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Abstract. The availability of microwave instruments on satellite platforms allows the retrieval of essential
water cycle components at high quality for improved understanding and evaluation of water processes in
climate modelling. HOAPS-3, the latest version of the satellite climatology “Hamburg Ocean Atmosphere
Parameters and Fluxes from Satellite Data” provides fields of turbulent heat fluxes, evaporation, precipitation,
freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the con-
tent, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all
available Special Sensor Microwave Imager ($Bstruments aboard the satellites of the Defense Meteo-
rological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous tirne-series
with dense data sampling and hence detailed information of the underlying weather situations. The completely
reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based elgorithms
for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields.
Additionally, a new 85 GHz synthesis procedure for the defective S8hMnnels on DMSP F08 from 1988

on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based
data make HOAPS-3 a versatile data set for studying ocean-atmosphere interactifierentdiemporal and

spatial scales. HOAPS-3 data products are availablbtyie/www.hoaps.org

1 Introduction Due to the inherent physical properties of long-wave elec-
tromagnetic radiative transfer through the atmosphere, the

A thorough knowledge of the global water cycle is crucially microwave_spectral range is well suited for the retrieval of
important for a detailed understanding and successful mod@iMospheric water vapor column content as well as parame-
elling of the global climate system. Measuring the relevant'€rs needed to derive the freshwater flux components at the
quantities is however a notoriouslyfiicult task, especially ©¢€an surface. After first experience with microwave sen-
over the global ocean with generally ifBaient spatial and sors, the availability ofthe_- Special Sensor Microwave Ima_ger
temporal coverage by ships andbuoy observations. The (SSM’_I) aboard the satellites pf the Defensg Meteorologlc_al
advent of satellite platforms provided the opportunity to re- Satellites I|3rogram rgDMSP) S'n%e 1987 met'Vat?S sleveral In-
trieve global data sets with substantially improved coveragd€ational research groups to derive and provide long-term
over sea and over land. Especially since the availability ofgIObaI f_|elds Of wa_ter cycle related quantltles._Dependl_n_g on
passive microwave detectors in space, the observation of se\5be main ap[t))lllcagog pl_JLpohse, data frl(l)_m vz;nous z_idd|t|_onal
eral essential water cycle components and related parametef§U'ces are blended with the SgMdatellite observations in

became possible with high quality over the global ocean. ~ N€S€ eémerging climatologies. _
Generally, these data sets fall into two categories pro-

viding on the one hand turbulent surface moisture fluxes
and on the other hand precipitation estimates. The inter-

Correspondence toA. Andersson national framework of the SEAFLUX project of the World
BY (axel.andersson@zmaw.de) Climate Research Programme (WCRP) and the International

Published by Copernicus Publications.



http://www.hoaps.org
http://creativecommons.org/licenses/by/3.0/

216 A. Andersson et al.: HOAPS-3

Table 1. HOAPS version overview.

Version  temporal coverage CommgSihangesey Features

1(1998) 1987-1998 — Initial release, one §6pkr time period
— flux retrieval ofSmith (1988
— NOAA/NASA Oceans Pathfinder SST
— 1° monthly mean

2 (2004) 1987-2002 — major software re-design
— use of all available SSMincluding intercalibration
—new neural network wind speed retrieval
—new surface specific humidity algorithiBgntamy et a].2003
— COARE 2.6 flux retrieval
— NOAA AVHRR Pathfinder V4 SST
— HOAPS-S SSM swath data
— HOAPS-G 0.5gridded monthly and pentad

3(2007) 1987-2005 — new neural network precipitation retrieval
—new 85 GHz channel synthesis algorithm
— NODGRSMAS AVHRR Pathfinder V5 SST
— HOAPS-S SSM swath data
— HOAPS-G 0.5 gridded monthly and pentad mean
— HOAPS-C ? twice daily composite

Precipitation Working Group (IPWG) foster the develop- derivation of all parameters in the HOAPS data base. Since
ment of satellite-based data sets of surface turbulent fluxe4987, six SSM instruments have been launched into space
(e.g. Bentamy et al.2003 Chou et al. 2003 Kubota and  and turned out to be stable measuring instrumetdlihger
Tomita 2007 Yu et al, 2008 and precipitation (e.gAdler et al, 1990 for a reliable climatological data set. For the

et al, 2003 Hilburn and Wentz2008 Hsu et al, 1997, Huff- sake of long-term homogeneity, the use of data froffedi

man et al. 2007 Joyce et a|.2004 Kubota et al.2007 Xie ent satellite instruments has been avoided as much as possi-
and Arkin 1997. While these various satellite products are ble. The only exception is the sea surface temperature (SST),
of importance in their own right, ocean and climate mod- which is obtained from Advanced Very High Resolution Ra-
ellers are also extremely interested in global fields of oceardiometer (AVHRR) measurements.

surface freshwater flux. This net gain or loss of water through The present paper describes the improved and extended
the ocean surface due to evaporation and precipitation is ofersion three of HOAPS that is publicly available from the
crucial importance for the coupling between ocean and atmoweb sitewww.hoaps.ordAndersson et al2007ab,c). This
sphere and as a driving force of global ocean circulation. Inpaper focuses on the technical description of the processing
principle, the mentioned satellite retrieved data sets could b@f the satellite input data and thefidirent retrieval schemes
combined to estimate the global ocean freshwater flux. Thifor geophysical parameters, while the evaluation and applica-
would be a highly required butfiicult task, as dferent data  tion on climatological scale is subject of related publications
sources have to be combined while there is no comprehente.g.Andersson et al2010ab; Romanova et al2010. Fur-

sive in-situ validation data availabl&¢hlosser and Houser ther validations of HOAPS-3 wind speed and precipitation
2007). retrievals have been published Byinterfeldt et al.(2010

