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Abstract. Soil organic carbon (SOC) is an important component of the global carbon cycle and a vital in-
dicator of ecosystem health, playing key roles in agricultural productivity and climate change mitigation. To
trace the spatiotemporal dynamics of SOC in China, a high-resolution (1 km) Soil Organic Carbon Density
(SOCD) dataset for the 0–20 and 0–100 cm depths spanning the period from 1985 to 2020 is produced in this
study. By integrating Landsat archives, topographic and meteorological data, and 11 743 soil profile measure-
ments, we produced the SOCD dataset from 1985–2020 in China using the Random Forest ensemble learn-
ing approach. Specially, a climate zoning strategy was developed to account for the significant environmen-
tal heterogeneity across China. The validation of our SOCD estimated results with 0–20 cm depth with inde-
pendent testing samples showed strong agreement with R2

= 0.63 and RMSE= 2.03 (kgCm−2) for 0–20 cm
SOCD estimation and R2

= 0.62 and RMSE= 6.16 (kgCm−2) for 0–100 cm. Moreover, our SOCD estimated
results with 0–20 cm depth are aligned well with independent samples (R2

= 0.76, RMSE= 1.75 kgCm−2)
and Xu’s dataset (R2

= 0.68, RMSE= 1.70 kgCm−2). Furthermore, the validation of our SOCD estimated re-
sults with 0–100 cm depth with independent measurements from Dong et al. (2024a) showed strong agreement
(R2
= 0.50, RMSE= 4.93 kgCm−2). Furthermore, our SOCD product exhibits high consistency with existing

global datasets (HWSD, SoilGrids250 m, and GSOCmap), showing the best fit with SoilGrids250 m (R2
= 0.74,

RMSE= 1.03 kgCm−2). Comparisons of model predictions to independent datasets from the 1980s, 2000s, and
2010s in China reveal substantial connections and demonstrate strong performance over time. The estimated
SOCD products, along with the compiled raw soil profile observations for both 0–20 and 0–100 cm depths, are
openly available via Figshare (https://doi.org/10.6084/m9.figshare.27290310.v2) (Dong et al., 2024b).

1 Introduction

Soil organic carbon (SOC) plays a fundamental role in the
earth system by mediating the fluxes of carbon, energy, and
water (Chaney et al., 2019; Crow et al., 2012). The foun-
dation of soil fertility lies in soil carbon, a significant com-
ponent of terrestrial carbon storage. SOC accounts for more
than half of total soil carbon and is an essential component
of the soil carbon cycle, which has a major impact on soil
fertility and agricultural productivity (Baldock, 2007; Chen
et al., 2022). A combination of natural and human forces is

placing significant strain on the global SOC reservoir. SOC
content estimation has become a hot spot in global climate
change due to its close relationship with climate change. The
sustainability of agricultural production is threatened world-
wide by soil degradation and the loss of intimate relation-
ships. The sustainability of agricultural production is threat-
ened worldwide by soil degradation and the loss of intimate
relationships (Xu et al., 2018a). This lack of high-resolution,
long-term observational data impedes precise assessment of
soil degradation and carbon sequestration potential. There-
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fore, developing a robust, spatiotemporally continuous SOC
density (SOCD) dataset for China is urgent.

In recent years, increasing attention has been paid to es-
timating SOC across global, national, and regional scales
(Padarian et al., 2022a). In-depth studies to estimate subsur-
face SOC content estimation, particularly at a regional scale,
remain challenging due to the difficulty of data collection, the
lack of long-term observations, and the depth dependency of
soil carbon sequestration (Padarian et al., 2022b). The ad-
vancement of digital soil mapping technology opens up new
paths for estimating SOC content in large-scale and long-
term series (Li et al., 2024). The use of machine learning
techniques for digital soil modeling is a common concept
in DSM. Compared to traditional mapping methods such as
geo-statistics, expert knowledge, and individual representa-
tion, machine learning techniques provide a new paradigm
for estimating SOC content in large-scale and long-term
series. To produce continental-scale SOC-weighted mean
maps, Odgers et al. (2012) used an equal-area spline function
for soil databases, while Mulder et al. (2016) used a machine
learning model with a three-dimensional distribution to esti-
mate SOC content in eastern France. These studies provide
evidence for a comprehensive and accurate understanding of
soil properties and their spatial variation. Despite these ad-
vances, most digital soil mapping studies have focused on a
specific period and the long-term dynamics of SOCD map-
ping have not yet been developed. Emadi et al. (2020) pre-
dicted the SOCD in northern Iran using a sample of 1879
measurements, and Nabiollahi et al. (2019) used a random
forest (RF) model to predict the SOCD at 137 sites in Mari-
van, Kurdistan Province, Iran. However, these studies only
focus on local zones. In China, researchers have paid consid-
erable attention to the sequestration potential of SOC stor-
age, but most studies have focused on specific experimental
areas or ecosystem types. Fang et al. (2007) estimated the
carbon sink of terrestrial vegetation in China. Furthermore,
these studies often lack attention to long-term trends and dy-
namics, resulting in insufficient data sets to fully understand
climate change and the impact of human activities on SOCD.
At the national level, there is relatively little study on the po-
tential for organic carbon storage across different ecosystem
types (O’Rourke et al., 2015). The scarcity and unevenness of
SOC data in China, as well as the lack of effective estimation
methods, all contribute to the uncertainty of SOC prediction.
In addition, the diverse and complex topography in China,
as well as the lack of measured SOCD data, have increased
the difficulty of SOC content estimation. Previous studies of-
ten used the data from inventories of relevant resources to
make rough calculations of carbon sinks (Pan et al., 2004).
Unfortunately, the spatial continuity and variability of SOC,
the spatial differentiation of organic carbon sequestration po-
tential, and the influence of environmental factors have not
been considered in previous studies. Especially in western
China, there is almost no measured SOC data (Liu et al.,
2022), which poses a challenge for understanding terrestrial

ecosystems and soil carbon sinks in China. Given these chal-
lenges, it is urgent to carry out SOCD mapping and analyze
the temporal and spatial changes of SOCD in China.

To produce robust and accurate long-term SOCD products
in China, we explore the RF models with climate zoning to
predict SOCD in China from 1985–2020 and improve the
study of SOCD maps for the 0–20 and 0–100 cm soil lay-
ers in China. The Landsat TM/ETM+/OLI images, topogra-
phy, meteorology, and soil properties data are used for SOCD
mapping in this study. The main contributions of this study
can be summarized as follows.

