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Abstract. The QUADICA version 2 dataset significantly expands upon the first version of QUADICA (water
QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany), by incorporating more re-
cent data, additional water quality and driver variables, and more stations with concurrent water quantity data.
Specifically, QUADICA v2 extends the water quality time series of the first version up to 2020 and introduces
new variables, including water temperature, oxygen, and chlorophyll a concentrations, as well as concentrations
of ammonium, sulfate, and geogenic solutes like calcium. These additions enable a more comprehensive under-
standing of ecological impacts, including eutrophication effects, and water quality dynamics across catchments.
Furthermore, the number of stations with both water quality and quantity data has effectively doubled – now
covering 637 out of the total 1386 stations – by integrating QUADICA with the CAMELS-DE and Caravan-DE
datasets. The inclusion of time series on point and diffuse sources of both nitrogen and phosphorus allows for
more thorough investigations of driver-response relationships and nutrient export from catchments. To facilitate
visualization and exploration of QUADICA, we provide a user-friendly, interactive R application alongside the
online data repository, as well as a browser-based web app for inspecting the dataset. This makes QUADICA v2
a comprehensive dataset that spans from driver to impact variables, offering a valuable resource for researchers
and practitioners. QUADICA v2 is available at https://doi.org/10.4211/hs.c2866cd416b94ca386deb5758834311f
(Ebeling et al., 2025).
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1 Introduction

High water quality is critical for the health of aquatic ecosys-
tems and humans. Understanding the spatial and temporal
variability in water quality variables is essential for effective
management and conservation of water resources. Observa-
tional data are the key to propelling our understanding of hy-
drological and biogeochemical processes and complex inter-
actions. Large-sample hydrology (LSH) addresses the “need
to balance depth and breadth” (Gupta et al., 2014) and has
thus become a cornerstone to understand the generality of
patterns and processes across diverse landscape and climate
settings.

LSH data sets that combine stream observations with con-
textual data on catchment attributes and driving forces have
gained momentum in recent years. For water quantity, the
CAMELS data sets available in several countries (Addor et
al., 2017; Alvarez-Garreton et al., 2018; Coxon et al., 2020;
Chagas et al., 2020; Fowler et al., 2021; Loritz et al., 2024)
and the globally consistent data set Caravan (Kratzert et al.,
2023) are prominent examples. For water quality, such com-
prehensive data sets have been less common, but momen-
tum is increasing with QUADICA (Ebeling et al., 2022) and
the recently published CAMELS-Chem datasets from the US
(Sterle et al., 2024) and from Switzerland (Do Nascimento
et al., 2025), which include not only hydroclimatic drivers
but also the temporal evolution of pollution sources (e.g., at-
mospheric nitrogen deposition and nitrogen surplus as dif-
fuse sources). In parallel, a number of data sets now provide
large samples of quality-controlled water quality time series
(Zarei et al., 2025; Virro et al., 2021), further complemented
by catchment or stream network characteristics (Fernandez
et al., 2025; Minaudo et al., 2025).

Comprehensive LSH datasets have various applications.
They support data-driven top-down approaches to identify
trends and patterns in water quantity and quality time se-
ries, and when combined with contextual data help advance
our understanding of underlying processes and hierarchies.
They also provide forcing, calibration, and validation data
for hydrological and water quality models (Nguyen et al.,
2022; Van Meter and Basu, 2015). The increased availability
of LSH datasets also propelled data-driven machine learning
(ML) models using them for training, testing, and validation
and improving their performance and generalization ability
both in time and space (e.g. ungauged basins). ML models
are widely applied and improved for discharge predictions
(e.g., Kratzert et al., 2018; Heudorfer et al., 2025) but also in-
creasingly used for water quality parameters (Zhi et al., 2023;
Zhi et al., 2021; Saha et al., 2023).

Here, we present the second version of QUADICA (water
QUAlity, DIscharge and Catchment Attributes), a significant
update to the original dataset (Ebeling et al., 2022). The first
version of QUADICA has supported a wide variety of water
quality studies, including the characterisation of catchments
based on nutrient export processes across different spatial

and temporal scales (Ebeling et al., 2021b, a; Ehrhardt et
al., 2021), effects of hydroclimatic extreme events on the
catchments’ nitrate export (droughts, Saavedra et al., 2024;
floods, Saavedra et al., 2022), for nutrient stoichiometric
characterisation (Wachholz et al., 2023), as well as for dis-
entangling catchment processes using a process-based water
quality model (e.g., Nguyen et al., 2022). A particular focus
has been the linkage of observed instream water quality re-
sponses to drivers, enabled through the provided catchment
attributes and driving forces in the form of diffuse nitrogen
sources.