HOAPS is hitherto the only generally available compila- angKIe.ppzet. aI.(iOlQ. he kev f dd b ¢
tion of both precipitation and evaporation with the goal of ectionz introduces the key features and data subsets o

estimating the freshwater flux from one consistently derivedHOAPS'3' In Sec3 the HOAPS data sources are described

global satellite product. The HOAPS retrieval schemes doalong with technical data handling. The algorithms and pa-

not make use of numerical weather prediction (NWP) data’rameter descriptions of the HOAPS data set are given in
i.e. no additional first guess data is used. This allows theseCt'4'
use of HOAPS as an independent satellite based validation

reference for model evaluation. Furthermore, an inter-sensop  The HOAPS data set

calibration has been implemented in order to achieve a ho-

mogenized SSM brightness temperature record. In com- The initial version of HOAPS Gral3l et al. 200Q Jost
bination with multi-satellite averages and dfi@ent seaice et al, 2002 was mainly based on the algorithms of

detection procedure the S3IVheasurements are used for the Bauer and Sclilssel(1993 and was released first in 1998.
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Table 2. Overview of HOAPS-3 parameters and algorithms.
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parameter source HOAPS-code
wind speed at 10m height neural net algorithm WIND
AVHRR Oceans Pathfinder SST Casey(2004 ASST

sea surf. satur. spec. humidity Magnus formula HSEA
near surf. spec. humidity Bentamy et al(2003 HAIR

humidity difference HSEA minus HAIR DHUM

evaporation, latent heat flux
latent heat transfer céiicient

Fairall et al.(1996 2003 EVAP, LATE
Fairall et al.(1996 2003 TRCE

sensible heat flux at sea surface Fairall et al.(1996 2003 HEAT
longwave net flux at sea surface Schiissel(1999 FNET
vertically integrated liquid water Bauer(1992 LWPA
vertically integrated total water Bauer and Sclilssel(1993 TWPA
vertically integrated water vapor Schlissel and Emerg1990 WVPA
precipitation neural net algorithm RAIN
freshwater flux EVAP minus RAIN BUDG

Comparisons with other ocean surface turbulent flux datadata to gridded data products This allows HOAPS to be used

sets within the SEAFLUX projecubota et al.2003 Chou  for a wide range of applications. Moreover, all data sets are

et al, 2004 Curry et al, 2009 indicated that the evapora- available in NetCDF format including extensive meta data.

tion in the first HOAPS version was substantially low bi- The gridded HOAPS data product can be obtained through

ased in the tropics. The second version, HOAPEBn- the CERA data base of the World Data Center for Climate

nig et al, 2006agb), was available since mid 2004. It in- (WDCC) httpy/cera-www.dkrz.der via the HOAPS home-

cluded major improvements, such as the concurrent use of afpagehttp;/www.hoaps.org

available SSM instruments up to December 2002 including

inter-calibration and improved algorlthms to derive sea SUM5 1 1 HOAPS-S

face flux parameters. Further comparisons revealed however,

that the global mean precipitation in HOAPS Il was signif- The HOAPS-S data subset contains all parameters in the na-

icantly lower compared to other climatologies, resulting in tive SSMI scan-oriented pixel-level resolution for each indi-

an implausibly large global net ocean surface freshwater fluwidual satellite, providing the basis for the gridded data prod-

into the atmosphere on the climatological scale. This and aicts HOAPS-G and HOAPS-C.

few other issues led to the development of the most recent

version HOAPS—_\?»/(\ndersson et a,l.2007ab,c). The key 54, HOAPS-G

features and major changes of each version of HOAPS are

listed in Tablel. HOAPS-G climatological data sets contain globally gridded
The HOAPS-3 data sets cover a time period of more thardata with a spatial resolution of 0.5 degree. Two data sets

18 years of data between July 1987 and December 2003with temporal average periods of 5 days (pentad) and one

In total 15 parameters are retrieved and stored in the namonth are availableAndersson et gl2007¢a). The mean

tive SSMI resolution covering the global ice-free ocean. An fields are computed from the HOAPS-S data by aggregating

overview of all parameters is given in Talle Several grid-  all SSM/I pixels that have their center of the FOV falling in

ded products are available with a spatial resolution up to 0.8he respective grid box and averaging over the specific time

degree. The temporal resolution varies from monthly andperiod. The resulting data sets consist of multi-satellite aver-

pentad averages to twice daily data. Homogeneous timeages that include all SSMinstruments available at the same

series over several generations of space-borne radiometetisne. The data fields are supplemented by basic statistical

are required for the derivation of accurate statistics for cli-information about standard deviation and number of obser-

matological analyses. Towards this goal, great care was pwations per grid cell.

into instrument stability assessment and inter-sensor calibra-

tion (see SecB.3). 2.1.3 HOAPS-C

21 HOAPS data products HOAPS-Q cont.ains one-dggrge twice daily globally grid-
ded multi-satellite composite fields of each parametar-(

Three data subsets of HOAPS-3 are supplied for all 15 padersson et al.20078. HOAPS-C was introduced to fulfill

rameters ranging from instantaneous scan based pixel-levéhe need for a globally gridded data product with at least
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Ve ~N nally, the previously described gridded HOAPS products are
corrections generated from the scan-based HOAPS-S data. The/ISSM
Antenna temp. | ||  intercalibration instrument, the handling of SSMaw data, and the SST in-
put data set are described in the following, while the specific
L retrieval algorithms for geophysical parameters will be de-
8 )| flagging of coastline scribed in Sect4.
landmask l and land pixels
v
ice-mask (NASA-TEAM) 3.1 The SSM/I Instrument
flagging of
Lce-contaminated pixets SSMI sensors have been carried aboard the DMSP satellite
v series since 1987. An extensive description of the instrument
P VHRR SoT pixel-level and satellite characteristics has been publisheHdi{inger
temperatures et al. (1990 andWentz (1991). Hence, only a very short
. % summary of essential information is given here. The DMSP
- v : ~ satellites fly in a near-circular, sun-synchronous orbit, with
cea surf. saturation computation of an inclination of 98.8 at an approximate altitude of 860 km.
spec. hunidity  [®|  geophysical paraneters Each day, 14.1 orbits with a period of about 102 min are
\ L] / performed. The Earth’s surface is sampled with a conical
~ scan at a constant local zenith angle of 8&dd a 1400 km
twice daily pixel-level wide swath. A nearly complete coverage of the Earth by
omeete O matere one SSMI is achieved within two to three days. Due to the
(HOAPS-S) orbit inclination and swath width, the regions poleward of
87.5 are not covered. To date, six SANhstruments have
monthly/S-day gridding been successfully launched aboard the FO8, F10, F11, F13,
means | ——— R
(HOAPS-G) procedures F14 and F15 spacecraft. All satellites have a local equator
- J crossing time between 5 and 10 gjpam. for the descend-
Figure 1. Flow chart for the data processing chain in HOAPS-3 ing/ascending node. The FO8 had a reversed orbit with the
from SSMI antenna temperatures to geophysical products. ascending node in the morning. Also, the view direction of

the SSMI on this satellite is, dferently from the others, to
. . . . the aft. Most of the DMSP satellites have a very stable or-
daily temporal resolution. Each grid cell contains the spa-p:; o shown in Fig2. The temporal variation of the equator
tiql average of data from the specific satellite that passefirossing times is less than three hours for all satellites. At
this grid box CIO.SGSt to 12:0(.) and 24:00 UTC respectively.ype ong’of the HOAPS-3 time period the orbits of F14 and
Hence, each grid cell contains data from only one sateI-F15 begin to decay naoticeably, but are still within 2-3 h of

lite pass and there is no average from two or more sateI-Original time.

