those data are important be-
cause they are located in widely different climatological re-
gions.

The paper is an update of the work presented by van de
Wal et al. (1996, 2005) and Greuell et al. (2001) who pre-
sented mass balance data covering shorter periods. Com-
bined with the weather station data, these data have also been

used for several validation studies of mass balance models.
An overview of the weather station data has been presented
by Van den Broeke et al. (2008a, b, 2011). Here we present
the surface mass balance data and discuss the spatial and tem-
poral pattern.

2 Surface mass balance measurements

Eight sites are visited for mass balance measurements and
redrilling of stakes every year, mostly in late August. Six
sites are located in the ablation area, one near the equilibrium
line altitude and one in the accumulation zone. The record
for the highest site is 4 yr shorter, and some values are aver-
aged over 2 yr because visits to the site failed several times
due to logistical constraints. At each site, at least two stakes
are maintained throughout the entire period. Data shown in
Table 1 and in the figures are the mean values of the indi-
vidual stake readings and always represent one mass balance
season. Data are not reduced to a fixed date, but measure-
ments are usually carried out in late August. An exception to
this rule is the mass balance year 2009–2010 which showed
a significant melt in autumn 2010. Based on sonic height
ranger data at S5, S6 and S9, we reconstructed the autumn
2010 melt, subtracted this from 2010–2011, and added this
to the mass balance year 2009–2010. This correction ranges
from 90 cm w.e. at S4 to 19 cm w.e. at S9. Length changes are
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Figure 1: The K-transect in West Greenland. K is Kangerlussuaq, the sites 4, 5, SHR, 6, 

7, 8, 9 and 10 are mass balance sites. The blue squares indicate the position of the IMAU 

weather stations. The equilibrium line altitude is located close to site 9. The two coloured 

lines indicate the dark zone where albedo is lower than in the surrounding areas (Wientjes 

and Oerlemans, 2010, Wientjes et al. 2011). Background is a true colour composition of 

NASA Modis/Terra from 26 August 2003. 

Figure 1. The K-transect in West Greenland. K is Kangerlussuaq.
The sites 4, 5, SHR, 6, 7, 8, 9 and 10 are mass balance sites. The
blue squares indicate the position of the IMAU weather stations.
The equilibrium line altitude is located close to Site 9. The two
coloured lines indicate the dark zone where albedo is lower than
in the surrounding areas (Wientjes and Oerlemans, 2010; Wientjes
et al., 2011). Background is a true colour composition of NASA
Modis/Terra from 26 August 2003.
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Figure 2. The surface mass balance averaged (S4–S9) over the tran-
sect as a function of time. dSMB/dt is the gradient in the surface
mass balance, blue line derived from linear regression.

converted to surface mass balance by assuming an ice den-
sity of 900 kg m−3, except at the highest site where snow and
firn is at the surface. There density measurements are carried
out. Sites near the margin have been relocated a few times
because of crevasse zones and data at the lowest two sites
are therefore reduced to a fixed elevation. The mass balance
data for the other sites are not corrected for the small height
differences due to ice flow or stake replacement. The largest
uncertainty in the measurements in the lower region (S4, S5,
SHR) is caused by the rough surface topography. It is esti-
mated that annual values at these sites have an uncertainty
(1σ) of 20 cm w.e. Ignoring other systematic uncertainties,
this implies a negligible error for the annual average over the
entire transect as it is based on data from seven sites.
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Figure 3: (a) Temporal evolution of the individual surface mass balance sites. Ablation 

increases over time only near the margin of the ice sheet. Dotted lines are sites higher 

on the transect with no significant trend over time. (b) The mass balance gradient as a 

function of time. Blue dots are years excluded from the regression analysis as 

explained in the text. 
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Figure 3: (a) Temporal evolution of the individual surface mass balance sites. Ablation 

increases over time only near the margin of the ice sheet. Dotted lines are sites higher 

on the transect with no significant trend over time. (b) The mass balance gradient as a 

function of time. Blue dots are years excluded from the regression analysis as 

explained in the text. 

Figure 3. (a) Temporal evolution of the individual surface mass
balance sites. Ablation increases over time only near the margin
of the ice sheet. Dotted lines are sites higher on the transect with
no significant trend over time.(b) The mass balance gradient as a
function of time. Blue dots are years excluded from the regression
analysis as explained in the text.

