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Abstract. Soil temperature (75) is critical in regulating agricultural production, ecosystem functions, hydro-
logical cycling and climate dynamics. However, the inherent spatial and temporal heterogeneity of soil thermal
regimes constitutes a persistent challenge in obtaining high-resolution, continuous gridded 7 datasets along ver-
tical profiles. To address this issue, we propose a spatially adaptive layer-cascading Extreme Gradient Boosting
(XGBoost) algorithm to generate daily multi-layer T data (0, 5, 10, 15, 20, and 40 cm) at a spatial resolution of
1 km in China from 2010 to 2020. The methodology dynamically partitions non-uniformly distributed measuring
sites (2093 sites across the country) to quadtrees and incorporates thermal coupling effects propagated between
neighbor soil layers. Multi-source data, including satellite retrievals of land surface temperature and vegetation
index, and ERAS reanalysis climate variables were used as inputs. Validation using both spatially indepen-
dent test sets and flux-tower observations demonstrated the robustness and accuracy of the product. It is noted
the model’s performance was lower in summers and winters than in springs and autumns. Compared to existing
global or regional 7 products, the dataset developed here is characterized by its fine spatio-temporal patterns and
high reliability, enabling it to provide supports for precision agriculture, ecosystem modeling and understand-
ing climate-land feedback. Free access to the dataset can be found at https://doi.org/10.11888/Terre.tpdc.302333
(Wang et al., 2025b).
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1 Introduction

Soil temperature (75) is a critical driver of ecosystem dynam-
ics, influencing nearly all physical, chemical, and biologi-
cal processes (Bayatvarkeshi et al., 2021; Xu et al., 2023;
Liu et al., 2025). T plays a pivotal role in land-atmosphere
exchanges. By controlling the partitioning of net radiation
into sensible and latent heat fluxes, 7 directly shapes atmo-
spheric boundary layer circulation, with cascading effects on
regional climate patterns (Mahanama et al., 2008; Chen et al.,
2021a). T also drives soil freeze-thaw cycles, which are crit-
ical for hydrological processes in cold regions. Permafrost
thaw alters subsurface water storage, runoff dynamics and
groundwater recharge, with implications for both local and
basin-scale hydrology (Zhang et al., 2005; Shati et al., 2018).
In addition, it governs the rates of soil microbial activities,
nutrient cycling, and organic matter decomposition, with di-
rect implications for carbon dynamics. For instance, 75 mod-
ulates microbial respiration, thereby regulating the release of
organic carbon into the atmosphere as CO; that is central to
global carbon cycling (Yang et al., 2011). Given its multi-
faceted influences on carbon cycling, climate feedbacks and
hydrological systems, accurate T estimation is indispensable
for advancing ecosystem monitoring, refining climate mod-
els, and developing effective strategies to mitigate and adapt
to climate change.

T; exhibits high heterogeneity at large spatial scales due to
varying driving factors. Solar radiation changes its radiation
intensity by adjusting the incident angle and sunshine dura-
tion, thus affecting the heating effects on surface soils (Wang
and Dickinson, 2013). Additionally, diurnal variations of air
temperature cause periodic changes in surface temperature,
while the amplitude is often closely related to the local cli-
mate and topography. Furthermore, surface covers (e.g., veg-
etation and snow) significantly impact 75 (Xu et al., 2020;
Mortier et al., 2024). Vegetation canopies effectively inter-
cept and scatter solar radiation, while root systems modu-
late soil moisture distribution, thereby stabilizing deeper soil
temperatures (Li et al., 2024c). Snow cover, characterized
by high albedo, reflects substantial solar radiation and acts
as an effective insulator, mitigating cold air penetration and
maintaining warmer soil temperatures during winter months
(Myers-Smith et al., 2015). Moreover, thermal conductivity
and heat capacity are critical parameters controlling vertical
heat transfer in soils. Sandy soils have higher porosity and
lower water retention, resulting in lower heat capacity and
higher thermal conductivity, thus responding rapidly to tem-
perature changes. In contrast, clay soils have lower porosity
and stronger water retention, leading to higher heat capacity
and significant thermal stability, characterized by delayed re-
sponses to temperature variations (Ochsner et al., 2001; Zhao
et al., 2022). Understanding these mechanisms is essential
for developing refined vertical T distribution models and im-
proving the accuracy of 7 estimation.
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Given these complex processes, accurately estimating 7T
across different depths is challenging. Quite a few models
have been proposed for 7 estimation. These models can be
generally classified into physical, statistical or empirical, and
machine learning (ML) types (Li et al., 2024c; Farhangmehr
etal., 2025). Physical models, derived from fundamental heat
conduction laws and energy balance equations, provide ex-
plicit mechanistic interpretations but suffer from computa-
tional complexity and heavy reliance on multi-domain input
parameters, which range from soil properties to climatic vari-
ables (Gao et al., 2008; Hu et al., 2016; Badache et al., 2016).
Statistical or empirical models, such as autoregressive inte-
grated moving average and regression methods (Xing et al.,
2018), are usually limited to localized, small-sample appli-
cations. Data-driven ML techniques demonstrate a superior
ability to capture nonlinear relationships and thus usually can
obtain high prediction accuracy. For instance, at site scale,
Feng et al. (2019) estimated multi-layer 7y at half-hourly
resolutions using Extreme Learning Machine, with a RMSE
ranging from 2.26-2.95 K. Li et al. (2022) implemented an
attention-aware long short-term memory (LSTM) model for
predicting next-day 7y and the model obtained a RMSE of
0.74-2.53 K. At the regional scale, Xu et al. (2023) inte-
grated satellite remote sensing with a deep belief network
model to reconstruct continuous 7 profiles (at depths of 5—
40 cm) across the Qinghai-Tibetan Plateau (QTP), obtaining
R? > 0.836 and MAE < 2.152 °C. Similarly, Farhangmehr et
al. (2025) developed a hybrid convolutional neural network-
LSTM (CNN-LSTM) architecture for predicting T across
North American climatic zones at 0-7 cm depths, with R?
ranging from 0.93 to 0.99.