lite passes. This method provides higher spatial consistency . . .
o ) ; . The SSMI is a conically scanning, seven channel ra-
on the sub-daily time scale than just averaging all available .

data to twice daily mean fields. E.g. the appearance of bac?lometer measuring emitted microwave radiation at four
and forth moving fronts of fast moving weather systems is Esrg%ug:'(:zy 'Rt"er(;/:tlz ;:reentse;;d I::j ;?'gg}izizn'é ?i{n(??\)g}n?;d
minimized. The fields are archived for 00:00 to 12:00UTC "~ ) P

and 12:00 to 24:00UTC. Time steps in the data files arepolarlzatlon, except for the 22.235 GHz channel, which mea-

) ON_19- . sures only vertically polarized radiation. The channels will
00'90 UTC_ (00:00-12:00 UTC overpasses) and 12:00 UT ereferredtoas 19, 22, 37, and 85 GHz hereafter and the cor-
(12:00-24:00 UTC overpasses).

responding TBs of each channel and polarization agJiB
TB22v, TB37yn, and TBesy/n.
3 Data sources and processing The spatial resolution varies from 69 km by 43 km with

a sampling frequency of 25km for the 19 GHz channel to
The starting point in the data processing chain, as illus-15km by 13km with 12.5km sampling frequency for the
trated in Fig.1, are SSM antenna temperatures. These 85 GHz channel. The 85 GHz channels are sampled for each
are converted to an internal brightness temperature (TB) dateotation of the instrument (A and B-scans) with a resolution
set. This procedure includes several instrument-related coref 128 uniformly spaced pixels, while the remaining chan-
rections, inter-sensor calibration, and the flagging of landnels are sampled every other scan (A-scans) with a resolu-
and sea ice covered pixels. From the TB data set and th&on of 64 pixels. A fixed cold space reflector and a reference
NODC/RSMAS Pathfinder SST, geophysical parameters aréblack body hot load are used for continuous onboard calibra-
calculated on the native SSMresolution (HOAPS-S). Fi- tion.

Earth Syst. Sci. Data, 2, 215-234, 2010 www.earth-syst-sci-data.net/2/215/2010/
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SSM/I Equator-Crossing Times
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Figure 2. Local Equator crossing times of the DMSP satellites.

3.2 Data processing SSMI on DMSP F11 which is selected as the reference for

a relative intercalibration. In tests withftérent wind speed

Antenna Temperature Tapes (ATT) from Remote Sensingy s rithms against in-situ buoy data this radiometer exhibits
Systems (RSS) as well as Temperature Data Records (TDR) gjiaple long-term stability. Furthermore it has a temporal
from the National Environmental Satellite, Data, and Infor- overlap with most of the other radiometers. The $8\n

mation System (NESDIS) are used as $BMput data for g ang F15, which do not have a temporal overlap with F11,

ESQJZSS.fclf:tc::igatsalzzlijsrgs ?:zjstc))?]esn fﬁiﬂ:{;@?;g;’ggm%e calibrated to the F10 and F13 radiometers, respectively.
data from diferent sourcesRitchie et. al, 1998, including The calibration coicients are determined by linear re-

NESDIS TDR and RSS ATT data, showed no systematic dif_gression from match-up data sets of the radiometers that are
ferences between these data set,s based on the TBs after along-scan bias and zenith angle cor-

In a first step the dierent input data sets are preprocessedrectlon. The match-up data sets are constructed from rain-

into a common internal data format containing navigated anorree oceanic TBs of each channel that are binned into a global

calibrated antenna temperatures. The antenna temperatur(l.‘s by 1* grid and averaged for 10 days. These selection cri-

are then converted to TBs accordingwentz (1997 using teria increase the polarization ratio of the channels, filter out
a fixed set of antenna pattern corrections. In addition, thishighly varia_bl_e events S’.UCh as synop@ic fronts with pregipita—
procedure treats several known issues with the radiometePon’ and minimize the influence of diurnal cycle variations.
including corrections for an along-scan biatefitz 1991 For each radiometer a match-up data set with the selected

; ‘o ference radiometer is compiled from the collocated grid-
Colton and Pogel999 and zenith angle variation§hrhop re : .
and Simmer1996. The latter is however not applicable to ded 10-day mean TBs for at least one overlapping year. This

the 85 GHz channels due to their higher resolution. m_atch—up data set_ s randomized and histogram-equalized
For the application of the retrieval algorithms it is im- with a hlstogra_m b'.n siz€ OT 1K for the range of 100K to

portant that about the same area is seen by all channel .00 K. The cal!b ration ccfﬁc[ents are then calculatgd by a

Due to the higher frequency, a single field of view (FOV) east squares linear regression between the TB pairs of both

at 85 GHz covers only about 18% of the area sampled a{adlometers.

37 GHz (cf. e.gSpencer et al1989. Since the 85 Ghz chan- Due to the accurate and stable in-orbit calibration of the

nels are sampled twice as often in each direction compare@SM/, the codficients are considered to be constant during

to all other SSM channels, nine neighboring 85 GHz pixels the lifetime of a radiometerQolton and Pog1999. How-

of the A and B-Scans are averaged down to the resolution ofVer, the unstable orbit of the DMSP F10 made a recalibra-
the corresponding 37 GHz pixel. The 85 GHz pixels are av-tion for the radiometer aboard this satellite necessary. The

eraged with their gaussian weighted distance from the centelr10 calibration cogicients were determined for the years
FOV analogue to the 37 GHz antenna pattern. 1992 and 1996 and then linearly interpolated for the inter-

mediate years.

The results of the intercalibration procedure are depicted
in Figs.3to 6. The graphs show the distribution of thetdi-
In order to ensure a homogeneous time series of the succesnces for each channel relative to the calibration reference,
sive SSMis, the slightly varying individual instrument char- the SSMI on DMSP F11. The dierences have been calcu-
acteristics have to be corrected by an inter-sensor calibratiofated for collocated 10-day mean rain-free TBs ori &y 1°
of the radiometers. The calibration procedure is based on thgrid for the years 1995 (Fig8.and4) and 1998 (Figs5 and

3.3 Inter-sensor calibration

www.earth-syst-sci-data.net/2/215/2010/ Earth Syst. Sci. Data, 2, 215-234, 2010
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(a) Brightness Temperature 19GHz vertical (1995) (b) Brightness Temperature 19GHz horizontal (1995)
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Figure 3. Distribution of 10 day mean TB ffierences in 0.1 K bins for the year 1995 offdient SSMs relative to the reference radiometer
on DMSP F11. The panels show the comparisons without (dashed lines) and with (solid lines) intercalibratiog,f¢e)T BBy, (b), and
TB22 (C).

