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Abstract. In April 2020, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS)
Center introduced a Level 2 provisional Aquatic Reflectance (AR) product for the Landsat 8 Operational Land
Imager (OLI), marking the initial phase in developing a standardized global product for Landsat-derived sur-
face water measurements. The goal of USGS EROS aquatic product research and development is to prepare
for an operational processing architecture for Landsat Collection 3 in the late 2020s that will enable use of
quality-controlled data for emerging Landsat aquatic science applications. To achieve this, we released a sub-
set of the Landsat 8/9 provisional AR products (Crawford et al., 2025, https://doi.org/10.5066/P14MBBRM)
and examined its general performance through the Science Algorithms to Operations (SATO) framework along-
side quantitative assessment using community made inland water data records (GLObal Reflectance community
dataset for Imaging and optical sensing of Aquatic environments, GLORIA) and radiometric coastal valida-
tion platforms (NASA’s Ocean Color component of the Aerosol Robotic Network, AERONET-OC). Variability
within the validation datasets indicate that the performance of the Landsat 8/9 provisional AR retrieval is highly
context-dependent; errors are minimal in optically simple waters (e.g., clear to moderately turbid coastal wa-
ters) but increase considerably in optically complex waters where factors such as elevated levels of turbidity,
chlorophyll (Chl a) concentrations, or colored dissolved organic matter (CDOM) dominate the water column.
Additionally, this paper examines key algorithmic considerations for atmospheric correction, highlighting fac-
tors that influence accuracy, scalability, and computational efficiency necessary for collection processing in the
operational Landsat Product Generation System (LPGS). This paper is intended to communicate with aquatic
scientists, satellite oceanographers, and the broader Earth observation community on the origins, requirements,
challenges, successes, and future objectives for operationalizing global AR data products for Landsat satellite
missions.

Published by Copernicus Publications.
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1 Introduction

For over a half-century, the Landsat program, a series of joint
agency Earth observing satellite missions between the Na-
tional Aeronautics and Space Administration (NASA) and
the U.S. Geological Survey (USGS), has provided high-
quality global land and nearshore coastal observations from
a suite of medium-resolution imaging satellites (Wulder
et al., 2022; Crawford et al., 2023). Upon the adoption
of a collection-based archive processing and management
approach in 2016 (Dwyer et al., 2018; Crawford et al.,
2023), Landsat data are systematically processed, archived,
and distributed by the USGS Earth Resources Observation
and Science (EROS) Center located in Sioux Falls, South
Dakota, USA. Through collaboration with remote sensing
subject matter experts and participation from the Landsat
Science Team, USGS EROS has developed and operational-
ized research-quality Level 1 Top of Atmosphere (TOA) cali-
brated reflectance and Level 2 atmospherically corrected sur-
face reflectance and surface temperature products that can be
used to map, monitor, assess, and interpret how Earth’s sur-
face has changed as a result of human influence and natural
environmental conditions. These open access data products
from Landsat are made publicly available at no cost (Zhu et
al., 2019) through the USGS EROS Earth Explorer (EE) data
portal and Machine-to-Machine (M2M) Application Pro-
gramming Interface (API). USGS also offers direct access
to Landsat data through the Amazon Web Services (AWS)
commercial cloud environment in a “Requester Pays” (user
incurs cost for data requests and downloads) bucket configu-
ration (Crawford et al., 2023). This allows researchers, scien-
tists, U.S. federal and state agencies, and international orga-
nizations to utilize Landsat data products for their science ap-
plications, and to facilitate informed land, natural resources,
and water management decisions and policies (Wulder et al.,
2019).

Landsat Level 2 science product development follows a
structured process that involves iterative collaboration be-
tween principal investigator(s) (e.g., a Landsat Science Team
member or a U.S. federal agency scientist) and the USGS
Landsat science project to operationalize mature science al-
gorithms. The development phases of this process (discussed
in Sect. 2) include research, provisional, and operational
readiness levels for the generation of science data products.
Products that are considered provisional are available to the
public through the EROS Science Processing Architecture
(ESPA; https://espa.cr.usgs.gov, last access: 1 January 2026)
on-demand interface but are actively under USGS internal
evaluation and remote sensing community validation. These
algorithms and the resulting product layers may undergo fur-
ther modifications or improvements before being considered
for operational release.

Although Landsat missions have primarily been de-
signed for observing and monitoring land change, Landsat 8
(launched February 2013) and Landsat 9 (launched Septem-
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ber 2021) have been used extensively for aquatic remote
sensing applications (Tyler et al., 2022) due to the Opera-
tional Land Imager (OLI)’s substantial improvements in both
radiometric data quality and spectral resolution compared
to heritage Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) instruments (Roy et al., 2014; Pahle-
van et al.,, 2014; Concha and Schott, 2016; Olmanson et
al., 2016). Compensating for the intervening effects of at-
mospheric scattering and absorption between the sun, sur-
face, and remote imaging sensor, which vary spatially and
temporally, is a necessary processing step to enable reli-
able monitoring, characterization, and interpretation of the
Earth’s surface (Vermote and Kotchenova, 2008; Korkin and
Lyapustin, 2023; Thompson et al., 2019a; Thompson et al.,
2022; Pahlevan et al., 2017). In contrast to brighter terres-
trial land surfaces, retrieving atmospherically corrected spec-
tral reflectance information from dark aquatic targets using
spaceborne imaging sensors is a major challenge because the
attenuated sunlight reflected from the water is usually only a
fraction of the total signal received at the top of atmosphere
(Wang, 2010).

In April 2020, USGS EROS introduced a Level 2 pro-
visional Aquatic Reflectance (AR) product for Landsat 8
OLI observations, marking the initial phase in developing
a standardized global product for Landsat-derived surface
water measurements. The algorithm to generate AR prod-
ucts for Landsat 8 (and Landsat 9 since launch in Septem-
ber 2021) OLI imagery was adopted from version 8.10.3 of
the Level 2 Generation (I12gen) module within the SeaWiFS
Data Analysis System (SeaDAS), originally developed by
the NASA Ocean Biology Processing Group (OBPG). This
software has been the standard processing method for sev-
eral previous and ongoing NASA ocean color missions like
the Coastal Zone Color Scanner (CZCS, 1978-1986), the
Medium Resolution Imaging Spectrometer (MERIS, 2002—
2012), the Geostationary Ocean Color Imager (GOCI, 2010-
2021), the Moderate Resolution Imaging Spectroradiometer
Aqua (MODIS Aqua, 2002—present), and the Visible Infrared
Imaging Radiometer Suite (VIIRS, 2011-present) (Mobley
et al., 2016). USGS Level 2 provisional AR products have
been available to process and download from the USGS
ESPA on-demand interface. These products underwent a re-
fresh in 2022 following the release of Landsat Collection
2 and contain Level 2 AR for the visible to near-infrared
(VNIR) spectral bands (OLI bands 1-5) (Fig. 1), interme-
diate Rayleigh-corrected reflectance (pr.) for the visible to
shortwave infrared (VSWIR) spectral bands (OLI bands 1-
7), and other supporting data layers. These provisional AR
products are intended for immediate, experimental use by the
remote sensing community involved in water quality mon-
itoring, seafloor classification, satellite derived bathymetry,
and other surface water mapping applications so that commu-
nity assessment of their suitability can be used to strengthen
AR retrieval performance to operational readiness in support
of applications requiring high quality measurements. Water
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quality surveying groups like the USGS Water Mission Area
already rely on Landsat and Sentinel-2 observations to mon-
itor U.S. national waters (Fickas et al., 2023; Stengel et al.,
2023; Meyer et al., 2024), emphasizing the need for opera-
tionally generated satellite-derived data in enabling compre-
hensive and consistent water resource management and as-
sessments.

