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Figure S1. Variance Inflation Factor (VIF) of predictor variables (with LWD) 

 

 

Figure S2. Variance Inflation Factor (VIF) of predictor variables 5 
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Figure S3. Comparison of Modeling Accuracy with Different Feature Variables 10 

(Feature1 represents using both air temperature and LST together with other feature 

variables, while Feature 2 represents using only air temperature together with other 

feature variables) 

 

Figure S4. Differences in model accuracy across land cover types under different 15 

feature variable combinations. (Feature1 represents using both air temperature and 

LST together with other feature variables, while Feature 2 represents using only air 

temperature together with other feature variables) 
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To examine whether the relationships between Ts (GST_Avg) and the auxiliary 

variables exhibit spatial non-stationarity, we employed the Local Bivariate Moran’s I, 

a local statistic within the Local Indicators of Spatial Association (LISA) framework. 25 

This method allows us to reveal localized spatial associations and spatially varying 

relationships between the target variable (X) and the spatially lagged auxiliary variable 

(Wy). First, we constructed a spatial weights matrix using the K-nearest neighbors’ 

method (K = 8). This configuration is suitable for the irregular spatial distribution of 

meteorological stations across China and ensures that each station has a comparable 30 

number of spatial neighbors. 

Based on this spatial weights structure, we calculated the Local Bivariate Moran’s 

I between GST_Avg (X) and elevation (Y), and obtained permutation-based p-

values.We then computed the spatially lagged auxiliary variable (Wy) and classified 

each station into one of four significant LISA cluster types (p < 0.05): High–High (red), 35 

High–Low (green), Low–High (purple), and Low–Low (blue). Stations with non-

significant local associations (p ≥ 0.05) are shown in gray. As illustrated in Figure S5, 

approximately 64% of the stations exhibit statistically significant local spatial 

associations, and all four cluster types occur across different regions of China. These 

spatially heterogeneous local association patterns clearly indicate pronounced spatial 40 

non-stationarity in the Ts–elevation relationship. 

These findings further demonstrate the necessity of adopting a spatially adaptive 

modeling framework. Accordingly, the rotated quadtree model developed in this study 

is well justified, as it can effectively capture localized variations in predictor–response 

relationships. 45 

 

 

 

 



5 

 

 50 

Figure S5. Spatial patterns of the bivariate Local Moran’s I between GST_Avg and 

elevation at meteorological stations across China. 

 

   
Figure S6. Quadtree spatial index principle. (Northwest (NW), Northeast (NE), 55 

Southwest (SW), Southeast (SE) refer to the four quadrants into which the quadtree 

divides the two-dimensional space.) 

 

We conducted a systematic evaluation of the partitioning performance under 
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different thresholds using three key metrics: the coefficient of variation (CV) of point 60 

count, the CV of point density, and the total number of grid cells. The CV of point count 

was used to evaluate the balance of sample distribution across spatial units under 

different thresholds. Point density was defined as the number of observation stations 

within a grid cell divided by its area. A lower CV of point density indicates that the 

partitioning effectively adjusted grid size according to local station density—i.e., 65 

producing smaller grids in dense regions and larger grids in sparse areas—thus 

reflecting a more adaptive spatial division. Conversely, a higher CV suggests that the 

partitioning failed to capture the spatial heterogeneity of station density. Therefore, the 

CV of point density serves as a key indicator of the spatial adaptivity of the quadtree 

partitioning. The total number of grids corresponds to the number of local models to be 70 

trained, and thus indirectly reflects the computational and time cost associated with 

model training. 

As shown in Figure S7 (a–c), we systematically evaluated quadtree performance 

under a series of point-count thresholds (10, 30, 50, 70, 90): Figure S7a shows that the 

CV of point count drops rapidly with increasing threshold, indicating improved balance 75 

in sample allocation across grids. However, this trend levels off beyond threshold = 30, 

suggesting diminishing returns. Thus, threshold 30 marks an optimal trade-off. Figure 

S7b shows a notable inflection point in the CV of point density near threshold = 30. 

