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Abstract. Mesoscale eddies are prevalent features within the global ocean that modify the physical, chemi-
cal and biological properties as they move and evolve. These modifications can alter the air–sea exchange of
CO2, and therefore these features may be hotspots for enhanced or reduced CO2 uptake compared to the sur-
rounding environment. The understanding of the global and regional effect of mesoscale eddies on ocean CO2
uptake is limited and largely based on single eddies or small regional subsets. Here, we provide a global dataset
of 5996 long lived eddies trajectories (lifetimes greater than a year) with corresponding air–sea CO2 fluxes
between 1993 to 2022 all tracked using a Lagrangian approach. The trajectories comprise 3244 anticyclonic
(“warm core”) and 2752 cyclonic (“cold core”) eddies and the dataset provides the environmental conditions, in-
cluding the CO2 fluxes, within and outside each eddy. The dataset refines a previous regional methodology with
a focus on climate quality environmental parameters and uses a global neural network for estimating the fugacity
of CO2 in seawater (fCO2(sw)) along with a comprehensive air–sea CO2 flux uncertainty budget. These refine-
ments provide a robust foundation for studying the modulation of air–sea CO2 fluxes by mesoscale eddies. As
an example use of the dataset, we investigate the role of mesoscale eddies in modifying the global and regional
air–sea CO2 fluxes, by comparing the eddy driven air–sea CO2 flux to that of the surrounding environment. We
find that globally, long-lived anticyclonic eddies enhanced the CO2 sink by 4.5±2.8 % (95 % confidence), while
long-lived cyclonic eddies reduce the CO2 sink by 0.7± 2.6 %. Collectively, the long-lived mesoscale eddies
indicate an enhancement of the ocean CO2 sink by 2.7± 1.1 Tg C yr−1. Propagating the air–sea CO2 flux un-
certainties was found to be a key component needed to fully understand apparent differences between previous
regional and global studies. The long-lived mesoscale eddies (UEx-L-Eddies) dataset is available on Zenodo at
https://doi.org/10.5281/ZENODO.16355763 (Ford et al., 2025).

1 Introduction

Mesoscale eddies are known to affect the physical, chem-
ical and biological properties of the oceans (Dufois et al.,
2016; Frenger et al., 2013; Laxenaire et al., 2019; Li et al.,
2025; Nencioli et al., 2018; Orselli et al., 2019a, b; Pezzi
et al., 2021). These rotating bodies of water have radii on
the order 100 km, lifetimes from a few days to multiple
years, and can transit ocean basins transporting distinct wa-
ter masses within them (Chelton et al., 2011; Pegliasco et al.,

2022b). Eddies generally fall into two categories; (1) anticy-
clonic and (2) cyclonic. Anticyclonic eddies are associated
with high pressure centres, clockwise rotation in the North-
ern Hemisphere (or anticlockwise in the Southern Hemi-
sphere), warmer sea surface temperatures (SST), and a de-
pression of isopycnals (and downwelling of water within the
eddy core). Whereas cyclonic eddies are generally the op-
posite; low pressure centres, anticlockwise rotation in the
Northern Hemisphere (or clockwise in the Southern Hemi-
sphere), cooler SSTs, and an elevation of isopycnals (and up-
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welling in the eddy core). During their lifetimes, these eddies
can alter the air–sea CO2 exchange through their modifica-
tion of the ocean and atmospheric properties. As the CO2
solubility in seawater is highly temperature sensitive, the
fCO2(sw) in anticyclonic eddies could theoretically be ele-
vated and therefore the features may act as a weaker CO2
sink or stronger CO2 source compared to the surrounding
environment. Conversely the opposite may be true for cy-
clonic eddies, with reduced fCO2(sw), and increased capac-
ity to act as a stronger ocean CO2 sink. Mesoscale eddies
are complex dynamic features however, and these generali-
sations may not always apply as their response will always
be dependent upon the ocean basin conditions. Where the
eddy formed, how it evolves and interacts with ocean water
and the atmosphere, also needs to be considered For exam-
ple, Chen et al. (2007) identified a cyclonic eddy acting as a
weaker CO2 sink compared to the surrounding environment
due to upwelling of CO2 and nutrients within the eddy core.
Orselli et al. (2019b) showed six anticyclonic Agulhas eddies
that were acting as a stronger CO2 sink (than the surrounding
water) during Austral winter. Pezzi et al. (2021) identified an
anticyclonic eddy acting as a strong CO2 source in the South-
western Atlantic. Whereas, through using a biogeochemical
model, Song et al. (2016) suggested that these eddy modifi-
cations may have seasonal differences, whereby anticyclonic
(cyclonic) eddies acted as stronger (weaker) CO2 sinks in
summer, but stronger (weaker) sources in winter.

Despite the abundance of mesoscale eddies, previous stud-
ies generally investigate single eddies (Chen et al., 2007;
Jones et al., 2017; Pezzi et al., 2021) or a regional subset
of eddies (Ford et al., 2023; Orselli et al., 2019b; Song et
al., 2016) and their effect on the air–sea CO2 flux. Thus, the
global cumulative effect of all types of eddies on the air–sea
CO2 flux is still under investigation. Ford et al. (2023), used
a Lagrangian tracking approach and suggested that long-
lived (lifetimes greater than one year) mesoscale eddies en-
hanced the air–sea CO2 flux in the South Atlantic Ocean by
∼ 0.05 Tg C yr−1 (∼ 0.08 %). Guo and Timmermans (2024)
used a spatial and timeseries decomposition to extract the
mesoscale flow impact on the air–sea CO2 fluxes glob-
ally, and estimate a small integrated effect of 0.72 Tg C yr−1

(compared to global ocean uptake of∼ 2.9 Pg C yr−1). How-
ever, this result may include mesoscale signals not related
to mesoscale eddies (Guo and Timmermans, 2024). Li et
al. (2025), using a method that tracked individual eddies
similar to Ford et al. (2023), showed that mesoscale eddies
within the Kuroshio and Gulf Stream western boundary cur-
rents could enhance the CO2 sink by 28.34±9.41 Tg C yr−1.

In this paper we produce a global dataset of long lived (de-
fined as lifetimes greater than one year) mesoscale eddies
(N = 5996; radii> 30 km) and their associated air–sea CO2
fluxes tracked in a Lagrangian mode between 1993 and 2022.
The methodology refines the approach described in Ford et
al. (2023), using a global neural network approach and pub-
lished tools which are also used to generate one ocean carbon

sink dataset submission to the annual Global Carbon Bud-
get assessments (Friedlingstein et al., 2025). Following rec-
ommendations for global ocean carbon assessments (Shutler
et al., 2024) we prioritise the use of climate quality satel-
lite data records (Embury et al., 2024; Sathyendranath et al.,
2019) within the analysis. The uncertainties on the air–sea
CO2 fluxes are systematically assessed following the work
of Ford et al. (2024a). These refinements provide a robust
foundation to studying the modulation of air–sea CO2 flux
by mesoscale eddies, with an uncertainty budget. We demon-
strate the use of the global dataset to assess regional and
global air–sea CO2 fluxes of long-lived eddies and to esti-
mate their net impact on CO2 uptake of the ocean.

2 Methods

Figure 1 shows a schematic of the implementation of the
methodology within this study to estimate the air–sea CO2
flux within mesoscale eddies.