Satellite-derived AR measurements are a critical asset
where in situ data are scarce or costly to collect. Feedback
from science applications end users ensures that data outputs
are both robust and actionable, fostering trust and reliability
across scientific, policy, and operational domains. The goal
of USGS EROS aquatic product research and development is
to enable emerging Landsat aquatic science applications and
prepare for an operational processing architecture for Land-
sat Collection 3 in the late 2020s. The purpose of this paper
is to communicate with aquatic scientists, satellite oceanog-
raphers, and the broader Earth observation community on
the origins, requirements, challenges, successes, and future
objectives for operationalizing global AR data products for
Landsat satellite missions.

2 Landsat provisional aquatic reflectance algorithm
description and implementation

Remote sensing reflectance (R) is defined as the ratio of
the spectral distribution of reflected solar radiation upwelling
from just beneath the water surface (L, Wm2sr 1) nor-
malized by the downwelling solar irradiance (Eq, W m~2) in
the visible to near-infrared domain (A =400-900 nm, unit:
steradian-1) (Lee et al., 1997; Gordon and Wang, 1994; Mob-
ley, 1999):

R <x>=LW—(M<sr‘1> ¢))
" Eq (L) ’

R is the conventional measurement used in proximal, air-
borne, and satellite-based remote sensing to quantify the op-
tically active, biogeochemical constituents (i.e., chlorophyll,
total suspended solids, dissolved organic matter) (O’Reilly
et al.,, 1998; Lee et al., 2001; Mishra and Mishra, 2012;
Dogliotti et al., 2015) and is an essential component for
the water quality analysis of lakes (Lehmann et al., 2018;
Giardino et al., 2019), long term ocean color monitoring
programs (Werdell et al., 2007), benthic mapping practices
(Louchard et al., 2003; Dierssen et al., 2010), and optical
water type classification for global water bodies (Spyrakos
et al., 2018; Bi and Hieronymi, 2024).

SeaDAS, developed and maintained by NASA’s OBPG,
is the satellite image preprocessing software for generating
aquatic Ry image products for several ocean color missions
primarily associated with global monitoring programs for
over 25 years (Mobley et al., 2016). Because of this, the open
source code for 12gen supports several multispectral (and hy-
perspectral) Earth Observation missions, including the OLI
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instruments onboard Landsat 8 and Landsat 9. The adapta-
tion of 12gen processing for use with Landsat OLI data is de-
scribed by Franz et al. (2015), with additional regional anal-
yses of the impact of band selection for aerosol estimation
provided by Vanhellemont et al. (2014) and Pahlevan et al.
(2017).

The 12gen processing code within SeaDAS computes the
Ry for each band at each identified water pixel from the
Level 1 at-sensor radiance L;, which is assumed to be par-
titioned linearly into distinct physical contributions as shown
below:

Li(A) = [L(A) + La(A) + tay (A) Lwe(A)
+ tav () Lw(M)] 1gv(Mitgs(R) fp(R), 2)

— L(1) = the radiance contribution due to Rayleigh scat-
tering by air molecules

— L, (1) =the contribution due to scattering by aerosols,
including multiple scattering interactions with air
molecules

— Lyc (L) =the contribution from water surface white-
caps and foam

— Ly (1) =the water-leaving component

— tgy (A) =the transmittance of diffuse radiation through
the atmosphere in the viewing path from water surface
to sensor

— tgv (1) =the transmittance loss due to absorbing gases
for all upwelling radiation traveling along the sensor
view path

— tgs (A) = the transmittance to the downwelling solar ra-
diation due to the presence of absorbing gases along the
path from Sun to the water surface

- fp (A) = an adjustment for effects of polarization.

The 12gen atmospheric correction algorithm retrieves the
water-leaving radiance L., component of interest by esti-
mating and subtracting the terms on the right-hand side of
Eq. (2) from L;. Of these components, the estimation of
the aerosol scattering contribution L, is generally the most
challenging and impactful for the retrieval of L., (outside
of glint-contaminated areas, that is). While the 12gen soft-
ware accepts a wide variety of processing options for aerosol
radiance estimation, the parameterization most commonly
used in the operational processing of supported mission data
makes use of an iterative bio-optical model to satisfy a fun-
damental assumption of the algorithmic approach: that near-
infrared water-leaving radiance is either negligible or can
be accurately estimated (Bailey et al., 2010). With this as-
sumption, the aerosol radiance in each band can be esti-
mated via the two-band aerosol selection approach of Gor-
don and Wang (1994). USGS provisional AR processing uses
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Figure 1. Example of the Landsat 8/9 Level 2 provisional Aquatic Reflectance product over coastal Alabama on 15 November 2021. The
Landsat 8/9 Level 2 provisional AR product package includes AR for the five OLI visible and near infrared (VNIR) bands centered at 443 nm
(coastal/aerosol), 482nm (blue), 561 nm (green), 655 nm (red), and 865 nm (NIR) for identified water pixels at 30 m spatial resolution.

Landsat image courtesy of the U.S. Geological Survey.

OLI band 5 (865nm) and band 6 (1609 nm) as the choice
of bands, following the recommendation of Pahlevan et al.
(2017). The value of Rs()) is then computed as:

Lw(})
Fo(1) fs cos(8s)1(6)’

where: Fy = extraterrestrial solar irradiance (Thuillier et al.,
2003), Fy = adjustment of Fy for variation in Earth-Sun dis-
tance, and ¢t = diffuse transmittance.

The spectral Ry bands (in steradian) are normalized (mul-
tiplied by m) to produce dimensionless aquatic reflectance
(Franz et al., 2007; Franz et al., 2015; Mobley et al., 2016):

Rrs()‘«) = (3)

Aquatic Reflectance AR (L) = R5(A) - 7, “4)

Additional details, including the full set of processing param-
eters used in the generation of the provisional AR products,
can be found in USGS documentation (USGS, 2024).

Due to its interoperability, traceability, and availability,
the 12gen algorithm in SeaDAS (SeaDAS 12gen 8.10.3) was
adopted by the USGS into the EROS’s Science Algorithms
to Operations (SATO) process in 2018, as a baseline for de-
veloping an atmospheric correction pathway for Landsat AR.
The SATO Product Maturity Matrix for USGS Landsat sci-
ence products is the formal description of the development
process used by USGS EROS to mature algorithms for col-
lection processing in the operational Landsat Product Gener-
ation System (LPGS). The purpose of SATO is to enable a
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smooth transition of researched, developed, and matured sci-
ence algorithms and prototype executables into a formally
developed and maintained LPGS operational environment.
The product maturity matrix for provisional Landsat sci-
ence products is adopted from the National Oceanic and
Atmospheric Administration (NOAA) Climate Data Record
(CDR) maturity model (Bates and Privette, 2012) and is used
as the template to transition select candidate science algo-
rithms through the SATO process (Table 1).

The progression and transformation of the product follow
a structured procedure, with milestones and responsibilities
agreed on between the USGS Landsat science project and
the algorithm principal investigator(s). Work is divided into
a series of sequential phases, as follows:

— Research Stage (Maturity Levels 1 and 2). During this
stage, academic researchers and principal investiga-
tors lead the process. The product remains publicly re-
stricted until it is published, because significant changes
to the source code are expected. Meanwhile, principal
investigators submit peer-reviewed journal articles de-
scribing the algorithmic approach.