1. A nationwide, long-term soil organic carbon density
dataset from 1985–2020 with depths of 20 and 100 cm
in China is provided in this study.

2. The machine learning RF models zoned by climate
zones in China are developed for SOCD estimation, and
the spatial–temporal variability of soil carbon is consid-
ered in our SOCD estimation.

3. The proposed framework provides a comprehensive un-
derstanding of SOCD estimation including spectral in-
dices of satellite remote sensing images, digital eleva-
tion model (DEM) and its topographic derivatives, me-
teorological features, and soil properties. The technique
offers the potential for SOCD mapping with sufficiently
measured SOC content data.

2 Study area and data sources

2.1 Study area

The study area, which extends throughout China, is charac-
terized by complex and diverse terrains including mountains,
plateaus, basins, plains, and deserts (Yuan et al., 2023). In
addition, China has a large latitude difference from 4–53° N
and a large longitude difference from 73–135° E. Therefore,
there are obvious differences in precipitation and temperature
in the study area, which bring significantly different accumu-
lation processes and spatial patterns of soil carbon (Zhang
et al., 2023a). In addition, there are various soil types, in-
cluding red soil, brown soil, black soil, and chestnut calcium
soil, which have obvious spatial characteristics in the study
area (Shangguan et al., 2014). For these reasons, we devel-
oped four different RF models for SOCD estimation for four
temperature zones from south to north in China including hu-
mid area, semi-humid area, semi-arid area and arid area.

2.2 Data sources

2.2.1 SOC content data

After removing duplicates and incomplete records, we com-
piled a comprehensive database of 11 743 soil profiles con-
taining measured SOC content and bulk density across
China, spanning three distinct periods including the 1980s,
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2000s, and 2010s. The SOC content and soil mass weight
data of the 1980s were collected from the profile database of
the Second National Soil Survey (1980–1996) (http://www.
geodata.cn, last access: 17 June 2025). The SOCD data of the
2000s was collected from the China Terrestrial Ecosystem
Carbon Density Dataset (2000–2014) (http://www.cnern.org.
cn/, last access: 17 June 2025). The SOC content data of the
2010s was collected from the Soil Attribute Data of the China
Soil System Record (2010s) (https://www.resdc.cn/, last ac-
cess: 17 June 2025), which was measured in the China Soil
System Survey Collection and China Soil System Journal
Compilation Project. To enhance spatiotemporal coverage,
particularly for data-scarce regions, we incorporated addi-
tional SOC data from two recent national data products: the
national soil organic carbon density dataset for 2010–2024
in China (Chen et al., 2025) and the updated China dataset
of soil properties for land surface modelling (Shi et al.,
2025). We harmonized the point-level information from these
datasets (profile ID, latitude and longitude, upper and lower
depth, SOC content, sampling year, and land-use type) to
match the structure of our database. Then a detailed over-
lap analysis between these profiles and our original compila-
tion was done. Because many profiles in Chen et al. (2025)
and Shi et al. (2025) originated from the same legacy sources
as our database, we applied a strict de-duplication proce-
dure based on geographic coordinates, sampling year, and
depth structure to identify duplicated entries. Profiles that
matched existing profiles within a small spatial tolerance and
with similar temporal and depth characteristics were treated
as duplicates and excluded. Only those profiles that could
be clearly identified as non-overlapping were retained and
merged into our database.

To evaluate the generalization capability of our developed
model rigorous, we employed three independent datasets that
were not involved in the training process. These datasets
cover different spatial scales and ecosystem types, ensur-
ing a robust assessment of our SOCD products, including
the measured SOC content data in the Heihe River basin
(Song et al., 2016), the measured SOCD data from Xu et al.
(2018a), and the soil inorganic carbon (SIC) and SOC den-
sity dataset from Dong et al. (2024a). The SOC content data
of the Heihe River basin were collected from the spatio-
temporal Tripolar Environmental Big Data Platform (https:
//poles.tpdc.ac.cn/zh-hans/, last access: 17 June 2025). The
measured SOCD data from Xu et al. (2018a) focuses on SOC
densities and soil carbon storage with a depth of 0–20 cm in
various terrestrial ecosystems in China. The data was mea-
sured in field campaigns between 2004 and 2014, as well
as some unpublished field measurements. The dataset from
Dong et al. (2024a) provides comprehensive measurements
of SOC and inorganic carbon densities across 0–100 cm pro-
files in Chinese grassland and desert ecosystems, along with
key environmental drivers such as climate variables, soil
properties (texture, pH, conductivity), nitrogen deposition,
and root biomass. This multi-source validation enhances the

robustness of our SOCD assessments across different ecosys-
tems and soil depths.

2.2.2 Landsat archives

The time-series archived Landsat 4, 5, 7, and 8
TM/ETM+/OLI images spanning from 1985–2020 (Yu
et al., 2023) are used for SOCD estimation, which are re-
trieved from the GEE cloud computing platform (Liu et al.,
2024). Preprocessing of Landsat images, including radiomet-
ric calibration, atmospheric correction, geometric correction,
cloud identification, and spectral index calculating are
carried out on the GEE cloud computing platform. Random
sampling and statistical regression analysis are performed to
determine the calibration coefficients for each band spectral
reflectance. Principal major axis regression models are used
to normalize the reflectance data for different sensors. Ra-
diometric correction coefficients of different Landsat sensors
are calculated (Fig. 1). The spatially overlapping images are
combined into one image using the aggregation function,
and the combined image dataset is subjected to stitching
operations to produce spatially coherent images. A variety
of spectral indices were calculated using Landsat images
after processing. Spectral indices Normalized Difference
Vegetation Index (NDVI), Bare Soil Index (BSI), Enhanced
Vegetation Index (EVI), Land Surface Water Index (LSWI),
and Soil-Adjusted Vegetation Index (SAVI) were calculated
using Landsat images. The formulae for these spectral
indices are as follows:

NDVI=
ρNIR− ρRed

ρNIR+ ρRed
(1)

BSI=
(ρSWIR+ ρRed)− (ρNIR+ ρblue)
(ρSWIR+ ρRed)+ (ρNIR+ ρblue)

(2)

EVI= 2.5×
ρNIR− ρRed

ρNIR+ 6× ρRed− 7.5× ρblue+ 1
(3)

SAVI=
ρNIR− ρRed

(ρNIR+ ρRed+ 0.5)× 1.5
(4)

LSWI=
ρNIR− ρSWIR1

ρNIR+ ρSWIR1
(5)

Where, ρNIR is the reference of near-infrared band, ρRed
is the reference of red band, ρblue is the reference of blue
band, ρSWIR is the reference of short-wave infrared band and
ρSWIR1 is the reference of short-wave infrared band 1.