2.1 Satellite and reanalysis data

The importance of prioritising the use of climate data records
to study long time series and the ocean carbon sink was
highlighted in Shutler et al. (2024). We used the European
Space Agency’s climate change initiative (CCI) climate data
records SST-CCI (v3; ∼ 4 km; 1993 to 2022) for SST (Em-
bury et al., 2024; Good and Embury, 2024) and the Ocean
Colour CCI (OC-CCI) for the chlorophyll a (chl a) con-
centrations (v6; ∼ 4 km; 1997 to 2022; Sathyendranath et
al., 2019, 2023), with their respective per observation un-
certainties (Table 1). The CCI-SST was bias corrected for
a cool bias with respect to global SST drifters, representa-
tive of SST at 20 cm (∼ 0.05 K; Embury, 2023; Embury et
al., 2024), which is used to provide an accurate estimation of
fCO2(sw) (in Sect. 2.3), and for the air–sea CO2 flux calcu-
lation (in Sect. 2.4).

We were unable to use the sea surface salinity (SSS) CCI
climate data record for our application due to the 8 d tem-
poral resolution of these data. We therefore used the Coper-
nicus Marine Service GLORYS12V1 ocean reanalysis prod-
uct for SSS (∼ 9 km; 1993 to 2022; CMEMS, 2021; Jean-
Michel et al., 2021), and the ocean mixed layer depth (MLD)
as no climate data record is available for MLD. No climate
data record is available for wind speed, therefore the Cross-
Calibrated Multi-Platform (CCMP) wind speed dataset (6-
hourly; ∼ 25 km; 1993 to 2022) was chosen (Mears et al.,
2022; Remote Sensing Systems et al., 2022) which is often
used for ocean carbon assessments (Ford et al., 2024a).

2.2 Eddy trajectories Atlas

The satellite altimetry based Mesoscale Eddy Product (ver-
sion META3.2) as described in Pegliasco et al. (2022a, b),
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Figure 1. Schematic showing the processing steps to estimate the air–sea CO2 flux within long lived eddies (Blue box background). The
pink background boxes indicate the analysis completed to evaluate the accuracy and precision of the dataset. In figure acronyms are: fugacity
of CO2 in seawater (fCO2(sw)), atmospheric dry mixing ratio of CO2 (xCO2(atm)) and University of Exeter feed forward neural network
with uncertainties (UExP-FNN-U).

and distributed by the Archiving, Validation, and Interpreta-
tion of Oceanographic Satellite data (AVISO), was used to
identify the trajectories of mesoscale eddies between 1993
and 2022. We extracted the eddy trajectories globally, that
had a lifetime greater than one year, which gave 3244 an-
ticyclonic eddies and 2752 cyclonic eddies for further anal-
ysis. The focus on these long-lived eddies was due to their
presence likely exhibiting a larger influence on the air–sea
CO2 flux (e.g. Smith et al., 2023). Additionally, the selection
was due to computational limitations in running the analysis
for the extensive set of shorter lived eddies within the dataset.
We are working to extend the analysis to shorter lived eddies
but currently the focus remains on long lived eddies.

For each eddy trajectory, a daily position was provided
along with a polygon shape that estimates the eddy shape
and size from the altimetry-based data which can not overlap
with land. These eddy polygons were used to extract a daily
timeseries of the environmental data described in Sect. 2.1,
where the daily conditions within the eddy were calculated
(mean, median, standard deviation, interquartile range, max-
imum number of available data points, number of valid data
points). This was repeated for the area surrounding the eddy,
where we consider the ‘area outside’ to be a circle centred on
the eddy but with three times the mean radius of the eddy and
the area inside the eddy polygon itself removed. The chosen

radii (of three times the mean radius) was used as Ford et
al. (2023) showed that the results of their study were consis-
tent when using a “surrounding area criterion” between two
and five radii.

Daily timeseries of conditions within and surrounding the
eddy, were then converted to a monthly median timeseries
using the daily median values. The daily median was chosen
to reduce the impact of any potential outliers caused by any
limited data coverage due to cloud cover in the chl a record.
The daily median and mean were generally consistent for the
SST, SSS, MLD and wind speed fields as these are spatially
complete fields.

2.3 fCO2(sw) neural network (UExP-FNN-U) and
uncertainty

The monthly fCO2(sw) and air–sea gas fluxes were esti-
mated using the methods and tools of the University of Ex-
eter Physics Feed Forward neural network with uncertain-
ties (UExP-FNN-U) which are routinely used to generate
ocean sink data for the annual Global Carbon Budget as-
sessments (Friedlingstein et al., 2025), and described in Ford
et al. (2024a). The UExP-FNN-U approach estimates the
fCO2(sw) based on in situ data that is considered representa-
tive of the subskin layer (∼ 0.2 m water depth), which al-
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Table 1. Summary of the environmental datasets and in situ observations collocated with the long lived mesoscale eddies.

Parameter Units Dataset Temporal
resolution

Spatial resolution Reference

Sea surface
temperature

Kelvin ESA CCI-SST v3.0 Daily ∼ 5 km (0.05°) Embury et al. (2024),
Good and Embury
(2024)

Sea surface
salinity

Psu CMEMS
GLORYS12V1

Daily ∼ 9 km (0.08°) CMEMS (2021),
Jean-Michel et al.
(2021)

Mixed layer
depth

m CMEMS
GLORYS12V1

Daily ∼ 9 km (0.08°) CMEMS (2021),
Jean-Michel et al.
(2021)

Chlorophyll a mg m−3 OC-CCI v6 Daily 4 km Sathyendranath et al.
(2019, 2023)

Wind speed m s−1 CCMP v3.1 6 hourly ∼ 25 km (0.25°) Mears et al. (2022),
Remote Sensing
Systems et al. (2022)

Sea level
pressure

hPa ERA5 Monthly ∼ 25 km (0.25°) Hersbach et al. (2019,
2020)

xCO2(atm) ppm NOAA-GML Monthly ∼ 100 km (1°) Lan et al. (2023)

fCO2(sw) µatm Recalculated SOCAT Individual cruise
observations

n/a Bakker et al. (2016)
Ford et al. (2024d)

n/a stands for not applicable.

lows for an accurate air sea CO2 flux calculation (Woolf
et al., 2016; Sect. 2.4). The methods used are consistent
with those in Ford et al. (2024a), so only a summary of
the method is provided here. The UExP-FNN-U is a two-
step self-organising map (SOM) feed forward neural net-
work (FNN) setup. The SOM splits the global ocean into 16
regions with a similar fCO2(sw), SST, SSS and MLD sea-
sonal cycles. A FNN ensemble (10 FNNs for each region)
was then trained with in situ monthly 1° fCO2(sw) observa-
tions from the Surface Ocean CO2 Atlas (SOCAT; Bakker et
al., 2016) that have been recalculated to a consistent temper-
ature and depth dataset (Ford et al., 2024d). The monthly 1°
predictor variables of SST, SSS, MLD and the atmospheric
dry mixing ratio of CO2 (xCO2(atm)), and anomalies of each
with respect to a long term monthly climatology were collo-
cated to the in situ fCO2(sw). The FNNs consists of an input
layer with nodes equal to the number of input predictors, a
hidden layer with a varying number of nodes depending on
a pretraining step and an output layer with a single node.
The training data were split into a 95 % training and valida-
tion dataset, and a 5 % independent test randomly for each
month ensuring the independent data were not clustered in
one region. The UExP-FNN-U fCO2(sw) estimates are then
typically used to estimate the global ocean CO2 sink as de-
scribed in Ford et al. (2024a).