— Provisional Stage (Maturity Levels 3 and 4). Research
and development entities, such as USGS EROS, lead
and optimize the execution of the algorithm. A provi-
sional version of the product becomes publicly avail-
able on-demand. Source code modifications continue,

https://doi.org/10.5194/essd-18-779-2026
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Table 1. The Science Algorithms to Operations (SATO) Product Maturity Matrix for Landsat science products, adopted and modified from
the NOAA Climate Data Record (CDR) maturity model (Bates and Privette, 2012).

Maturity Level Software Metadata Documentation Product Validation Public Access Utility
Readiness
Research 1 Conceptual Little or none Draft Algorithm Little or None Restricted to a select Little or none?
Development Theoretical Basis few?
Document (ATBD);
paper on algorithm
submitted

2 Significant
code changes
expected

Research grade?

ATBD Version 1+;
paper on algorithm
reviewed

Minimal

Limited data
availability to develop
familiarity

Limited or ongoing

Moderate code
changes
expected

Provisional 3

Research grade, meets
international standards

Public ATBD;
peer-reviewed
publication on
algorithm

Uncertainty estimated
for select
locations/time

Data and source code
archived and available;
caveats required for use

Assessments have
demonstrated positive
values

4 Some code
changes
expected

Exists at collection
level. Stable. Allows
provenance tracking
and reproducibility of
dataset. Meets
international standards
for dataset

Public ATBD; Draft
Algorithm Description
Document (ADD) and
Product Guide (PG);
peer-reviewed
publication on
algorithm; paper on
product submitted

Uncertainty estimated
over widely distributed
times/location by
multiple investigators;
Differences understood

Data and source code
archived and publicly
available; uncertainty
estimates provided;
known issues public

May be used in
applications;
assessments have
demonstrated positive
value

Operational 5  Minimal code Complete at collection Public ATBD, Review Consistent Record is archived and ~ May be used in
changes level. Stable. Allows version of ADD and uncertainties estimated  available with applications by other
expected; provenance tracking PG, peer-reviewed over most associated uncertainty investigators;
stable, portable  and reproducibility of publications on environmental estimate; known issues  assessments
and dataset. Meets algorithm and product conditions by multiple public. Periodically demonstrating positive
reproducible international standards investigators updated value

for dataset
6 No code Updated and complete Public ATBD, ADD Observation strategy Record is publicly Used in
changes at collection level. and PG; Multiple designed to reveal available published applications;
expected; Stable. Allows peer-reviewed systematic errors from Long-Term may be used by
Stable and provenance tracking publications on through independent archive; Regularly industry; assess-

reproducible;
portable and
operationally
efficient

and reproducibility of
assessment. Meets
current international
standards for dataset

algorithm and product

cross-checks,

open inspection, and
continuous interroga-
tion; quantified
errors?

updated

ments demonstrating
positive value

and metadata, documentation, and the Algorithm De-
scription Document (ADD) and Product Guide (PG) are
published along with the provisional product package.
Algorithm uncertainties are estimated, and product lim-
itations are documented.

— Operational Stage (Maturity Levels 5 and 6). Opera-
tional entities, like the USGS EROS Data Processing
and Archive System (DPAS), lead this stage. The al-
gorithm is ported into an operational environment and
publicly distributed for operational applications. It is
stable, reproducible, and its provenance is recorded in
standardized metadata. Peer-reviewed validation meth-
ods and published algorithms ensure reliability. Known
issues and uncertainties are transparently disclosed.

Throughout a product’s provisional lifetime, modifications
to its features are expected, although the underlying algo-
rithm to generate the product (e.g., aquatic reflectance) is un-
changed. For example, algorithm ingestion into ESPA often
involves modifying source code for greater processing effi-
ciency as well as for reproducibility. Science verification at
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each step is conducted to ensure no anomalies are detected in
the data and that any alterations or updates to the source code
do not have a direct impact on the algorithm itself. Metadata
standards are used to ensure product attributes are an accurate
representation of the data, are understandable, and can be ref-
erenced. After verification and quality checks, the data prod-
uct is released through the ESPA on-demand interface for
public availability along with documentation and any known
caveats published on the USGS product web page. Provi-
sional data products are generated to enable timely scien-
tific use and garner user feedback on quality, algorithm per-
formance, observed uncertainties over diverse geographical
regions, and community validation following early adopter
feedback. It is the responsibility of USGS EROS to compile
this information from the community, work with correspond-
ing research groups, and routinely assess other candidate al-
gorithms with potential principal investigators.

Earth Syst. Sci. Data, 18, 779-800, 2026



784 B. Page et al.: rigins, evolutions, and future directions of Landsat science products

Landsat 8/9 Provisional Aquatic Reflectance
Product Downloads by Fiscal Year
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Figure 2. Annual download metrics of the Landsat 8/9 provisional
AR science products. While not formally part of a Collection them-
selves, the AR products have been released using either Collection
1 or Collection 2 input data.

3 Key Takeaways

Since their release to the public in 2020, order requests for
the Landsat 8/9 Level 2 provisional AR products from ESPA
by the community have now surpassed 90 000 scene down-
loads as of the end of 30 September 2024 (Fig. 2). Maxi-
mum downloads were observed during the first year of re-
lease (and the re-release, following the availability of Col-
lection 2), followed by downward trends with each passing
fiscal year. The release of Landsat 8/9 provisional AR prod-
ucts allowed the opportunity to gain insights from the sci-
entific user community on the quality and accuracy of the
products. Examples of product feedback include research ar-
ticles and agency reports that evaluate provisional Landsat
AR products across a variety of aquatic scientific applica-
tions, including coastal ocean color mapping (Nazeer et al.,
2020; Tavora et al., 2023), lake water quality monitoring
(Ogashawara et al., 2020; Niroumand-Jadidi et al., 2022),
and satellite-derived bathymetry (Poppenga and Danielson,
2021).

Landsat 8/9 provisional AR product limitations were rec-
ognized by the scientific community concerning (1) the omis-
sion of valid water pixels associated with the 12gen-based
land/water delineation and (2) negative AR values generated
primarily over inland and optically complex coastal waters
(Pahlevan et al., 2019; Ilori et al., 2019; Ogashawara et al.,
2020; Tavora et al., 2023). While a new water masking ap-
proach was developed for the re-release of the provisional
products associated with Collection 2 to mitigate the incon-
sistencies associated with the 12gen-based land/water delin-
eation, the negative values resulting from atmospheric cor-
rection remain a challenge that has been well documented
in the literature across a suite of ocean colour applications