The land cover dataset newly released by Wuhan Univer-
sity (Yang and Huang, 2021) is used in this study. This is
the first China Land Cover Annual Data Set (CLCD) derived
from Landsat on the GEE platform.

2.2.3 DEM and its topographic derivatives

Terrain is an important factor affecting the formation of soil
organic matter. The DEM data is used for SOCD estima-
tion, which is downloaded from the Resource and Environ-
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Figure 1. Radiometric normalization coefficients between Landsat 5 TM, Landsat 7 ETM+ (a–f) and Landsat 7 ETM+, Landsat 8
OLI (g–m) sensors for different bands including blue, green, red, NIR, SWIR1, and SWIR2. The radiometric normalization coefficients
for each sensor are represented by fitted lines and correlation coefficients, indicating the correlation between the reference of different
sensors, and characterizing the spectral response of the sensors in the different wavelength bands.
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ment Science Data Platform of the Chinese Academy of Sci-
ences (https://www.resdc.cn, last access: 17 June 2025) with
a spatial resolution of 500 m. Topographic data and its topo-
graphic derivatives are extracted from the DEM data. There
are four terrain derivatives, including Slope, Aspect, Eleva-
tion, and Topographic Wetness Index (TWI), which are cal-
culated using SAGA GIS version 8.0.1 (https://saga-gis.org/,
last access: 17 June 2025) (Zhang et al., 2023a). The spatial
resolution of all raster data was uniformly adjusted to 1000 m
using resampling techniques to achieve spatial consistency
between different datasets.

2.2.4 Meteorological data

The meteorological features including Temperature (Tem),
Precipitation (Pre) and Solar Radiation (SR), measured in
2400 Chinese meteorological stations are used to quantify
the effects of meteorological fluctuations. All meteorologi-
cal data are downloaded from the China Meteorological Data
Network (http://data.cma.cn/, last access: 17 June 2025).
For spatial consistency, the meteorological data is defined
and projected into WGS 84 coordinates. All meteorological
point data are interpolated into grid data with 1000 m spatial
resolution using the ANUSPLIN program (Padarian et al.,
2022b). Crucially, to account for the lapse rate effect in com-
plex terrain, DEM data was used as a covariate during the
spline interpolation process.

2.2.5 Published soil database

There are four published soil databases used to validate the
SOCD estimation results in this study. One is the Harmo-
nized World Soil Database (HWSD v2.0), produced by the
International Institute for Applied Systems in Vienna and
the Food and Agriculture Organization of the United Na-
tions. There are two soil properties including soil bulk weight
and organic carbon content are used for SOCD estimation
at depths of 0–20, 20–40, 40–60, 60–80, and 80–100 cm.
The SoilGrids250 m v2.0 dataset including the soil silt con-
tent, sand content, clay content, and organic carbon content
data with the spatial resolution of 250 m are downloaded
from FAQ SoilGrids (https://soilgrids.org/, last access: 17
June 2025) for validation. For spatial consistency, this soil at-
tribute datum is resampled to 1000 m. This soil product with
five depth intervals (5, 15, 30, 60, and 100 cm) is used to cal-
culate the soil silt content (Silt), sand content (Sand), clay
content (Clay), and organic carbon at 0–20 and 0–100 cm
(Zhang et al., 2023b). Taking the clay content data as an ex-
ample, the clay content with depths of 0–20 and 0–100 cm is
calculated as follows:

CLY0–20 =
CLY05

4
+

CLY515

2
+

CLY1530

4
(6)

CLY0–100 =
CLY05

20
+

CLY515

10
+

3
20
×CLY1530

+
3
10
×CLY3060+

2
5
×CLY60100 (7)

Where, CLY05, CLY515, CLY1530, CLY3060, and CLY60100
are the clay content (gkg−1) at depths of 0–5, 5–15, 15–30,
30–60, and 60–100 cm respectively.

The GSOCmap dataset (https://www.fao.org/, last access:
17 June 2025), which is the first global SOC product led by
FAO, is used for validation. GSOCmap is a 1 km soil grid
that covers depths ranging from 0–30 cm. The SOC Dynam-
ics ML dataset in China is now available on the Dryad plat-
form (https://datadryad.org/, last access: 17 June 2025). Us-
ing machine learning, the dataset aims to capture the dynam-
ics of SOC and its drivers in different soil horizons in China
between the 1980s and 2010s (Li et al., 2022). The dataset
contains valuable information such as SOC stocks, carbon
fixation rates, and SOC content. While these existing datasets
offer broad insights into SOC, our study specifically focuses
on refining the estimation of SOCD for precise national-level
carbon accounting across multiple historical periods. The or-
ganic carbon density with the depth of 20 and 100 cm in the
1980s, 2000s, and 2010s in China is used. This study focuses
on SOCD, which is different from SOC content. The conver-
sion from SOC content to SOCD is presented in Sect. 3.1.

3 Methodology

3.1 Converting SOC to SOCD with normalized soil
depth

The dataset from the 2000s provided pre-calculated SOCD
values (derived from SOC, bulk density, and coarse frag-
ments by the original data source), while the data reported
in 1980s and 2010s are SOC content. For data consistency,
we converted all SOC content data to SOCD using Eq. (8).
The SOC content data of 1980s were from the Second Na-
tional Soil Survey, and the SOC content data of 2010s were
from the Soil Attribute Data of China Soil System Record,
which had several different soil depths. For the consistency
of the measured data, we convert the soil data with differ-
ent depths into the SOCD with the depth of 0–20 and 0–
100 cm using the package “mpspline2” v.0.1.3 (Bishop et al.,
1999). The observed horizons, defined by their upper and
lower depths, were input to “mpspline2”, which fits a mass-
preserving spline to the vertical SOC profile and integrates
this spline over the target depth intervals. We used the default
value of 0.1 for the spline smoothing parameter lambda. We
do not extrapolate beyond the observed soil depth when cal-
culating SOCD. Profiles shallower than 100 cm are used to
compute SOCD only for depth intervals that are fully cov-
ered by observations, but they are excluded from 0–100 cm
SOCD statistics. When we report and analyze SOCD for the
full 0–100 cm interval, we therefore restrict the calculations
to profiles with an observed depth of at least 100 cm after
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quality control. For all datasets, SOCD (kgCm−2) is calcu-
lated using bulk density (kgm−3), and coarse fractions per-
centage (%) provided by the National Soil Information Grids
of China (Liu et al., 2022).