To estimate the fCO2(sw) for each eddy the monthly me-
dian timeseries of the SST, SSS, MLD were provided to
the UExP-FNN-U. The xCO2(atm) was calculated from the
National Oceanic and Atmospheric Administration Global
Monitoring Laboratory (NOAA-GML) monthly 1° fields
(Lan et al., 2023) that were used within the neural network
training. These xCO2(atm) fields were produced by calculat-
ing the monthly average of the xCO2(atm) for each latitude
(∼ 2.5° spacing), which were then interpolated to 1° and
replicated for each 1° longitude. A distance weighted mean
of the nearest four pixels taken at the mean (centre) position
of each eddy was used to estimate the monthly xCO2(atm).
Anomalies in SST, SSS, MLD and xCO2(atm) were calculated
with respect to a 1° monthly climatology.

The uncertainties in the fCO2(sw) were calculated as de-
scribed in Ford et al. (2024a). The fCO2(sw) uncertainty has
three components: (1) the network uncertainty estimated as
the two standard deviation of the 10 neural network ensem-
ble, (2) the parameter uncertainty was the propagated input
parameter uncertainties and was estimated using a lookup ta-
ble and (3) the evaluation uncertainty which was the eval-
uation with respect to the SOCAT observations (Bakker et
al., 2016). All three components are combined in quadra-
ture, assuming they are independent and uncorrelated (Tay-
lor, 1997), to provide a total uncertainty (considered 95 %
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confidence). The uncertainty components were calculated for
each fCO2(sw) estimate.

Additionally, a second version of the neural network was
run. This version included chl a (and the chl a anomaly) as
a predictor and was used to produce a second estimate of
fCO2(sw). Ford et al. (2022a) highlighted that the inclusion
of more representative biological parameters improved the
regional estimation of fCO2(sw)in the South Atlantic Ocean.
Therefore, this additional neural network output was gener-
ated using the same software used to create the UExP-FNN-
U estimate of fCO2(sw) (Ford et al., 2024c) just with the
added chl a predictor. However, we note the limitation of
this second fCO2(sw) estimate that uses chl a. This depen-
dency on optically derived remote sensing data (ie the chl a
data) means that it was limited to producing estimates after
October 1997 (as routine ocean colour observations are not
available before this date) and it could not provide estimates
during polar winter due to missing daily chl a data (as the
low light levels inhibit optical retrievals).

The neural network estimated fCO2(sw) were compared
to recalculated SOCAT observations (Ford et al., 2024d;
Goddijn-Murphy et al., 2015) within eddies to assess the ac-
curacy and precision of the estimates. The individual cruise
SOCAT observations are gridded (to monthly 1°) to provide
the training and independent test data to the UExP-FNN-U,
and therefore these fCO2(sw) observations are not strictly
independent. For each eddy trajectory, the ungridded SO-
CAT observations were collocated with the daily eddy poly-
gon. The daily SOCAT observations that fell within the eddy
were then aggregated into monthly mean fCO2(sw), which
could be compared to the neural network monthly fCO2(sw).
We calculated a series of statistics including the bias, root
mean square difference (RMSD), slope and intercept of a
Type II linear regression to characterise the differences be-
tween the neural network outputs and monthly mean SOCAT
fCO2(sw). A Type II linear regression was used as uncer-
tainties are presented within both the in situ and neural net-
work fCO2(sw) (Laws, 1997; York et al., 2004). As in Ford
et al. (2021) weighted variants of these statistics were also
calculated to capture the uncertainties in both sets of data
(neural network output and the SOCAT in situ data), assum-
ing a SOCAT fCO2(sw) uncertainty of 5 µatm (Bakker et al.,
2016) and the calculated neural network total fCO2(sw) un-
certainty.

2.4 Air–sea CO2 flux calculations and uncertainties

The CO2 flux calculations were performed using Flux-
Engine v4.0.9.1 (Holding et al., 2019; Shutler et al., 2016),
using the “rapid” transport approximation (Woolf et al.,
2016), at monthly time steps. The evidence continues to grow
supporting the calculation of air–sea CO2 fluxes with consid-
eration of the vertical temperature gradients, which is sup-
ported by theoretical (Woolf et al., 2016), observation based
(Dong et al., 2022b; Shutler et al., 2020; Watson et al., 2020),

modelling (Bellenger et al., 2023), and recently two in situ
studies (Dong et al., 2024; Ford et al., 2024b). Therefore, the
air–sea CO2 fluxes were calculated using a bulk formulation
that allows for the vertical temperature gradients to be cap-
tured. The calculations are consistent with the methods used
to create the UExP-FNN-U dataset that is submitted to the
annual Global Carbon Budget assessments (Friedlingstein et
al., 2025), except here a simplified approach to determine the
skin SST value is used.

The air sea CO2 flux (F ) was calculated as:

F = k600(Sc/600)−0.5 (
αsubskinfCO2(sw,subskin)

−αskinfCO2(atm)
)

(1)

where k is the gas transfer velocity estimated from the
monthly wind speeds and the Nightingale et al. (2000) gas
transfer parameterisation. αsubskin and αskin are the solubil-
ity of CO2 at the base, and top of the mass boundary layer
respectively, and were calculated as a function of SST and
SSS (Weiss, 1974). αsubskin was calculated from the bias cor-
rected CCI-SST SST and the CMEMS SSS. αskin was calcu-
lated with the same datasets, but with a fixed cool (−0.17 K)
(Donlon et al., 1999) and salty (+0.1 psu) skin effect. We
used a fixed cool skin here, instead of the dynamic cool skin
approach (that uses COARE 3.5; Fairall et al., 1996) as used
within the UExP-FNN-U Global Carbon Budget submission
due to the computation overhead needed to extract the ad-
ditional environmental fields required for the calculations.
This simplified approach has only a small effect on the global
scale (Dong et al., 2022b), and therefore we do not see it as
a limitation. fCO2(atm) was estimated for the NOAA-GML
xCO2(atm), ERA5 sea level pressure (Hersbach et al., 2019)
and the CCI-SST with a cool salty skin following Dickson et
al. (2007). fCO2(sw,subskin) was provided by the neural net-
work fCO2(sw). The ERA5 sea level pressure was retrieved
from monthly 0.25° fields, using a distance weighted mean
of the 4 closest observations to the mean monthly eddy po-
sition. None of the eddies considered were under sea ice (as
the eddy detection data and algorithm cannot track in areas
of ice), and therefore the term “1 – ice” which is generally
included within Eq. (1) (to linearly scale the gas fluxes with
sea ice concentration) has not been included.

The air–sea CO2 flux uncertainties were calculated follow-
ing the methods in Ford et al. (2024a), and consistent litera-
ture values for the uncertainties in the wind speed (1.9 m s−1;
95 % confidence; Mears et al., 2022), salinity (0.2 psu; 95 %
confidence; Jean-Michel et al., 2021), xCO2(atm) (0.4 µatm;
95 % confidence; Lan et al., 2023) and gas transfer pa-
rameterisation (20 %; 95 % confidence; Woolf et al., 2019).
The SST uncertainty was extracted from the daily CCI-SST
dataset and were converted to monthly uncertainties assum-
ing a 5 d temporal correlation (Ford et al., 2024a). The uncer-
tainties were calculated at the 95 % confidence (or the 2σ ).

