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Abstract. On-road transportation is a major contributor to CO, emissions in cities, and high-resolution CO;
traffic emission maps are essential for analyzing emission patterns and characteristics. In this study, we de-
veloped new hourly on-road CO, emission maps with a 100 x 100 m resolution for 20 major cities in France,
Germany, and the Netherlands in 2023. We used commercial Floating Car Data (FCD) based on anonymized
GPS signals periodically reported by individual vehicles, providing hourly information on mean speed and the
number of GPS sample counts per street. Machine learning models were developed to fill FCD data gaps and
convert sample counts into actual traffic volumes, and the COPERT model was used to estimate speed- and
vehicle-type-dependent emission factors. These models were calibrated using independent traffic observations
available for Paris and Berlin, and subsequently applied to the remaining 18 cities in an extrapolated manner
due to data availability constraints. Hourly emissions, initially estimated at the street level, were aggregated to
100 x 100 m grid cells. Annual on-road CO; emissions across the 20 European cities in 2023 ranged from 0.4
to 7.9 Mt CO,, with emissions strongly correlated with urban area (R*> =0.98) and, to a lesser extent, popula-
tion size (R? = 0.74). Spatially, emissions are either highly concentrated along major highways in cities such as
Paris and Amsterdam or more evenly distributed in cities such as Berlin and Bordeaux, highlighting the need
for context-specific mitigation strategies. Temporally, this study shows the CO; emission fluctuations due to
holiday periods, weekly activity cycles, and distinct usage profiles of different vehicle types. Due to the low
latency of FCD, this approach could support near-real-time traffic emission mapping in the future. Our approach
enhances the spatial and temporal characterization of CO, emissions in on-road transportation compared to the
conventional method used in gridded inventories, indicating the potential of FCD data for near-real-time urban
emission monitoring and timely policy-making. The datasets generated by this study are available on Zenodo
https://doi.org/10.528 1/zenodo.16600210 (Shi et al., 2025).
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1 Introduction

The road transport sector is one of the largest sources of
greenhouse gas (GHG) emissions in the European Union
and the only major economic sector where carbon diox-
ide (CO2) emissions have risen since 1990, primarily due
to the widespread use of fossil fuel-powered passenger cars
and freight vehicles. In 2023, it accounts for approximately
26.0 % of total EU GHG emissions (EEA, 2025a). In re-
sponse to the dual challenge of reducing emissions and devel-
oping cleaner mobility infrastructures, the European Strat-
egy for Low-Emission Mobility outlines three elements: (1)
Increasing the efficiency of the transport system, including
the optimization of logistics and intelligent transport sys-
tems; (2) Accelerating the deployment of low-emission alter-
native energy sources, such as biofuels, renewable electricity,
and hydrogen; and (3) Speeding up the transition to zero-
emission vehicles, through regulatory incentives, infrastruc-
ture investment, and innovation support (European Commis-
sion, 2025). This transition is not only critical for achieving
the EU’s climate neutrality goal, which involves reducing net
CO; emissions to zero by 2050 (EEA, 2025b), but also for
improving air quality, reducing energy dependence on fossil
fuel imports, and enhancing the competitiveness of European
industry.

Emission reduction targets in the transportation sector are
being translated into concrete actions at the city level. For
instance, the transportation sector is responsible for approx-
imately 20 % of Paris’ local greenhouse gas emissions (Al-
barus et al., 2025), and Paris plans to reduce its direct emis-
sions by 50% by 2030 and 100 % by 2050, compared to
2004. Paris has set itself the target of phasing out diesel-
powered mobility by 2024 and petrol-powered mobility by
2030, aligning with the EU-wide ban on the sale of inter-
nal combustion engine vehicles by 2035. Amsterdam aims
to achieve zero-emission transport by 2030, phasing out all
fossil-fuel vehicles within city limits (The City of Amster-
dam, 2025). The city is rapidly expanding its electric vehicle
infrastructure, as all newly registered vehicles are required
to have zero-emission engines in 2025 (CINEA, 2025). Sim-
ilarly, to achieve climate neutrality in 2050, Berlin will re-
quire a long-term reduction in CO, emissions in the trans-
port sector to around 1.17 million tonnes of CO, per year,
a reduction of around 77 % compared with 1990 emissions
(Land Berlin, 2025).

High-resolution emission maps are crucial for monitoring
emission changes and providing insights into the effective-
ness of traffic mitigation policies in cities. For example, a
high-resolution (1km?) CO, emissions inventory for U.S.
road transportation named DARTE enables detailed analysis
at the city scale between 1980 to 2012 (Gately et al., 2015),
revealing that urban areas drive most of the emission growth
and that traditional population-based downscaling methods
substantially misrepresent city-level spatial patterns. Over
the past decade, several efforts have been made to improve
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either the temporal or the spatial resolution of traffic emission
inventories, primarily by incorporating real-world traffic data
generated from sensors or GPS signals. From a temporal res-
olution perspective, annual aggregated statistics make it im-
possible to capture short-term variations due to weather, pol-
icy changes, or special events. Therefore, daily or hourly data
were increasingly applied to improve the accuracy. For exam-
ple, TomTom collects all the travel times and compares them
with the lowest travel times to calculate congestion indexes
based on FCD (index, 2024). Tomtom congestion indexes
were used by Carbon Monitor Cities (Huo et al., 2022) to es-
timate daily CO, emissions for 1500 cities. CAMS-TEMPO
is a dataset of European emission temporal profiles that pro-
vides gridded monthly, daily, weekly, and hourly weight fac-
tors for atmospheric chemistry modelling, and the European
part used hourly traffic data collected from over 20 Euro-
pean cities via open-data portals or personal communica-
tions (Guevara et al., 2021). One-month GPS-based datasets
covering 52 834 conventional fuel vehicles registered in the
province of Modena and 40459 vehicles registered in the
province of Firenze were used to generate high-resolution
emission maps (De Gennaro et al., 2016). A near-real-time
on-road traffic emission product on 2860km of the main
roads in Bangkok was automatically generated by retrieving
the traffic data from the Google Maps API service and the
Python code every 15min (Naiudomthum et al., 2022). In
recent years, machine learning-based bottom-up approaches
have supported the development of high-resolution emission
maps. For instance, an hourly street-level emission map of
Chengdu was developed using data from 1454 camera-based
sensors and 34 highway monitoring sites, employing land-
use random forest models (Wen et al., 2022). Similarly, a
platform tracking hourly CO; emissions at a 30 x 30 m res-
olution was designed for Berlin based on local traffic data,
using machine learning methods (Anjos and Meier, 2025).