SOCD=
SOC×BD×SD

100
×

(
1−

CF
100

)
(8)

Where, SOC is the soil organic carbon content (%), SOCD is
the soil organic carbon density, BD is the soil bulk density,
SD is the soil depth (cm), and CF is the coarse fractions in a
specific soil layer.

3.2 Feature selection for RF modelling

To achieve optimal prediction accuracy for SOCD and to
elucidate its underlying mechanisms using RF models, com-
prehensive feature selection for the numerous potential en-
vironmental driving factors is a critical prerequisite (Jiang
et al., 2024). This process is instrumental in mitigating model
complexity, enhancing computational efficiency, improving
model interpretability, and eliminating data redundancy that
could adversely affect model performance. In this study, the
initial feature set comprised diverse categories of crucial en-
vironmental drivers, including remote sensing indices (e.g.,
NDVI, BSI, etc., derived from Landsat satellite imagery), to-
pographic factors (e.g., elevation, slope, aspect, etc., gener-
ated from DEM), climatic factors (e.g., mean annual temper-
ature, mean annual precipitation, etc.), as well as auxiliary
soil attributes (e.g., soil type) and other relevant indicators
(Fig. 2).

Our methodology commenced with a combined approach
of correlation analysis, random forest importance ranking,
and combinatorial optimization. First, a Pearson correlation
matrix was constructed for the initial candidate features, and
those exhibiting high correlation (specifically, where the ab-
solute value of the Pearson correlation coefficient exceeded
0.95) were removed to reduce redundancy. The remaining
features, representing a refined set, then underwent an im-
portance assessment and ranking utilizing the RF algorithm.
A preliminary RF model was constructed with these features
as inputs and SOCD as the target variable, and each feature’s
importance in predicting SOCD was quantified using Gini
importance scores, thereby enabling the preliminary iden-
tification of core factors possessing substantial explanatory
power for SOCD variation. This iterative procedure ensured
the high independence of the selected feature set, prevent-
ing information overlap from impairing model performance
and interpretability. Finally, to identify the optimal feature
combination capable of maximizing model prediction accu-
racy, an exhaustive combinatorial search was conducted on
the 10 most informative features remaining after the initial
screening steps. Through a comprehensive evaluation of all
possible feature subsets’ performance, aiming to maximize
the coefficient of determination (R2), seven key environmen-
tal driving factors were ultimately identified as collectively

providing the best predictive performance for SOCD: Tem-
perature, Elevation, NDVI, Clay, SR, BSI, and Slope. This
rigorous selection process ensures that the chosen feature set
effectively characterizes SOCD dynamics while optimizing
the model’s predictive capability.

The selected features represent fundamental controls on
SOCD through their influence on microbial activity (temper-
ature), carbon input (vegetation indices), physical protection
(clay content), and soil redistribution processes (slope). This
multi-stage selection approach effectively balanced model
complexity with predictive power while maintaining the eco-
logical interpretability of the final feature set. The robustness
of the selected features was further confirmed through cross-
validation, demonstrating consistent performance across dif-
ferent validation datasets.

3.3 Climate zoning in China

Climate zoning is carried out to quantify the differences in
temperature and precipitation in China and improve the ac-
curacy of SOCD estimation. China spans a vast geographical
area, crossing multiple major climate zones from the eastern
coast to the western interior and from the subtropical mon-
soon climate in the southeast to the temperate continental
climate in the northwest. This extensive climatic complex-
ity leads to pronounced regional heterogeneity in soil for-
mation and carbon cycling, which necessitates a zoned ap-
proach for accurate SOCD estimation. According to Tang
et al. (2018), there are obvious differences in SOCD ob-
served in different climate zones of China for the diverse and
complex environmental factors under warm-temperate cli-
mate conditions with a mean precipitation (MAP) threshold
of 400 mm and a mean annual temperature (MAT) threshold
of 10 °C. To mitigate the interannual variability, the multi-
annual average temperature and precipitation are used to
classify the climatic differences in China into four subzones
including humid areas (MAP≥ 400 mm and MAT≥ 10 °C),
semi-humid area (MAP≥ 400 mm and MAT≤ 10 °C), semi-
arid area (MAP≤ 400 mm and MAT≤ 10 °C) and arid area
(MAP≤ 400 mm and MAT≥ 10 °C) (Fig. 3). Soil data and
environmental variables are grouped in each subzone, and
zonal SOCD estimation models are developed for each sub-
zone with depths of 0–20 and 0–100 cm (Fig. 3).

3.4 SOCD estimation using zoned RF models

For the estimation of SOCD, RF models were developed
independently across four distinct climate subzones (arid,
semi-arid, humid, and semi-humid) and for two soil depths
(0–20 and 0–100 cm). Within each subzone, the RF model
aggregates predictions from numerous decision trees, en-
hancing forecast stability and accuracy (Wu et al., 2021).
This ensemble approach inherently mitigates overfitting, as
individual trees are constructed from random subsets of data
and features (Sun et al., 2024), thereby significantly improv-
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Figure 2. Feature selection process for SOCD estimation. (a) Pearson correlation matrix of top environmental covariates (upper triangle
shows correlation coefficients; red= positive, blue= negative), with boxed features indicating the final selected variables. (b) Hierarchical
feature importance evaluation combining correlation filtering (removing |r|> 0.95), random forest-based ranking (Gini importance), and
combinatorial optimization. (c) The optimal feature set (highlighted in bold) comprised seven variables: mean annual temperature, elevation,
NDVI, clay content (Clay), Solar Radiation (SR), bare soil index (BS1), and slope, which collectively maximize prediction accuracy (R2)
while maintaining ecological interpretability.