Although significant advances have been made in esti-
mating Ty, large-scale T prediction continues to confront
critical challenges, sourcing from environmental complexity
and methodological limitations. First, 7 exhibits consider-
able spatial heterogeneity driven by regional disparities in to-
pography, soil composition, vegetation density, and microcli-
mate (Bayatvarkeshi et al., 2021). These factors create non-
stationary relationships between Ty and explanatory variables
(e.g., air temperature, soil moisture), necessitating region-
ally tailored modeling approaches. Second, data scarcity and
uneven spatial distribution of site measurements introduce
further complexity. Aggregating sparse, unevenly distributed
measurements into a single model often leads to overfitting:
high accuracy on training data but poor generalization to un-
derrepresented regions or previously unseen data (Li et al.,
2024a). Ultimately, developing models that reconcile scala-
bility (for large spatial scales) with localized precision (to
capture site-specific interactions) remains an unresolved pri-
ority, underscoring the persistent challenge of balancing uni-
versal applicability with spatially adaptive fidelity in T pre-
diction methodology.

Recent advances in spatially adaptive modeling have in-
creasingly emphasized the importance of addressing spatial
heterogeneity and uneven sampling density in environmen-
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tal datasets. Classical quadtree structures and related hierar-
chical spatial data models provide the theoretical foundation
for constructing adaptive, variable-sized spatial partitions,
enabling efficient organization of multiscale spatial infor-
mation through recursive subdivision (Samet, 1984). Build-
ing on this foundation, Lagonigro et al. (2020) developed
the AQuadtree R package, which provides an adaptive spa-
tial partitioning framework capable of generating variable-
sized grid cells according to the spatial distribution of ob-
servations. This adaptive partitioning produces finer grids
in data-dense regions and coarser grids where observations
are sparse, ensuring a spatial structure that better reflects
sampling heterogeneity and improves the model’s capacity
to capture localized spatial variability. Extending this idea,
we develop a rotated-quadtree strategy that applies multiple
orientation angles during the quadtree subdivision process.
This enhancement allows the model to capture spatial hetero-
geneity from multiple directional perspectives, and averaging
predictions across rotation angles substantially reduces the
boundary artifacts that may arise from single-angle grid par-
titioning, ultimately improving the robustness of local mod-
eling under complex environmental gradients.

To address the irregular station distribution, and non-
stationarity commonly encountered in large-scale T esti-
mation, we construct a spatially adaptive modeling frame-
work based on the rotated quadtree approach. Within each
grid cell, multi-source environmental predictors are inte-
grated with in situ station records, and T is estimated us-
ing XGBoost models. Based on this framework, the objec-
tives of this study are to: (1) construct a spatially adaptive
modeling system; (2) generate a multi-layer 7 dataset at a
daily time-step and one kilometer resolution in China from
2010-2020; and (3) evaluate the dataset through indepen-
dent validation with flux tower observations and benchmark-
ing against widely used 7 products. The proposed methodol-
ogy could directly address the scaling challenges induced by
spatial heterogeneity and uneven data distribution. The gen-
erated products would provide a robust foundation for high-
resolution environmental modeling, precision agriculture and
climate impact assessments.

2 Materials and methods

2.1 In-situ 75 observations

In this study, in-situ Ty observations was measured at six
depths: at the surface (0 m), and at subsurface levels of 0.05,
0.10, 0.15, 0.20, and 0.40m. Data were collected through
the national weather station network operated by the China
Meteorological Administration (CMA), in accordance with
standardized measurement protocols. At each site, 75 was
recorded every 10 min and automatically uploaded to a cen-
tral server. Daily mean values at each depth were calculated
from these high-frequency records. We then assessed data
completeness for the period 2010-2020 and excluded sta-
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tions with more than 20 % missing daily records at any depth.
After quality control, 2093 stations were retained for model
development.

The observation network spans a wide range of climatic
zones — from cold and temperate to subtropical and tropi-
cal, and includes diverse land-use and ecosystem types, such
as forests, grasslands, croplands, and barren lands. However,
the spatial distribution of stations is notably uneven. High
station density is observed in northeastern China, the central
and eastern plains, and the southern hilly regions, whereas
station coverage is sparse in the arid and semi-arid regions of
northwestern China and on the QTP. The spatial distribution
of in-situ observation sites is shown in Fig. 1, and details of
the dataset partitioning strategy are provided in Sect. 2.3.3.

2.2 Predictor variables

To construct a robust multi-layer Ty estimation model, we
selected a comprehensive suite of predictor variables, inte-
grating remote sensing products, meteorological factors, and
auxiliary environmental data. Meteorological variables, es-
pecially air temperature and precipitation, have been con-
sistently recognized in previous studies as primary determi-
nants of T variability (Bond-Lamberty et al., 2005; Nahvi et
al., 2016). Among these, air temperature has been widely re-
garded as the most influential variable due to its strong linear
relationship with 75 (Khosravi et al., 2023).

In addition, both net solar radiation and downward long-
wave radiation (LWD) were considered. Net solar radiation
directly represents the shortwave energy absorbed by the land
surface and serves as the primary driver of the daytime sur-
face energy budget, whereas LWD plays a particularly impor-
tant role under nighttime and winter conditions by regulating
surface heat loss through the longwave radiation balance. To-
gether, they jointly control the surface energy balance and di-
rectly drive the spatiotemporal dynamics of 7 (Peng et al.,
2016).

Thermal infrared remote sensing data also exhibit a high
correlation with near-surface T;. Integrating thermal remote
sensing products and energy balance-based models offers an
effective means of estimating 7 with high spatial and tempo-
ral continuity. This strategy has been validated by numerous
studies (Huang et al., 2020; Xu et al., 2023). Surface land
cover further modulates Ty by altering surface albedo, regu-
lating evapotranspiration (ET), and influencing energy parti-
tioning processes. Accordingly, the enhanced vegetation in-
dex (EVI), derived from satellite observations, was incorpo-
rated as a proxy for vegetation density and type (Bright et al.,
2017; Li et al., 2024b). To capture the influence of underly-
ing surface characteristics on T, topographic variables such
as elevation and slope were included, along with soil texture
data across various depths. These features collectively reflect
the heterogeneous physical and thermal properties of the soil,
contributing to spatial variations in heat conduction and stor-
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Figure 1. Spatial distribution of in-situ T sites at different depths across China and the corresponding environmental variables. This figure
presents the spatial distribution of 2093 in-situ T sites across China. The environmental variables corresponding to these sites include (a)
land cover types (forests, barren land, grasslands, croplands, water bodies, and urban areas), (b) elevation (ranging from —156 to 8424 m), (c)
mean annual temperature (MAT, ranging from —18 to 26 °C), and (d) mean annual precipitation (MAP, ranging from 11 mm to 10 800 mm).

age capacity. A full list of the predictor variables used in the
model is summarized in Table 1.