Despite recent advancements, most city-level emission
datasets still suffer from limitations in either temporal or
spatial resolution, with few achieving both simultaneously.
CAMS-TEMPO (Guevara et al., 2021) and Carbon Monitor
(Huo et al., 2022) lack road-specific information and provide
only outputs at 0.1° resolution and the city level, respectively.
The hourly street-level emission datasets for Chengdu (Wen
et al., 2022) and Bangkok (Naiudomthum et al., 2022) only
cover one to two months. The Berlin platform offers high
spatial and temporal resolution from 2015 to 2022, but may
miss data from smaller roads, as counting stations are usually
located on major roads.

As part of the Copernicus Atmosphere Monitoring Service
(CAMY)), this study estimates for the first time hourly street-
level on-road transportation CO, emissions, aggregated into
100 m resolution hourly maps for 20 European cities in 2023.
Hourly GPS-based data, reporting traffic counts and speeds
of individual vehicles across different road classes, were up-
scaled using machine learning to reconstruct complete traffic
volumes and speeds across the road networks. Then, CO,
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emissions were estimated using the COPERT model, and
emission maps were developed. This approach enhances the
spatial and temporal characterization of CO, emissions in
on-road transportation compared to the downscaling method
used in other inventories, indicating the potential of GPS-
based data for supporting future efforts in emission monitor-
ing and developing emission reduction policies.

2 Data and Method

2.1 Overview of the Methodology

Figure 1 describes the workflow of this study. The GPS-
based high-resolution “Floating Car Data” (FCD) on individ-
ual vehicle flow (GPS vehicles counts per street each hour)
and speed covering every street was obtained from a data ag-
gregation provider that collects GPS position data from cars
(passenger cars) and trucks (light commercial vehicles and
heavy duty trucks), providing road-specific information on
hourly average speed and sample counts (i.e., the number of
cars recorded in each street for each hour). Those GPS data
are linked with precise cities’ road network datasets, pro-
viding detailed information on road length, road functional
class, and truck access authorization. All data is anonymized
by the data provider to prevent compromising any individual
or organizational data privacy issues. After raw data process-
ing and cleaning, a machine learning model was used to fill in
missing values in FCD, as well as to transform FCD sample
counts limited to vehicles equipped with GPS into traffic vol-
umes for all vehicles. Then, the COPERT model (Ntziachris-
tos et al., 2009), the EU standard vehicle emissions calcula-
tor, was applied for estimating specific CO, emission factors
based on individual vehicle hourly average speed and type.
Combined with the road lengths obtained from geographical
databases and with fleet structures, we finally estimate street-
level road-specific emissions using the following equation:

Emis; , , = N, x Structure, x Length, x EF,_ @))]

where Emis; , , represents CO, emission at the hour ¢, for
the vehicle type v , on road r. N; , represents the total traffic
volume at hour ¢, on road r (counts/hour). Structure, repre-
sents the proportion of vehicle type v in the vehicle fleet (%).
Length, represents the road length (km) of the road r, and
EF, s (gCO, km~!) represents the CO5 emission factors for
the vehicle type v , at the hourly average speed s (kmh™!).

Our FCD source covers France, Germany, and the Nether-
lands. Therefore, the 20 most populous cities within these
three countries were selected to develop high-resolution
emission maps. Table 1 shows the basic information (pop-
ulation, area, street length, street density) of the 20 cities in
2023. Note that here Paris is the administrative city jurisdic-
tion (Ville de Paris) covering the central 20 arrondissements,
so its area is much smaller than Berlin, which is both a city
and a federal state.
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2.2 Description and preparation of FCD

FCD provides hourly average speed and sample counts
for each street, with separate data for cars and trucks re-
porting GPS data. The FCD is linked with high-resolution
road network datasets that feature information such as road
length, speed category, road functional class, lane category,
on more detailed and complete road networks than public
traffic datasets based on sensors. As shown in Fig. 2, pub-
lic datasets used by previous studies are only available for a
few cities and provide hourly traffic data for 3739 road seg-
ments in Paris (Bonnemaizon et al., 2024) and 19 808 seg-
ments in Berlin (Anjos and Meier, 2025), respectively. In
contrast, FCD gives vehicle count samples and speed infor-
mation for 36 716 roads in Paris and 122 759 roads in Berlin,
dividing long roads into more segments and encompassing a
much greater number of small roads than the city-level pub-
lic datasets. All road segments were categorized into major,
middle, and small according to the functional class defined
by the FCD. Major roads represent roads connecting major
metropolitan areas, middle roads represent roads connect-
ing neighbourhoods, and small roads represent low-volume
roads.

Missing values exist in the FCD due to unstable GPS sig-
nals, especially for small roads. The average data coverage
of GPS cars on major, middle, and small roads ranges from
67.0 %-97.7 %, 40.4 %-93.8 %, and 6.1 %-37.7 %, respec-
tively (Fig. Sla in the Supplement). The average data cover-
age of trucks is lower, ranging from 32.2 %-75.8 %, 32.1 %—
85.3 %, and 1.8 %—32.2 %, respectively (Fig. S1b). Machine
learning was used here to fill data gaps, as the use of ma-
chine learning techniques has shown great potential for both
temporal and spatial imputation of missing data to recon-
struct the full volume of traffic (Wen et al., 2022). Eight fea-
tures were chosen as predictors (Table 2) to train models.
Temporal features (hour, day of the week, and month) were
used to capture diurnal and seasonal patterns in traffic be-
haviour. Observed road-specific daily mean traffic counts and
speeds derived from hourly averages were also used as indi-
cators of baseline traffic intensity. Holiday indicators, includ-
ing school and public holidays, were included to account for
potential shifts in travel demand. Finally, road characteristics
including speed category, functional class, and lane category
were used to describe the physical and functional attributes
of each road segment.

The full-year dataset was partitioned into two temporally
isolated subsets: January—June (H1) and July-December
(H2) due to the large-scale dataset. Separate machine learn-
ing models were developed for each six-month interval, both
incorporating consistent feature engineering protocols for ve-
hicle type differentiation (Cars and Trucks) and road classi-
fication. Model training was conducted on 80 % of the avail-
able data, with the remaining 20 % held out as an indepen-
dent test set to evaluate generalization performance. Random
forest (RF) and lightGBM models were tested for Paris to
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Figure 1. Workflow of this study.

Table 1. Information of 20 selected cities in 2023.