2.1 Mass balance as a function of time

Figure 2 shows the interannual variability of the average
mass balance along the transect. Every site has been given
an equal weight, and Site 10 has been neglected because the
record is incomplete. Weighing the records proportional to
the distance between the neighbouring points yields a simi-
lar variability but on average less ablation because the higher
points cover larger areas (van de Wal et al., 2005). The trend
in the observation is small (0.04 m yr−2) and barely signifi-
cant (r = 0.49), and the highest ablation took place in 2010
(Tedesco et al., 2011).

It has been argued that satellite elevation changes for
Greenland (e.g. Krabill et al., 2004) indicate that the
marginal areas of Greenland were thinning and the central
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Table 1. Surface mass balance measurements (in m w.e.) along the K-transect at 67◦ N. Distances are presented in kilometres from the
western ice margin. Values at S4 are recalculated to a height of 383 m a.s.l. Bold values are outside the 2σ interval with respect to the 20 yr
mean (1990–2010) and standard deviation.

Site 4 Site 5 SHR Site 6 Site 7 Site 8 Site 9 Site 10
383 490 710 1010 1110 1260 1520 1850

(m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.) (m a.s.l.)
3 km 6 km 14 km 37 km 52 km 63 km 91 km 143 km

1990–1991 –4.23 –3.64 –3.20 –2.77 –1.75 –1.47 –0.26
1991–1992 –2.14 –2.03 –1.52 –1.02 –0.30 0.08 0.46
1992–1993 –3.05 –3.04 –2.71 –1.54 –1.60 –0.14 0.23
1993–1994 –3.58 –3.49 –3.08 –1.37 –1.06 –0.45 0.10
1994–1995 –4.41 –4.00 –3.52 –1.70 –1.78 –1.09 –0.05 0.01
1995–1996 –4.04 –2.87 –1.95 –0.93 –0.47 –0.03 0.40 0.49
1996–1997 –4.40 –3.87 –3.30 –2.84 –1.64 –0.88 –0.02 0.27
1997–1998 –4.08 –4.08 –3.22 –1.59 –1.57 –0.97 –0.01 0.29
1998–1999 –4.55 –3.77 –3.35 –1.46 –1.30 –0.86 –0.17 0.06
1999–2000 –4.17 –3.31 –2.70 –1.26 –1.05 –0.51 –0.06 0.26
2000–2001 –4.58 –3.66 –3.16 –1.03 –0.98 –0.49 0.16 0.57
2001–2002 –4.23 –3.29 –2.95 –1.30 –1.55 –0.93 0.17 0.29
2002–2003 –5.04 –3.89 –3.29 –1.97 –1.77 –1.07 –0.53 0.11
2003–2004 –4.68 –3.99 –3.53 –1.47 –1.73 –0.66 0.01 0.45
2004–2005 –4.28 –3.63 –3.24 –1.28 –1.57 –0.17 0.08 0.45
2005–2006 –4.17 –3.70 –2.97 –1.50 –1.13 –0.23 0.08 0.39
2006–2007 –4.7 –4.19 –3.55 –2.00 –2.30 –1.16 –0.68 0.04
2007–2008 –4.29 –4.10 –3.54 –1.48 –1.36 –0.44 0.02 0.21
2008–2009 –3.97 –3.38 –2.84 –1.34 –1.47 –0.22 0.23 0.20
2009–2010 –5.9 –5.12 –4.39 –2.95 –2.99 –1.93 –1.01 0.20
Mean 90–10 –4.22 –3.65 –3.10 –1.58 –1.45 –0.64 –0.03 0.27
standard deviation 0.76 0.63 0.62 0.54 0.60 0.50 0.36 0.17
2010–2011 –3.81 –4.23 –3.21 –2.08 –1.59 –1.89 –0.84

parts were thickening over the period 1993–2003. This find-
ing was based on measurement intervals from 1993–1998,
1997–2001, 1997–2002 and 2002–2003. If we consider the
trend in the mass balance for the individual sites as shown
in Fig. 3a, we can confirm that the ablation near the margin
(S4, S5, SHR) increases over time. Reproducing the analy-
sis to the identical four periods as Krabill et al. (2004) used
shows that over the last period, which is the mass balance
year 2002–2003, the ablation is indeed larger than during the
other three periods. So although a strict comparison of the
finding by Krabill et al. (2004) is not convincing due to the
limited temporal coverage, the increased thinning near the
margins as presented by Krabill et al. (2004) is confirmed by
the enhanced ablation over the entire period in the lower abla-
tion zone. More recently, several papers (e.g. Sørensen et al.,
2011; Zwally et al., 2011) confirmed the marginal thinning
more convincingly based on several independent techniques
to estimate mass change.