2.2.1 Remote sensing data

The MOD11A1 LST product, at a daily time-step and a spa-
tial resolution of 1 km, was utilized. It includes both daytime
(LSTgay) and nighttime (LSTy;gnt) temperatures at 10:30 a.m.
and 10:30 p.m., respectively, along with quality assessment
information (Wan and Dozier, 1996). To enhance the estima-
tion of daily mean Ty, the average of LSTg,y and LSTpight
values was calculated and used in the analysis.

EVI from 2010 to 2020 were selected as predictor of Ts.
The MODIS Surface Reflectance Product (MODO09GA), de-
rived from MODIS Level-1B data, provides daily surface re-
flectance of seven bands at 500 m x 500 m resolution. The
EVI is defined by Huete et al. (2002), and the retrieval equa-
tion is as follows:

(PSR_b1 — PSR_b2)

EVI=G x
(psr_b1 + C1 X psr_b2 — C2 X psr_ b3 + L)

ey

where G = 2.5, C{ =6, C, =7.5, L = 1. The remote sens-
ing reflectance variables SR_b1 (620-670 nm), SR_b2 (841-
876 nm) and SR_b3 (459-479 nm) of MOD09GA data rep-
resents red, near-infrared and blue bands. The coefficients
2.5 and 1 represent the gain and canopy background, respec-
tively (Huete et al., 2002). The atmospheric influence on the
red band is corrected using the blue band and the coefficients
6 and 7.5, respectively.
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Subsequently, cloud contamination caused partial spatial
absences in the daily LST and EVI. To address this issue,
we applied a temporal and spatial linear interpolation algo-
rithm, which utilizes time-series data from adjacent days and
spatial information from neighboring pixels to fill the cur-
rent missing values, thereby generating a time-continuous
and spatially complete image series. This approach follows
the methods described in Chen et al. (2017) and Cao et al.
(2018), with modifications to better suit our dataset. Then,
the Savitzky—Golay (S—G) filter was used to smooth the in-
terpolated data, resulting in continuous surface temperature
and vegetation index data with high temporal and spatial res-
olution (Kong et al., 2019; Chen et al., 2021b). All data pre-
processing, including image filtering and interpolation, was
conducted within the Google Earth Engine (GEE) platform.

2.2.2 Climate data

The ERAS-Land is the fifth-generation reanalysis dataset
produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). It assimilates multi-source
data, including weather station measurements, numerical
weather predictions, and satellite observations, into dynamic
models to generate reanalysis data (Mufloz-Sabater et al.,
2021). It provides high-quality environmental variables re-
lated to water and energy fluxes between the land surface
and atmosphere, with continuous coverage from 1981 to
the present. ERAS5-Land offers a spatial resolution of 0.1°
(~9km at the equator) and an hourly temporal resolution,
making it well-suited for modeling near-surface processes.
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Table 1. Details of the predictor variables for training the model.

Type Data Variable Spatial Temporal Reference
resolution resolution
Remotely sensed MODO09GA EVI 500m x 500m  Daily Huete et al.
product (2002)
MODI11A1 LST_Day 1km x 1km Daily
MODI11Al1 LST_Night 1km x 1 km Daily
Climate data ERAS-Land Temperature_2 m 9km x 9km Daily Muiioz-Sabater
surface_net_solar_ radiation_sum et al. (2021)
surface_thermal_radiation_
downwards_sum
Precipitation
Supplementary data USGS_STRM Elevation 30m
Slope 30 m
Soil Texture Sand, Silt, Clay 250m x 250 m Liu et al.
Depth: (2022)
0-5, 5-15, 15-30, 30-60 cm
Insitu Soil temperature Daily
measurements at 0, 5, 10, 15, 20, and 40 cm
In this study, we extracted daily mean values of key climate 2.3 Methods

variables, including 2 m air temperature (Temperature_2 m),
surface solar radiation and total precipitation from the ERAS-
Land Daily dataset. All variables were accessed and pro-
cessed using the GEE platform.

2.2.3 Auxiliary data

Topographic and soil-related variables were incorporated as
auxiliary predictors to improve the accuracy of T estima-
tion. Elevation and slope were derived from the Shuttle Radar
Topography Mission (SRTM) digital elevation model (Farr
et al., 2007), specifically using the Version 3 (SRTM Plus)
product with a spatial resolution of 1 arcsec (~30m). Soil
texture plays a critical role in determining 75 through its in-
fluence on thermal conductivity, which is affected by physi-
cal properties such as particle size distribution, porosity, bulk
density, and moisture retention capacity. In this study, we
represented soil texture using the relative proportions of clay
(fine), silt (medium), and sand (coarse) particles. To capture
vertical variability in soil properties, we employed the China
Soil Information Grid dataset developed by Liu et al. (2022),
which provides gridded estimates of soil composition at four
depth intervals: 0-5, 515, 15-30, and 30-60 cm. The dataset
offers a spatial resolution of 1km and is suitable for high-
resolution, profile-based soil modeling.
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The spatial adaptive modeling framework consists of three
modules as shown in Fig. 2. Module I is for data collec-
tion and preprocessing, which mainly involves in-situ obser-
vations, remote sensing, meteorological and supplementary
data. Module II is spatial adaptive modeling, which mainly
includes the construction of rotated quadtrees and local mod-
eling based on XGBoost. Finally, module III is the layer-to-
layer reconstruction of daily 1 km resolution multi-layer (0,
5, 10, 15, 20, and 40 cm) Ty datasets in China from 2010 to
2020.