Country City Population Area  Street length ~ Street density
(Thousand)  (km?2) (km) (kmkm™2)

France Paris 2103 105.4 2412.9 22.9
Marseille 862  240.6 3301.7 13.7

Lyon 513 47.9 985.3 20.6

Lille 233 39.5 679.8 17.2

Toulouse 472 1183 2311.2 19.5

Nice 343 71.9 1228.0 17.1

Nantes 303 65.2 1249.4 19.2

Strasbourg 277 78.3 1252.4 16.0

Montpellier 278 56.9 1260.1 22.1

Bordeaux 250 49.4 967.9 19.6

Germany Berlin 3782 8913 12073.4 13.5
Hamburg 1910 7552 8725.2 11.6

Munich 1510  310.7 5220.0 16.8

Cologne 1087 405.2 5508.8 13.6

Frankfurt 776 2483 3648.5 14.7

Stuttgart 633 2073 3660.8 17.7

Dusseldorf 631 2174 2741.5 12.6

Netherland ~ Amsterdam 883 2194 3203.8 14.6
Rotterdam 656  324.1 3555.7 11.0

The Hague 553 98.1 1796.8 18.3
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(a) FCD network in Paris

(b) Opendata network in Paris

N = 36716
Length = 1819 km

(c) FCD network in Berlin

N =122759
Length = 8196 km

N ='19808
Length = 2075 km

Figure 2. Monitored road networks in this study and other public datasets in Paris and Berlin. N represents the number of road segments.
(a) and (c) represent road networks from FCD for Paris and Berlin, respectively; (b) and (d) represent networks from Open Data in Paris and

Traffic Detection Systems in Berlin.

Table 2. Spatial-temporal features used as predictors of traffic variables.

Category Features

Usage

Time Hour, Day of week, Month
Daily mean derived from hourly averages

Road-specific traffic counts/speed
Holiday
Road characteristics

School holiday,

Speed category, Functional class, Lane category

Diel and seasonal pattern

Baseline traffic intensity

Potential shifts in travel demand
Road capacity and flow characteristics

Public holiday

compare their performances. As shown in Table S1, Random
Forest (RF) and LightGBM exhibited comparable predictive
performance across different vehicle types, road types, and
target variables (i.e., vehicle count and speed) but Light-
GBM required significantly less computational time. In some
cases, the efficiency gain is more than 10-fold e.g., to fill gaps
of car count on major roads takes 6.25 s for LightGBM vs.
122.53 s for RF. This efficiency gain stems from LightGBM’s
histogram-based decision tree learning and its leaf-wise tree
growth strategy with depth constraints, which together en-
able faster training and better scalability, especially for large
datasets with continuous features. Given its high accuracy
and computational efficiency, LightGBM was chosen as the
preferred model and trained individually for each of the 20
cities.

The LightGBM validation performance is summarized in
Table 3 using mean RZ%, RMSE, and MAE across cities and
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road classes, while the full city-level validation results are
reported in Table S2. 5-fold cross-validation results which
aimed at evaluating the robustness of the model are presented
in Table S3. Overall, the model demonstrates strong predic-
tive performance across different vehicle types and target
variables. For car count, performance is consistently high on
major roads, with R? values typically above 0.90 and reach-
ing up to 0.97 (e.g., The Hague and Amsterdam). On middle
and small roads, R? varies between 0.53 and 0.85, and lower
values are often observed in cities with smaller datasets, such
as Lyon and Nice, suggesting that data volume plays a criti-
cal role in model accuracy (Fig. S2). For car speed, the model
also performs well on major roads R? (0.85-0.95) but shows
greater variability on smaller roads, where R> drops to as
low as 0.39 in some cases (e.g., Paris or Lyon). The results
of trucks are similar to those of cars, but with slightly lower
overall performance. Shapley values, a concept from cooper-
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ative game theory, are widely used to explain feature impor-
tance in machine learning. This study used the Python pack-
age SHAP to estimate Shapley values applied to the model’s
conditional expectation function (Lundberg et al., 2025), re-
vealing that the daily mean count and hour of day are the
most influential predictors, followed by day of week, road
class, and month (Fig. S3). High traffic volumes are associ-
ated with increased model output, while hourly effects vary
by time of day. In contrast, features such as lane type and
school holidays show limited influence.

2.3 Obtain CO2 emission factors using COPERT

To calculate the speed-dependent emission factors EFco, de-
fined by CO; emissions per km driven for each vehicle type,
we applied the COPERT model, a widely used emissions cal-
culator for vehicles in Europe (Ntziachristos et al., 2009).
Monthly temperature and relative humidity data required as
input for COPERT were obtained from ERAS reanalysis
(Hersbach et al., 2023) and interpolated to a 0.01° spatial
resolution. City-level averages of maximum/minimum tem-
perature and relative humidity were then calculated within
administrative boundaries defined by Eurostat shapefiles to
serve as inputs for COPERT. Considering the data scale and
time cost, instead of running COPERT for each street seg-
ment each hour, this study developed fitting curves between
speed and EFcq, to obtain EFco,. Except for L-Category
vehicles running on diesel, where COPERT provides a fixed
value, emission factors were simulated for various vehicle
types at speeds of 20, 40, 60, 80, 100, 120, and 140 km h 1L
Then, for each city, cubic functions were fitted to COPERT
simulations, as given by:

EF =axs’+bxs’+cxs+d 2)

where s represents the average speed at hourly resolution,
and a, b, ¢, and d are city-specific constants. Table S4
presents the parameters of the curve fitting results for all
cities, showing a good fit quality with an R? value range from
0.882 to 0.998. In this way, the corresponding emission fac-
tor for any given speed can be determined. Note that we used
EFco, of the EU6 standard, since CO, emission factors are
only marginally influenced by emission standards, and this
approach was also adopted by TomTom (Tomtom, 2024).

2.4 Estimate real traffic volume from sample count

Road-specific hourly total traffic volume is the key parame-
ter to estimate CO; emissions. Since not all vehicles trans-
mit GPS signals and our dataset only captures a subset of
the real GPS data for all vehicles, the actual traffic volume
is significantly higher than the sample counts from the FCD.
To solve this problem, we established a relationship between
real traffic volume data and GPS sample count using machine
learning. Due to the availability of traffic volume data, only
the Opendata from Paris (PCEL, 2024) and Traffic detection
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Berlin (SenMVKU, 2024) were used for modelling. Open-
data from Paris provides hourly total vehicle flow from per-
manent sensors with electromagnetic loops on 2278 roads
in 2023, but does not differentiate between vehicle types for
the traffic volume. Therefore, the numbers of cars and trucks
are estimated based on the proportion of sample counts from
each type in our FCD. Traffic detection in Berlin provides
hourly total vehicle volumes on 231 roads, and only the vol-
umes of cars were used for modelling. As shown in Fig. 2,
monitored road networks of public datasets and FCD are
different. The overlap rate and angle are used as criteria to
link the two datasets’ shapefiles (Fig. S4). When the overlap
rate > 0.7 and the angle < 20°, a road is identified as being
the same in Opendata and FCD. In this way, hourly open
data from 2278 monitoring sites in Paris and 231 monitor-
ing sites in Berlin were matched to the FCD, and we got the
real volume and the number of FCD sample counts on the
same road. A similar set of predictors as listed in Table 2, ex-
cept for road-specific traffic counts and speeds, was used to
build a LightGBM model to extrapolate FCD sample counts
to total traffic volume. For cars in German cities, we used the
LightGBM model trained on Berlin’s data, while for all other
cities, we used the LightGBM trained on Paris’s data. The
validation results (Table S5) show that the LightGBM model
performs well on major roads in both Paris (R? =0.91 for
cars and 0.88 for trucks) and Berlin (R2 =0.66 for cars). The
accuracy decreases on middle and small roads in Paris (R?
range from 0.22 to 0.38), while the performance in Berlin
remains comparatively good (R? range from 0.86 to 0.88).
5-fold cross-validation results are presented in Table S6.