The monthly mean daily flux of CO2 (g C m−2 d−1) was
multiplied by the number of days and the mean area of
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the eddy as provided by the eddy trajectories, in the re-
spective month. The fluxes (Tg C per month) were then
added cumulatively to retrieve the net cumulative CO2 flux
for each eddy (Tg C). Collating the combined uncertain-
ties requires careful consideration of their temporal corre-
lations. Some uncertainties will be temporally decorrelated,
and others have temporal correlations. We used the assump-
tions made in Ford et al. (2024a), that the SST, SSS, wind
speed, xCO2(atm) and fCO2(sw), and components dependent
on these uncertainties, are temporally uncorrelated and are
therefore propagated assuming they are independent (Taylor,
1997). Whereas, the remaining uncertainties that stem from
the Schmidt number, solubilities and gas transfer parameter-
isation algorithm uncertainties are assumed temporally cor-
related and therefore are summed (Ford et al., 2024a). The
air–sea CO2 flux calculations and uncertainty estimates were
computed for the two variants of fCO2(sw). The compu-
tations were also applied separately for the eddy and the
area outside the eddy, assuming the same area coverage of
the eddy for both calculations (i.e. allowing the cumulative
fluxes to be compared for the same area coverage).

2.5 Modification of air–sea CO2 fluxes due to the
existence of the eddy

As shown in Ford et al. (2023), the air–sea CO2 flux into an
eddy can be considered as two components: (1) the flux that
would occur without the presence of the eddy and (2) the
mesoscale modification of the flux through both oceanic and
atmospheric effects of the eddy presence. The flux that would
occur without the eddy being present can be estimated using
the conditions that are driving the air–sea CO2 flux in the en-
vironment surrounding the eddy. This reference flux can be
removed from the air–sea CO2 flux calculated for within the
eddy to indicate the mesoscale modification of the flux due
to the existence of the eddy, which was converted to a per-
centage change with respect to the surrounding environment
CO2 flux, following Ford et al. (2023).

The eddy modification of the air–sea CO2 flux was cal-
culated for each individual eddy, and then the median per-
centage modification was estimated for global and regional
subsets, due to the lower sensitivity to outliers. We repeat the
percentage change calculations in a Monte Carlo uncertainty
propagation approach to evaluate the full extent of the uncer-
tainties, whereby the eddy modification flux was perturbed
within their uncertainties (95 %) 1000 times independently
(i.e., assuming the individual eddy flux modification uncer-
tainties are uncorrelated). The two standard deviation value
of the resulting ensemble was taken as the 95 % confidence
on the median percentage change for the global or regional
subsets due to the uncertainties.

3 Results

3.1 Geographical distribution of mesoscale eddy
cumulative air–sea CO2 flux

In total 5996 eddies were tracked and their air–sea CO2 flux
estimated, which comprised 3244 anticyclonic and 2752 cy-
clonic eddies between 1993 and 2022 (Fig. 2). The geograph-
ical distribution of the cumulative air–sea CO2 flux into both
eddy types generally followed the global distribution of air–
sea CO2 fluxes. The temperate regions showed eddies with
strong CO2 sink characteristics over their lifetimes, whereas
eddies in the subtropical showed weaker CO2 sinks, or even
CO2 sources. Regionally the Indian Ocean showed stronger
CO2 sinks associated with anticyclonic eddies when com-
pared to the Atlantic and Pacific Oceans (Fig. 2a). The South
Pacific showed anticyclonic eddies acting as weaker CO2
sinks compared to the North Pacific and had more eddies act-
ing as CO2 sources. Notable regions where cyclonic eddies
were acting as strong CO2 sinks are within the Indian Ocean,
and Northwestern Atlantic Ocean (Fig. 2b). Cyclonic eddies
in the South Pacific tended to act more as CO2 sources than
sinks (Fig. 2b). The Southern Ocean showed the anticyclonic
and cyclonic eddies acting as either weak CO2 sinks or weak
CO2 sources (Fig. 2).

3.2 Example eddy trajectory

Figure 3 shows an example of an eddy trajectory in the North
Pacific Ocean that was selected due to the ∼ 3 year lifetime,
that highlights the seasonality and variability of the environ-
mental data, the fCO2(sw) and associated air–sea CO2 fluxes
with the uncertainties shown. Over the three years the eddy
moves around a relatively small region within the subpolar
region (Fig. 3c). Within the eddy, an expected SST seasonal
cycle was present (Fig. 3a), along with an interannual vari-
ability within the SSS timeseries (Fig. 3b). The estimated
fCO2(sw) also highlighted a clear seasonal cycle with higher
fCO2(sw) in the winter months, and lower fCO2(sw) in the
summer (Fig. 3d). The eddy exhibited a period of strong
CO2 outgassing during winter, followed by a small CO2
sink within the summer months (Fig. 3e). When cumula-
tively summed, the air–sea CO2 fluxes indicate that the eddy
outgassed CO2 over its lifetime, but clearly this outgassing
was not year-round (Fig. 3f). The example eddy illustrates
the available data that could be used to evaluate the driving
mechanism that are affecting the fCO2(sw) and air–sea CO2
fluxes over the eddy’s lifetime.

3.3 UExP-FNN-U fCO2(sw) compared to SOCAT
observations within eddies

The UExP-FNN-U was trained on a global dataset of
fCO2(sw) and so it is important to assess its performance
within eddies providing some level of confidence that the
eddy variability is being correctly captured. The within eddy
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Figure 2. (a) The cumulative air–sea CO2 flux into the anticyclonic eddies where the scatter points are plotted at the formation location
of each eddy. (b) Same as (a) but for cyclonic eddies. (c) The percentage of long lived anticyclonic eddy trajectories compared to all
eddy trajectories that form in 1° by 1° regions. (d) Same as (c) but for cyclonic eddies. Basemap from Natural Earth v4.0.0 (https://www.
naturalearthdata.com/, last access: 2 February 2025). Figure S1 shows the equivalent of (a) and (b) in Tg C d−1 to remove the differences in
eddy lifetime.

accuracy and precision estimates between the SOCAT in situ
observations and the UExP-FNN-U fCO2(sw) showed good
performance (Fig. 4) similar to the results for the global
scale in Ford et al. (2024a) (weighted bias=−0.18 µatm,
RMSD= 20.65, N = 18226 monthly 1° regions). For an-
ticyclonic eddies, we observed a smaller weighted RMSD
(precision) of 19.15 µatm (N = 2082 monthly matches;
Fig. 4a). For cyclonic eddies we observed a lower RMSD
of 16.49 µatm (N = 1376; Fig. 4d). Both eddy types showed
small weighted biases (accuracy) and therefore we consider
the UExP-FNN-U generated fCO2(sw) within eddies to suf-
ficiently represent the eddy fCO2(sw). The differences be-
tween the within-eddy UExP-FNN-U fCO2(sw) and in situ
SOCAT observations did not indicate regional biases, but did
show a spatial weighting to the Northern Hemisphere where
more in situ fCO2(sw) are made (Bakker et al., 2016; Fig. 4c
and f).

Seasonally separating the collocated within eddy in situ
observations shows that the UExP-FNN-U tended to show
a small weighted bias (accuracy) and smaller RMSD (preci-
sion) during winter and autumn (Fig. 5a, b, g and h) com-
pared to spring and summer (Fig. 5c–f). Although winter
and autumn tended to have lower collocations between in
situ SOCAT observations and the UExP-FNN-U fCO2(sw)
(Fig. 5). These seasonal comparisons further strengthen the

accuracy and precision of the UExP-FNN-U fCO2(sw) and
indicates no large seasonal biases. Figure 4b and e shows
that the uncertainties calculated for the fCO2(sw) were able
to sufficiently represent the differences to the SOCAT obser-
vations. Thereby providing validity to the fCO2(sw) contri-
bution to the air–sea CO2 flux uncertainty budgets.