6) and categorized in 0.1 K wide bins. Grid cells with less the intercalibration has been applied. These deviations are
than one third of the maximum number of observations pemainly caused by dlierences in the sampling and the diurnal
month have been filtered in order to reduce errors from in-cycle of the individual satellites.

suficient sampling. This corresponds to a threshold of about

130 pixels per grid cell. A clear improvement for the biasis 3 4 synthesis of 85 GHz channel data

achieved for nearly all channels compared to the TBs with-

out intercalibration. Furthermore, the calibration appears toPue to thermal problems, the S@\on the DMSP F08 had

be stable since the bias for the SSh DMSP-F13 does not to be switched fi in December 1987. When the radiome-
differ by more than 0.2 K for all channels between 1995 andter was reaCtivated, the 85 GHz vertical polarization channel
1998. However, the 37channel exhibits a slightly higher ~€xhibited significantly increased noise levels. Later, similar

bias for the intercalibrated TBs compared to the uncalibrated®?roblems occurred with the 85 GHz horizontal polarization
state. channel Hollinger et al, 1990 Wentz 1992 Ferrarg 1997).

Therefore, the 85 GHz channels of the S8&6h DMSP FO08
As an example for the temporal stability of the intercal- are regarded as defective from April 1988 until the end of the
ibration, Fig.7 shows a comparison of global mean 5B lifetime of the radiometer and the respective data is not used
time series for each SSMbefore and after application of in HOAPS.
the inter-sensor calibration cieients. Only minor dier- This failure dfects all HOAPS parameters depending on
ences in the brightness temperature time series remain aftéhese channels (i.e. precipitation, vertically integrated liquid
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(a) Brightness Temperature 37GHz vertical (1995) (b) Brightness Temperature 37GHz horizontal (1995)
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Figure 4. Same as Fig3, but for TBs7, (a), TBa7 (b), TBgsy (C), and TBsp (d).

and total water content, and longwave net flux at sea surface). The synthesis is based on a neural network approach,
A computationally icient way of handling this problem is which is used to estimate B&,n of the 9-pixel averaged
to synthesize approximate values of the missing 85 GHz in-85 GHz FOV (see Sec8.2) from the other SSM channels
formation from the remaining channels. This allows the ap-(TB1gyh, TBzzy, and TBszyn).
plication of the same algorithms for all parameters through- The training data set for the neural network was compiled
out all analysis steps without individual replacement algo-from randomly selected brightness temperatures of $&ivl
rithms for each parameter. It has, however, to be kept indiometers on board DMSP F11, F13, and F14 from 1998. In
mind that such a procedure cannot fully reconstruct the spethis year the El Nio event generated extreme values, result-
cific 85 GHz information but is a computationally convenient ing in a wide distribution of TBs.
way of handling the missing data by a plausible replacement. Pixels containing high near surface wind speeds or strong
Moreover, this method is only valid over open water. Over precipitation generate comparable TB signatures in the 19
land surfaces this general approach is not applicable due tand 37 GHz channels. The accuracy of the synthesis proce-
the strongly varying surface emissivity. dure is improved when such situations are treated separately.
A good relationship to distinguish these scenes from calm
and rain-free conditions proved to be:

TBg7V—TBg7h <0.25 T822V+ 104 K (1)
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(a) Brightness Temperature 19GHz vertical (1998) (b) Brightness Temperature 19GHz horizontal (1998)
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Figure 5. Distribution of 10 day mean TB fierences in 0.1 K bins for the year 1998 offdient SSMs relative to the reference radiometer
on DMSP F11. The panels show the comparisons without (dashed lines) and with (solid lines) intercalibratiom,f¢e&)T BB,y (b), and
TBa2y (C).

Based on this relationship, two input data sets were con- Figure9 shows the results for the derived synthesis algo-
structed and the algorithm was divided into two parts. Inrithm applied to a random sample of over-ocean TBs for the
order to ensure a wide distribution of the training data with satellites that were used to train the neural network and the
different situations of precipitation, the input values were SSMI on DMSP F08. The F08 data is from the year 1987,
binned in a two-dimensional grid with B, and precipita- the F11 data is from 1998, and the F13 and F14 data is from
tion rate as axis, yielding approximately 30 000 data sample®000. The best results are achieved for the 3% DMSP
for each training data set. Finally, the input values were nor-F14 with a bias of less than 0.5 K for horizontal and vertical
malized to the sample mean and standard deviation. Thesgolarization. For the SSNMon DMSP F08 the bias values are
data sets were used to train two fully connected feed forwardslightly higher compared to the other satellites with 0.75K
networks consisting of six input neurons (1Bn, TByyy, for the vertical polarization and 1.3 K for the horizontal po-
TBs7yh, TB1ov—TB1gn), two hidden layers, and two output larization. This could be explained by the thermal problems
neurons (TBsy and TBgs,) (Fig. 8). Additionally the TB g~ with the FO8 SSM that impaired the onboard calibration of
TB1gn input neuron is directly connected to the second layerthe radiometer and caused a larger instrument noise. Fur-
to increase the impact of absorptiemission by liquid hy-  thermore, only limited data from July to November 1987 is
drometeors in this spectral range. The neurons in the hiddeavailable for the comparison prior to the failure of the instru-
layer are non-linear with the sigmoid function tanh as thement.
unit’s activation function. For the output neuron the activa-
tion function is linear.
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Figure 6. Same as Figb, but for TBs7, (a), TBa7n (b), TBgsy (), and TBsh (d).
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Figure 9. Comparison of random samples of synthesized TBs against original TBs of the 85 GHz channel in vertical poléairatidn
horizontal polarizatiorfb) for the SSMIs on DMSP F08 (1987), F11 (1998), and F13, F14 (2000).

Table 3 summarizes the resulting values for daily global flagged during the processing in the pixel-level data (see
mean values for the HOAPS parameters depending on th€ig. 1).
85 GHz channels calculated for the year 1998. The results The land-sea mask is derived from the Global Land One-
for the precipitation rate, vertically integrated liquid and total km Base Elevation data bas&l(OBE Task Team1999.
water content turn out to be reliably applicable. For the long-This data set is further adjusted by first removing small is-
wave net flux the values calculated with synthesized TBs ex{ands and landmasses with a diameter of less than 5 km, treat-

hibit a considerable bias of 7.13 Widue to the 4th power

relationship with TBs, in the algorithm.