In addition to Paris and Berlin that are used for model
training, observed traffic-count-based annual average daily
traffic flow (AADT, in number of vehicles per day) or an-
nual average weekday traffic (AAWT, equivalent to AADT
excluding weekends) datasets are available for six addi-
tional cities reported in a recent study (Bonnemaizon et
al., 2025): Montpellier and Hamburg (AADT), and Bor-
deaux, Lyon, Toulouse and Lille (AAWT). The comparison
which serves as independent external validation to assess
our traffic volume estimates is shown in Fig. 3. Paris, the
most important reference city for model development, shows
strong agreement between estimated and public AADT val-
ues (R2 =0.92, n =2696), with data points across all road
classes closely aligned with the 1 : 1 line. Berlin exhibits no-
ticeably larger dispersion, with a moderate R” (0.55) derived
from a relatively small sample size (n = 197), which likely
contributes to the lower correlation.

Lyon, Hamburg, Bordeaux and Montpellier all show mod-
erate correlation (with RZ around 0.6). However, while simu-
lated and observed traffic volumes are generally well aligned
for Bordeaux, public observations for Lyon, Hamburg and
Montpellier tend to exceed the simulated values, especially
for the major roads. Toulouse and Lille are characterized by
low correlation (R2 around 0.3), exhibits the weakest consis-
tency between estimated and public traffic volumes. Overall,
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Table 3. Summary of LightGBM validation performance across cities and road classes.

Vehicle Item Road class Mean R2  Mean RMSE  Mean MAE
Car COUNT  Major 0.93 16.34 9.08
Car COUNT Middle 0.73 6.09 3.91
Car COUNT  Small 0.60 3.66 2.15
Truck COUNT  Major 0.78 3.31 2.00
Truck COUNT Middle 0.57 1.88 1.29
Truck COUNT  Small 0.54 1.87 1.15
Car SPEED  Major 0.89 6.72 4.64
Car SPEED Middle 0.67 6.71 4.87
Car SPEED Small 0.58 7.85 5.63
Truck SPEED  Major 0.84 8.77 6.35
Truck SPEED Middle 0.55 7.81 5.85
Truck SPEED Small 0.56 7.70 5.65
120000 (a) Paris_AADT 35000 - (b) Berlin_AADT (C) Bordeaux_AAWT L4 (@) Lyon ARWT
9 ° 4 /| 4
R?=0.92 . s0000] R2=055 o 2000 Re=ges 7| 1750009 ga_g63
_ 5 {77 B o v B ;
100000 1 .7—2696 - ) ' n=197 ,./ 175004 n=170 7 150000 "=667 17
5o ot 3 25000 o 15000 N 2 /
~e o e ° . , e e 125000 A o/
80000 1 o7 o as o450 . /
° o (] o 4 o ’ 4 . $ /
(14 20000 o 12500 2 100000 P
600001 , ° 2% oot o o o o B 10000 4 DAY 24 ’
0% w Slpserins 15000 . e £ % ° 75000 o/ e
PRI o i ARk 3o
20000 3 o= 5% 10000 4 o K 75004 % h” L] &/
3 ST s oo, 5000 | i I 50000 { &g/
8 20000 g ot 5000 1 2 eJ':' I 4 :':"b 25000
< ’ ° ° e ¢ IR 25001 g ¥e, s o
s — . . TEt . . £ et ° , : s , .
> 25000 50000 75000 100000125000 10000 20000 30000 5000 10000 15000 20000 50000 100000 150000
E 60000 (e) Ham.burg_eADT 60000 { (f) Montpellier_;’A'ADT 20000 o (g) Toulouse_AAWT (h) Lille_AAWT /
5\( R?=064 R2=057 /) 17500{ R?=028 ,_.. R?2=0.33 ,"
= | no19g s/ 500001 n-284 n=927 . 80001 =63 7
3 s0000 ; B / ) . g
2 Y - / 15000 L ,,
< o oo 40000 / e /
U 40000 iy A 12500 o . L 6000 | /
= o % e°0 / . /
E o S 30000 YA 10000 et 4
& 300001 s v Ao i /
. / - 4000 1 /
o e 200001 %/ 75001 i J/
200001 &L o 5000 s *
’ 1 et il 2000 4 vy
10000 Jo ¥ F% 1000071 o 2500 1 % o /3R .
ll. : /// -en /,/. L4 °
20000 40000 60000 20000 40000 60000 5000 10000 15000 20000 2000 4000 6000 8000
Estimated AADT/AAWT (vehicles/d)
°  major middle o small ---- Regression line — 1:1line

Figure 3. Comparison of AADT/AAWT between this study and public datasets.

the scatter plots reveal pronounced city-to-city heterogene-
ity in traffic volume agreement, providing important context
for subsequent uncertainty propagation to city-scale emis-
sion estimates.

2.5 Fleet structure

This study collected fleet structures data in 2023 for the 20
cities to further map cars and trucks to 5 categories (passen-
ger cars, light commercial vehicles, buses, L-category and
heavy-duty trucks), and 12 sub-categories, 10 fuels (petrol,
diesel, CNG, diesel hybrid, biodiesel, diesel PHEV, CNG
biofuel, petrol hybrid, battery electric), as shown in Table 4.
The data that is reported annually was collected from the offi-

https://doi.org/10.5194/essd-18-927-2026

cial statistical websites of France, Germany, and the Nether-
lands (Table S7). Only direct emissions from fossil fuels are
considered, so the emission factor of battery electric cars is
set to 0.

2.6 Aggregation onto grids

Python was used to map street network emissions data onto a
100 x 100 m grid. Starting from a shapefile containing road
segments with associated emissions, a spatial join was per-
formed using GeoPandas’ sjoin function to identify which
road segments intersect each grid cell. Emissions were then
allocated to the grid cells in a length-weighted manner, pro-
portionally distributing each road segment’s emissions based

Earth Syst. Sci. Data, 18, 927-944, 2026
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Table 4. Vehicle categories.

Big Category  Category Fuel
Car L-Category Petrol, Diesel
Buses Petrol, Diesel, CNG, Diesel Hybrid, Biodiesel, Battery electric, Diesel
PHEV
Passenger Cars Petrol, Diesel, CNG, Petrol Hybrid, Petrol PHEV, Battery electric,
Diesel PHEV
Truck Heavy Duty Trucks Petrol, Diesel, Diesel PHEV, Battery electric, CNG

Light Commercial
Vehicles

Diesel, Petrol, Diesel PHEV, Battery electric, CNG, Petrol Hybrid,
Petrol PHEV

on the length of its overlap with each cell. For the projec-
tions, cities in France use EPSG:2154, while most German
cities use EPSG:25832; Berlin uses EPSG:25833 due to its
location. Dutch cities are projected using EPSG:28992.