3.4 Uncertainty in the mesoscale eddy cumulative
air–sea CO2 flux

Two exemplar eddies, eddy A with a lifetime of 12 months
and eddy B with a lifetime of 42 months, are shown in Fig. 6.
These were selected to highlight the differences in the rel-
ative and absolute contributions of each uncertainty com-
ponent to the total uncertainty, and how these can change
over time for eddies of differing lifetimes. The absolute un-
certainty magnitudes for eddy B were larger than eddy A
(Fig. 6b, and d), but the relative contributions of each com-
ponent showed similarities.

For both eddies at the end of their life, the fCO2(sw) com-
ponent was the dominant source to the uncertainty for the
whole lifetime, followed by the gas transfer parameterisa-
tion uncertainty. For eddy A, wind speed was the next largest
contributor to the uncertainties, whereas for the eddy B, the
solubility component uncertainties were larger than the wind
speed uncertainty.
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Figure 3. Exemplar eddy trajectory (eddy 194465) in the North Pacific Ocean with calculated air–sea CO2 fluxes (a) Sea surface temper-
ature (SST) for the example eddy’s lifetime. Black line is the daily SST, where dark grey and light grey shading indicates the 1σ (∼ 67 %
confidence) and 2σ (∼ 95 % confidence) uncertainties. Red line is the median monthly SST. (b) Same as (a) for sea surface salinity. (c) Ge-
ographical eddy trajectory, where colour indicates the age of eddy (blue is eddy formation and yellow is eddy dissipation). (d) Monthly
timeseries of fugacity of CO2 in seawater (fCO2(sw); solid line) and dry mixing ratio of CO2 in the atmosphere (xCO2(atm); dashed line) for
the eddy. Dark grey and light grey shading indicates the 1σ (∼ 67 % confidence) and 2σ (∼ 95 % confidence) uncertainties on the fCO2(sw).
Red dots indicate fCO2(sw) in situ observations from the Surface Ocean CO2 Atlas within the eddy. (e) Same as (d) but for the air–sea CO2
flux where a positive flux means CO2 outgassing. Dashed black line indicates an air–sea CO2 flux of 0. (f) Same as (d) but for the cumulative
air–sea CO2 flux. Red line and banding indicate the cumulative air–sea CO2 flux for the surrounding environment.

Throughout both eddy lifetimes the dominant uncertainty
contributions changed. For eddy A, at formation showed that
the wind speed and solubility components were larger con-
tributors than the gas transfer uncertainty until four months
after formation (Fig. 6b). Within eddy B, the wind speed
was a larger contributor than the solubility components until
12 months after formation, at which time the solubility com-
ponent becomes a larger contributor (Fig. 6d). Uncertainties
due to the Schmidt number and fCO2(atm) terms were a small
contribution to the uncertainty in both eddies.

3.5 Global and regional mesoscale modifications of the
air–sea CO2 flux

An example application of the dataset was to assess the mod-
ification of the cumulative air–sea CO2 flux by individual ed-
dies at their dissipation. The analysis indicated that individ-
ual eddies could enhance (negative percentage changes) or
suppress (positive percentage changes) the CO2 sink (Fig. 7).
Both anticyclonic (Fig. 7a) and cyclonic eddies (Fig. 7b)
showed individual eddies that were either enhancing or sup-

pressing the air–sea CO2 flux. Regional signatures in the air–
sea CO2 flux modification were apparent, for example anti-
cyclonic eddies in the South Pacific and Southern Ocean had
a greater tendency to enhance the CO2 sink, whereas in the
Indian Ocean there was not a discernible tendency. Cyclonic
eddies in the Southern Ocean indicated a larger suppression
of the CO2 sink than for example the North Pacific.

Considering all the eddies studied and the calculated un-
certainties, anticyclonic eddies were identified to enhance the
cumulative CO2 flux, where these eddies acted as stronger
CO2 sink (weaker CO2 source) by 4.5± 2.8 % (95 % confi-
dence). Cyclonic eddies indicated a slight suppression of the
cumulative air–sea CO2 flux by 0.7±2.6 %, acting overall to
weaken the CO2 sinks (or as stronger CO2 sources). Here
we note, at the 95 % confidence the cumulative CO2 sink
enhancement by anticyclonic eddies was significantly differ-
ence from 0 (i.e. the confidence interval did not include 0)
when uncertainties were accounted for, but this was not sig-
nificantly different from 0 for cyclonic eddies.
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Figure 4. (a) Comparison of the UExP-FNN-U fCO2(sw) to in situ SOCAT observations within anticyclonic eddies. Solid black line is
the 1 : 1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), bias, slope and intercept of a
Type II linear regression and number of matches (N ). (b) Same as (a) but showing the uncertainty on the fCO2(sw) (2σ ; 95 % confidence) as
errorbars for anticyclonic eddies. (c) Difference between UExP-FNN-U fCO2(sw) to in situ SOCAT observations within anticyclonic eddies
plotted as spatial residuals. (d–f) Same as (a)–(c) but for cyclonic eddies.

Figure 5. (a) Comparison of the UExP-FNN-U fCO2(sw) to in situ SOCAT observations within anticyclonic eddies during winter. Solid
black line is the 1 : 1. Dashed line is the Type II linear regression. In text statistics are root mean square difference (RMSD), bias, slope and
intercept of a Type II linear regression and number of matches (N ). (b) Same as (a) but for cyclonic eddies in the winter. (c, d) same as (a)
and (b) for spring. (e, f) Same as (a) and (b) for summer. (g, h) Same as (a) and (b) for autumn.

The regional differences can be emphasised by consider-
ing median eddy modifications within different regional sub-
sets (Fig. 8) instead of globally (Fig. 8c and d). The eddy
modification of CO2 fluxes within the regions showed differ-
ing magnitudes that fall within different significance bands
when the uncertainties are accounted for. For example, the

Southern Ocean shows an anticyclonic enhancement of the
CO2 sink of 5.7±5.0 % (significant at 95 % confidence), with
cyclonic eddies suppressing the CO2 sink by 2.5± 4.6 %. In
the North Pacific, we find similar results where anticyclonic
eddies enhance by 5.6±5.2 %, and cyclonic eddies suppress
by 1.7± 7.4 %. Consistent results were found for the South
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Figure 6. (a) The total cumulative air–sea CO2 flux uncertainty (2σ ) for an exemplar anticyclonic eddy, eddy A, (1 year lifetime; eddy 496)
split into the relative contributions for the individual components. (b) The total air–sea CO2 flux uncertainty in absolute terms. Legend in
(b) corresponds to colours in (a). (c, d) Same as (a) and (b) but for eddy B, an anticyclonic eddy (42 months lifetime; eddy 194465). Note
different x axis limits for (a) and (b) compared to (c) and (d).

Pacific but noting the cyclonic eddies showed a larger uncer-
tainty interval of 11.5 %. The South Atlantic Ocean showed
the anticyclonic enhancement of the sink by 0.3± 15.0 %
and cyclonic eddies appear to enhance the CO2 sink by
0.7±13.7 %. The uncertainty intervals on these are however
the largest of any region, likely due to the lowest number of
eddies considered.