Earth Syst. Sci. Data, 18, 779-800, 2026

(Ruddick et al., 2000; Mélin et al., 2011; Bramich et al.,
2018; Wei et al., 2018; Kuhn et al., 2019; Pahlevan et al.,
2021). Negative AR, which can significantly affect the ac-
curacy of downstream water quality products, has been pri-
marily attributed to the challenges of utilizing one or more
NIR spectral bands to characterize aerosol path radiance(s)
(L) over highly turbid or productive, complex case-2 type
waters (Bailey et al., 2010; Werdell et al., 2010; Dash et al.,
2012; Ibrahim et al., 2019; Wang et al., 2022). In these op-
tically challenging water bodies, the traditional assumption
that water-leaving radiance in the NIR portion of the electro-
magnetic spectrum is negligible (or effectively estimated by
the assumptions of the algorithm) is not valid. Instead, such
algorithms may underestimate the substantial water-leaving
NIR contribution in highly turbid or productive waters, lead-
ing to overestimation of L, and, consequently, dragging the
downstream AR to low and even negative values (Fig. 3).
This issue is intensified for inland freshwater systems, which
contain varying amounts of coloured dissolved organic mat-
ter, suspended sediments, phytoplankton, and surrounding
land pixels bordering the entire lake shoreline. Accurate
aerosol correction in such environments is crucial for reliable
water quality assessments, and addressing these limitations
will be decisive for the success of Landsat AR products in
future Collections. Other challenges faced by SeaDAS (and
many other algorithms designed for ocean colour) include
factors such as mitigating sun glint and a missing correc-
tion for adjacency effects. Increasing user awareness of these
issues may explain the observed downward trend in USGS
provisional AR product downloads over time. In response,
the provisional product package updates that followed the
release of Landsat Collection 2 also augmented the suite of
data layers to include AR for the NIR band, per-pixel an-
gle bands, intermediate auxiliary input data and Rayleigh-
corrected reflectance products so that users would have sup-
plementary information to further investigate instances when
and where full atmospheric correction fails (Table 2). How-
ever, these issues must be more fully addressed for the AR
product to reach operational maturity. Concurrently, compre-
hensive aquatic-based atmospheric correction research and
applications published by a variety of authors and institu-
tions have provided alternative approaches that may be bet-
ter suited to compensate for aerosols in the atmosphere over
complex water targets (Steinmetz et al., 2011; Brockmann
et al., 2016; Moses et al., 2017; De Keukelaere et al., 2018;
Vanhellemont, 2019); consequently, some users could be per-
forming their own processing on Level-1 Landsat data using
these alternative approaches rather than relying on the provi-
sional AR products from USGS EROS.
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Figure 3. Examples of Landsat 8 top-of-atmosphere (TOA) reflectance (a), Rayleigh-corrected reflectance (b), and Landsat 8
provisional aquatic reflectance (AR = Rys-m) (¢) for a collection of freshwater bodies, including Lake Rotonuiaha, New Zealand
on 11 December 2017 (LCO8_L1TP_072087_20171211_20200902_02_T1), Pangodi jirv, Estonia on 26 May 2018 (LCOS_LITP_
187019_20180526_20200901_02_T1), Oneida Lake, New York, USA on 30 August 2014 (LCO8_L1TP_015030_ 20140830_
20200911_02_T1), and Lake Geneva, Switzerland on 12 April 2020 (LCO8_L1TP_196027_20200412_20200822_02_T1). Atmospheric
interference impacts the spectral profile retrieved by the sensor in low Earth orbit, obscuring key reflectance and absorption features of the
optically active constituents in surface waters (a). The Rayleigh correction mitigates the molecular scattering contribution from atmospheric
gases, allowing for the retrieval of representative spectral profiles of diverse water targets (b). However, overcorrection of aerosols can lead
to negative provisional AR spectra in the VIS bands (c).

Table 2. Landsat 8/9 provisional AR product package contents. Items marked with an asterisk were added following the release of Collection
2. Downloads are delivered inside of a .tar file, in a compressed zip file (tar.gz) named in a similar fashion to other Landsat products available
from ESPA. Additional specifications and attributes for these files can be found in Sect. 3 of the Landsat 8/9 provisional Aquatic Reflectance
Product Guide (USGS, 2025). n/a: not applicable.

Description Band Name Unit
Aquatic Reflectance Bands 14 (VIS) AR_BAND (1-4) Unitless
Aquatic Reflectance Band 5 (NIR)* AR_BAND5S Unitless
Rayleigh-Corrected Reflectance Bands 1-7 (VSWIR)* RHORC_BAND (1-7)  Unitless
Elevation* HEIGHT Meters
Vertical Columnar Ozone (O3)* OZONE Dobson Unit
Water Vapor* WATER_VAPOR gem ™2
Surface Pressure* PRESSURE Millibars
Wind Speed* WINDSPEED ms~!
Tropospheric NO,* NO2_TROPO 101> molec. cm—2
Scattering Angle™ SCATTANG °

Processing Flags L2_FLAGS n/a

Water Mask™ WATER_MASK n/a

Level 1 Pixel Quality Assessment QA_PIXEL Bit Index
Level 1 Solar Zenith Angle* SZA °

Level 1 Solar Azimuth Angle* SAA °

Level 1 Viewing Zenith Angle* VZA °

Level 1 Viewing Azimuth Angle* VAA °

Level 2 XML Metadata file xml/.MTL n/a

4 Research Methods uct suite instead rely on comparisons of satellite data with in
situ measurements. Limitations on the ability to validate the
in-development Landsat 8/9 AR products have contributed to
these data remaining in the provisional stage. Indeed, finding
a collection of reliable validation datasets that represents the

full spectrum of optical variability of inland waters observ-

4.1 Toward reliable validation of Landsat aquatic
reflectance

The USGS EROS SATO maturity matrix requires uncertainty

estimates of varying sophistication at different product matu-
rity levels. In practice, rigorous estimates of uncertainty are
difficult to achieve and assessments of the quality of the prod-
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able by Landsat has been challenging. Previous validation
efforts for aquatic based atmospheric correction processors
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over surface waters in the optical domain have relied heavily
on NASA’s Ocean Color component of the Aerosol Robotic
Network (AERONET-OC) (Wei et al., 2023) and histori-
cal field data records from community-made observations
(Pahlevan et al., 2021; Lehmann et al., 2023). Close agree-
ment between satellite and in situ data is widely recognized
within the aquatic community as necessary for ensuring the
quality of a remote sensing-based product (Ogashawara et
al., 2024)

The AERONET-OC Data Display Interface provides ac-
cess to normalized water-leaving radiances (nL,,) collected
in various wavebands by platform-based spectroradiometers
across a network of coastal and select inland water bodies.
These data are frequently used for vicarious calibration and
validation exercises for global ocean colour missions (Zi-
bordi, et al., 2006, 2009). The ongoing radiometric measure-
ments collected from AERONET-OC platforms, using cali-
brated CE-318 sun photometers (Johnson et al., 2021), com-
bined with the systematic Landsat 8/9 multispectral acqui-
sitions, provide frequent matchups (near-coincident observa-
tions) that allow the scientific community to evaluate Landsat
AR algorithm outputs (Mao et al., 2013; Vanhellemont et al.,
2014; Bassani et al., 2016; Mannino, 2016; Ilori et al., 2019;
Xu et al., 2020; Yan et al., 2023; Arena et al., 2024). Prelim-
inary intercomparison exercises between Landsat 8/9 with
AERONET R;¢ data have been used to showcase the fidelity
of Landsat to derive AR measurements that are comparable
to those of preceding global ocean colour missions. However,
the locations of the platforms are generally biased toward
representing moderately turbid (e.g., 0.3 < total suspended
solids [TSS, gm™3]<1.2 & 0.5 < chlorophyll a [Chl a,
mgm~3] < 2.0) coastal and open ocean waters (Pahlevan et
al., 2021). The limited number of inland platforms sit on size-
able freshwater bodies within the United States which in-
clude Lake Okeechobee, FL (~ 1740 km?); Lake Erie, OH
(~25700km?); and south Green Bay, WI (~ 1360 km?) so
that freshwater studies can be conducted with operational
ocean colour sensors. These inland water bodies experience
highly productive seasonal cyanobacterial blooms, so the
platforms are essential for understanding the relationships
between chlorophyll concentrations and radiometry with re-
spect to satellite observations (Lekki et al., 2019; Moore et
al., 2019). However, these freshwater systems do not ade-
quately represent the full spectrum of optical variability of
inland waters observed by Landsat across the globe (Pahle-
van et al., 2018).