Figure 3. Climatic zones for SOCD estimation modeling. Climate
zoning comes from the time-series climate data including tempera-
ture and precipitation. According to the difference in climate zones,
it can be divided into humid, semi-humid, arid, and semi-arid zones.

ing the generalization of models. Especially, our RF model is
conceptualized as a single, unified space–time model, metic-
ulously trained on a comprehensive pooled dataset spanning
distinct historical decades (1980s, 2000s, and 2010s). This
unified framework, a key novelty of our approach, facilitates
consistent SOCD prediction across multiple historical inter-
vals (1985–2020 in five-year increments) for the vast and di-
verse Chinese region. The methodology effectively leverages
the “space-for-time” principle (Heuvelink et al., 2021) by in-
tegrating soil samples collected across these decades into a
single training process. This enables the RF model to learn
intricate relationships between environmental covariates and
SOCD under varying historical conditions, inferring tempo-
ral SOCD evolution driven by dynamic factors based on ob-
served spatial patterns.

The RF model inputs, established within the Scikit-Learn
framework, comprised both static and dynamic predictors.
Dynamic covariates, such as temperature, NDVI, SR, and
BSI, were precisely matched to their corresponding five-
year mapping periods by utilizing their average values for
those intervals (e.g., 1985–1990). Model parameters, includ-
ing the number of trees, the percentage of randomly se-
lected features, and maximum tree depth, were tuned using a
param_dist dictionary to optimize performance during cross-
validation. The model’s robustness and spatiotemporal ca-
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pabilities are underscored by a sophisticated stratified spa-
tiotemporal K-fold cross-validation strategy. This involved
spatially stratifying the study area into K independent sub-
regions to address autocorrelation and assess generalization
to new locations. Critically, temporal stratification ensured
proportional representation of samples from all three decades
within each spatial fold’s training and validation sets, al-
lowing the model to learn complex SOCD change patterns
over time. The optimized RF model was subsequently em-
ployed to predict SOCD across the entire study area, utilizing
measured SOCD values alongside spectral indices from soil
properties, Landsat archives, topographic derivatives, and
meteorological elements. Model performance and general-
ization ability were rigorously validated using the coefficient
of determination (R2) and root mean square error (RMSE).
The trained model was saved using the joblib library, and the
resulting estimations were combined with a geographic coor-
dinate system to generate digital SOCD maps, facilitating the
exploration of relationships between SOCD and optimized
environmental variables.

4 Results and conclusions

4.1 Statistical analysis of sampling points

The statistics of the measured SOCD values are presented in
Fig. 4. For the 0–20 cm soil layer, the mean value of SOCD
in the 1980s was 4.16 kgCm−2, and the data showed a pos-
itively skewed distribution. In the 2000s, the mean value
of SOCD slightly decreased to 4.02 kgCm−2, accompanied
by increased variability resulting from a larger number of
sampling sites. Sampling density was highest in the 2010s,
during which the mean value of SOCD rose modestly to
4.14 kgCm−2 and the distribution became more strongly
skewed. For the 0–100 cm soil layer, the mean value of
SOCD in the 1980s was 10.92 kgCm−2. In the 2000s, the
mean value decreased notably to 8.81 kgCm−2, accompa-
nied by reduced data variability. In the 2010s, the mean value
of SOCD increased again to 11.65 kgCm−2, and the distri-
bution displayed a more pronounced skew and thicker tails,
reflecting greater heterogeneity in deep-soil carbon stocks
across regions (Fig. 4).

Figure 5 shows the geographical arrangement of SOCD
data based on Whittaker biomes with depths of 20 and
100 cm in the 1980s, 2000s, and 2010s in China. The dis-
tribution of samples shows significant regional concentration
and geographical variation, with most points concentrated in
the northeastern plain, southwestern plateau, hilly zones, and
southeastern coastal zones. There are fewer SOCD samples
in northwestern China due to difficult human accessibility,
lower vegetation cover, less human activity, and a dry envi-
ronment. In terms of timing, there are fewer SOCD sample
sites in the 1980s. The number of sampling sites increased
in the 2010s, particularly in agriculturally developed and
densely populated areas.

4.2 Model performance of SOCD estimation

To evaluate the model performance of SOCD estimation at
depths of 0–20 and 0–100 cm, two key indicators were uti-
lized, including the coefficient of determination (R2) and the
Root Mean Square Error (RMSE). R2 quantifies the propor-
tion of variance in the dependent variable explained by the
model, while RMSE assesses the discrepancy between model
predictions and estimated results. The precision of RMSE
values is further characterized by their 95 % confidence inter-
vals (CI), providing insight into the robustness and statistical
significance of observed performance differences.

As shown in Fig. 6, climatic zoning improved model sub-
stantially performance for both soil depths relative to the
global (non-zoned) approach. For the SOCD prediction in
the depth of 0–20 cm, the global model achieved an ac-
curacy of R2

= 0.46 and RMSE= 2.38 kgCm−2 (95 % CI
of [2.22,2.55]). After incorporating climatic zoning, the
accuracy of SOCD estimation was significantly improved
with R2

= 0.63 and RMSE= 2.03 kgCm−2 (95 % CI of
[1.95,2.13]), demonstrating an R2 increase of 0.17 and an
RMSE decrease of 0.35 kgCm−2. The non-overlapping con-
fidence intervals for the global and zoned models (95 % CI
of [2.22,2.55] vs. [1.95,2.13]) clearly indicate a statisti-
cally significant improvement in RMSE due to climatic zon-
ing. Similarly, for the SOCD prediction in the depth of 0–
100 cm, the global model yielded anR2

= 0.43 and RMSE=
8.06 kgCm−2 (95 % CI of [6.76,9.49]). With climatic zon-
ing, the performance enhanced to R2

= 0.62 and RMSE=
6.16 kgCm−2 (95 % CI of [5.65,6.89]), reflecting an R2

increase of 0.19 and an RMSE decrease of 1.9 kgCm−2.
Here again, the distinct confidence intervals ([6.76,9.49] vs.
[5.65,6.89]) confirm the statistical significance of perfor-
mance enhancement from zoning. Overall, the SOCD esti-
mation model for the 0–20 cm depth generally exhibited a
higher R2 compared to the 0–100 cm depth model, indicat-
ing greater complexity in modeling deeper SOC dynamics
with available covariates.