4 Discussion

4.1 Mesoscale eddy air–sea CO2 fluxes and
uncertainties

The mesoscale eddy air–sea CO2 fluxes provide both the CO2
fluxes for each month with uncertainties and the correspond-
ing environmental data (i.e. SST, SSS) within and outside of
each eddy (Fig. 3). These data allow a range of analyses to
be conducted, for example, in this study, we show how the
mesoscale modification of the air–sea CO2 flux can be deter-
mined from these data regionally (Figs. 7 and 8) or could be

Earth Syst. Sci. Data, 18, 969–988, 2026 https://doi.org/10.5194/essd-18-969-2026



D. J. Ford et al.: UEx-L-Eddies: decadal and global long-lived mesoscale eddy trajectories 979

Figure 7. (a) Geographical distribution of the anticyclonic eddies’ modification of the cumulative air–sea CO2 flux. Negative values indicate
a stronger CO2 sink (weaker CO2 source), and positive values indicate a weaker CO2 sink (stronger CO2 source). (b) Same as (a) for the
cyclonic eddies. (c) Box plot showing the anticyclonic eddy modification of the air–sea CO2 flux. Red line indicates the median, box indicates
the 25th and 75th quartiles, whiskers extend from the 25th and 75th quartiles by 1.5 interquartile ranges. Circles indicate data considered
outliers. Dark red shading indicates the 1σ (∼ 68 % confidence) uncertainty on the median by propagating the air–sea CO2 flux uncertainties
using a Monte Carlo uncertainty propagation. Light red shading indicates the 2σ uncertainty on the median (∼ 95 % confidence). X axis
label shows number of eddies (N ), the median modification with the 2σ uncertainty. (d) Same as (c) but for the cyclonic eddies. Basemap
in (a) and (b) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/, last access: 2 February 2025).

evaluated through time (e.g. Table S1 in the Supplement pro-
vides global decadal median mesoscale modifications sug-
gesting an increasing enhancement of the CO2 sink). Other
potential applications could include, analysing the thermal
and non-thermal components in driving the global eddy mod-
ified air–sea CO2 fluxes (as illustrated by Ford et al. (2023)
for the South Atlantic), or for investigating nutrient entrain-
ment within the eddies and how it links to biological varia-
tions within the eddy track, or the variability in phytoplank-
ton biomass and / or productivity within the eddies which are
important for improving our understanding of carbon rate dy-
namics, and their impacts on ecology and biodiversity. The
dataset presented here therefore provides the basis for a wide

range of studies to assess the evolution of mesoscale ed-
dies and their air–sea CO2 fluxes alongside understanding
the linkages with their localised environmental conditions.

The air–sea CO2 flux estimates are accompanied by a
comprehensive uncertainty budget developed by Ford et
al. (2024a) (Figs. 3 and 6). This is the first dataset of eddy
air–sea CO2 fluxes to include a uncertainty budget that has
been built on the principles where all known sources of un-
certainty are systematically considered (however small) and
propagated to the final uncertainty using standard propaga-
tion techniques and a well-established uncertainty frame-
work (BIPM, 2008; Taylor, 1997). The budget therefore pro-
vides an uncertainty on each air–sea CO2 flux estimate, and
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Figure 8. (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2 ocean basin
definition, but each basin was split at the Equator into North and South. North Indian Ocean was removed due to low number of eddies
analysed. (b) Box plot showing the eddy modification of the cumulative air–sea CO2 flux for the region shown with the arrow. Red line
indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25th and 75th quartiles by 1.5 interquartile ranges.
Circles indicate data considered outliers (greater than 1.5 interquartile ranges outside the 25th and 75th percentile). Dark red shading indicates
the 1σ (∼ 68 % confidence) uncertainty on the median by propagating the air–sea CO2 flux uncertainties using a Monte Carlo uncertainty
propagation. Light red shading indicates the 2σ uncertainty on the median (∼ 95 % confidence). X axis label shows number of eddy (N ),
the median modification with the 2σ uncertainty. (c–g) Same as (b) for their respective regions identified by the arrow. Basemap in (a) from
Natural Earth v4.0.0 (https://www.naturalearthdata.com/, last access: 2 February 2025).

the fCO2(sw), which can be accounted for within further
analyses (e.g. as used in Ford et al., 2021, 2022b) and aids
in assigning confidence to any results, as demonstrated in the
example results that have been presented.

The comparisons between the UExP-FNN-U fCO2(sw)
and SOCAT fCO2(sw) observations within eddies provide
further confidence in the retrieved UExP-FNN-U fCO2(sw)
and resulting air–sea CO2 fluxes (Figs. 4 and 5). We showed
that for both the anticyclonic and cyclonic eddies the within
eddy accuracy (bias) and precision (RMSD) showed greater
performance when compared to the global scale performance
of these approaches (Ford et al., 2024a). This result was con-
sistent with Ford et al. (2023) for the South Atlantic Ocean,
who showed that both eddy types were well represented by
the neural network approach (except that Ford et al., 2023 de-
termined this from a lower number of crossover data points
than presented here). Li et al. (2025) also showed for their
neural network approach, similar accuracy and precision re-
sults for the fCO2(sw) within eddies for four western bound-
ary current regions. Although, we did observe a slightly
lower precision during the spring and summer, which could
be due to the lack of a biological predictor (e.g. chl a) reduc-
ing the ability of the UExP-FNN-U to capture these dynam-
ics (Ford et al., 2022a) (Fig. 5). These results also provide
validity to the calculated fCO2(sw) uncertainties, which in

the majority of cases are dominated by the fCO2(sw) eval-
uation uncertainty component. As the retrieved within eddy
fCO2(sw) bias and RMSD showed greater performance com-
pared the global UExP-FNN-U performance (given in Ford et
al., 2024a) we are confident in the UExP-FNN-U fCO2(sw)
and uncertainty estimates within the eddies.

Within the UEx-L-Eddies we provide a secondary
fCO2(sw) estimate (and associated air–sea CO2 fluxes) from
a global fCO2(sw) neural network, which included chl a as a
predictor. We include the additional neural network because
Ford et al. (2022a) highlighted that the inclusion of more rep-
resentative biological parameters improved the regional esti-
mation of fCO2(sw) in the South Atlantic Ocean, which is
likely to be the same for other regions. Previous studies have
shown the importance of biological modulation of fCO2(sw)
within eddies (Orselli et al., 2019b), the resulting CO2 fluxes,
and how the importance changes over the eddy lifetime (Ford
et al., 2023). This additional neural network showed simi-
lar but slightly improved precision (lower weighted RMSD)
when compared to the in situ SOCAT observations, al-
though to a lower number of data points (Fig. S2; anticy-
clonic bias=−0.92 µatm, RMSD= 17.05 µatm, N = 1914;
cyclonic bias= 0.05 µatm, RMSD= 14.31 µatm,N = 1272).
In addition, the seasonal breakdown of the comparisons be-
tween the within eddy UExP-FNN-U with chl a fCO2(sw)

Earth Syst. Sci. Data, 18, 969–988, 2026 https://doi.org/10.5194/essd-18-969-2026

https://www.naturalearthdata.com/


D. J. Ford et al.: UEx-L-Eddies: decadal and global long-lived mesoscale eddy trajectories 981

Figure 9. (a) Ocean basins considered for further analysis, with a colour for each region. Regions follow the RECCAP2 ocean basin defini-
tion, but each basin was split at the Equator into North and South. North Indian Ocean was removed due to low number of eddies analysed.
(b) Box plot showing the eddy modification of the air–sea CO2 flux using the chl a version of the UExP-FNN-U for the region shown with
the arrow. Red line indicates the median, box indicates the 25th and 75th quartiles, whiskers extend from the 25th and 75th quartiles by
1.5 interquartile ranges. Circles indicate data considered outliers (greater than 1.5 interquartile ranges outside the 25th and 75th percentile).
Dark red shading indicates the 1σ (∼ 68 % confidence) uncertainty on the median by propagating the air–sea CO2 flux uncertainties using
a Monte Carlo uncertainty propagation. Light red shading indicates the 2σ uncertainty on the median (∼ 95 % confidence). Blue line and
shading indicates the same but for the UExP-FNN-U without chl a.X axis label shows number of eddy (N ), the median modification with the
2σ uncertainty for the chl a version of the UExP-FNN-U labelled with a C, and the UExP-FNN-U without chl a labelled with a P. (c–g) Same
as (b) for their respective regions identified by the arrow. Basemap in (a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/, last
access: 2 February 2025).

and the in situ fCO2(sw) showed an increase in the perfor-
mance of this neural network during spring and summer,
highlighting the improvements from chl a being added as a
predictor (Fig. S3). These estimates are however restricted
to regions between 50° N and 50° S due to the availability of
ocean colour chl a data in polar winter (i.e. for a full eddy
timeseries the eddy must remain within the available ocean
colour data).