The GLObal Reflectance community dataset for Imaging
and optical sensing of Aquatic environments (GLORIA) was
released in 2022 (Lehmann et al., 2023). This collection of
7572 curated proximal hyperspectral remote sensing mea-
surements from 450 different water bodies worldwide was
contributed by researchers across 53 institutions. The Ry
data are provided at a resampled 1 nm spectral interval within
the 350 to 900 nm wavelength range and are complemented
with several co-located water quality variables (Chl a, TSS,

Earth Syst. Sci. Data, 18, 779-800, 2026

coloured dissolved organic matter [CDOM]) as well as in-
strumentation and measurement procedures. Environmental
conditions at the time of data acquisition (sky conditions,
windspeed, surrounding land cover, etc.) are also included.
The authors have considered the dataset the “de facto state
of knowledge” of in situ coastal and inland aquatic optical
diversity and thus may provide a validation record for the in-
land waters that is complementary to freshwater AERONET
data. Together, these datasets could help provide insight into
the general accuracy of the Landsat provisional AR products
and support the progress of Landsat AR research and devel-
opment toward the operational phase.

4.2 Validation methodology

Landsat 8/9 OLI acquisitions with accompanying same-day
in situ measurements across the combined AERONET-OC
and GLORIA datasets were identified to generate a radio-
metric validation record (Crawford et al., 2025a). From the
7000+ available GLORIA R,s measurements between 2013
(launch of Landsat 8) and 2022 (end of GLORIA record),
1794 were coincident within =+ five days of Landsat 8/9 ac-
quisitions. To minimize the influence of rapid changes in sur-
face water conditions while preserving a statistically robust
number of matchups, the temporal window for satellite and in
situ data collocation was constrained to within £3 h. This ap-
proach aligns with established validation protocols that em-
phasize the trade-off between temporal proximity and sam-
ple size in matchup analyses (Concha et al., 2021). GLORIA
Rys spectra were then screened using the Quality Water In-
dex Polynomial (QWIP) and only selecting samples that fell
within —0.2 and 0.2 (Dierssen et al., 2022). Finally, clear
water Landsat pixels were selected as classified by the cor-
responding pixel quality assessment layer (QA_PIXEL) as
unobscured (no cloud or cloud shadow) water (Fmask 3.3.1,
Zhu et al., 2015; Crawford et al., 2023). This screening pro-
cess resulted in a total of 554 matchups between GLORIA
and Landsat 8/9, resulting in 481 of samples representing
freshwater lakes, 45 matchups representing the coastal ocean
waters, 12 samples classified as rivers, 13 as estuary, and 3
considered as “other”. Corresponding labels of water type
for all matchups were subjectively assigned (e.g., “sediment
dominated”, “chlorophyll dominated”, “clear”) by the sam-
ple collector as established by the co-located water quality
parameter concentration (Chl a, TSS, CDOM).

Following a similar approach, 418 AERONET-OC records
(Naeronet) Were found to match up with 412 same-day OLI
acquisitions using the same QA_PIXEL cloud filter and tem-
poral window criteria. Level 1.5 AERONET-OC normalized
water-leaving radiance nL,, data were selected to increase
the number of available OLI acquisitions per site, despite a
potentially lower accuracy than the Level 2 products that may
involve a final calibration procedure (Pellegrino et al., 2023).
After retrieving nL,, from the AERONET-OC database, Ry
was subsequently calculated for each sample:
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where Fj is the extraterrestrial solar irradiance which has
been obtained from the Total and Spectral Solar Irradiance
Sensor (Coddington et al., 2021) model and then spectrally
convolved with the spectral response function of the corre-
sponding Landsat 8/9 OLI sensor. For both GLORIA and
AERONET-OC datasets, no spectral resampling was applied.
Instead, Ry values were extracted at wavelengths closest to
the Landsat OLI band centers (443, 482, 561, and 655 nm).
This nearest-band approach avoids potential uncertainties in-
troduced by spectral convolution, which can be sensitive to
the spectral shape of the in situ data and the accuracy of the
sensor’s spectral response functions.

Following the data extraction technique of Pahlevan et al.
(2021), average R pixel values from a 5 x 5 window cen-
tered on AERONET-OC site were retrieved from the coinci-
dent provisional Landsat AR products. To mitigate potential
spectral contamination from the platform, the middle 3 x 3
window of pixels was discarded. For GLORIA matchups,
the average pixel values from a 3x3 window centered on
the GLORIA sample location were retrieved. Accuracy as-
sessment was conducted on a per-band basis and employed
fundamental statistical metrics often used in ocean colour ra-
diometry (Seegers et al., 2018; Pahlevan et al., 2021; Wei
et al., 2025) to evaluate the performance and reliability of
the Landsat 8/9 Level 2 provisional AR products. The me-
dian symmetric accuracy (&) was calculated to express the
relative accuracy as a percentage, enabling comparisons with
those relevant across the aquatic remote sensing community:
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: RisoLi(A)
%) =100 d Ln| ———~—
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-1, (6)

Additionally, the signed symmetric bias metric (8) was in-
corporated to identify any systematic errors, which deter-
mines whether provisional AR products are overestimating
or underestimating in situ values:

. RrsOLI ()‘)
%) = 100 d Ln{— ), 7
ﬂ ( ) *me lan( " (Rrsinsitu ()‘-))) ( )

Finally, the mean absolute difference (MAD) was used to
quantify the average magnitude of error between each Land-
sat 8/9 provisional AR VNIR spectral band and its corre-
sponding band in both AERONET-OC and GLORIA in situ
validation dataset, providing an estimate of the typical uncer-
tainty in the geophysical parameter being measured:

1 —n
MAD = =3 | [ Risinsita(%) = RisoLiV), ®)

The AERONET-OC validation dataset benefits from inter-
nal consistency due to standardized protocols and calibrated
CE-318 sun photometer measurements for retrieving water-
leaving radiance. In contrast, the GLORIA dataset’s variabil-
ity warrants caution if it is to be used as a routine refer-
ence for validation purposes (Wei et al., 2025). This vari-
ability stems from the diversity of contributors and collec-
tion methods (Fig. 5). With data contributions from 20 differ-
ent organizations, the collection process is subject to differ-
ences in protocols, standards, and expertise. Frequent cloud
cover, haze, sun glint effects, and unfavourable environmen-
tal conditions (e.g., high winds) provide further challenges
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and diminish validation opportunities, particularly in low and
high latitudes (Radeloff et al., 2024). Although environmen-
tal conditions and measurement method were documented
for each sample collected (12 different measurement meth-
ods total), the inclusion of 18 known radiometer instruments
further complicates consistency, because each instrument has
varying levels of calibration, accuracy, and uncertainty.

The Global Climate Observing System (GCOS) scien-
tific community has established threshold (7°), breakthrough
(B) and goal (G) targets values of uncertainty for satellite-
derived water-leaving reflectance products to be met to en-
sure that data are useful (GCOS, 2025). While the estab-
lished GCOS values are not a standard requirement for Land-
sat Level-2 operational production, the observed ¢ between
satellite and in situ measurements are used as a stand-in for
the GCOS 20 uncertainty metric in this study, which has a
threshold requirement of 30 %.