3.5 Land mask and sea ice detection

ing these areas as open water. In a second step the coastlines
of the remaining land areas are expanded 50 km into the sea.

To account for the varying sea ice margins, a daily sea ice

mask is generated from the HOAPS S&VBs. These maps
are created in two steps. First the total sea ice covered frac-

For SSMI pixels within 50 km of any coastline and sea ice tion within a single SSM FOV is computed using the NASA
margin no geophysical parameters are derived in HOAPSTeam sea ice algorithm &wift et al.(1985. The resulting
This is to avoid any contamination of the data by the abruptsea ice observations from all available SShhstruments
change in surface emissivity between water and land or seare then gridded to common daily mean fields on a regular
ice covered areas, respectively. The corresponding areas afe5* x 0.5 grid. In order to distinguish between short-lived
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Table 3. Global mean error values for parameters calculated with synthesized brightness temperatures.

Parameter mean (RBwi) mean (TBynw) RMSE bias

RAIN [mmyd] 2.97 3.09 0.16 (5.4%) 0.12 (4.0%)
LWPA [kg/m?] 0.14 0.13 0.0053 (3.9%) —0.0048 (3.6%)
TWPA [kg/m?] 0.20 0.20 0.0045 (2.2%) -0.0039 (1.9%)
FNET [W/m?] 54.44 47.31 7.25(13.3%) -7.13 (13.1%)

strong rain events and persisting sea ice, which are characteis selected from the daily map by the center position of the
ized by similar TB signatures, only grid boxes with an aver- respective FOV.
age sea ice fraction above 15% for at least 5 consecutive days In the wake of the volcanic eruption of Mt. Pinatubo in
are flagged as ice covered. Daily sea ice maps are then déune 1991 the high load of volcanic aerosol contaminated
rived from this reduced data set by re-expanding the reliablythe AVHRR radiance measurements. Undetected aerosol
identified sea ice areas in time and space and filling remainleads to a nighttime cold bias in the daily mean SST fields
ing data gaps by spatial and temporal interpolation. Finally,(Reynolds1993. During the first phase for about 6 months
the resulting sea ice margin is extended 50 km into the oceafollowing the eruption a significant bias is introduced in the
to avoid any spurious sea ice signal in the HOAPS retrievalsSST. This &ects the retrievals of latent and sensible heat flux
in HOAPS. In 1992 theféect weakens, but may persist until
1993. However, for the decaying phase we consider the sig-
3.6 Sea surface temperature nal not to be entirely spurious since an analogous response
with a decay time of up to 31 months after the eruption is
To exclusively rely on satellite data for the computation of independently observed in global tropospheric temperatures

latent and sensible heat flux parameters, the NOAA Nationahnd water vapor dat&pden et a.2002 Harries and Futyan
Oceanographic Data Center (NODC) and Miami's Rosen-2006.

stiel School of Marine and Atmospheric Science (RSMAS)
Oceans Pathfinder Version 5.0 SSilpatrick et al, 200%;
Casey 2004 NODC, 2008 product is used within HOAPS.
In the Pathfinder data set a quality flag with a value from
0 to 7 is assigned for each pixel, with 7 being the highest
guality observation. For the further processing in HOAPS
only pixels with an overall quality flag of four or higher are
accepted. This conforms to the Pathfinder Version 4 “best

SST” product and involves several quality checks includingand wind speed are derived directly from SSVB obser-

a cloud scregnmg (C‘K"Patmk et _al.(200]) for detafls). vations. Some parameters additionally depend on SST data,
The Pathfinder algorithm céicients are determined by hich is the only ancillary data set used in the retrievals (see
a regression of the measured ocean skin infrared brightsect 3.6). The retrievals that make use of the SST data are
ness temperatures against buoy deigpatrick etal, 2001),  the Jatent and sensible heat fluxes which are estimated with
which means the derived SST technically represents a suby bk aerodynamic approach afeeirall et al. (199§ 2003

skin SST with the mean sub-skin minus skin SSTet  (see Sect.3) and the retrieval of the longwave net flux (see
ence (cold skin #ect) removed. However, the mean day- gect.4.4).

time Pathfinder SST is found to be roughly 0.1K colder

than in-situ SST and the nighttime SST is about 0.3K colder4 1 Wind q

(Reynolds et a).2002. The reason for this cold bias is un- ™ Ind spee

clear, but is most likely caused by undetected clouds. Forrhe near surface wind speed cannot be measured directly

most regions the value of this cold bias has roughly the samérom space. Over the ocean, thieet of the wind friction

magnitude as the cool skirffect. Hence, the Pathfinder SST on the surface alters the emissivity of the ocean surface in

is treated as a skin SST for the surface flux calculations inthe microwave spectrum. Thus the wind speed is dynami-

HOAPS. cally coupled to gravity and capillary waves and foam cover-
The AVHRR Pathfinder day and night-time observations age of the ocean surface, which in turn influences the surface

are averaged to daily mean SST maps with a grid resolutioremissivity and hence the upwelling radiances. At satellite al-

of 0.25. Data void regions are filled by spatial and tem- titude the SSM brightness temperatures (especially1§B

poral interpolation. Finally, the data is remapped to nativeand TBs7y,) increase non-linearly with increasing wind speed

SSMI pixel resolution. The SST value for each SSixel (e.g.Webster Jr. et 8l1976. Furthermore, T8y, TB2yy,

4 HOAPS retrieval schemes and parameterizations

In this section the algorithms and parameterizations to derive
HOAPS parameters are described with a focus on previously
"unpublished algorithms. All parameters shown in Table
are derived at the SSiMpixel level for the individual FOVs.
Parameters such as atmospheric water content, precipitation,
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and TRy, have to be considered in order to remove the atmo- '
spheric contribution to the radiometric signal, which would j
otherwise tamper with the wind induced surface signatures.
| | | | TR R