2.7 Uncertainty analysis

Monte Carlo method is widely used in emission studies to
estimate uncertainties (Ramirez et al., 2008; Zhao et al.,
2011; Super et al., 2020). To quantify the uncertainty in es-
timated annual emissions arising from uncertainty in traffic
volume estimates, this study applied a Monte Carlo simula-
tion framework that propagates the observed discrepancies
between estimated traffic volumes and public AADT/AAWT
datasets (Fig. 3) to the city-scale emission. Because emis-
sions are linearly proportional to traffic volume, uncertainty
in traffic counts can be directly transferred to emission uncer-
tainty. As standard parametric assumptions (e.g., lognormal-
ity) did not adequately describe the tails of the discrepancy
distributions, this study adopted a fully empirical cumula-
tive distribution function (ECDF) approach. Discrepancy ra-
tios were grouped by functional road class (major, middle,
and small). For the six cities with observed AADT/AAWT
data(Paris, Berlin, Bordeaux, Lyon, Hamburg, Montpellier,
Toulouse and Lille), discrepancy ratios were sampled di-
rectly from the city-specific ECDFs. For cities without obser-
vations, we used country-level pools: ratios for French cities
were sampled from the pool formed by the observed French
cities, ratios for German cities from the observed German
cities, and ratios for Dutch cities from a combined pool of
the observed French and German cities.

For each Monte Carlo iteration j, the set of ratio values
corresponding to a given road class was selected. A random
value u ~ U(0, 1) was drawn, and the corresponding correc-
tion factor was obtained via quantile sampling from the em-
pirical distribution, Fp 1(u). The total city-scale emissions
for iteration j were then computed as:

T = ZEi x Fg'(u)
i
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where E; represents the baseline annual emissions of road
link 7, and the sampled correction factor was consistently ap-
plied to all links within the same road class. This process was
repeated 10000 times (j = 1, ..., 10000), yielding a full en-
semble of possible emission totals. From the resulting Monte
Carlo ensemble, 95 % confidence interval was calculated.

3 Results

3.1 Annual emissions

The total on-road CO; emissions in 2023 among the 20 cities
ranged from 0.4 MtCO, yr~! to 7.9 MtCO, yr—!. The top
five emitting cities are Berlin (7.9 Mt), Hamburg (6.6 Mt),
Cologne (4.1 Mt), Munich (3.5 Mt), and Rotterdam (3.0 Mt).
Berlin’s CO, emissions are approximately 20 times higher
than those of Lille, the city with the lowest emissions in the
dataset (0.4 Mt). On average, the 20 cities emit 2.4 Mt CO;
per year, with a coefficient of variation of 0.82 (Fig. 4a).
As shown in Fig. 5, the linear regression analyses between
on-road CO; emissions and both urban area and popula-
tion indicate strong positive relationships. Specifically, CO,
emissions increase significantly with larger urban areas and
higher population sizes. The regression model yields a high
coefficient of determination with an R? value of 0.98 when
emissions are regressed against area, suggesting that urban
land extent is a dominant factor influencing total emissions.
A similarly positive but weaker correlation is observed be-
tween emissions and population, with an R? value of 0.74,
indicating that population size also plays a substantial role in
shaping emission levels. This distinction is further illustrated
by a comparison between Paris and Hamburg. While their
populations are relatively similar, Hamburg covers an urban
area nearly seven times larger than that of central Paris. Fur-
thermore, Hamburg’s road network is more than three times
as long. As a result, Hamburg exhibits substantially higher
on-road CO; emissions, reinforcing the observation that ur-
ban spatial extent and infrastructure scale are critical deter-
minants of total emissions, potentially more so than popula-
tion alone.
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(a) Emissions

(b) Per capita emissions
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(c) Per area emissions
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Figure 4. Annual CO, emission and emission intensities per capita and per unit area of 20 cities in 2023. Grey, light blue and orange

represent cities in Germany, France and the Netherlands, respectively.

Table S8 compares the annual emissions estimated in this
study with those reported by Carbon Monitor and other avail-
able data sources. Carbon Monitor provides 0.1° x 0.1° daily
gridded maps named GRACED (Dou et al., 2023). City
boundaries were applied to clip GRACED grids, and area-
weighted daily emissions were aggregated to annual city-
level totals. Available data of several cities from Climate
Trace (Kott et al., 2025), local statistical websites (Bilanz
des Statistikamtes Nord, 2024), and previous studies (Kiih-
bacher et al., 2023; Ulrich et al., 2023; Anjos and Meier,
2025) was also collected. Overall, estimates of other datasets
are much lower than this study, with differences ranging from
—94.2 % (Nice, Carbon Monitor) to —8.1 % (Berlin, Ulrich
et al. (2023)’s estimates from Opendata) relative to our esti-
mates. These discrepancies can be explained by the methods
of different datasets. Compared with local statistical reports,
our estimates tend to be higher because we include emissions
from vehicles traveling across city boundaries, whereas local
statistics typically estimate emissions based only on oil con-
sumption within administrative limits. GRACED allocates
emissions based on EDGARVS using OpenStreetMap data
without actual traffic volume data, this method likely under-
estimates emissions in large cities with high-volume roads.
Climate Trace estimates average annual daily traffic (AADT)
by integrating Sentinel-2 satellite imagery with AADT data
from the U.S. Department of Transportation’s Federal High-
way Administration (FHWA), applying Convolutional Neu-
ral Network and Graph Neural Network models. This U.S.-
centric training may limit the models’ applicability in the Eu-
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ropean context. Finally, although our approach benefits from
a more comprehensive road network, the relatively low ac-
curacy on middle and small roads may contribute to overes-
timation of traffic volumes in certain areas, as mentioned in
Sect. 2.4.

Per capita emissions show a mean of 2.8 t per person with
a coefficient of variation of 0.4, and the ranking is quite dif-
ferent from total emissions (Fig. 4b). Some of the cities with
high total emissions also have high per capita emissions, such
as Cologne (3.8t per person), Rotterdam (4.6t per person)
and Frankfurt (3.6 t per person). Other cities like Berlin (2.1t
per person) and Paris (0.9 t per person) exhibit low per capita
values despite their large total emissions. Notably, cities such
as Toulouse (3.4 t per person) and Marseille (3.2 t per person)
have high per capita emissions, highlighting differences in
cities’ boundaries e.g., including or not satellite towns com-
muting with each “city”, transportation infrastructure, com-
muting patterns, and vehicle efficiency across the regions.
Figure 4c illustrates the emissions per unit area, revealing a
contrasting pattern to total emissions. Paris exhibits the high-
est emissions per unit area (0.02Mtkm~2), despite having
one of the lowest per capita values, which is indicative of
its dense urban environment and intensive transportation ac-
tivities within a compact city layout and a very dense street
network. Similarly, Toulouse ranks second in per-area emis-
sions, despite being only seventh in total emissions. This re-
sult shows that urban density and mobility intensity signifi-
cantly influence emission distribution at the local scale.