The impact on the modification of the cumulative air–sea
CO2 flux by mesoscale eddies due to including chl a within
the UExP-FNN-U can be assessed by replicating Fig. 8, but
using the secondary fCO2(sw) and resulting air–sea CO2
fluxes (Fig. 9). Figure 9 shows the regional modification of
the air–sea CO2 fluxes by eddies where both neural network
variants are able to estimate the fCO2(sw) (i.e. we show a
subset of the eddies in Fig. 8). In all regions both neural
networks retrieve a similar signature, but the chl a version
generally suggests a stronger enhancement (or weaker sup-
pression) of the CO2 sink compared to the UExP-FNN-U
without chl a. Notably the South Pacific Ocean and South-
ern Ocean show larger differences although in all cases these
differences fall within the uncertainties. We therefore provide

the secondary neural network to further aid in understanding
the processes that are driving mesoscale eddy modification
of the air–sea CO2 fluxes.

Previous eddy trajectory datasets have been produced, for
example Dong et al. (2022a), which include environmental
datasets (e.g. SST) that can be used to understand the effects
of eddies on physical and biological properties. The UEx-
L-Eddies however extends the principles of these datasets
to include air–sea CO2 fluxes but also has a focus on cli-
mate quality dataset (i.e. the ESA CCI datasets) and pro-
vides comprehensive uncertainties. Therefore it provides a
robust dataset for understanding long-lived eddy effects on
the surface properties and air–sea CO2 fluxes. In the future,
we plan to include in situ observations by Biogeochemi-
cal Argo floats (BGC-Argo; Roemmich et al., 2019), which
could be used to provide in situ based fCO2(sw) and air–sea
CO2 fluxes to further verify the air–sea CO2 fluxes (e.g., as
suggested by Keppler et al., 2024).
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Table 2. Summary of methodologies in previous studies used to estimate the eddy modification of the air–sea CO2 flux. pCO2(sw) is the
partial pressure of CO2 in seawater.

This study Guo and
Timmermans
(2024)

Li et al. (2025) Keppler et al. (2024) Ford et al. (2023)

Eddy dataset
(or
decomposition
approach)

META 3.2 Mesoscale
signature
decomposition

META 3.2 META 3.2 META 3.1exp

Lifetimes
considered

> 1 year n/a > 12 weeks ≥ 10 d > 1 year

Radius
threshold

No criteria n/a No criteria > 40 km No criteria

fCO2(sw)
estimation
method

Global
fCO2(sw)
neural network
approach

Eddy resolving
model

Regional pCO2(sw)
neural network
approach

In situ pH with neural
network Total
Alkalinity

Regional pCO2(sw)
neural network
approach

Temporal
coverage

January 1993
to December
2022

1982 to 2000 July 2002 to 1 January
2022

April 2014 to February
2022

July 2002 to December
2018

Spatial Domain Global Global Western Boundary
Current (Kuroshio and
Gulf Stream)

Southern Ocean South Atlantic Ocean

Air sea CO2
flux uncertainty
treatment

Comprehensive
uncertainty

n/a fCO2(sw) and gas
transfer considered

Standard error of
observations

fCO2(sw) and gas
transfer considered

n/a stands for not applicable.

4.2 Comparison to previous global and regional eddy
modifications of the air–sea CO2 fluxes

Previous studies have investigated the effect of mesoscale ed-
dies on global and regional air–sea CO2 fluxes (Table 2).
Guo and Timmermans (2024) evaluate the cumulative ef-
fect of mesoscale variability on the air–sea CO2 flux glob-
ally, which they find enhances the global air–sea CO2 flux by
0.72 Mt C yr−1, or 0.72 Tg C yr−1. With the UEx-L-Eddies,
if the individual eddy air–sea CO2 flux modifications are
summed for the whole dataset, we find a global cumulative
enhancement of the ocean CO2 sink by long-lived mesoscale
eddies of 75± 33 Tg C between 1993 and 2022. This would
be equivalent to 2.7± 1.1 Tg C yr−1 (95 % confidence inter-
val). The calculated uncertainties with the UEx-L-Eddies al-
lows robust uncertainty estimates to be provided alongside
further analyses of the individual eddies, allowing signifi-
cance of comparisons to be assessed. Differences here may
be due to Guo and Timmermans (2024) including mesoscale
variability not associated with mesoscale eddies (such as fil-
aments, and current meanders), as their method does not
track individual eddies. It could also be due to the UEx-L-
Eddies only covering long-lived eddies, that represent 0.4 %

of eddies within the META3.2 trajectories dataset and there-
fore misses the contribution of smaller eddies (Pegliasco et
al., 2022b) that would be included with Guo and Timmer-
mans (2024).

Li et al. (2025) showed for the Kuroshio current that anti-
cyclonic eddies enhanced the CO2 sink by 15± 1.73 %, and
cyclonic eddies reduced the CO2 sink by 5.7±1.5 %. Similar
results were also shown for the Gulf Stream. Both the Gulf
Stream and the Kuroshio current are dominated by short-
lived eddies (e.g., those that survive for less than 1 year)
in comparison to the long-lived eddies studied within the
UEx-L-Eddies dataset, and therefore comparing these two
estimates is inappropriate. However, our regional results for
the North Pacific and North Atlantic Oceans do show a con-
sistent direction of change (i.e., an enhanced sink) but with
smaller magnitudes (Fig. 8).

Keppler et al. (2024) investigate the role of mesoscale ed-
dies in modifying the air–sea CO2 flux in the Southern Ocean
using Biogeochemical Argo profilers between April 2014 to
December 2022. They find anticyclonic eddies enhanced the
air–sea CO2 sink by 7± 2 % and cyclonic eddies reduced
the air–sea CO2 flux by 2± 2 % (1σ uncertainties). Within
the UEx-L-Eddies, we found that anticyclonic eddies en-
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hanced the CO2 sink by 5.7± 5.0 % (2σ uncertainties), and
cyclonic eddies reduced the sink by 2.5±4.5 % between 1993
and 2022 (Fig. 8g). These consistent results provide confi-
dence to the air–sea CO2 flux estimates within the UEx-L-
Eddies.

Ford et al. (2023) showed that within the South Atlantic
Ocean, anticyclonic (N = 36) and cyclonic (N = 31) ed-
dies enhanced the CO2 sink by 3.7 % and 1.7 %, respec-
tively. In our analysis for the South Atlantic Ocean (Fig. 8e)
we showed that anticyclonic enhanced the CO2 sink by
0.3± 15.0 % (N = 207) and cyclonic eddies enhanced the
CO2 sink by 0.7±13.7 % (N = 155) respectively, where con-
fidence intervals are expressed as 95 % confidence. Within
this dataset, we consider ∼ 5 times more eddies than Ford
et al. (2023) and find that the air–sea CO2 flux uncertainties
have a large effect on our resulting confidence, making the
results indistinguishable at 95 % confidence (even at 67 %
confidence the two are indistinguishable). The comparison
highlights the importance of the calculated uncertainties and
their use within further analyses and comparisons with other
air–sea CO2 fluxes.