Here a neural network approach is used to derive the 0" T T e—— % -
wind speed directly from the SSMorightness temperatures. Wind Speed Reference Data Set [m/s]
Compared to linear models (e@oodberlet et al 1989 this
method allows to account for the non-linearity of the prob- Figure 11.  Comparison of the HOAPS-3 neural network wind
lem and additionally to deal with flerent atmospheric con- speed retrieval (black), the algorithms Sthbss_el and Lutha_lrdt
ditions such as clear sky or cloudy regimes. This is particu-(1999 (red) andStogryn et al(1994 (blue) against the verifica-

larlv important in situations where the atmospheric moisturetion data set of the neural network algorithm. The verification data
y1mp P set contains wind speed measurements from buoys and radiosonde

increases and the' relation of the obser.ve('i' br'ghmess,temﬁeasurements. The latter are binned iry2 steps, resulting in dis-
peratures to the wind speed becomes significantly nonlineagete intervals for higher wind speeds.
(Petty and Katsarg4992 1994.
Following a neural network approach aft€rasnopolsky
et al.(1995, the wind speed is estimated using a fully con- array for the years 1997 and 1998 (deép;/www.ndbc.
nected 3-layer feed forward neural network. The network isnoaa.goy). The temporal and spatial collocation criteria of
composed of one input layer utilizing T&n, TB22, and  a maximum diference of 30 min and 50 km between satel-
TB37yn, a hidden layer with three neurons and an outputlite and buoy observations resulted in a match-up data set of
layer with one neuron, the wind speed. A diagram of theabout 470 000 samples. The buoy wind speed measurements
neural network is shown in Fig.0. The activation function  were individually converted to a height of 10 m wind using a
of all three neurons in the hidden layer is non-linear by us-logarithmic wind profile assuming neutral stratification.
ing the sigmoid function tanh. The output neuron is linearin  Both data sets are then combined by collecting all data
order to maximize the networks’ extrapolation capabilities. samples in 2 ifs wide wind speed bins, ensuring that all parts
Two different data sets serve as input for the training dateof the wind spectrum are equally weighted. The neural net-
set. One consists of simulated S8Mrightness tempera- work’s training data set is then compiled by taking an equal
tures which are derived from radiative transfer simulationsnumber of randomized samples from each of the wind speed
based on radiosonde profiles. The second input data sdfins. The resulting data set consists of about 15000 sam-
is compiled from collocated SSMand buoy observations. ples. By taking randomized samples separately for each bin,
This approach ensures the representativeness of the input amigde input TBs cover the whole possible range of atmospheric
output data of the neural network. conditions including high water vapor observations from the
The radiosonde data set consists of about 2000 globallyTAO buoys. The smaller wind speed ranges are mixed with
distributed atmospheric profiles. These are subsampled idata samples from both data sets, while most samples larger
groups of equidistant near surface wind speed steps ¢§2 m than 15 nfs originate from the set of radiative transfer calcu-
within a range from 2 to 30 /8. The radiation emitted from lations.
the ocean surface is calculated with the surface emissivity Figure 11 shows the performance of the wind speed re-
model of Bauer(2001) and the top of the atmosphere ra- trieval compared to the algorithms 8thlissel and Luthardt
diance is calculated with the radiative transport scheme 0{1991) andStogryn et al(1994. Applied to the verification
Schlissel and Emerg1990. data set, the neural network wind speed algorithm exhibits a
The buoy data set is compiled using match-ups betweewery low bias of-0.02 njs, a standard deviation of 1.5
SSMI F11 TBs with near-surface wind speed measurementand a correlation cdicient ofr =0.98. The standard devia-
from 20 buoys from the National Data Buoy Center (NDBC) tion for the HOAPS neural network algorithm is much lower
and 59 buoys from the Tropical Atmosph&eean (TAO) compared to 4.0y8 and 5.26 ifs for the two other retrievals.
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When the entire buoy data set is used (not shown) the bias ifor subscale variability. The latent and sensible heat fluxes
0.08 nys, with a standard deviation of 1.65grandr = 0.83. Q andQs are calculated by:
Comparable valpes were found Wyinterfeldt et al (2010 Q = pLeCeu(Qs— Ga) )
who compared wind speed from HOAPS, NCEP, and the
QuikSCAT/SeaWinds scatterometer with buoy data from the 2"d
North Sea and and North Atlantic. The comparisons for theQs = pc,Cru(Ts—0g) 3)

HOAPS algorithm showed a mean RMS of fnfor near  here,, is air density,c, is specific heat of the air at con-

coastal as well as for open ocean reg|0n§. . stant pressuray is the wind speed at 10 m heiglttg is the
In contrast to the neural network algorithm the other wind |5tant heat of evaporation (calculated SST-depend€ntls
speed retrievals_ shovyn in Figl exhibiF a strong.tendency the Stanton numbe€e is the Dalton numbef, is the SST,
to saturate at high wind speeds. This results in an overall_js the potential air temperaturais the saturation specific
und_erestlmatlon with biases eR.1 nys for t_he Schiissel al- humidity at the sea surface, agglis the specific humidity at
gorithm and-4.9 nys for the Stogryn algorithm. the 10 m atmospheric measurement level. Apart from the air
temperature and the transfer fio@entsCy andCg, all pa-
4.2 Humidity parameters rameters are derived from S@IMneasurements or from the
SST as described above. For the implementation of the algo-

The algorithm for the specific air hl_Jmidity at the reference rithm in the HOAPS processing chain no modifications were
level (?f 10m above the sea surface is base‘?' ON & tWO-Step Iy ced to the default COARE boundary layer height and
gression method aft&chulz et al(1993 and its refinement

. roughness length parameterizations.
by Schlissel(1996. Bentamy et al(2003 showed that the A direct measurement of the near surface air temperature
chosen linear channel combination idfaiient for the es-

from space is not possible. Hence, it is estimated from the

timation of the near surface specific humidity. By recalcu- SST and near surface humidity using the mean of two simple
lating the regression céecients with an improved training bulk approaches:

data set they were able to remove a bias gkgn the inner ] . N S
tropics due to high precipitable water values. This updated (a) The satellite derived near surface specific humidity is

version of the algorithm is also used in HOAPS. assumed to b_e at a constant relative humidity of 80% as
For the derivation of the evaporation through the bulk for- proposed by iu et al. (1994.

mula, the diference in humidity, i.e. sea surface specific hu- () A constant temperature fiérence of 1K between sea

midity minus near surface specific humidity, is calculated. surface and air temperature is assunwil{s and King-

The specific air humidity just above the sea surface is calcu-  Helg 1990.
lated from the saturation humidity at the sea surface temperb imatological le th " lid for th
ature using the Magnus formuli@rray, 1967). An approx- n climatological scale tnese assumptions are valid for the

imate salinity correction is applied by scaling the value for n:ajorltytoglocetantlf]:(_ cotpdmofn 'fh Htcxweve;, n reg|fo ns \IN'th
pure water with a factor of 0.98. strong stable stratification of the atmospheric surface layer,

this approach will ect the quality of the sensible heat flux
o _ estimate. The impact of these assumptions on the latent heat
4.3 Turbulent heat flux parameterization and evaporation  flyx retrieval is smaller since the air temperature has only a

HOAPS-3 latent and sensible heat fluxes are parameterizegecondary fecton the parameterization through the stability

using the Coupled Ocean-Atmosphere Response Experimeﬁ’tf the atmosphe_rd_(u et aI.., 1994.