2.3.1 Feature selection

Multicollinearity among multiple source variables may affect
the robustness of the models. Therefore, we rigorously eval-
uated the multicollinearity among the independent variables
using the variance inflation factor (VIF) before modeling to
remove highly correlated variables. The VIF is a diagnostic
statistic used to quantify the degree of multicollinearity by
measuring how much the variance of a regression coefficient
is inflated due to correlations with other predictors (Akin-
wande et al., 2015). It is calculated as:

1

VIF; = s 2

l
where Ri2 is the coefficient of determination obtained by
regressing the ith predictor against all other predictors.
Variables with VIF exceeding 10 are generally considered
severely multicollinear and should be removed.

Earth Syst. Sci. Data, 18, 97-116, 2026
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Figure 2. Workflow of the proposed method to obtain multi-layer 75 over the China.

Based on the VIF analysis, we applied the following
adjustments to the predictor set. Accordingly, some vari-
ables were excluded due to severe multicollinearity or re-
dundancy. Specifically, sand, silt, and clay are compositional
variables whose proportions sum to 100 %, leading to perfect
collinearity. To reduce redundancy, we removed silt while
retaining sand and clay. In addition, LWD was found to be
highly correlated with net solar radiation at the daily mean
scale (Fig. S1 in the Supplement) and was therefore excluded
from the final modeling.

Although the daily mean LST (LST_mean) and air tem-
perature exhibit high collinearity (VIF > 10; Fig. S2), we
chose to retain both variables because they represent differ-
ent thermal information. LST_mean captures high-resolution
surface radiative temperature signals, whereas air tempera-
ture reflects broader-scale atmospheric thermal conditions. In
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ecosystems with complex canopy structures, such as forests,
the canopy can alter radiative transfer processes and cause
LST to deviate from the true subsurface thermal environment
(Liu et al., 2025). Therefore, the two variables provide com-
plementary thermal information that helps better characterize
soil thermal dynamics. In addition, we compared the model
performance under different combinations of predictor vari-
ables (Figs. S3 and S4). The results show that the combina-
tion of air temperature + LST + other predictors achieved the
best modeling accuracy at the surface soil layers. Therefore,
retaining both air temperature and LST in the final model is
reasonable and necessary.
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2.3.2 Spatial adaptive partition of site measurements

We applied the Local Bivariate Moran’s I analysis to assess
the local spatial relationship between surface Ty (GST_Avg)
and elevation as an illustrative example (Fig. S5). The results
reveal significant spatial variations in their local association
(p < 0.05), indicating pronounced spatial non-stationarity in
the T-elevation relationship. These findings justify the need
for a spatially adaptive modeling strategy capable of captur-
ing localized heterogeneity.

A quadtree is a hierarchical spatial data structure that re-
cursively subdivides a two-dimensional space into four quad-
rants, enabling efficient spatial indexing and localized data
organization. In this study, we adopted a bottom-up, ro-
tated quadtree-based spatial partitioning strategy that adap-
tively generates finer grids in regions with dense samples and
coarser grids in sparse regions. Compared to global model-
ing or static grid partitioning, this adaptive approach offers
improved regional modeling fidelity while significantly en-
hancing computational efficiency. The procedure consists of
the following steps:

1. Initialization of Minimum Units. The entire spatial do-
main was first divided into uniform, minimum-sized
units (leaf nodes), each representing a fundamental spa-
tial element. These units may contain zero or more in-
situ observations. This initial step provides the base res-
olution for subsequent hierarchical construction. The
structure and principle of quadtree spatial indexing are
illustrated in Fig. S6.

2. Hierarchical Merging. Starting from the leaf nodes,
groups of four adjacent quadrants were recursively
merged into parent nodes if each contained fewer
than 30 observation sites (threshold selection detailed
in Fig. S7). The merging process continued upward
until no further groups met the threshold. This ap-
proach ensures that each node has sufficient sample size
while achieving spatially adaptive partitioning across
the study area. Each subregion is then assigned a local-
ized T prediction model.

3. Rotation at different angles. To reduce potential edge
effects introduced by static grid boundaries, we im-
plemented a rotated quadtree partitioning strategy. The
quadtree structure was rotated at six angles (0, 15, 30,
45, 60, and 75°), producing distinct sets of spatial par-
titions for each orientation (Fig. 3). Independent mod-
els were trained for each rotated configuration, and the
final T estimates were obtained by averaging the out-
puts from all six models. This rotation-based ensem-
ble method improves spatial smoothness and minimizes
discontinuities at partition boundaries.
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2.3.3 Machine learning algorithm

We adopted the XGBoost (Extreme Gradient Boosting) algo-
rithm as the core regression model for 7 estimation due to
its strong predictive performance, computational efficiency,
and scalability across large environmental datasets. XGBoost
constructs an ensemble of regression trees in a stage-wise
boosting process, where each successive tree is trained to
minimize the residuals of the previous iteration, thereby pro-
ducing a robust and optimized model (Chen and Guestrin,
2016). One of the key strengths of XGBoost is its abil-
ity to handle heterogeneous and high-dimensional predictor
sets, which are common in geoscience applications involv-
ing complex terrain, land cover variability, and climatic gra-
dients. Recent studies have demonstrated its effectiveness in
similar domains, including land surface temperature recon-
struction (Li et al., 2024a), multi-layer soil moisture estima-
tion (Karthikeyan and Mishra, 2021), drought event attribu-
tion (Wang et al., 2025a), and crop yield prediction (Li et al.,
2023b). Given these proven strengths and the spatially non-
stationary characteristics of 7 in our study area, XGBoost
was selected to train localized prediction models within spa-
tial subregions.

Significant spatial autocorrelation commonly exists
among nearby T; observation sites. To prevent potential data
leakage caused by randomly splitting the training and testing
subsets, we conducted the partitioning at the station level and
constructed a buffer zone around the selected test station. All
other stations located within this buffer were removed, and
only stations outside the buffer were retained as the training
set. This strategy effectively ensures that samples within
the same sub-grid do not appear simultaneously in both the
training and testing subsets due to spatial autocorrelation,
thereby allowing a more robust and unbiased assessment of
the model’s generalization performance.