Earth Syst. Sci. Data, 18, 927-944, 2026
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Figure 5. Linear relationships between on-road CO, emissions, area, and population. Each point represents one city.

3.2 Spatial patterns

Figure 6 presents the annual emission maps for 20 major
European cities, highlighting the diversity in emission spa-
tial patterns. In addition, two cities from each country were
selected to plot cumulative emission curves, as shown in
Fig. S5. In cities such as Paris, Amsterdam, The Hague and
Dusseldorf, a few major roadways stand out significantly in
bright yellow. In Paris, the top 5 % of the highest-emitting
100 m grids contribute 33.1 % of total emissions. The ring
road known as le Périphérique emerges as a major hotspot,
accounting for 26.9 % of the city’s total on-road emissions
and having a mean emission level that is 953.3 % higher than
the city-wide average. This is primarily attributable to its
high traffic density and heavy vehicle usage driven by signif-
icant commuter flows. A similar concentration of emissions
is observed in Amsterdam, where the top 5 % of the highest-
emitting 100 m grids contribute 30.3 % of total emissions, re-
spectively, underscoring the spatially skewed distribution of
traffic-related CO;. The top 5 % of high-emission grids in
The Hague and Dusseldorf show a lower contribution of to-
tal emissions (24.5 % and 21.9 % respectively), but these are
still concentrated along major highways such as the A4 and
A12 in the Hague and B8 and A44 in Dusseldorf. The steep
curvatures at the start of the cumulative emissions distribu-
tion curves for these two cities suggest that only a few key
segments are disproportionately responsible for emissions,
albeit to a lesser extent than in Paris or Amsterdam.

Cities like Berlin and Bordeaux exhibit a more diffuse
emission pattern, with relatively less pronounced hotspots,
where the top 5 % of the highest-emitting 100 m grids con-
tribute ~ 19.0 % of total emissions. Their cumulative emis-
sion curves demonstrate gentler slopes, indicating a more
uniform spread of emissions across the road network. This
suggests that no single road or corridor dominates in terms
of emission contributions and that urban transport emissions
are more evenly distributed. Other cities, including Lyon,
Marseille, Frankfurt, and Rotterdam, fall between these two

Earth Syst. Sci. Data, 18, 927-944, 2026

extremes, exhibiting varying degrees of emission concentra-
tion. For instance, Frankfurt shows notable linear patterns
corresponding to high-emission highways intersecting the ur-
ban core. In contrast, Rotterdam reveals both concentrated
and dispersed emission zones due to its mixed land use and
logistic traffic. Overall, these spatial variations emphasize
the importance of city-specific mitigation strategies. While
targeted interventions on a few high-emitting corridors may
yield significant benefits in cities with highly skewed dis-
tributions (e.g., Paris or Dusseldorf), broader, network-wide
policies may be necessary in more evenly distributed urban
contexts like Berlin or Bordeaux.

3.3 Temporal patterns

Figure 7 presents the normalized daily CO; emissions ratios
for Paris, Berlin, Munich, Amsterdam, Lyon, Marseille, and
Nice in 2023. The y axis represents each day’s CO; emis-
sions divided by the city’s total emissions in 2023. These
cities were selected due to the availability of corresponding
Carbon Monitor Cities data (hereafter CM-Cities data, shown
as green dashed lines), which enables direct comparison with
the results of this study (blue lines). The time series data re-
veals distinct seasonal and weekly variations. The summer
months (July and August) show a significant decline in emis-
sions in Paris, Amsterdam, and Lyon, while emissions in all
seven cities decline around Christmas, due to business clo-
sures and decreased commuting. For weekly patterns, there
is a slight upward trend from Monday to Friday, a noticeable
drop on Saturday, and a further decline on Sunday (Fig. S6).
The magnitude of the weekend drop varies across cities. In
Berlin and Marseille, the median emissions on Sunday drop
by approximately 31.1 % and 27.7 % compared to Friday in
2023, respectively, representing the most pronounced Sun-
day reduction among the six cities. In contrast, Amsterdam
exhibits a much smaller Sunday drop compared to Friday
(10.1 %).
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Figure 6. Annual CO, emission map of 20 cities at 100 m x 100 m resolution in 2023.

In all cities, the median emissions of public holidays
(marked in grey shades) and school holidays (marked in
light blue shades) are lower than those of weekdays in 2023.
Across all six cities, the median emissions on public holi-
days and school holidays were consistently lower than week-
day levels in 2023, indicating a general reduction in traffic-
related CO, emissions during holiday periods. In Paris, pub-
lic holiday emissions were exceptionally low, even lower
than Sunday levels by 5.2 %. The pattern is different in Mar-
seille, Berlin, and Nice, as the median emissions on public
holidays exceeded those on Saturdays by 24.4 %, 11.0 %, and
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6.4 %, respectively. The medians of school holidays are gen-
erally higher than those of public holidays because a more
limited segment of the population is affected, and the dis-
tributions are notably wider. An exception is Amsterdam,
where public holiday emissions slightly surpassed those dur-
ing school holidays, suggesting a different urban rhythm or
school break dynamics compared to other cities. Also, the
day of the week on which a holiday falls also influences
emission levels. As shown in Fig. S7, holidays that coincide
with weekends tend to show similar emission levels to reg-
ular weekend days. When holidays fall on a Monday, their
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emission levels are comparable to those of regular Mondays
in cities like Berlin, Marseille, and Nice.

Although the general emission temporal variability esti-
mated in this study align reasonably with those reported
by Carbon Monitor Cities, as evidenced by the R correla-
tion coefficients ranging from 0.58 to 0.84 across the six
selected cities, notable differences remain. In Paris, CM-
cities tends to underestimate both the troughs and peaks of
emissions (Huo et al., 2022). In Lyon, the consistency is
relatively high, but the sharp weekend emission drops ob-
served in Carbon Monitor estimates are not reproduced in
this study. In Amsterdam, this study does not show the pro-
nounced weekend decreases during holidays that are present
in Carbon Monitor data. CM-cities estimated traffic volumes
using a sigmoid regression based on TomTom live conges-
tion indices, which lack spatial granularity (only one value
per city), and the model parameters were calibrated using
real-time data from approximately 60 roads in Paris. In ad-
dition, CM-cities adopts the Functional Urban Area (FUA)
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definition used by the OECD and the European Union, which
includes high-density urban centers along with their sur-
rounding commuting zones, whereas our analysis relies on
administrative boundaries. For cities not covered by CM-
cities, we compared daily emissions clipped from GRACED
(Fig. S8). Without calibration at the city level as CM-cities
did, GRACED daily emissions fail to show a consistent
weekday—weekend pattern, and some anomalous peaks oc-
curred (e.g., elevated emissions in Hamburg in April 2023
and in Frankfurt and Montpellier in late May 2023). Except
for The Hague, Rotterdam, and Bordeaux, the resulting daily
profiles showed very poor agreement (R < 0.4). These find-
ings suggest that coarse-resolution data are not suitable for
city-level temporal analyses, highlighting the advantage of
our city-scale dataset in more accurately representing actual
urban emissions.