(COARE) bulk flux algorithm version 2.68¢adley et al, The evappratlon in myh is calculated from the latent heat

2000, which is an updated version of the COARE 2.5b al- flux after Fairall et al. (1999 by:

gorithm (Fairall et al, 1996. This new version is based ona E= Q. /(Lgpo) 4)

flux database contain_ing mea_sgrements from higher 'atit‘ﬂdeﬁlherepo is the freshwater density as a function of

and under stronger wind conditions compared to the Previousemperature.

version. With minor modifications of physics and parame-

terizations to the version 2.6a, the algorithm is published as, , Longwave net flux

COARE 3.0a byfairall et al.(2003. These changes were

related to the SST cool skin and warm layer part of the algo-The longwave net flux at the sea surface is computed fol-

rithm. However, due to the lack of continuos diurnal cycle lowing Schlissel(1995 from the atmospheric back radiation

information on the surface radiation budget from the $ISM and the SST utilizing the spectrally integrated surface emis-

or AVHRR measurements, this part of the COARE algorithm sivity which is close to 0.89Gardashov et 311988 and the

is not implemented in HOAPS. Neither is the precipitation Stefan-Boltzmann constant. The atmospheric back radiation

flux calculation implemented. is retrieved directly from SSmeasurements with the algo-
The COARE algorithm iteratively estimates stability de- rithm of Schlissel(1995 under clear and cloudy conditions

pendent scaling parameters and wind gustiness to accounising the TBay, TB3zyn, and TBsyn channels.
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4.5 Water content and water vapor parameters input layer

The liquid and ice phase in clouds and precipitation strongly
change the radiative properties of the atmosphere within th¢ |37

microwave spectrum and directly influence the radiometer

\Tdden layer
h1.2

h1.1
\ output layer

signal. To account for élierent atmospheric conditions, a

threshold technique is used to distinguish between cloud| [85

free, cloudy and rainy scenes. Affdirent set of individual 19

algorithms is used to derive liquid and total water paths for

each situation. This approach is based on the internally cal

culated total water path and rain-rates as describ&hirer

and Schilissel(1993. Figure 12. Neural network architecture of the precipitation re-
In HOAPS, the vertically integrated water vapor is derived trieval algorithm.

with the globally applicable retrieval scheme $€hlissel

and Emery(1990. The majority of information on the in-  rapje 4. Accuracies of the neural net algorithm for precipitation.

tegrated water vapor is contained in the 22 GHz channel thag = number of samples; mean, bias, and RMS are in/m(see

is located within a water vapor absorption line. This algo- text).

rithm additionally uses TE, to correct for undesirable ef-

fects of atmospheric liquid-water content or extreme near pata set N mean bias RMS r

surface temperature gradients inzbB

h1.3

verification data set 54850 0.255-0.007 0.062 0.950

complete data file 2596899 0.158-0.063 0.157 0.915

4.6 Precipitation complete data file

cutaf: 0.3 mmh 357492 0.780 -0.166 0.342 0.907

Microwave based retrievals of precipitation are based on the
direct interaction of the radiation field and the hydromete-

ors (water droplets, ice particles). The emission from cloud .
and liquid hydrometeor particles at small frequencies causeStruct @ training data set from a large number of samples
a strong increase of the brightness temperatures and results FS€d on @ sophisticated radiative transfer model.

a strong contrast to the radiometrically cold sea surface back- | NiS data set covers a wide variety of globally distributed

ground. In contrast to that, the brightness temperatures J@infall events including extreme rainfall in hurricanes and

high frequencies decrease with increasing precipitation dugnowfall at high latitudes. However, as it consists of more
to the scattering of radiation by frozen hydrometeors. than 2.5 million data samples, it must be filtered in order to

The successful usage of a neural network for the nearENsure good coverage and equal weight of all possible input

surface wind speed retrieval also encouraged a similar ap'_I'B combinations. Hence it was binned in a two-dimensional

proach for the precipitation algorithm. A fully connected 3- grid using TB,, and the polarization dierence TBe,~TBion

layer feed forward network was constructed that includes: arfs &xIs- Thg final training data set was then compiled ?y
input layer with six neurons at Ty, TB22v TBazyh, and randomly taking an equal number of samples from each bin,

TBgsy, a hidden layer with three non-linear neurons using theWhiCh makes about 110000 data sgr_nples in total of Whi.Ch
only 50% were actually used for training. In order to avoid

tanh function as the activation function, and an output layer— ™ . N o
with one linear neuron, the scaled rain e Additionally, an inappropriately high influence of the larger uncertainties

the input neurons of TR, and TBy, are connected linearly at higher precipitation rates, the training values were scaled

to the output neuron. Figurk2 shows a schematic diagram non-linearly by the following transformation, witR* repre-
of the neural network senting the transformed precipitation rate:

The training data set for the neural network set is basedg: _ log LO(R+ 1) (5)
on radiative transfer calculations as describeBauer et al.

(20064gb). This data set contains one month (August 2004) A lower threshold value is applied to the algorithm, be-
of assimilated SSKI TBs and the corresponding precipi- low which the precipitation signal is considered to be zero.
tation values of the European Centre for Medium-RangeFrom experience with the formerly used algorithm, a value
Weather Forecast (ECMWF) model. of 0.3 mmh turned out to be an appropriate limit for distin-
Using precipitation values from the operational variational guishing between a real precipitation signal and background
analysis to compile the training data set not only ensures th@oise.
statistical representativeness of the input data, it also makes The results of this training procedure are depicted in Ta-
use of the advantage to have the background meteorologble 4. The first line shows the quality of the derived algo-
cal surface fields and profiles consistent with the measuredithm compared to the unused second half of the training
SSMI brightness temperatures. Moreover, it allows to con- data set, the verification data set. Due to the strong peak of
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Figure 13. Comparison of dferent precipitation algorithmga) shows the retrieved precipitation rates of the neural network algorithm
(black), theBauer and Sclilssel(1993 algorithm (red) and thé&erraro(1997 algorithm (blue) against the precipitation rates from the
verification data sei(b) shows the accumulated histogram of precipitation as the fraction of total precipitation fofférerdi retrievals and
the verification data set between 0.2 fhrand 30 mnth.