Specifically, considering the availability of sufficient train-
ing samples, one station was randomly selected as the test
sample within each sub-grid. A 500km buffer was subse-
quently created around the test station, with the radius de-
termined based on the effective distance for reducing spatial
autocorrelation among stations as shown in Fig. S8. All sta-
tions within the buffer were excluded, and only those outside
the buffer were used for model training. Subsequently, five-
fold cross-validation was performed at the station level, and
GridSearchCV was used to optimize three key hyperparame-
ters: the number of trees (n_estimators), maximum tree depth
(max_depth), and learning rate (learning_rate). The search
ranges for these parameters are provided in Table S1. The
optimal hyperparameter combination was identified by min-
imizing the mean validation error. Finally, the model was re-
trained on the full training subset using the optimized param-
eters and evaluated on the spatially independent test sample
to rigorously assess its generalization capability.

A layer-wise prediction strategy was adopted to estimate
T along the soil profile. For the surface layer (0cm), pre-
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Figure 3. Multi-angle adaptive quadtree partitioning of site observations (0, 15, 30, 45, 60, 75°).

dictors included air temperature and daily mean LST. For
subsurface layers, these two variables were replaced by the
T; estimate from the immediately preceding layer, enabling
the model to capture vertical heat conduction processes and
thereby improving the continuity and physical consistency of
layer-wise T estimation.

2.3.4 Model evaluation metrics

The modeling performance and quality of the predicted T
were evaluated in terms of RMSE, Mean Absolute Error
(MAE), R?, and Bias. RMSE and MAE were used to as-
sess the ability to estimate volatility and fluctuation ampli-
tude, respectively. R? represented the percentage of vari-
ance explained by the ML models. Bias was used to deter-
mine whether the estimations were overestimated or under-
estimated. These metrics were computed as follows:

N S 72 W SV 72 1)
ImmE:Jzﬁﬂm X) - (i =Dl

N (3)
N e

MAE:W 4)

Ly
Bias=— > (x;i —y) )

N =

N w2

R2=1_Zi=l(y—’x’) (©6)

NYN (i =)

where y; and x; denoted the in-situ 7 and estimated 7§ for all
the stations and periods, respectively. ¥ and X represented
the mean values of the in-situ 7 and estimated T, respec-
tively.
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3 Results

3.1 Model performance across sites

Figure 4 shows the accuracy of the models constructed at dif-
ferent depths using various grid configurations and rotation
angles for both the training and test sets. The grouped box
plots indicate that the median R? values range from 0.92 to
0.98 and the median RMSE values range from 1.6 to 2.4K
across depths. Both training and test results exhibit consis-
tently high accuracy, with no clear indication of overfitting.
A vertical comparison shows that model performance at 0
and 40 cm is slightly weaker than that at intermediate depths.

To further enhance the independence of the evaluation, we
validated the final dataset using daily 7; observations from
18 flux tower sites in the ChinaFLUX network. For consis-
tency across depths, only measurements at 0, 5, 10, 15, 20,
and 40 cm were retained. Metadata for these sites is summa-
rized in Table S2, and the corresponding validation results
are presented in Fig. 5. The results show that the dataset
maintains high accuracy at independent sites (R>=0.78—
0.87; RMSE =3.89-5.14 K), further demonstrating the ro-
bustness of our approach. Overall, the combined evidence
from the test set and flux tower validation confirms that the
proposed spatially adaptive model exhibits strong predictive
performance and spatial generalization capability. In Fig. S9,
we further validated the spatial consistency between the flux
tower sites and the estimated annual mean 7y at different
depths. Although the validation results demonstrated high ac-
curacy overall (R? = 0.7-0.82; RMSE = 2.93-3.58 K), a sys-
tematic positive bias of approximately 42 to 4+3 K was ob-
served across all depths.
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Figure 5. Density scatter plots comparing estimated daily 75 with flux tower observations at different depths.

We also calculated R?> and RMSE values for all depths
at each station to compare the model performance. The re-
sults indicate that R? ranges from 0.70 to 1.00, suggest-
ing generally good performance at the station level. As
shown in Fig. 6, most stations achieve R’ values above
0.85. Regions with higher prediction accuracy are primar-
ily distributed across northwest, northeast, and central China,
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while larger errors are concentrated in the Yunnan—Guizhou
Plateau (YGP) and the sparsely monitored QTP. The his-
togram in Fig. S10 further shows that RMSE values for
all depths fall between 0.5 and 3 K, indicating overall good
predictive performance. Notably, prediction errors are high-
est at 0 cm, decrease substantially at 5-20 cm, and increase
slightly again at 40 cm. Figure S11 shows the comparison be-
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tween the estimated and observed annual mean 7T for the test
dataset at six different depths (0—40 cm). The R? ranges from
0.94 t0 0.97. The RMSE values range from 0.74 to 1.4 K, and
the bias is minimal. The results suggest that the model is able
to effectively capture the spatial patterns of 7 across differ-
ent depths and locations.

3.2 Evaluation across land cover types and seasons

Figure 7 shows grouped box plots of the prediction per-
formance of T across different land cover types (barren
land, cropland, forest, and grassland) at six depths (0, 5, 10,
15, 20, and 40 cm). The evaluation metrics include R? and
RMSE. The median R? values across land cover types and
depths range from 0.94 to 0.98, consistently exceeding 0.94
(red dashed line), indicating overall high prediction accuracy.
Among land cover types, barren land exhibits the highest
R? values, followed by cropland, while forest and grassland
show slightly lower performance. The median RMSE values
generally range from 1.1 to 1.8 K. Barren land shows higher
RMSE compared with other land cover types, whereas crop-
land, forest, and grassland maintain lower and more stable
RMSE. Across depths, RMSE is highest at the surface layer
(Ocm), decreases steadily with increasing depth, and shows
a slight increase at 40 cm.

Furthermore, seasonal variations in prediction accuracy
are shown in Fig. 8. The median R? values across depths
range from 0.48 to 0.98, with higher values in spring (green)
and autumn (pink) and lower values in summer (orange) and
winter (blue), particularly at 20-40cm depth. The median
RMSE values range from approximately 1.3 to 2.2 K, being
lower in spring and autumn and higher in summer and winter,
with the largest median error observed at 40 cm depth in win-
ter. With increasing depth, the median errors decrease from
the surface (0 cm) to 5-10 cm, and then gradually accumulate
from 15 to 40 cm.