Figure 8 presents the average hourly CO, emission pat-
terns for cars across the 20 cities in 2023. The y axis repre-
sents the average proportion of daily CO2 emissions for each

https://doi.org/10.5194/essd-18-927-2026
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hour, categorized by day types: holidays (blue), weekdays
(orange), and weekends (green). The hourly patterns for cars
in French cities and Dutch cities are similar. On weekdays,
there are two emission peaks at 09:00-10:00 and 18:00-
19:00LT due to commuting, and the emissions stabilize at
relatively high levels between these two peaks. After the sec-
ond emission peak, the emissions decline continuously and
reach their lowest point at 04:00-05:00. The differences be-
tween weekdays and holidays are relatively small, but with
no or a less pronounced morning peak due to reduced com-
muting activity. On weekends, the sum of average emission
share in French cities and Dutch cities during evening and
early morning (22:00 to 06:00) reach 22.9 % to 29.1 %, sig-
nificantly higher than that for weekdays (17.4 % to 21.7 %),
and the first peak is lagged to around 12:00. German cities
on weekdays, except for Dusseldorf, the CO; emission ex-
hibit earlier morning peaks at 08:00 and a much higher peak
around 15:00-16:00. On average, evening peak emissions in
French and Dutch cities are only around 15 % higher than
morning peak levels, but for German cities specifically, the
difference ranges from 9.3 % to 60.0 %. After the peak, the
CO; emissions in German cities decrease sharply, which is
consistent with the trends reported by the Berlin datasets
(Anjos et al., 2025). On weekends, there is only one peak
around 13:00.

The hourly patterns for trucks are relatively consistent
across all 20 European cities but are notably different from
those of passenger cars (Fig. 9). On weekdays, truck-related
CO; emissions show a peak around 09:00 in nearly all cities,
suggesting synchronized delivery and logistics activity. This
peak accounts for 5.4 %—6.5 % of daily truck emissions in
French and Dutch cities, and up to 9% in German cities
such as Berlin and Hamburg. Truck emissions on weekends
and holidays are considerably reduced, with no discernible
peaks in most cities. In some German cities (e.g., Stuttgart
and Dusseldorf), truck emissions remain below 3 % of daily
total at any hour during holidays, reflecting stricter week-
end freight regulations. In contrast, emissions levels of trucks
remain relatively high on weekends, especially in southern
cities like Marseille and Nice, where midday peaks surpass
0.06 of daily emissions and are comparable to weekday lev-
els.

3.4 Uncertainty analysis

Figure 10 shows the uncertainties in annual emissions aris-
ing from uncertainty in traffic volume estimates. Overall,
the Monte Carlo—derived mean emission estimates are close
to the original deterministic estimates for most cities, with
the Monte Carlo means being on average 13.1 % lower
across the 20 cities. the differences between the Monte Carlo
mean and the deterministic estimate for Paris (—7.0 %), Lyon
(+7.3 %), and Bordeaux (—13.4 %) remain within £15 %,
indicating relatively stable estimates despite uncertainty
propagation. Noticeable differences are observed for Berlin
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(—41.4 %), Hamburg (+61.4 %), Marseille (—41.2 %), and
Toulouse (—46.5%), where the differences between the
Monte Carlo mean and the deterministic estimate exceed
40 %.

Figure S9 further shows the road-class-specific uncertain-
ties. Across cities uncertainty in annual totals is primar-
ily driven by emissions associated with small roads, which
exhibit the greatest relative variability across all functional
classes. We quantify road-class-specific relative uncertainty
using the relative 95 % interval width defined as (P97.5-
P2.5)/mean of the 10000 Monte Carlo realizations. Using
this metric, small roads show the largest relative uncertainty,
with a median value of 2.67 (266.7 %), compared with 1.74
(174.1 %) for middle roads and 1.26 (125.8 %) for major
roads. In Berlin, the Monte Carlo estimate is 4.65 Mt CO,
(95 % CI: [1.89, 6.04]) , closer to values reported by An-
jos et al. (2025) (2.70 Mt) (Anjos and Meier, 2025) and Cli-
mate Trace (1.99 Mt) (Kott et al., 2025), suggesting that the
original deterministic estimate may have overestimated emis-
sions from small roads. The situation in Hamburg is differ-
ent. The Monte Carlo mean emission estimate of approxi-
mately 10.57 Mt CO, (95 % CI: [5.64, 15.60]) exceeds that
of Berlin, which is unreasonable given Hamburg’s smaller
urban scale and lower overall road lengths. This outcome
suggests that limited and heterogeneous observational data
can bias an upward bias in the sampled correction factors for
small roads, resulting in an overestimation of emissions for
this road class and, consequently, at the city scale.

Overall, these contrasting behaviours highlight that city-
scale uncertainty is highly sensitive to the treatment of small
roads, particularly in data-scarce contexts. While the Monte
Carlo framework provides a robust characterization of un-
certainty, its outcomes for low-traffic road classes should be
interpreted with caution and ideally complemented by addi-
tional constraints or external benchmarks.

4 Data availability

The high-resolution hourly CO, emission dataset for 20
cities in 2023 is available in NetCDF format, on Zenodo:
https://doi.org/10.5281/zenodo.16600210 (Shi et al., 2025).
Each city has an individual NetCDF file that provides gridded
hourly emissions over the entire year of 2023. Their central
x and y coordinates define the grid cells, and each file in-
cludes the variable CO,_g, representing emissions in grams
per hour in the grid. Every grid’s size is 100m x 100 m.