5 Results

The performance of the Landsat 8/9 Collection 2 Level
2 provisional AR R products was evaluated using in
situ R;s measurements from AERONET-OC (n3eronet = 418)
and GLORIA (ngioria = 554) matchups against a selec-
tion of comparison metrics described in Sect. 4.2. For the
AERONET-OC subset, the AR products exhibited strong
agreement with AERONET-OC observations. MAD values
were low across all bands, ranging from 0.0006sr~! in the
red band to 0.0014 sr! in the coastal band (Fig. 6/Table 3).
Median symmetric accuracy (¢) was below the GCOS 30 %
threshold in the blue (27.6 %) and green (19.8 %) bands,
while the coastal (40.7 %) and red (33.0 %) bands slightly
exceeded this limit. Signed symmetric bias (8) indicated a
tendency toward underestimation of the AR products in B1—
B3, with the strongest bias observed in the coastal band
(—23.1%). The red band (B4) showed a slight overesti-
mation (8 =6.6%). In contrast, comparisons with GLO-
RIA revealed substantially higher variation. MAD values
ranged from 0.0046sr~! (B4) to 0.0064sr~! (B1). Values
of ¢ exceeded the GCOS threshold in all bands, ranging
from 39.6 % (green) to 68.4 % (coastal). Values of 8 were
strongly negative across all bands (—36.8 % to —62.0 %),
indicating consistent underestimation of reflectance values
by the AR products relative to GLORIA observations. This
generally follows the wavelength trends in the 12gen per-
formance for the OLI sensor seen in the aquatic compo-
nent of the atmospheric correction intercomparison exer-
cise (ACIX-Aqua) (Pahlevan et al., 2021). The larger MADs
seen with the GLORIA comparisons are in part due to the
higher frequency of negative values in the provisional AR
products over GLORIA-sampled locations. The combined
dataset yielded intermediate results. MAD values ranged
from 0.0028 sr—! (B4) to 0.0042 sr~! (B1). The ¢ values ex-
ceeded the 30 % threshold in all bands except green (29.3 %),
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with values ranging from 35.0 % (red) to 49.9 % (coastal).
The B values remained negative across all bands, with the
strongest underestimation in the coastal band (—39.8 %) and
the weakest in the red band (—19.9 %).

The per-band scatter plots shown in Fig. (7) provide
a closer look into the spread of OLI derived AR Ry
between each of the AERONET-OC and the GLORIA
matchup datasets. Most notably, when evaluated against
AERONET-OC data, the AR products demonstrated strong
linear agreement, particularly in the green (R? =0.89) and
red (R? = 0.91) bands (Table 3). Moderate correlations were
observed in the blue (RZ=0.76) and coastal (R%2=0.57)
bands, suggesting that the AR products are generally reli-
able in optically simple environments. In contrast, compar-
isons with GLORIA revealed very weak correlations across
all bands, with R? values ranging from 0.06 (B1) to 0.29
(B4), primarily due to the substantial amount of negative AR
values. The combined dataset reflected this discrepancy, with
low R? values across all bands (0.06-0.35), further empha-
sizing the limited predictive strength of the AR products in
more complex or variable aquatic environments.

The classification of inland waters into varying optical
water types is driven by the biogeochemical properties in
the water column. Differences between GLORIA in situ
R;s and Landsat 8/9 Level 2 provisional AR highlight how
these properties influence the sensitivity of the validation
assessment. Specifically, the magnitude of the differences,
reflected by ¢, can vary dramatically across different water
types (Fig. 8). This variability indicates that the performance
of the Landsat 8/9 provisional AR retrieval is highly context-
dependent — errors are minimal in optically simple waters
(e.g., clear to moderately turbid coastal waters) but increase
considerably in optically complex waters where factors such
as elevated levels of turbidity, chlorophyll concentrations,
or coloured dissolved organic matter (CDOM) dominate the
water column.

6 Discussion

6.1 Recent advancements in aquatic reflectance
retrieval

Aquatic reflectance represents a particular challenge for the
Landsat project, with its emphasis on long-term monitor-
ing, because the performance of heritage Landsat sensors is
marginal with respect to the needs of aquatic science (Pahle-
van and Schott, 2012; Schott et al., 2016). Improvements in
the signal-to-noise ratio (SNR) and radiometric resolution of
the Landsat 8 OLI sensor spurred the development of the pro-
visional aquatic reflectance product; however, the results of
both the internal evaluation described above and other exter-
nal evaluations (e.g., Ogashawara et al., 2020) suggest that
further re-evaluation of the algorithmic approach and intro-
spection of the consistency of in situ datasets are warranted.
The state of the field of atmospheric correction over water re-
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Figure 5. Sankey diagram capturing the methodological variability of GLORIA in situ Rys data across contributing institutions. Valid
matchup sample distribution includes contributions from 20 different organizations, using 18 known radiometer instruments, practicing 12
different radiometric measurement methods (refer to Tables A1 and A2 for method descriptions and organization acronym definitions).
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1: 1 line shown in red.

mains fluid, and new approaches and refinements to existing
approaches have arisen since USGS began its SATO process
for aquatic reflectance. In this section, we briefly review the
major directions of research pertaining to atmospheric cor-
rection over water.

We broadly classify aquatic reflectance processors based
on the major assumptions or characteristics of their approach,
as follows: (a) corrections based on a variant of the “black
pixel” assumption, (b) spectral ratios and spectral shape
matching, (c) machine-learning assisted inversion of forward
radiative transfer modelling, and (d) over land atmospheric
correction for surface reflectance adapted to additionally re-
trieve aquatic reflectance.

Earth Syst. Sci. Data, 18, 779-800, 2026

The “black pixel” approaches to estimating the aerosol
contribution are well-known in remote sensing literature and
rely on an assumption that water-leaving radiance is neg-
ligible/correctable in at least one (if an aerosol model is
known or assumed) or two (if an aerosol model is to be se-
lected) bands. For Landsat 8/9, we have already described
the implementation of an 12gen-based provisional algorithm,
which relies on a pairing of the NIR and SWIR bands to es-
timate aerosol radiance. This choice arises in part from the
lack of a second NIR band on Landsat OLI; the traditional
ocean colour remote sensing approach involves two bands in
the 700-900 nm range (Wang and Gordon, 2018). Other ap-
proaches exist that select SWIR bands (Werdell et al., 2010;
Vanhellemont and Ruddick, 2015; He and Chen, 2014) or
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Table 3. Tabulated values of the per-band accuracy assessment of the Landsat 8/9 Level 2 provisional AR products between AERONET-OC
(naeronet = 418) and GLORIA (ngjoria = 554) Rrs matchups.

Dataset OLI Band MAD (st 1) & (%) B R?
AERONET-OC (n =418)
B1/Coastal/443 nm 0.0014 40.7 -23.1 0.57
B2/Blue/482 nm 0.0012 276 —19.1 0.76
B3/Green/561 nm 0.0011 198 —-134 0.89
B4/Red/655 nm 0.0006 33.0 6.6 0091
GLORIA (n =554)
B1/Coastal/443 nm 0.0064 68.4 —62.0 0.06
B2/Blue/482 nm 0.0059 549 =532 0.09
B3/Green/561 nm 0.0058 39.6 385 024
B4/Red/655 nm 0.0046 416 —-36.8 0.29
COMBINED (n =972)
B1/Coastal/443 nm 0.0042 499 —-39.8 0.06
B2/Blue/482 nm 0.0038 394 =338 0.10
B3/Green/561 nm 0.0037 293 -—-26.6 0.31
B4/Red/655 nm 0.0028 350 —-199 0.35
120 The bio-optical model that functions as a sub-component of
100 12gen relies on empirically derived relationships across the
O-Hediment-doavimted waters visible wavelengths to support iterative Rs(NIR) estimation
80 o (Bailey et al., 2010). An approach by Ruddick et al. (2000)
Chl-dominated waters . . . . .
g w relies on the relative invariance of the shape of water-leaving
H CDOM-dominated reflectance in the 700-900 nm near-infrared portion of the
40 g spectrum to estimate the aerosol contribution over turbid wa-
20 < Moderately turbid coastal (e ters. Other approaches (e.g., Singh and Shanmugam, 2014)

0

Bl/443nm  B2/482nm B3/561nm B4/655nm

Figure 8. Isolated median symmetric accuracy (&) between GLO-
RIA in situ Rys and Landsat 8/9 Level 2 provisional AR by reported
water type.

even a deep blue band (He et al., 2012). A more dynamic ap-
proach taken by the “dark spectrum fitting” (DSF) algorithm
implemented within the ACOLITE processor allows poten-
tially any band to contribute to the aerosol retrieval (Van-
hellemont, 2019; Vanhellemont and Ruddick, 2018). The
key motivation in many of these variants is to address the
violation of the core assumption of negligible NIR water-
leaving radiance for specific optical water types. Due to the
widespread use and high heritage of black pixel-based algo-
rithms, they can often be found within well-maintained soft-
ware packages with cross-mission support.