Further analysis of model performance across different
climate zones revealed distinct patterns at the 0–20 cm
depth (Fig. 7). The model achieved the highest accuracy
in the semi-arid zone (R2

= 0.70, RMSE= 1.95 kgCm−2,
95 % CI of [1.80,2.11]), followed closely by the semi-
humid zone (R2

= 0.67, RMSE= 2.20 kgCm−2, 95 % CI
of [2.07,2.32]). In contrast, the arid zone exhibited moder-
ate performance (R2

= 0.65, RMSE= 1.86 kgCm−2, 95 %
CI of [1.15,2.68]), while the humid zone showed the lowest
correlation (R2

= 0.50, RMSE= 1.90 kgCm−2, 95 % CI of
[1.79,2.01]). The superior model fit in the semi-humid and
semi-arid regions is primarily characterized by consistently
higher R2 values. Although RMSE values vary, these tran-
sitional zones avoid the extreme uncertainty observed in the
arid zone, suggesting that the model captures SOCD spatial
variability more effectively in these areas. This performance
is likely attributable to a more balanced distribution of SOCD
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Figure 4. Statistical characteristics of soil sample points in different periods. Frequency distribution of SOCD data with the soil depth of
0–20 cm (a–c) and 0–100 cm (d–f) during the 1980s, 2000s, and 2010s.

sampling points, which mitigates the bias caused by extreme
values. Furthermore, the environmental covariates selected
for the model appear to exhibit a stronger and more consis-
tent correlation with SOCD dynamics in semi-arid and semi-
humid climates compared to other zones, thereby contribut-
ing to the improved estimation accuracy.

For the 0–100 cm depth, the semi-humid zone demon-
strated the highest R2

= 0.68 with RMSE= 6.29 kgCm−2

(95 % CI of [5.77,6.76]). The semi-arid zone had an R2
=

0.64 and RMSE= 5.92 kg C m−2 (95 % CI of [5.22,6.58]).
The arid zone showed an R2

= 0.61 and RMSE=
5.71 kgCm−2 (95 % CI of [5.12,6.32]). The humid zone
had an R2

= 0.54 and RMSE= 6.37 kgCm−2 (95 % CI of
[5.13,8.18]). Notably, although the semi-humid zone re-
tained the highest R2, the arid zone exhibited the lowest pre-
diction error (RMSE) and a relatively narrow confidence in-
terval. This suggests that while the model explains a moder-
ate proportion of the total variance in arid regions, its pre-
dictive errors are tightly constrained. This phenomenon may
be linked to the distinct environmental controls in drylands,
where soil moisture is the dominant limiting factor. The high
sensitivity of vegetation and soil microorganisms to water
availability in arid zones creates strong, clear predictive sig-
nals that the model can easily capture. In contrast, in humid
regions, SOC dynamics are governed by complex interac-
tions among multiple factors – such as precipitation, temper-
ature, and dense vegetation cover. These confounding influ-

ences can obscure direct relationships, thereby reducing the
model’s predictive power, particularly for deeper soil layers
where long-term accumulation processes dominate. Our re-
sults confirm that the proposed modeling framework effec-
tively captures these divergent mechanisms of SOC accumu-
lation across different climatic regimes.

To elucidate the drivers of SOCD estimation, we ana-
lyzed the hierarchical importance of optimized environmen-
tal features (Fig. 8). The results reveal distinct driver mech-
anisms across soil depths. For the 0–20 cm depth (Fig. 8a),
Temperature emerged as the dominant predictor, accounting
for 35.91 % of the model’s contribution. It was followed by
solar radiation (SR) (17.57 %), Elevation (13.21 %), NDVI
(11.37 %), Clay (8.99 %), BSI (6.69 %), Slope (3.70 %), and
CLCD (2.56 %). The overarching influence of temperature
on topsoil SOCD operates primarily through the regulation
of microbial kinetics. While elevated temperatures acceler-
ate the heterotrophic respiration and decomposition of SOC,
they may simultaneously enhance plant productivity and
residue turnover, thereby increasing carbon inputs. SR, as the
second most important factor, acts in concert with tempera-
ture to drive the surface energy balance and potential evapo-
transpiration. These hydrothermal dynamics directly regulate
soil water status: optimal moisture levels favor SOC accu-
mulation by supporting vegetation growth, whereas moisture
deficits induced by high radiation and evaporation can limit
inputs or accelerate oxidative loss. The high ranking of NDVI
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Figure 5. Spatial distribution of SOC soil sample points with depth of 0–20 cm (b) and 0–100 cm (d). And the Whittaker biomes of soil
sample points with depth of 0–20 and 0–100 cm are shown in (a) and (c).

further underscores the critical role of vegetation vitality, as it
determines the quantity of organic litterfall and root exudates
returned to the soil.

For the 0–100 cm depth (Fig. 8b), while Temperature
remained the leading factor (25.62 %), its relative domi-
nance decreased compared to the surface layer. Notably, the
importance of topographic and edaphic factors increased,
with the hierarchy shifting to: Elevation (16.45 %), SR
(16.43 %), NDVI (14.59 %), Clay (12.44 %), BSI (9.49 %),
Slope (3.32 %), and CLCD (1.67 %). The increased promi-
nence of Elevation reflects its control over the vertical
zonation of hydrothermal conditions (including radiation re-
ceipts), which fundamentally shapes soil formation processes
and the depth-wise distribution of organic carbon.

The shift in feature importance between the two models
highlights the complexity of SOC dynamics and the neces-
sity of depth-specific modeling. In the 0–20 cm model, bio-
climatic factors (Temperature, SR, and NDVI) exert a more
pronounced influence, reflecting the direct sensitivity of top-
soil to atmospheric energy inputs and immediate vegetation
exchange. In contrast, the 0–100 cm model shows a marked
increase in the contribution of soil physicochemical prop-
erties (e.g., Clay) and stable topographic features (e.g., El-
evation, Slope). This suggests that SOCD in deeper layers
is increasingly governed by long-term pedogenic processes,
geological context, and depositional dynamics rather than
immediate surface accumulation. Incorporating these depth-
dependent determinants – spanning climatic, topographic, bi-
ological, and edaphic variables – is essential for accurately
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Figure 6. The model performance of global and zoning models with the depth of 0–20 and 0–100 cm. The SOCD prediction model of 0–20
and 0–100 cm soil depth is evaluated strictly by using a variety of statistical indicators, corresponding to four evaluation results, 0–20 cm
global model (a), 0–20 cm regional model (b), 0–100 cm global model (c), and 0–100 cm regional model (d).

capturing the spatial and temporal heterogeneity of soil or-
ganic carbon stocks.