The UEx-L-Eddies identifies differences in the mesoscale
eddy modification of the cumulative air–sea CO2 flux be-
tween anticyclonic and cyclonic eddies globally and region-
ally consistent with previous analyses. The driving mecha-
nisms for these differences have been investigated in previ-
ous work. For example, Li et al. (2025) suggest that the com-
peting changes in dissolved inorganic carbon and biological
processes through eddy pumping contribute to the observed
mesoscale eddy modification of the air–sea CO2 flux. Ad-
ditionally, Keppler et al. (2024) showed that the mesoscale
modification of the air–sea CO2 flux had significant sea-
sonal variability in the Southern Ocean, indicating that un-
derlying driving processes could vary throughout the indi-
vidual eddies lifetime. Ford et al. (2023) showed that the
changes in air–sea CO2 flux in mesoscale eddies could be at-
tributed to changes in the competing biological and physical
processes. Although a comprehensive analysis of the driv-
ing mechanism is beyond the scope of this manuscript, the
UEx-L-Eddies shows regional (Fig. 8) and seasonal variabil-
ity in the mesoscale eddy modification of the air–sea CO2
flux (e.g. Fig. S4 shows anticyclonic eddies have stronger
uptake in winter). The underlying environmental parameters
(e.g. SST, MLD) could therefore be used to investigate the
driving mechanisms for these differences in the mesoscale
modification.

4.3 Limitations when using the UEx-L-Eddies

For some eddies the daily environmental data can have miss-
ing values even for complete coverage data (for example, the
CCI-SST). These gaps stem from the META3.2 eddy trajec-
tories dataset where the polygon to define the limits of the
eddy does not form correctly, and therefore we were unable
to extract values where the polygon was undefined. No exclu-

sion or interpolation mechanism was implemented as these
data gaps affect a mean of 2 % (maximum= 15 %) of an indi-
vidual eddy daily timeseries, which occur randomly through
the timeseries, and therefore the impact on the monthly me-
dian statistics are minimal.

The UEx-L-Eddies dataset focusses on larger, long-lived
eddies (lifetimes greater than a year). This criteria will re-
gionally exclude eddies within, for example, highly dynamic
western boundary currents where shorter lived eddies of-
ten dominate (Fig. 2c and d). Smith et al. (2023) however
show that eddies with smaller radii generally have the same
anomaly direction but with weaker magnitudes when com-
pared to larger eddies. A previous study (Pegliasco et al.,
2022b) identified that the shorter lived eddies within the
Mesoscale Eddy Product (the same product used within this
study) generally have smaller radii then the longer lived ed-
dies. Therefore we would expect similar anomalies but of
smaller magnitude when studying shorter lived eddies.

5 Code and data availability

The code for the analysis is available, and version controlled
on Github at https://doi.org/10.5281/zenodo.18429374 (Ford
et al., 2026). The UEx-L-Eddies dataset are available on
Zenodo (https://doi.org/10.5281/ZENODO.16355763;
Ford et al., 2025). The AVISO+ eddies trajecto-
ries data (META 3.2) was retrieved from AVISO+
(https://doi.org/10.24400/527896/A01-2022.005.220209;
Pegliasco et al., 2022a). The CCI-SST climate
record (v3.0) were retrieved from CEDA (https://doi.
org/10.5285/4A9654136A7148E39B7FEB56F8BB02D2;
Good and Embury, 2024). The OC-CCI chl-a (v6)
were retrieved from CEDA (https://doi.org/10.
5285/5011D22AAE5A4671B0CBC7D05C56C4F0;
Sathyendranath et al., 2023). The CMEMS GLO-
RYS12V1 SSS and MLD were retrieved from CMEMS
(https://doi.org/10.48670/moi-00021; CMEMS, 2021). The
CCMP wind speeds (v3.1) were retrieved from Remote Sens-
ing Systems (https://doi.org/10.56236/rss-uv6h30; Remote
Sensing Systems et al., 2022). The xCO2(atm) were retrieved
from NOAA-GML (https://doi.org/10.15138/DVNP-
F961; Lan et al., 2023). In situ SOCAT observations
that have been recalculated to a consistent depth
and temperature dataset were retrieved from Zenodo
(https://doi.org/10.5281/zenodo.15706025; Ford et al.,
2024d).

6 Summary

The UEx-L-Eddies is a dataset of the air–sea CO2 fluxes
for (N = 5996) long lived mesoscale eddies calculated in
a Lagrangian mode within the global ocean. We use a
global fCO2(sw) neural network (as used within one dataset
submitted to the Global Carbon Budget called UExP-FNN-

https://doi.org/10.5194/essd-18-969-2026 Earth Syst. Sci. Data, 18, 969–988, 2026
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U) to estimate the fCO2(sw) within the eddies at a monthly
resolution. We prioritise the use of climate quality datasets
within the analysis. The air–sea CO2 fluxes (also calculated
following the methods of UExP-FNN-U) are accompanied
by a comprehensive uncertainty budget (using a published
methodology), that considers all known sources of uncer-
tainty. We show for an exemplar eddy that the seasonal cycles
of the eddy fCO2(sw) and air–sea CO2 fluxes are captured
and can be cumulatively added to assess the CO2 uptake (or
outgassing) of individual eddies. The comprehensive air–sea
CO2 flux uncertainties provide a robust basis for assessing
the confidence in the eddy air–sea CO2 flux estimates and
can be propagated to further analysis. This illustrates how
the importance of the different uncertainty components can
change through time highlighting the shortfall of only quanti-
fying selected contributions to the uncertainties or assuming
fixed values.

Within the uncertainty assessment, we find that the
fCO2(sw) in the eddies are estimated with an accuracy (bias)
of−0.69 µatm and a precision (RMSD) of 19.15 µatm for an-
ticyclonic (N = 2082), and accuracy of 0.28 µatm and a pre-
cision of 16.49 µatm for cyclonic eddies (N = 1376). These
accuracy and precision estimates provide validity to the neu-
ral network fCO2(sw).

We demonstrate a use case of the UEx-L-Eddies dataset to
evaluate the air–sea CO2 flux modification, and resultant in-
tegrated net CO2 sink, by long-lived mesoscale eddies, glob-
ally and regionally. We find that anticyclonic eddies enhance
the net sink by 4.5± 2.8 % (N = 3244), and cyclonic ed-
dies suppress by 0.7± 2.6 % (N = 2752) where uncertain-
ties are the 95 % confidence interval. Regional differences
in the eddy modification are observed, for example within
the Southern Ocean, anticyclonic eddies enhanced the CO2
sink by 5.7± 5.0 %, and cyclonic eddies reduced the sink
by 2.5± 4.5 %. We demonstrate how the use case results
are consistent with previous regional analyses. Our exam-
ple also highlighted the importance of using the accompa-
nying uncertainty information when comparing studies, and
caution should be taken in drawing conclusions from small
samples or individual eddies, without considering the under-
lying comprehensive uncertainty budgets for the air–sea CO2
fluxes. The data presented could now be used to understand
the processes occurring within these eddies that are driving
these modifications of the air–sea CO2 fluxes, and how re-
gionally these processes may vary.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-969-2026-supplement.
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