Other algorithms rely on assumptions surrounding spec-
tral relationships of the radiometric quantities contributing to
the signal. These relationships may be formulated on a theo-
retical basis, based on the absorptive properties of water, or
modeled empirically across a range of water compositions.
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have been proposed that make use of multiple band ratios
and other spectral relationships across multiple wavelengths
to disentangle the spectral variability of aerosols. Finally, a
more band agnostic approach to atmospheric correction is
taken by the POLYMER processor; developed with a focus
on addressing sun glint contamination, it makes use of spec-
tral matching against all available spectral bands (Steinmetz
et al., 2011; Steinmetz and Ramon, 2018).

Machine learning algorithms provide a mechanism for
more general assumptions on spectral relationships that are
internalized by a neural network during the training process.
These models are trained on the output of radiative trans-
fer simulations that are parameterized across a range of wa-
ter constituents, atmospheric conditions, and observational
characteristics. In-situ bio-optical or radiometric databases
aid in developing realistic parameterizations. For example,
the Case 2 Regional Coast Colour (C2RCC; Brockmann et
al., 2016) processor encompasses separate sets of neural nets,
each trained over different ranges of optical parameters de-
rived from the NASA bio-Optical Marine Algorithm Data
set (NOMAD; Werdell and Bailey, 2005). The Ocean Color
— Simultaneous Marine and Aerosol Retrieval Tool (OC-
SMART; Fan et al., 2021) is parameterized from MODIS
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Aqua Level 3 products to estimate reasonable distributions
of aerosol and water optical properties. An approach based
on mixture density networks (MDNs) has been implemented
in the AQUAVERSE (AQUAtic inVERSion schEme for re-
mote sensing of fresh and coastal waters; Ashapure et al.,
2025) framework, although as the time of this publication,
this processor is too new to have been included in formal in-
tercomparison exercises.

A final set of approaches involve leveraging terrestrial sur-
face reflectance algorithms to constrain the aerosol proper-
ties and generate aquatic reflectance by correcting the over-
water surface reflectance for sun and sky glint. This has been
demonstrated within the iCOR processor (De Keukelaere
et al., 2018), which showed good performance in match-
up intercomparisons (Pahlevan et al., 2021). This manner
of approach provides a considerable reduction in complex-
ity by reducing the number of algorithms that must be main-
tained. However, these algorithms rely on scene content that
might be sparse or absent for some over-water footprints; as
such, the performance in such areas would depend on the
fidelity of the algorithm’s internal fallback approach. Other
approaches include those that offer a consistent framework
that can be applied to retrieve surface or aquatic reflectance
(e.g., Thompson et al., 2019b).

The differences between the above algorithms predomi-
nantly focus on atmospheric characterization, but other ra-
diometric components have been highlighted within the re-
search community as outstanding concerns. Sun glint and ad-
jacency effects are two such issues. Some atmospheric cor-
rection processors include a correction for one or both; how-
ever, at the level of algorithm intercomparison exercises, sun
glint and adjacency effect components are not typically eval-
uated separately. Landsat does not have the anti-sunward tilt
that many ocean colour sensors use to avoid high glint risk
geometries; as such, pixels from certain observations (par-
ticularly those acquired at lower latitudes) will suffer from
glint contamination. Scattered light from nearby landmasses
or clouds provides excess signal to darker water bodies that
can interact with algorithms in complex ways (Wu et al.,
2024). Providing users with detailed quality information at
the pixel level to enable users to filter out potentially prob-
lematic data is one mitigating strategy (e.g., Dekker et al.,
2025) but research to better characterize and remove these
contributions will further improve data utility.

6.2 Considerations for Landsat algorithm adoption

USGS continuously evaluates the state of the field for matur-
ing science algorithms relevant to its Level 2 science product
goals. Key criteria that are considered when evaluating exter-
nal algorithms include (1) a robust presence in the scientific
literature, including intercomparison exercises; (2) global ap-
plicability across a broad range of environmental and obser-
vational conditions; (3) ability to maintain consistency across
the Landsat historical record; (4) support for multiple Land-
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sat sensor generations; (5) free, open source algorithm code
for which only moderate further development is required;
and (6) ability of the code to run at operational scales within
reasonable budgetary constraints, after optimization.

Criteria 1-2 are meant to promote algorithms that are well-
supported by evidence and have garnered interest within the
research community. With a few exceptions, the algorithms
mentioned in the previous section are found in one of sev-
eral published algorithm intercomparisons such as the second
Atmospheric Correction Intercomparison eXercise (ACIX-
IT or ACIX-Aqua; Pahlevan et al., 2021) or the report (in
draft form at the time of this writing) by the International
Ocean Colour Coordinating Group (IOCCG, 2025) regard-
ing atmospheric correction over turbid waters. ACIX-Aqua,
jointly organized by NASA and ESA, focused on aquatic
retrievals over coastal and inland waters for Landsat 8 and
Sentinel-2. In this regard it is more directly relevant than the
IOCCG (2019) report, for which the evaluations were per-
formed against MODIS Aqua data. Because Landsat Col-
lection processing is meant to support diverse applications,
algorithms must be applicable across a broad range of envi-
ronmental conditions.

The ACIX exercise indicated that in general, the rela-
tive performances of aquatic atmospheric correction proces-
sors against in situ data from AERONET-OC and a commu-
nity validation dataset (CVD) depend on optical water type
(OWT) to such a degree that a top-performing processor for
one OWT was often a low or bottom performer in another, in
one or more wavelengths. Pahlevan et al. (2021) suggest that
a “fit-for-purpose” solution that reflects the specific down-
stream needs may be the best supported approach based on
the analysis. It is conceivable that a blend of algorithms may
offer a compromise solution (e.g., Wang and Shi, 2007; Liu
et al., 2019; Joshi and D’Sa, 2020), at the price of a substan-
tial increase in complexity and risk of introducing spatial ar-
tifacts. The IOCCG report similarly found that the most tur-
bid OWT disrupted the algorithm rankings substantially, al-
though in other areas the statistical results seemed less com-
petitive than in the ACIX exercise.

Criteria 3—4 reflect the need for algorithms that are robust
and flexible, yielding results that are consistent through the
historical record. Landsat maintains a high degree of consis-
tency in its heritage spectral bands, even if these are supple-
mented or adjusted in newer missions, with the expectation
that heritage bands should result in a long-term time series
that appears seamless across satellite generations. Whether
Landsat data pre-dating Landsat 8 are deemed of suitable
quality for an operational aquatic reflectance product remains
to be determined. However, it is anticipated that an AR prod-
uct will be desirable from future Landsat missions. This pro-
vides an additional challenge as to whether an approach that
best leverages current capabilities would also be compatible
with future (or previous) missions, or if those data would
require a bespoke algorithm. As the capabilities of Landsat

https://doi.org/10.5194/essd-18-779-2026



B. Page et al.: rigins, evolutions, and future directions of Landsat science products 793

satellites evolve, striking a compromise between complexity
and maintainability may become a driving consideration.