4.3 Validation with independent sample points

The SOCD estimation result is validated with independent
published SOCD data in the Heihe River basin by Li et al.
(2022). The Heihe River basin is a major ecological and
agricultural zone in northwest China. There are special ge-
ographical and climatic characteristics for the soil carbon ac-
cumulation in the Heihe River basin, which are important for
exploring soil quality in arid and semi-arid zones. Validation
is carried out by comparing measured data in the Heihe River
basin with the estimated SOCD in this study. The compari-
son results show that our estimated SOCD is highly consis-
tent with the measured SOC data from the Heihe River basin
(Fig. 9). The estimated SOCD and the measured SOCD have
a significant correlation, which is shown by the R2 value of
0.76, and the RMSE value of 1.75 (kgCm−2) (95 % CI of
[1.25,2.23]) for the estimated result with the depth of 0–
20 cm. Additionally, the proposed model demonstrates supe-
rior accuracy compared to Li’s dataset, which reported an

R2 of 0.60 and an RMSE of 2.27 (kgCm−2) (95 % CI of
[1.59,2.98]).

To further assess model robustness across a wider range of
environmental conditions, our estimated SOCD results are
compared with the data published data by Xu et al. (2018a),
which is the data on carbon storage of terrestrial ecosystems
in China with a depth of 0–20 cm These samples are widely
distributed across the southern Tibet Autonomous Region,
Qinghai Province, and eastern Inner Mongolia Autonomous
Region. This is very good evidence for validating the robust-
ness, reliability, and generalizability of the SOCD estimation
model in this study. The estimated SOCD results are com-
pared with the measured SOC data in the field campaign of
Xu et al. (2018a). In addition, the field data were compared
with 0–20 cm organic carbon density maps generated by a
machine learning analysis dataset of SOC dynamics and their
drivers in China during 2000–2014. The results of the com-
parative analysis are encouraging and show high agreement
between the estimated SOCD using our developed model and
the measured SOC data. Specifically, theR2 value is 0.68 and
the RMSE value is 1.70 (kgCm−2) [95 % CI: 1.51,1.90],
which further confirms the accuracy of our SOCD estima-
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Figure 7. The model performance of different zoning models with the depth of 0–20 and 0–100 cm. Panels (a) and (e) depict the model
performance for arid regions. Panels (b) and (f) illustrate results for humid regions. Panels (c) and (g) showcase semi-arid regions. Finally,
panels (d) and (h) display model accuracy in semi-humid regions.

Figure 8. Importance ranking of features for SOCD estimation with the depth of 0–20 and 0–100 cm. It reports the contribution of different
environmental variables to the SOCD estimation with different soil depths, including feature importance ranking for 0–20 cm depth (a) and
feature importance ranking for 0–100 cm depth (b).

tion model (Fig. 9). Furthermore, the model outperforms Li’s
dataset, which yielded an R2 of 0.54 and an RMSE of 2.04
(kgCm−2) [95 % CI: 1.73,2.34], underscoring the enhanced
predictive accuracy of our approach.

Our estimated SOCD results with the depth of 0–100 cm
were validated furtherly with independent measurements
from Inorganic carbon pools and their drivers in grassland
and desert soils (Dong et al., 2024a) and compared with
the machine learning-derived SOCD simulations by Li et al.
(2022). The SOCD dataset of Dong et al. (2024a), covering
grassland and desert ecosystems across China, provides ro-
bust in-situ measurements of SOCD (0–100 cm) alongside

critical environmental drivers (e.g., climate, soil properties),
offering an ideal benchmark for evaluating model general-
izability in arid and semi-arid regions. Comparative analy-
sis revealed that our SOCD estimates achieved significantly
better agreement with the independent validation data (R2

=

0.50, RMSE= 4.93 kgCm−2) [95 % CI: 1.65,7.47] than
Li et al.’s simulations (R2

= 0.31, RMSE= 5.80 kgCm−2)
[95 % CI: 4.16,7.48] (Fig. 9). This demonstrates the superior
accuracy of our approach in capturing deep soil carbon dy-
namics (0–100 cm), particularly in heterogeneous grassland
and desert environments. The higher R2 and lower RMSE
values underscore the improved capability of our model to
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Figure 9. Comparison of predicted and machine learning (ML) derived SOCD with independent measurements at various depths. Panels (a)–
(c) display correlations of this study’s predicted SOCD, while (d)–(f) show correlations of SOC Dynamics ML dataset. Specifically, (a)
and (d) are for 0–20 cm SOCD against Heihe River basin measurements. (b) and (e) compare 0–20 cm SOCD with Xu’s published data. (c)
and (f) present 0–100 cm SOCD correlations with measurements from Dong et al. (2024a) and simulations from Li et al. (2022).

resolve spatial patterns of SOC storage compared to earlier
machine learning-based efforts.

4.4 Comparison with published SOCD products

The 1 km-resolution SOCD dataset of China is produced
in this study, which is compared with the published SOCD
products including HWSD v2.0, SoilGrids 250 m, and
GSOCmap datasets to validate and confirm its accuracy
and reliability. As shown in Fig. 10, our estimated SOCD
dataset exhibits strong consistency with published products,
with the highest agreement observed with SoilGrids 250 m
(R2
= 0.74). This performance is substantially better than

the correlations with GSOCmap (R2
= 0.64) and HWSD

(R2
= 0.71). The HWSD v2.0 dataset is jointly published

by the Food and Agriculture Organization of the United Na-
tions (FAO) and the International Institute for Applied Sys-
tems (IIAS) in Vienna, which provides soil data on a global
scale. The correlation of our SOCD dataset with HWSD is re-
ported with the R2 value of 0.71 and the RMSE value of 1.52
(kgCm−2). The GSOCmap dataset is led by the FAO and is
intended to cover various ecosystems around the world. This
is the first global SOC map. The correlation of our SOCD

dataset with GSOCmap is reported with the R2 of 0.64 and
the RMSE of 1.25 (kgCm−2). The SoilGrids250 m dataset
is created using ISRIC’s digital soil mapping technology,
which is a global soil dataset. The correlation of our SOCD
dataset with SoilGrids250 m is reported with the R2 of 0.74
and the RMSE of 1.03 (kgCm−2). Models are more accu-
rate and applicable than global soil databases in capturing
SOCD changes in China. This study highlights the need to
create and implement region-specific models that utilize cur-
rent geographic and environmental data to provide a more
precise tool for accurately estimating soil carbon reserves.