the distribution in case of low precipitation rates, the meanverification data set. The few cases with rain rates exceed-
precipitation rate is only about 0.25 rim The derived algo- ing 12 mmjh in the verification data set are reproduced by
rithm reproduces the test cases with a correlation=08.95, the neural network and the Ferraro scattering algorithm with
a very small bias and a RMS of about 0.06 thpwhich rep-  comparable values around 10 fimThe latter performs not
resents the theoretical algorithm accuracy. Testing the algowell for lower rain rates due to the missing emission signal
rithm against the complete ECMWF data set yields a lowerin the algorithm.
mean value of 0.16 mfh, which is due to the larger sample  Figure13b shows accumulated histograms of the rain rates
size compared to the verification data, a bias@06 mmjh,  derived with the three dfierent precipitation algorithms on
and a RMS of 0.16 mfh. When a lower cuté of 0.3mmh  a logarithmic scale. The histogram bins represent the ac-
is applied to the ECMWF data set as it is done in the HOAPScumulated fraction of the total reference precipitation from
retrieval, the mean precipitation rate increases to 0.78mm the verification data set in the range from 0.2 fhmp to
Bias and RMS are very low with values 60.17mmnid and ~ 30mmh. About 90% of the total ECMWF precipitation
0.34 mnjh, respectively. The correlation is in the range of comes from rain rates up to 1 miim The new neural net-
the two previous cases with=0.91. work algorithm overestimates the rain rate below 0.3/mm
The detection rates of the algorithm compared to the entire2nd then slightly underestimates rain rates above 0.5mm
ECMWF data set are 93.4% correctness for the raining and his leads to a small underestimation of the total precipita-
rain-free cases, with a probability of rain detection of 70.5%tion. Applying a lower threshold at 0.3 mimresults in a
and a false alarm rate of 20.4%. total bias 0f-0.166 mnjh (Table4).
Further validations for cold season snowfall over the ocean

Figure 13a shows the results of the training procedure
g gp ere carried out bKlepp et al.(2010 by co-locating ship

as a comparison of the verification data set, which has no ; ) .
been used in the training procedure (see above), with th ased optical disdrometer and satellite data. In contrast to

new the neural network algorithm, the retrievaRzuer and other satellite derived precipitation estimates the HOAPS re-

Schiissel(1993 (HOAPS 1), and 'the scattering algorithm trieval was able to detect even light amounts of snowfall with
! 0

of Ferraro(1997). As expected, the neural network performs an accuracy of 96%.

significantly better in reproducing the rain rates of the veri-

fication data set compared to the other data sets. The Baugry  rreshwater flux

algorithm exhibits a systematic underestimation of the preci-

pitation. For rain rates exceeding 7 rfimthe neural network The diference between the evaporation and precipitation

algorithm also exhibits an underestimation compared to theyields the oceanic freshwater flux into the atmosphere. Since
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Figure 14. Climatological mean field (left) and zonal mean annual cycle (right) of HOAPS-3 evaporation for the years 1988 to 2005.
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Figure 15. Climatological mean field (left) and zonal mean annual cycle (right) of HOAPS-3 precipitation for the years 1988 to 2005.

concurrent observations of strong evaporation and precipitabution of freshwater flux (Figl6). A net flux into the ocean
tion are not possible, the freshwater flux in yidhof each  is mainly found in regions of precipitation maxima in the In-
grid box is computed as theftkrence between the spatially tertropical Convergence Zone (ITCZ), the South Pacific Con-
and temporally averaged evaporation and the averaged prerergence Zone (SPCZ), the midlatitude storm tracks and at
cipitation. Hence no statistical variables like the number ofhigh latitudes. In contrast, subtropical regions generate the
observations or standard deviation are available in the gridmajor part of the freshwater flux into the atmosphere. In the
ded freshwater flux data products. annual cycle, the dominant features of the input parameters
The climatological fields of evaporation, precipitation, and are reproduced.
freshwater flux from the HOAPS-G monthly mean data set
for the years 1988 to 2005 are shown in FifSto 16.
Dominant features of either precipitation (Fig) or evap-
oration (Fig.14) fields determine the resulting global distri-
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Figure 16. Climatological mean field (left) and zonal mean annual cycle (right) of the HOAPS-3 freshwater flux for the years 1988 to 2005.

5 Conclusions the intercalibration of passive microwave sensors are subject
of the Global Space-based Inter-Calibration System (GSICS)

HOAPS-3, the latest version of the S@Mased satellite cli- by the WMO, and the GPM Intersatellite Calibration Work-
matology provides fields of turbulent heat fluxes, evapora-ing Group (X-CAL).
tion, precipitation, freshwater flux and related atmospheric HOAPS-3 gridded data sets are freely available as pentad
variables for a continuous record from 1987 to 2005. Severahnd monthly means and as twice daily multi satellite com-
gridded data products of monthly and pentad means, twicgosite fields through the websitdtp;/www.hoaps.orgrom
daily composites along with scan-based data allows the usthe CERA data bas(tp;/cera-www.dkrz.dg
of HOAPS-3 data for studying ocean-atmosphere interaction The production of the HOAPS data set is currently trans-
on different temporal and spatial scales. ferred to the EUMETSAT Satellite Application Facility on

A sophisticated processing chain has been implemente€limate Monitoring (CM-SAF) at the Deutscher Wetterdi-
that includes the handling of SSMaw data, the retrieval enst (DWD). Further releases will be generated at CM-SAF
of geophysical parameters, and gridding procedures. Th&nd available afttp;/www.cmsaf.efi
concurrent use of all available S3Mnstruments with an

inter-sensor calibration for the brightness temperatures enﬁgtggmigizrgri’:;;sd;r (g‘;%’)rings;zzi(g:?g tm’osgﬁ Efaugsgzger
sures a homogenized time series with dense data Samp“n]%rschungsbereich 512 at the University of Hamburg, as well as the

and_ hence dpft.a"ed information of the underlying Wegther SIt'funding by the Helmholtz Foundation through the Virtual Institute
gatlons. Additionally, updated AVHRR based SST fields areExtrop are gratefully acknowledged. We are particularly grateful to
included and a new 85 GHz synthesis procedure for the depeter Bauer (ECMWF) for providing radiative transfer results as
fective channels of the SSMon DMSP F08 has been im- input to the new precipitation algorithm.
plemented. A great improvement over previously used algo-
rithms is achieved for the retrieval of precipitation and wind Edited by: G. Kinig-Langlo
speed with the neural network based algorithms. The combi-
nation of newly derived algorithms with previously published The service charges for this open access publication
and validated retrievals result in high quality satellite derived have been covered by the Max Planck Society.
atmospheric and ocean surface parameters.
Future tasks will involve a more detailed investigation
of retrieval uncertainties and hence the specification of er-
ror estimates. Since the last radiometer of the 333d-
ries was launched into space with DMSP F-15, a contin-
uation of the HOAPS climatology will require the use of
new sensors, preferably the Special Sensor Microwave Im-
agefSounder (SSMIS). Corresponding activities regarding
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