Criteria 5-6 focus on several factors relating to software
maturity, scalability, and open science. Software develop-
ment is a key contribution that USGS EROS provides during
the SATO process but algorithm code maturity within the re-
search phase is an important factor in determining whether to
advance an algorithm further in the SATO phases. Process-
ing requirements are rarely quantified when evaluating atmo-
spheric correction algorithms, and it remains unclear whether
these requirements can be meaningfully assessed across pro-
cessors that differ in maturity and potential for further opti-
mization. Nevertheless, processing millions of Landsat ob-
servations (encompassing petabytes of data; Crawford et al.,
2023) incurs substantial cost.

7 Data availability

Landsat 8-9 OLI Level 2 Provisional Aquatic Reflectance
products can be downloaded on demand through the Earth
Resources Observation and Science (EROS) Center’s Sci-
ence Processing Architecture (ESPA) at https://espa.cr.usgs.
gov/ (last access: 1 January 2026). The validation subset used
in this study can be downloaded from the USGS ScienceBase
catalog (https://doi.org/10.5066/P14MBBRM, Crawford et
al., 2025b).

8 Conclusions

The development of an operational AR product for Landsat,
facilitated by SeaDAS open-source code, provided a global
AR processing capability for the Landsat user community.
The 12gen code within SeaDAS has been the flagship proces-
sor for generating AR products for Landsat 8 and Landsat 9
OLI data, it may not be the most optimal solution as a sin-
gle global processor for current, heritage (Landsat 4/5 TM
Landsat 7 ETM+), and upcoming Landsat missions (Land-
sat Next) in terms of suitability for emerging science needs
that require analysis ready data for both inland and coastal
water quality mapping applications. The Landsat 8/9 provi-
sional AR performance has shown promising results in the
coastal regions, but its reflectance retrieval limitations for
inland waters must be acknowledged. These limitations in-
clude challenges related to atmospheric correction process-
ing accuracy and consistency across optically and geograph-
ically diverse water conditions. Until in situ validation cam-
paigns are conducted on a routine basis with standard op-
erating procedures that are community-endorsed, the com-
bined GLORIA and AERONET-OC datasets offer an in-
terim validation pathway for assessing the operational readi-
ness of aquatic and/or ocean colour processing algorithms
and data products Addressing these limitations will be crit-
ical for the success of Landsat AR products in future Col-
lections. The USGS Landsat science project approach for
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Landsat AR algorithm research and development recognizes
the importance of the SATO process and collaboration with
established aquatic principal investigators. Promoting and
maintaining success criteria for a global Landsat Collec-
tion 3 AR product while remaining aware of evolving mis-
sion specifications for Landsat Next is essential. Key crite-
ria include maintaining consistency across spatial and tem-
poral domains, ensuring interoperability with similar prod-
ucts from other medium-resolution multispectral and imag-
ing spectroscopy missions (e.g., Sentinel-2, Environmental
Mapping and Analysis Program [EnMAP], Copernicus Hy-
perspectral Imaging Mission for the Environment [CHIME])
(Pinnel et al., 2024; Dierssen et al., 2021), and balancing
the trade-offs necessary to achieve optimal performance in
varying atmospheric and optical water conditions. Looking
ahead, the next research steps in preparing for Landsat Col-
lection 3 AR development involves undertaking open science
algorithm intercomparisons and quantitative validation that
considers heritage missions and Landsat Next science readi-
ness simultaneously. These efforts will provide a foundation
for more comprehensive and reliable AR products, ultimately
contributing to enhanced understanding and management of
aquatic environments globally.

Earth Syst. Sci. Data, 18, 779-800, 2026


https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://doi.org/10.5066/P14MBBRM

794 B. Page et al.: rigins, evolutions, and future directions of Landsat science products

Appendix A

Table A1. Reference table for Fig. (7). Brief descriptions of the 17 measurement methods used by each organization that contributed to the
GLORIA dataset. Numbers marked in asterisks are those used in the accuracy assessment. For a more detailed definition for each of the
protocols, please see Lehmann et al. (2023).

GLORIA Measurement Methods Used During Radiometric Sample Collection

Measurement Description

Method Number

1* Sequential Lt, Lsky, and Es via a plaque on MP*

2% Simultaneous Lt, Lsky, and Es on MP*

3* Lu(0—) and Es on pole connected to a spectrometer via fiber optics from MP* or water edge

4* Lw(0+) and Es afloat away from MP*

5* Lu(0—) afloat away from MP*, Es on MP*

6 Lt, Lsky, and Es on MP*

7* Lt, Lsky, and Es on a frame deployed on MP*

8* Lu(0—) and Ed(0—) in-water profiling from MP*, Es on MP*

9* Lu(0—) and Ed(z) units on a depth adjustable bar (measurements at —0.21 and —0.67 m) on a frame afloat
away from MP*, Ed unit lifted above water surface for Es

10* Lu(0—) and Ed(0—) from winch on MP*, Es on MP*

11 Lt and Es on pole from water edge

12* Lu(0—) and Ed(0—) autonomous in-water profiling from a fixed platform

13* Sequential Lt and Es via a plaque, mounted on gimbal stabilized pole from MP*

14 Lu(0—) (and Ed(0—) only for depth information) from in-water profiling from MP*, Es recorded
simultaneously from same MP* very close to profiler deployment

15 Lt, Lsky, Es, combined with one Lu unit (aperture at —0.05 to —0.10 m) placed on pole

16 Sequential Lu(0—) and Es via a plaque, both measurements using an optical fiber to a black masked perspex
tube

17* Lu(0—) and Ed(z) units on a floating frame (measurements at —0.4 m (Lu) and —0.1 m (Ed)) drifting 10 m

away from vessel
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Table A2. Reference table for Fig. (7). Acronym descriptions for the 20 organizations and corresponding country that contributed to the

GLORIA Ry dataset used this in this study.

Acronym Definitions for the Organizations that contributed GLORIA

Acronym Description Location
CAU_Kiel Christian-Albrechts-Universitit zu Keil Germany
UiB Universitat de les Illes Balears Spain
CNR_IREA Electromagnetic Sensing of the Environment of the National Research Council of Italy  Italy
WFU Wake Forest University USA
CuUG China University of Geosciences China
LabISA-INPE Instrumentation Laboratory for Aquatic Systems Brazil
NOAA- National Oceanic and Atmospheric Administration Great Lakes Environmental USA
GLERL Research Laboratory

UCT University of Connecticut USA
CSIRO Commonwealth Scientific and Industrial Research Organization Australia
MAUY Vessel name United Kingdom
Tsukuba University of Tsukuba Japan
VNU-HUS Hanoi University of Science Vietnam
UT-TO Tartu Observatory of the University of Tartu Estonia
DLR-IMF German Aerospace Center Remote Sensing Technology Institute Germany
Eawag Swiss Federal Institute of Aquatic Science and Technology Switzerland
ECCC Environment and Climate Change Canada Canada
NSF-GCE National Science Foundation-Georgia Coastal Ecosystems Long Term Ecological USA
LTER Research Program

WDNR Wisconsin Department of Natural Resources USA
UFIL Upstate Freshwater Institute

Uuow University of Wollongong Australia
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