3.3 Comparison with other products

Figure 9 presents a comparison of the 7 products at the
Ocm depth with the ERA5-Land and GLDAS 2.1 reanaly-
sis datasets, including both national-scale patterns (Fig. 9a—
¢) and zoomed-in regional details (Fig. 9d—f). Compared with
the two reanalysis products, our generated 7 dataset exhibits
substantially finer spatial resolution, enabling a clearer rep-
resentation of localized spatial heterogeneity. As illustrated
in the zoomed-in panels of Fig. 9, our T, product accurately
captures terrain- and elevation-driven temperature gradients
in regions with strong topographic variability, such as the
transition zone from the Sichuan Basin to the margins of the
QTP. In contrast, the coarse spatial resolution of ERAS-Land
and GLDAS 2.1 tends to smooth out these fine-scale topo-
graphic effects, resulting in a loss of spatial detail.

The scatter density plots in Fig. S12 further demonstrate
that the 7 estimates from our model achieve significantly
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higher site-level accuracy than ERAS-Land and GLDAS 2.1.
Specifically, at depths of 0, 10, and 40 cm, the R? values
for our dataset range from 0.94 to 0.97, whereas the cor-
responding values are 0.83-0.89 for ERAS5-Land and 0.83—
0.87 for GLDAS 2.1. These results indicate that our high-
resolution 7 product not only captures localized heterogene-
ity but also faithfully represents terrain-driven temperature
gradients, which are often obscured in coarse-resolution re-
analysis products. In summary, the proposed spatially adap-
tive modeling framework provides a more detailed and real-
istic representation of T spatial patterns, particularly in topo-
graphically complex regions, and significantly enhances the
accuracy and applicability of regional-scale Ty modeling.

3.4 Spatial and temporal patterns of Ty at varied depths
across China

To examine seasonal and vertical variations in the spatial dis-
tribution of Ty, we selected two contrasting dates: 1 January
2020 (winter) and 1 July 2020 (summer). Figure 10a—f illus-
trates the spatial distribution and corresponding histograms
of Ty at different depths (0, 5, 10cm, 15, 20, 40 cm) across
China on 1 January 2020. The results show that 7 in northern
China (particularly in the northeast, northwest, and the QTP)
is generally lower in January, exhibiting distinct cold zones.
In contrast, southern areas exhibit higher T; values, form-
ing a gradual north-to-south temperature gradient. Moreover,
deeper soil layers (e.g., 40 cm) exhibit higher temperatures
than surface layers (0 cm), especially in northeastern China
and the QTP, reflecting the insulating effect of deeper soils
during winter.

Figure 10g-1 illustrates the spatial distribution and his-
tograms of 7 on 1 July 2020. Compared to January, a sig-
nificant increase in 7 is observed across China in July, with
widespread high-temperature zones in the eastern and south-
ern regions. The increase is particularly pronounced in north-
ern areas, while changes in the south are relatively moderate.
In contrast to winter conditions, T decreases with increasing
soil depth during summer, with surface temperatures (0 cm)
exceeding those at 40 cm, indicating the downward heat con-
duction from the surface. Overall, Comparative analysis of
Fig. 10a—f and g-1 elucidates both seasonal variation and
vertical patterns of T: deeper layers (5—40cm) are warmer
than the surface (0 cm) during winter, whereas the surface
is warmer in summer. The histogram further illustrates the
variation in Ty distribution across different depths. The re-
sults indicate that temperature fluctuations in deeper layers
are significantly smaller than those near the surface, reflect-
ing greater thermal stability in the subsurface. These patterns
reflect the combined influences of geographic location, to-
pography, and climatic conditions on 7 spatial distribution
and vertical dynamics, offering valuable insights into soil
thermal behavior.

To further assess the temporal performance of Ty estima-
tion, Fig. 11 presents the time series of estimated 7y along-
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side in-situ measurements at four randomly selected sta-
tions (e.g., Station 56748, 99.18°E, 25.12° N) from January
2018 to January 2020. The figure displays T at two depths
(0 and 40cm), including estimated 7; (Estimated_Ocm,
Estimated_40 cm), in-situ 7y (In-situ_Ocm, In-situ_40cm),
daily mean land surface temperature (Daily_mean_LST),
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and 2m air temperature (Temperature_2m). The air tem-
perature shows distinct seasonal cycles, while T exhibits
smoother temporal variations. In general, T reaches its peak
during summer and its minimum in winter, though its tempo-
ral dynamics vary with soil depth. Specifically, 7 at O cm re-
sponds rapidly to air temperature changes and exhibits larger
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amplitude variations, while 7 at 40cm shows slower re-
sponses and a noticeable lag, reflecting the damping effect
of vertical heat conduction. Site-level accuracy was evalu-
ated using RMSE, which ranged from 1.24 to 2.05K across
both depths, indicating strong agreement between predicted
and observed values. Overall, the time series analysis con-
firms the robustness and reliability of the model in estimat-
ing T across varying depths, offering valuable insights into
regional soil thermal dynamics.
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4 Discussion

4.1 The advantages of the spatially adaptive model

Previous studies have explored various approaches for con-
structing 7 datasets. For instance, Wang et al. (2023) created
a daily multi-layer 7 dataset for China (1980-2010) at 0.25°
resolution, employing interpolation techniques including the
thin-plain spline and the angular distance weight interpola-
tion methods with over 2000 in-situ observations. A persis-
tent challenge in building national-scale Ty datasets, how-
ever, lies in the highly uneven spatial distribution of observa-
tion stations — densely clustered in eastern lowlands while re-
maining sparse in western and high-altitude regions. Global
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between 2018-2019.