5 Discussion

5.1 Key contributions and implications

This study demonstrates that integrating new GPS-based traf-
fic data for individual vehicles covering all street segments
with the COPERT model enables the estimation of hourly
on-road CO, emissions at street level, which were further
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Figure 8. Hourly emission patterns of cars in 20 cities.

aggregated into 100 x 100 m grids for visualization, to gener-
ate high-resolution emission maps across 20 European cities.
This approach overcomes the limitations of traditional top-
down downscaling methods (e.g., population-based or road-
network density proxies) by applying machine learning to
impute the actual traffic volumes from FCD, which only sam-
ples the traffic of vehicles equipped with GPS. Compared to
existing CO, emission inventories such as CAMS-TEMPO,
Carbon Monitor, or localized platforms, our dataset repre-
sents a significant advancement by simultaneously achiev-
ing high spatial granularity and temporal resolution. It cap-
tures intra-urban variability that is often missed in coarser-
resolution datasets or those relying solely on major road seg-
ments. This work highlights the value of integrating GPS-
based mobility data with machine learning and emission
modelling to enhance the monitoring of urban transporta-
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tion emissions and to inform the design of effective, location-
specific mitigation policies. Most common low-carbon trans-
port measures in cities include modal shift to public trans-
port, low-carbon zones control, and low-emission vehicle de-
velopment, but each strategy may vary according to develop-
ment stages and types of urban land-use transport systems
(Creutzig et al., 2012; Nakamura and Hayashi, 2013; Croci
etal., 2021). While low-density cities become more compact
in the long term but often lack sufficient population den-
sity to support rapid transit systems in the short term, pro-
moting the adoption of electric vehicles, particularly in re-
gions with low-carbon electricity, may be a more practical
approach (Kennedy et al., 2014). This study may support the
design of such strategies by enabling street-level scenarios to
quantitatively assess their potential emission reductions.
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Our hourly CO; emission maps reveal striking spatial het-
erogeneity within cities. For example, concentrated emission
hotspots along Paris’ ring road, versus more dispersed pat-
terns in Berlin, reflect differences in urban structure, trans-
port systems, and commuting behaviours. Temporally, we
observed national variations in traffic-related emissions dur-
ing holiday and summer periods, likely due to country-
specific vacation schedules. Our new emission maps can sup-
port planning of low-emission zones, help identify high-flux
corridors for targeted energy efficiency measures and pro-
vide a basis for congestion-related studies. Given that traffic
congestion is a major driver of both fuel consumption and
emissions, our maps offer valuable insights for designing and
evaluating emission reduction strategies.

5.2 Limitations

Several sources of uncertainty remain in our approach. Be-
cause the GPS-to-volume conversion models were calibrated
using in-situ sensor data from Paris and Berlin only and ex-
trapolated to the remaining 18 cities, the results may be bet-
ter suited for analysing spatial patterns, temporal dynamics,
and relative differences across cities, rather than for pre-
cise reporting of absolute emission magnitudes. To move
beyond qualitative statements, we quantify activity-data un-
certainty using independent annual AADT/AAWT validation
(Sect. 2.4; Fig. 3) and Monte Carlo uncertainty propagation
(Sect. 3.4; Figs. 10 and S9). The external validation reveals
pronounced inter-city heterogeneity in traffic-volume agree-
ment (with R? ranging from approximately 0.3 to 0.92 across
cities; Fig. 3), which provides the empirical basis for the sub-
sequent uncertainty ranges.

First, significant uncertainty may be introduced during the
conversion from GPS trajectories to actual traffic volume.
The flux-to-volume machine learning models were calibrated
using sensor data from Paris and Berlin only, because com-
parable high-resolution traffic counts are either unavailable
or not publicly accessible for most other cities. In addition,
GPS penetration rates may vary across cities and vehicle
types, and the vehicle population captured by FCD may dif-
fer from that represented in local monitoring stations, which
can affect calibration, particularly for trucks. As discussed in
Sects. 2.4 and 3.4, model performance is weaker on middle
and small roads, and emissions from small roads exhibit the
largest uncertainty and potential overestimation. Consistent
with this, Monte Carlo mean emission estimates are on av-
erage 13.1 % lower than the deterministic totals across the
20 cities, and most cities remain within 15 %. However,
several cities show substantially larger deviations exceeding
40 % (e.g., Berlin, Hamburg, Marseille, and Toulouse), indi-
cating that absolute totals are more uncertain where traffic-
volume discrepancies are large and observational constraints
are limited. For example, Berlin’s Monte Carlo estimate
is 4.65Mt CO; (95 % CI: [1.89, 6.04]), whereas Hamburg
shows a much wider and higher range of 10.57 Mt CO;
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(95 % CI: [5.64, 15.60]), highlighting the sensitivity of city
totals to correction factors on small roads in data-scarce con-
texts. This reinforces the need for more comprehensive and
standardized traffic monitoring networks. Incorporating ad-
ditional top-down constraints, such as city-level fuel con-
sumption statistics in transportation sector, could further im-
prove the accuracy of traffic volume inference.

Second, uncertainties also arise from fleet structures. Due
to the lack of detailed vehicle-type distribution at the road
segment level, we can only perform fleet correction for roads
where heavy-duty vehicle traffic is explicitly restricted. For
other roads, we currently apply city-wide average fleet com-
positions, which may not reflect local variations. Although
urban fleet structure evolves continuously, available data are
reported at coarse temporal resolution; disaggregation to
finer temporal scales would introduce substantial uncertainty,
and an annual fleet update is therefore adopted to maintain
consistency with the data and the emission modelling frame-
work.

Finally, emissions in this study are estimated using the
COPERT, which is based on an average-speed framework
and does not explicitly represent microscopic stop-and-go
driving behaviours. In contrast, microscopic emission mod-
els such as MOVES (EPA, 2025) explicitly account for such
dynamics but require high-frequency trajectory data, which
are not available in this study. Moreover, COPERT character-
izes vehicle technologies primarily by vehicle category and
Euro emission standard, and does not explicitly parameter-
ize changes in emission performance associated with vehicle
ageing. As a result, city-specific fleet age structures and lo-
cal real-world driving conditions may lead to deviations from
the standard emission factors used in the model, especially
where detailed fleet data are unavailable to further refine the
parameterization. Access to locally measured emission fac-
tors from in situ studies or the literature would help reduce
this source of uncertainty and improve the accuracy of the
emission estimates.

5.3 Future work

Current work only covers the year 2023, but the underlying
GPS-based FCD is typically available with a delay of only
about one week. This creates a clear opportunity to automate
the processing pipeline and update the emission estimates
on a rolling basis. Incorporating this capability into Carbon
Monitor Cities would allow near-real-time, high-resolution
emission monitoring at the street level, significantly enhanc-
ing the system’s responsiveness and value for both research
and policy applications. In addition, further feature engineer-
ing could improve model performance. As part of ongoing
work, we plan to incorporate high-resolution urban context
information, such as building-type data, to better capture het-
erogeneity across different road classes. The proposed frame-
work is flexible and allows additional features to be inte-
grated as new data become available. Also, future work could
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extend the methodology to include major air pollutants be-
yond CO; and scale the approach to cover broader regions.
Through incorporating more sensor-based traffic measure-
ments across cities, data representativeness and model val-
idation can be further improved. Such efforts will strengthen
the robustness, applicability, and policy relevance of street-
level emission mapping, particularly in supporting timely
decision-making and climate or clean air action monitoring.

Supplement. This dataset is accompanied by the Supplement, in-
cluding a detailed methodology document (SI_document.docx) and
additional data tables (SI_tables.xlsx). The supplement related to
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