To evaluate the temporal accuracy of our product, we
compared the SOCD estimates for the 1980s, 2000s, and
2010s against the corresponding SOC Dynamics ML dataset
(Fig. 11). The results demonstrate a strong and consis-
tent agreement between the estimated and measured values
across all periods. Specifically, the model achievedR2 values
of 0.78, 0.76, and 0.73, with corresponding RMSEs of 0.90,
1.02, and 1.07 kgCm−2 for the 1980s, 2000s, and 2010s, re-
spectively. While the R2 shows slight fluctuations, the con-
sistently low RMSE values indicate that the model remains
robust over time. Overall, these comparisons validate the reli-
ability of the SOCD estimation framework developed in this
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Figure 10. Comparison with three published global products. Our estimated SOCD is compared with the SoilGrids250 m (a, b),
GSOCmap (c, d), and HWSD v2.0 (e, f) datasets.

study. The sustained accuracy over three decades highlights
the model’s capability to provide precise long-term SOCD
estimates, underscoring the importance of integrating multi-
temporal field data with advanced analytical methods.

4.5 Spatiotemporal changing of SOCD in China

The SOCD changes over time from the 1980s to the 2010s
are validated in Fig. 12 compared with the published inves-
tigations. Figure 12 reveals that our estimated SOCD results
with depths of 0–20 cm (panel a) and 0–100 cm (panel b) are
falling in the value range of the previous investigations of

Xie et al. (2007), Wu et al. (2003), Wang et al. (2004), Xu
et al. (2018b), Wang et al. (2021), Li et al. (2022), Zhang
et al. (2023b). A slight increasing trend in SOCD was ob-
served in the 0–20 cm topsoil from the 1980s to the 2010s
(Fig. 12a). This resulted from that the topsoil is more suscep-
tible to the direct effects of soil management practices and
environmental changes (Oechaiyaphum et al., 2020). In con-
trast, the estimated SOCD in the 0–100 cm profile remained
relatively stable throughout the study period (Fig. 12b). Fig-
ures 13 and 14 show the spatiotemporal distributions of the
estimated SOCD at the 5 year interval from the 1980s to the
2010s. And the regions with high SOCD value in depth of
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Figure 11. Comparison with the SOC Dynamics ML dataset with a depth of 0–20 cm in China in the 1980s (a), 2000s (b), and 2010s (c).

Figure 12. Aggregated results of estimated SOCD with the depth of 0–20 cm (a) and 0–100 cm (b) in China from this study and previous
investigations.

0–20 cm are in northeast and southwest China with red color
in Fig. 13. Comparably speaking, there are the largest area
of high SOCD value labeled dark red color bar in period of
2010–2015 (Fig. 13f). From the perspective of longitude, the
SOCD distribution shows different pattern, and it is homo-
geneous in high and low longitudes where the land cover is
forest mostly. Conversely, the variance of SOCD is higher
in mid-longitude regions where is with distinct land cover
types. Similarly, the regions with high SOCD value in depth
of 0–100 cm are in northeast and southwest China with green
color in Fig. 14. And there are smaller variance of SOCD
in high and low longitudes, and there are higher variance
of SOCD in mid-longitude regions. There are many driving
factors for the changing of SOCD in China. Targeted moni-
toring and management practices should be implemented for
SOCD trends at different soil depths to maximize soil carbon
sequestration and continuously improve soil quality.

5 Data availability

The 1 km soil organic carbon density dataset for China at
depths of 0–20 and 0–100 cm from 1985–2020 is freely avail-

able at https://doi.org/10.6084/m9.figshare.27290310.v2
(Dong et al., 2024b). The dataset can be imported into
remote sensing processing software (e.g., ENVI), standard
geographical information system software (e.g., ArcGIS). In
addition, the original CSV-format field measurement dataset
used in this study is provided to enhance transparency,
reproducibility, and facilitate further applications of the
SOCD dataset.

6 Conclusions

In this study, a SOCD dataset with a resolution of 1 km res-
olution and soil depths of 0–20 and 0–100 cm is created
from 1985–2020 in China. The accuracy and validity of this
dataset are validated by three independent metrics and data
and four types of published global products. The conclusions
are as follows.

1. The delineation of climatic zones for SOCD estimation
modeling has been proven useful for enhancing the pre-
cision of the models and effectively addressing the un-
even distribution of measured SOC.
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Figure 13. Spatial distribution of estimated SOCD at a depth of 0–20 cm in 1985–1990 (a), 1990–1995 (b), 1995–2000 (c), 2000–2005 (d),
2005–2010 (e), 2010–2015 (f), 2015–2020 (g) and average from 1985–2020 (h). The lower left histograms in each panel show the area ratios
for different SOCD levels.

2. Independent validations confirmed the robustness
of the estimated SOCD. For the 0–20 cm depth,
our estimates showed strong agreement with mea-
sured data from the Heihe River basin (R2

= 0.76,
RMSE= 1.75 kgCm−2) and the Xu dataset (R2

=

0.68, RMSE= 1.70 kgCm−2). Furthermore, for the 0–
100 cm depth, validation against independent measure-
ments from Dong et al. (2024a) also indicated strong
agreement (R2

= 0.50, RMSE= 4.93kgCm−2).

3. Compared to published global products including
HWSD, SoilGrids250 m, and GSOCmap, the estimated
SOCD in this study was consistent and accurate. Com-
parison with the SoilGrids250 m dataset shows the su-
periority of zoning RF models in capturing variations
in SOCD in China with R2

= 0.74 and RMSE= 1.03
(kgCm−2).

4. Temporal evaluations showed good agreement between
our SOCD estimates and independent measurements
from the 1980s, 2000s, and 2010s. The time-series anal-
ysis revealed clear SOCD variations across China and
across soil depths, reflecting the influence of agricul-
tural management, land-use changes, and climate vari-
ability.

While this dataset represents a significant advancement in
national-scale SOC accounting, the continuous integration of
new soil profile data remains essential for further model re-
finement. Future research should prioritize quantifying the
impacts of specific land management strategies on SOC dy-
namics. Furthermore, given the persistent uncertainties in
large-scale soil carbon estimates, we advocate for standard-
ized sampling protocols, broader data sharing, and strength-
ened global collaboration to improve the accuracy of future
soil carbon inventories.
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Figure 14. Spatial distribution of estimated SOCD at a depth of 0–100 cm in 1985–1990 (a), 1990–1995 (b), 1995–2000 (c), 2000–2005 (d),
2005–2010 (e), 2010–2015 (f), and 2015–2020 (g) and average from 1985–2020 (h). The lower left histograms in each panel show the area
ratios for different SOCD levels.
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