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Figure S1. Variance Inflation Factor (VIF) of predictor variables (with LWD)
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Figure S2. Variance Inflation Factor (VIF) of predictor variables
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(Featurel represents using both air temperature and LST together with other feature
variables, while Feature 2 represents using only air temperature together with other
feature variables)
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To examine whether the relationships between 75 (GST Avg) and the auxiliary
variables exhibit spatial non-stationarity, we employed the Local Bivariate Moran’s 1,
a local statistic within the Local Indicators of Spatial Association (LISA) framework.
This method allows us to reveal localized spatial associations and spatially varying
relationships between the target variable (X) and the spatially lagged auxiliary variable
(Wy). First, we constructed a spatial weights matrix using the K-nearest neighbors’
method (K = 8). This configuration is suitable for the irregular spatial distribution of
meteorological stations across China and ensures that each station has a comparable
number of spatial neighbors.

Based on this spatial weights structure, we calculated the Local Bivariate Moran’s
I between GST Avg (X) and elevation (Y), and obtained permutation-based p-
values.We then computed the spatially lagged auxiliary variable (Wy) and classified
each station into one of four significant LISA cluster types (p < 0.05): High—High (red),
High-Low (green), Low—High (purple), and Low—Low (blue). Stations with non-
significant local associations (p > 0.05) are shown in gray. As illustrated in Figure S5,
approximately 64% of the stations exhibit statistically significant local spatial
associations, and all four cluster types occur across different regions of China. These
spatially heterogeneous local association patterns clearly indicate pronounced spatial
non-stationarity in the 7s—elevation relationship.

These findings further demonstrate the necessity of adopting a spatially adaptive
modeling framework. Accordingly, the rotated quadtree model developed in this study
1s well justified, as it can effectively capture localized variations in predictor-response

relationships.
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Figure SS. Spatial patterns of the bivariate Local Moran’s I between GST Avg and
elevation at meteorological stations across China.
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55 Figure S6. Quadtree spatial index principle. (Northwest (NW), Northeast (NE),

Southwest (SW), Southeast (SE) refer to the four quadrants into which the quadtree
divides the two-dimensional space.)

We conducted a systematic evaluation of the partitioning performance under
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different thresholds using three key metrics: the coefficient of variation (CV) of point
count, the CV of point density, and the total number of grid cells. The CV of point count
was used to evaluate the balance of sample distribution across spatial units under
different thresholds. Point density was defined as the number of observation stations
within a grid cell divided by its area. A lower CV of point density indicates that the
partitioning effectively adjusted grid size according to local station density—i.e.,
producing smaller grids in dense regions and larger grids in sparse areas—thus
reflecting a more adaptive spatial division. Conversely, a higher CV suggests that the
partitioning failed to capture the spatial heterogeneity of station density. Therefore, the
CV of point density serves as a key indicator of the spatial adaptivity of the quadtree
partitioning. The total number of grids corresponds to the number of local models to be
trained, and thus indirectly reflects the computational and time cost associated with
model training.

As shown in Figure S7 (a—c), we systematically evaluated quadtree performance
under a series of point-count thresholds (10, 30, 50, 70, 90): Figure S7a shows that the
CV of point count drops rapidly with increasing threshold, indicating improved balance
in sample allocation across grids. However, this trend levels off beyond threshold = 30,
suggesting diminishing returns. Thus, threshold 30 marks an optimal trade-off. Figure
S7b shows a notable inflection point in the CV of point density near threshold = 30.
Although not the global minimum, this point represents an optimal trade-off where grid
subdivision sufficiently reflects sample density variation without causing over- or
under-segmentation—thereby capturing spatial adaptivity effectively. Figure S7c
shows that the number of grid cells decreases rapidly as the threshold increases, leading
to substantial computational savings. However, the rate of reduction slows considerably

beyond threshold = 30, indicating limited additional benefit from further increases.
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Figure S7. Performance evaluation of quadtree partitioning under different point-
count thresholds. (a) Coefficient of variation (CV) of point count across spatial units.
(b) CV of point density (point count per unit area). (c¢) Total number of generated grid
cells. Dashed vertical line indicates the selected threshold of 30.
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Table.S1 Candidate values of hyperparameters in XGBoost.

hyperparameters candidate value
Start End Step
n_estimators 60 200 20
max_depth 5 15 1
learning rate 0.1 1 0.1

Table.S2 Metadata of flux tower soil temperature observations used for validation

Site name Ecosystem type Depth (cm) Time series
Baotianman Forest Station Forest 0,5,20 2010-2014
Changling Rice Paddy Station Cropland 5,10,20 2018-2020
Daan Cropland Station Cropland 0,5,10,15,20 2017-2020
Damao Grassland Station Grassland 0,5,10,15,20,40  2017-2020
Danzhou Rubber Plantation Forest 5,10,20 2010
Station
Haibei Alpine Meadow Station Grassland 5,10,15,20,40 2015-2020
Haibei Shrubland Station Grassland 0,5,20,40 2016-2018
Huzhong Boreal Forest Station Forest 5,10,20 2014-2018
Jinzhou Cropland Station Cropland 5,10,15,20,40 2011-2014
Lijiang Alpine Meadow Station Grassland 5,10,15,20,40 2013-2020
Maoershan Forest Station Forest 5 2016-2018
Panjin Reed Wetland Station Wetland 10,20,40 2018-2020
Qianyanzhou Plantation Forest Forest 5,10,20 2011-2015
Station




Ruoergai Alpine Wetland Wetland 0,5,10,20 2013-2020

Station
Sanjiangyuan Alpine Grassland Grassland 0,5,15 2013-2015
Station
Taoyuan Cropland Station Cropland 5,10,15,20,40 2010-2014
Xishuangbanna Rubber Forest 0,5,20 2010-2014
Plantation Station
Yuanjiang Dry-Hot Valley Grassland 5,10,20,40 2013-2015

Savanna Station
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Figure S8. Experimental and theoretical semivariograms of annual mean 75 in 2020 at
0 cm (The spherical, exponential, and Gaussian models are fitted for comparison).
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Figure S9. Comparison between estimated and FLUX towers annual mean 75 across

six depths (0~40 cm)
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110 Figure S11. Comparison between estimated and observed annual mean 75 across six
soil depths (0~40 cm) on the test set
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Figure S12. Scatter density plot comparing the accuracy of different products (e.g., 0,
115 10, and 40 cm)
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Figure S13. The difference in spatial performance after modeling different rotations
120 separately (Rotation1-Rotation 6) and the average value of all different rotations
(Estimated T75) within the same sub-region (29°N-35°N, 98°E-106°E)
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Figure S14. Spatial patterns of prediction uncertainty at six depths (0~40 cm) based
125  on the rotated-quadtree ensemble. Note:The uncertainty metric shown here represents
the variability induced by the spatial partitioning scheme rather than the total
predictive uncertainty. Colored points represent site-level uncertainty values, with
warmer colors indicating higher uncertainty. Insets show the frequency distribution of
histograms uncertainty levels at each depth.
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