The increase in ablation near the margin is part of a pat-
tern of increasing mass balance gradients as shown in Fig. 3b.
A careful analysis shows that the mass balance gradient in-
creases significantly over time. Two years are ignored in this
analysis. Both years are more than 2 standard deviations from

the mean mass balance gradient over the entire period. It is
argued that 1991–1992 is not representative as it was a year
with extremely low melt likely related to the Pinatubo erup-
tion affecting climate in many regions, and secondly the last
year has been ignored because it is exceptional, as the year
2009–2010 with large melt was followed by a dry winter
causing considerable melt in the higher parts of the ablation
region due to low albedos (Tedesco et al., 2011). If this in-
creasing mass balance remains a robust feature over time,
it implies that the sensitivity of the mass balance increases
(Oerlemans, 2001). Given the two exceptions and the limited
data, only 21 yr, we need to be careful in claiming this.

2.2 Mass balance as a function of elevation

Figure 4 presents the surface mass balance as a function of
elevation over the ablation area. The average mass balance
increases linearly with elevation (r = 0.996, mean gradient
3.8 mm w.e. m yr−1). In absolute sense, the variability near
the margin is larger than near the equilibrium line, leading to
the divergence of the pattern in Fig. 4. During some years, the
ablation at Site 7 (1110 m) is higher than at Site 6 (1010 m),
which is likely related to local variations in the albedo of
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Figure 4: Surface mass balance as a function of elevation for each individual year starting 

in 1990. The lowest surface mass balance was recorded the second year and the 

highest during the season 2009-2010, both are indicated with thick lines.  

Figure 4. Surface mass balance as a function of elevation for each
individual year starting in 1990. The lowest surface mass balance
was recorded the second year and the highest during the season
2009–2010; both are indicated with thick lines.

the surface (e.g. Greuell and Knap, 2000 and Wientjes et
al., 2011). The highest ablation took place during the season
2009–2010, while the lowest ablation was recorded during
the season 1991–1992. The average mass balance gradient is
3.8 mm w.e. m yr−1 over the ablation area.

Based on the data close to the equilibrium line (Site 8,
Site 9 and Site 10, if available), we calculated for every year
the height of the equilibrium line. We included a small cor-
rection for height changes due to ice displacement over the
course of time. Based on GPS velocities and surface eleva-
tion gradients, the varying locations over time are reduced
to a standardized height. This height correction is not larger
than plus or minus 8 m in a single year. On average, the equi-
librium line altitude is 1553 m a.s.l., just above Site 9. The
yearly values of the equilibrium line height are presented
in Fig. 5a. Figure 5b shows the cumulative mass balance at
Site 9. The figure indicates that the site is close to the equi-
librium line (mean−0.1 m w.e. yr−1), with a few consecutive
negative values at the end of the series.

3 Conclusions

We have presented a data set of surface mass balance over
a period of 21 yr along a transect in West Greenland. Data
can be used for validation of satellite observations and re-
gional climate models both with respect to the interannual
variability as well as the mass balance gradient with eleva-
tion. Furthermore, data can be used for validation of satellite
estimates of equilibrium line altitude or melt extent, both im-
portant quantities for assessing changes in the Greenland ice
sheet.
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Figure 5: (a) Equilibrium line altitude as a function of time (b) Cumulative surface mass 

balance near the equilibrium line indicating an extension of the ablation zone over the 

last few years. 18 

1200

1300

1400

1500

1600

1700

1800

1900

19
91

19
96

20
01

20
06

20
11

EL
A 

(m
 a

.s
.l.

)

Time

a

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1990 1995 2000 2005 2010
cu

m
ul

at
iv

e 
SM

B 
(m

 w
.e

./y
r)

Time

Site 9, 1520 m.a.s.l.

b
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Figure 5. (a) Equilibrium line altitude as a function of time and
(b) Cumulative surface mass balance near the equilibrium line indi-
cating an extension of the ablation zone over the last few years.
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