modeling approaches, which train a single unified function
across the entire domain, are inherently limited in captur-
ing the nonlinear and non-stationary relationships between T
and its predictors in such heterogeneous landscapes. Specif-
ically, in sparsely sampled regions, global models lack suf-
ficient data to learn effectively, resulting in low prediction
accuracy. In contrast, in densely sampled areas, the model
tends to overfit, and the training process becomes dispropor-
tionately influenced by those regions. This imbalance intro-
duces systematic biases and limits model generalizability.
Reanalysis datasets, which synergize data assimilation
systems with numerical weather prediction and land sur-
face modeling frameworks, provide valuable representations
of land-atmosphere interactions and subsurface heat trans-
fer processes. These products are particularly advantageous
for large-scale climate simulations and long-term environ-
mental assessments. Yang and Zhang (2018) assessed the
T accuracy of four reanalysis datasets (ERA-Interim/Land,
MERRA-2, CFSR, and GLDAS-2.0) in China using in-situ
monthly mean T observations. The results showed that all
reanalysis datasets consistently underestimated T across the
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country. More recently, the ERA5-Land and GLDAS 2.17;
dataset offers high temporal resolution (hourly/3 h), but it is
limited by a spatial resolution of 0.1 or 0.25°. Beyond re-
analysis datasets, some efforts have focused on constructing
empirical 7y products using ML approaches. For example,
the Global Soil Bioclimatic Variables dataset (Lembrechts
et al., 2022), derived from Random Forest modeling with
8519 global sensors, provides only long-term climatological
means, rather than high-resolution daily estimates.

In contrast, the methodological framework proposed in
this study addresses both accuracy and resolution limita-
tions. The spatially adaptive modeling strategy offers signif-
icant advantages over traditional interpolation and globally
trained ML models. Its core strength lies in localized mod-
eling, which accounts for regional variability in topography,
soil properties, and climate conditions. As shown in Fig. S13,
the rotated quadtree strategy partitions space at six orien-
tations (0-75°), enabling a more nuanced representation of
spatial heterogeneity. By averaging predictions across these
rotated configurations, the method reduces boundary artifacts
often associated with static grids, resulting in smoother and
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more continuous spatial outputs. We also quantified the vari-
ability of prediction results at the same site using grids gen-
erated from different rotation angles. The results in Fig. S14
show that the uncertainty at the Ocm depth is higher com-
pared to other depths, with the highest uncertainty concen-
trated in certain areas of the YGP and Sichuan Basin.

Moreover, the fine spatial resolution (1km) enables the
model to resolve localized thermal patterns that are critical
for understanding vegetation dynamics and soil biogeochem-
istry. We also assessed the contribution of satellite-derived
LST to model performance. As shown in Figs. S3 and S4,
incorporating LST as an input variable, relative to using only
air temperature, significantly enhances overall modeling ac-
curacy and improves performance across sites with different
land cover types, with the most pronounced improvements
observed in barren land areas. This highlights the importance
of multi-source data fusion in boosting the performance of
spatially adaptive models under data-scarce conditions. In
summary, our spatially adaptive local modeling approach of-
fers a more robust and scalable solution for large-scale T es-
timation under heterogeneous station distributions and com-
plex environmental conditions.

4.2 Potential applications of the T product

The high-resolution, multi-layer T datasets generated using
the spatially adaptive estimation method fill a significant data
gap in China, where comprehensive 7 profile records are
scarce. As a key biophysical variable, T provides crucial in-
sights into soil-atmosphere interactions that are not captured
by air temperature alone. In agricultural systems, 75 governs
fundamental processes throughout the crop life cycle — from
sowing and germination to growth and yield formation (Rah-
man et al., 2019). Multi-layer 7 data can optimize accumu-
lated temperature models, enhancing the precision of sow-
ing decisions and supporting sustainable field management.
Additionally, Ty influences nutrient decomposition and wa-
ter movement within soil profiles (Jebamalar et al., 2012),
directly impacting soil fertility, moisture retention, and thus,
the overall efficiency of agroecosystems.

Beyond agricultural applications, T is increasingly rec-
ognized as a critical variable for assessing ecosystem re-
sponses to climate extremes. For instance, Fan et al. (2024)
proposed the Soil Composite Drought Heatwave index to
evaluate the severity of concurrent drought and heatwave
events. However, their findings show that existing reanalysis
datasets often underestimate these events compared to ob-
servational records, highlighting the need for more accurate,
high-resolution 7 data. In the context of intensifying global
warming and extreme climate events, access to reliable Ty
datasets is essential for improving the monitoring and predic-
tion of environmental stressors. These advancements are not
only vital for understanding terrestrial ecosystem dynamics
but also for strengthening climate resilience at both regional
and national scales.
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Moreover, T plays a pivotal role in ecological and hydro-
logical modeling, offering a more direct representation of
surface processes than air temperature. It serves as a sen-
sitive indicator of biogeochemical cycles and phenological
changes (Lembrechts et al., 2022). For example, Liu et al.
(2024) demonstrated that 7 is a dominant driver of spring
phenology in Chinese forests, making it a valuable input for
climate—vegetation interaction models. In cold regions, T
governs soil freeze—thaw cycles, which are critical for hy-
drological processes such as runoff generation, groundwater
recharge, and permafrost monitoring (Smith et al., 2022; Xu
et al., 2022). Furthermore, 75 is a key driver of soil respi-
ration, influencing CO2 fluxes and terrestrial carbon cycling
(Lloyd and Taylor, 1994; Hursh et al., 2017). As such, the de-
velopment of high-resolution 7 products enables more accu-
rate simulation of ecosystem carbon dynamics and regional
carbon budgeting, thereby advancing our understanding of
climate feedback mechanisms.

4.3 Limitations and future perspective

Despite the strong performance of our spatially adaptive T
estimation framework, several limitations warrant acknowl-
edgment. As shown in Fig. 6, model validation at station level
reveals spatial heterogeneity in prediction accuracy, with rel-
atively lower performance observed in the YGP and the QTP
regions. On the one hand, as evidenced by Fig. 9, our multi-
source modeling framework captures Ty variations across
different elevations and geomorphic conditions more effec-
tively than existing datasets. However, the QTP and YGP
are characterized by complex terrain and high altitudes, cou-
pled with rapidly changing climatic conditions, which signif-
icantly complicate 7y estimation. These findings align with
previous studies showing that high elevations intensify the
disconnect between air temperature and LST, thereby in-
creasing the uncertainty in thermal modeling (Mo et al.,
2025).