Although not the global minimum, this point represents an optimal trade-off where grid 

subdivision sufficiently reflects sample density variation without causing over- or 80 

under-segmentation—thereby capturing spatial adaptivity effectively. Figure S7c 

shows that the number of grid cells decreases rapidly as the threshold increases, leading 

to substantial computational savings. However, the rate of reduction slows considerably 

beyond threshold = 30, indicating limited additional benefit from further increases. 



7 

 

 85 
Figure S7. Performance evaluation of quadtree partitioning under different point-

count thresholds. (a) Coefficient of variation (CV) of point count across spatial units. 

(b) CV of point density (point count per unit area). (c) Total number of generated grid 

cells. Dashed vertical line indicates the selected threshold of 30. 

 90 

Table.S1 Candidate values of hyperparameters in XGBoost. 

hyperparameters candidate value 

 Start End Step 

n_estimators 60 200 20 

max_depth 5 15 1 

learning rate 0.1 1 0.1 

 

Table.S2 Metadata of flux tower soil temperature observations used for validation 

Site name Ecosystem type  Depth (cm) Time series 

Baotianman Forest Station Forest 0,5,20 2010-2014 

Changling Rice Paddy Station Cropland 5,10,20 2018-2020 

Daan Cropland Station Cropland 0,5,10,15,20 2017-2020 

Damao Grassland Station Grassland 0,5,10,15,20,40 2017-2020 

Danzhou Rubber Plantation 

Station 

Forest 5,10,20 2010 

Haibei Alpine Meadow Station Grassland  5,10,15,20,40 2015-2020 

Haibei Shrubland Station Grassland 0,5,20,40 2016-2018 

Huzhong Boreal Forest Station Forest 5,10,20 2014-2018 

Jinzhou Cropland Station Cropland 5,10,15,20,40 2011-2014 

Lijiang Alpine Meadow Station Grassland 5,10,15,20,40 2013-2020 

Maoershan Forest Station Forest 5 2016-2018 

Panjin Reed Wetland Station Wetland 10,20,40 2018-2020 

Qianyanzhou Plantation Forest 

Station 

Forest 5,10,20 2011-2015 
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Ruoergai Alpine Wetland 

Station 

Wetland 0,5,10,20 2013-2020 

Sanjiangyuan Alpine Grassland 

Station 

Grassland 0,5,15 2013-2015 

Taoyuan Cropland Station Cropland 5,10,15,20,40 2010-2014 

Xishuangbanna Rubber 

Plantation Station 

Forest 0,5,20 2010-2014 

Yuanjiang Dry-Hot Valley 

Savanna Station 

Grassland 5,10,20,40 2013-2015 
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Figure S8. Experimental and theoretical semivariograms of annual mean Ts in 2020 at 

0 cm (The spherical, exponential, and Gaussian models are fitted for comparison). 
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Figure S9. Comparison between estimated and FLUX towers annual mean Ts across 

six depths (0~40 cm) 

 

 

Figure S10. Goodness of RMSE across China estimated during the model testing 105 

phase. Perfrmance metrics are calculated between predicted Ts and in-situ Ts data sets. 
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Figure S11. Comparison between estimated and observed annual mean Ts across six 110 

soil depths (0~40 cm) on the test set 

 

 
Figure S12. Scatter density plot comparing the accuracy of different products (e.g., 0, 

10, and 40 cm) 115 
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Figure S13. The difference in spatial performance after modeling different rotations 

separately (Rotation1-Rotation 6) and the average value of all different rotations 120 

(Estimated_Ts) within the same sub-region (29°N–35°N, 98°E–106°E) 
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Figure S14. Spatial patterns of prediction uncertainty at six depths (0~40 cm) based 

on the rotated-quadtree ensemble. Note:The uncertainty metric shown here represents 125 

the variability induced by the spatial partitioning scheme rather than the total 

predictive uncertainty. Colored points represent site-level uncertainty values, with 

warmer colors indicating higher uncertainty. Insets show the frequency distribution of 

histograms uncertainty levels at each depth. 