MODIS LST serves as a critical input to our modeling
framework. However, as an optical remote sensing product, it
is highly susceptible to cloud contamination, often resulting
in data gaps. Despite the use of spatiotemporal interpolation
and SG filtering, residual uncertainties persist in the recon-
structed LST data. Future improvements in Ty reconstruction
can be pursued along two main directions. First, more physi-
cally grounded LST reconstruction methods can be adopted,
such as incorporating surface energy balance models and di-
urnal temperature cycle models (Hong et al., 2022; Firozjaei
et al., 2024; Wang et al., 2024). These methods apply en-
ergy conservation principles to estimate 7y during periods of
missing or unreliable observations, thereby providing more
realistic estimates of land surface thermal conditions during
periods of cloud cover. Second, integrating higher tempo-
ral resolution remote sensing observations may help over-
come the limitations of MODIS. For instance, passive mi-
crowave satellite data provide all-weather observations and
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are less sensitive to cloud interference (Duan et al., 2017;
Wau et al., 2022). In addition, next-generation geostationary
satellites such as Himawari-8 offer observations at 10 min in-
tervals, substantially enhancing the temporal continuity and
quality of surface temperature estimates (Yamamoto et al.,
2022; You et al., 2024). These enhancements are expected to
significantly improve the accuracy and temporal continuity
of Ty monitoring.

Our results (Figs. 7 and 8) show that model accuracy
varies across soil depths and is further influenced by season
and land-use conditions. Accuracy is relatively lower at the
surface (0 cm), improves at intermediate depths (5—10 cm),
and declines again at deeper layers (20—40 cm). This depth-
dependent pattern can be explained by the physical charac-
teristics of the soil profile. Surface T responds strongly to
short-term meteorological fluctuations such as radiation, pre-
cipitation, and ET, resulting in greater spatiotemporal vari-
ability and consequently larger prediction errors. In contrast,
intermediate soil layers buffer high-frequency temperature
fluctuations through thermal diffusion and higher heat capac-
ity. As a result, 75 becomes more stable with lower natural
variability at these depths, leading to lower RMSE and higher
R? values.

At deeper layers, prediction accuracy decreases because
surface-level errors propagate downward through the hierar-
chical modeling framework, and uncertainties in soil texture
inputs gradually accumulate with depth; during periods such
as summer and winter, these combined uncertainties may be
further amplified. Short-term changes in soil moisture alter
fundamental soil thermal properties, including heat capac-
ity, thermal conductivity, and thermal diffusivity, which in
turn control heat transfer processes and sub-daily 75 dynam-
ics (Abu-Hamdeh, 2003; Subin et al., 2013). Consequently,
the absence of soil moisture information may introduce ad-
ditional uncertainty when modeling daily and sub-daily T
dynamics, especially at deeper layers. Incorporating high-
resolution soil moisture datasets in future work would im-
prove the representation of soil hydrothermal interactions
and further enhance 7 estimation accuracy.

Seasonal variations and differences in land cover also con-
tribute to the spatiotemporal differences in model perfor-
mance. As shown in Figs. 7 and 8, the model performs better
in spring and autumn, whereas its accuracy declines in sum-
mer and winter. In summer, vigorous vegetation growth and
canopy closure alter surface—atmosphere energy exchange
processes and weaken the relationship between canopy tem-
perature and subsurface T, thereby reducing the effective-
ness of LST as a proxy for near-surface 75 (Kropp et al.,
2020; Cui et al., 2022). Moreover, because satellite sensors
measure radiometric temperature, LST in densely vegetated
regions often represents canopy-top temperature rather than
the surface T, introducing an additional source of uncer-
tainty. In winter, snow cover further increases complexity:
the high albedo of snow reduces net radiation (Loranty et
al., 2014; Li et al., 2018), and its insulating effect weak-
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ens the soil’s response to cold-air fluctuations (Zhang, 2005;
Myers-Smith et al., 2015). Meanwhile, freezing of soil water
alters soil thermal conductivity and heat capacity, and fre-
quent freeze—thaw cycles introduce nonlinear dynamics into
T, increasing modeling uncertainty (Li et al., 2023a; Ima-
nian et al., 2024). Although our multi-source adaptive model-
ing framework demonstrates robust performance across vary-
ing depths and environmental conditions, it does not explic-
itly represent the physical mechanisms governing vertical
heat transfer. Future research could incorporate deep learn-
ing models capable of learning complex spatiotemporal de-
pendencies to enhance the physical interpretability of 7§ vari-
ations across time, space, and depth.

5 Data availability

The daily multi-layer 7Ty products (0, 5, 10, 15, 20,
and 40cm) at 1km resolution from 2010 to 2020
are freely available in HDF5 format to the public at
https://doi.org/10.11888/Terre.tpdc.302333 (Wang et al.,
2025b). In addition, monthly multi-layer 7 data are also pro-
vided to meet the needs of various users.

6 Code availability

The R scripts used to implement the rotated-quadtree
spatial adaptive partitioning are publicly available at:
https://doi.org/10.5281/zenodo.17996349 (Wang, 2025).

7 Conclusion

This study addresses the lack of high spatiotemporal resolu-
tion multi-layer Ty data by proposing a spatially adaptive ML
framework, successfully constructing a retrieval model for
multi-layer 7. By integrating in-situ observations, reanaly-
sis data, satellite remote sensing data, as well as topographic
and soil texture data, the model demonstrates high accuracy
across different depths, seasons, and land use types. The re-
sults indicate relatively higher performance in spring and au-
tumn than in summer and winter, and greater accuracy in
bare land, cropland, and grassland compared with forested
areas. In comparison with ERAS-Land and GLDAS 2.1 T;
products, the multi-layer 7 data generated in this study ex-
hibit significant improvements in both accuracy and spatial
detail. Based on this framework, we have first developed
the long-term (2010-2020) high spatiotemporal resolution
(daily, 1km resolution) multi-layer (0, 5, 10, 15, 20, 40 cm)
T dataset for China. Future research could further explore
methods that simultaneously integrate temporal, spatial, and
depth information, and utilize multi-source sensor data to en-
hance the spatiotemporal monitoring capabilities of 7 at dif-
ferent depths. Overall, this study demonstrates the potential
of multi-source data in T estimation and provides a reliable
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tool and data foundation for ecological modeling, agricul-
tural production and related studies.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-97-2026-supplement.
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