Recent shifts in environmental conditions, particularly hy-
drological extremes such as droughts, have substantial im-
pacts on water quality (Saavedra et al., 2024; Winter et al.,
2023; Dupas et al., 2025). This highlights the critical need to
extend the QUADICA dataset to include more recent years
covering extreme drought years and additional water quality
and driver variables, thereby enhancing our ability to under-
stand and address the evolving relationship between environ-
mental change and water quality. Specifically, the update en-
compasses (1) longer time series up to 2020, capturing recent
extreme events such as the 2018–2020 multi-year drought
(e.g., Rakovec et al., 2022) with expected effects on solute
export (e.g., Winter et al., 2023), (2) additional hydroecolog-
ical time series such as oxygen and chlorophyll a concentra-
tions, enabling to move from water quantity and quality to
ecological impact studies, (3) additional time series of driv-
ing forces including point sources and phosphorus inputs, al-
lowing more comprehensive views on input-output (driver-
response) relationships, useful e.g. for the quantification of
nutrient legacies or model input data, and (4) larger amount
of stations with joint water quantity and quality by linking
to the recently published and widely known CAMELS-DE
(Loritz et al., 2024) and Caravan-DE (Dolich et al., 2024)
data sets. With this updated version, we aim to enhance the
breadth of the large-sample water quality dataset QUADICA
with additional depth, enabling us to address more research
questions and ultimately support water quality management.

2 Station and catchment selection

The 1386 stations and corresponding delineated catchments
from the original QUADICA data set (Ebeling et al., 2022)
are retained in version 2. Although all stations lie within Ger-
many, 17.9 % of the catchments are transboundary with part
of their area in a neighbouring country. Figure 1 shows the
study area with updated information on the data availability.
As for version 1, water quality and quantity data for QUAD-
ICA v2 were assembled from the German federal state au-
thorities and merged with the data from QUADICA v1. This
allowed us to extend the time series length as well as add new
variables of water quality.

Similar to version 1, we assessed the data availability
after quality control of the water quality time series data.
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Figure 1. Stations and delineated catchments in relation to Ger-
many (black line). Stations are colored according to their data avail-
ability, with C – concentration (water quality), Q – discharge (wa-
ter quantity), and WRTDS – Weighted Regression on Time, Dis-
charge and Season. Stations with extended water quality data (new
C data) in version 2 are highlighted as well as stations with newly
added continuous discharge data (new Q match) from matching
with CAMELS-DE (Loritz et al., 2024) and Caravan-DE (Dolich
et al., 2024) data sets (for details, refer to Sect. 3.2). The rivers dis-
played are taken from De Jager and Vogt (2007). WRTDS is avail-
able for stations with high data availability (see Sect. 3.1.2).

After homogenization of variable names, units and formats
across all federal states, the preprocessing steps included:
(1) removal of duplicates and implausible values (i.e. zero
and negative concentrations), (2) removal of outliers within
each time series using a mean plus 4 standard deviations
threshold (> 99.99 % confidence) in logarithmic space for
concentrations and normal space for oxygen concentrations
(O2) and water temperature (T ), (3) substitution of left-
censored values using half of the detection limit, where ap-
plicable (i.e. nutrient and mineral concentrations). We addi-
tionally removed total organic carbon (TOC) concentrations
> 1000 mg L−1, as we identified implausible plateaus of such
high values in three stations, for which the outlier test failed.

3 Time series

Time series data are provided for 1386 catchments (as in
QUADICA v1) for water quality variables (Sect. 3.1) and
water quantity (Sect. 3.2), and forcing variables both from
meteorological drivers (Sect. 3.3) and nutrient (N and P) in-
puts from diffuse and point sources (Sect. 3.4). An overview
of the provided (and newly added) variables is given in the
following and in Table 1, while details are described in the
following sections. Appendix B1 provides an overview of
data files and respective metadata tables provided in the data
repository. Note that due to limited data availability, not all
water quality and quantity variables can be provided for all
stations.

For water quality, QUADICA version 2 increases the
number of variables by adding ammonium (NH+4 -N) to the
previously provided nutrient concentrations (NO−3 -N, TN,
PO3−

4 -P, TP, DOC, TOC), major ion concentrations (SO2−
4 ,

Cl−, Ca2+, Mg2+), concentrations of O2 and Chlorophyll a
(Chl a), and water temperature (T ). In version 2, dissolved
inorganic nitrogen (DIN) was calculated as the sum of the
preprocessed time series of inorganic nitrogen forms NO−3 -
N and NH+4 -N, and, if available, NO−2 -N. Note that, for sim-
plicity, the charges are not always written in the following
text. For water quantity, the number of stations with dis-
charge data from daily observations was increased from 324
in version 1 to 637 in version 2. For nutrient inputs, time se-
ries of catchment-wise diffuse P inputs and point source in-
puts of N and P were added, while diffuse N sources were
both updated as well as extracted from a European data
source provided consistently with P.

3.1 Water quality time series

After quality control of the time series data, different tempo-
ral aggregation schemes were implemented to provide con-
sistent data sets. In QUADICA version 2, we provide the
time series of annual medians (Sect. 3.1.1), monthly medi-
ans for stations with high data availability (Sect. 3.1.2), and
long-term monthly averages (Sect. 3.1.3).

3.1.1 Annual median water quality variables

Annual median concentrations are provided based on the pre-
processed time series (Sect. 2) for all station-compound com-
binations. Along with the median concentrations, the number
of samples considered for the given value is provided as a
control variable for users of the data set, allowing to subset
the data based on data availability.

The time series of annual median concentrations are visu-
alized in Figs. A1 and A2, while the corresponding data den-
sity is shown in Fig. 2 over the years as well as for the number
of years covered per station. A summary of data availability
across all variables is provided in Table 2.
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Table 1. Provided time series data, their basis (observed or estimated), aggregation type, temporal resolution and source of original data,
which was used to calculate the aggregated data provided here. Bold font indicates the newly added variables in version 2 of the QUADICA
data set. WRTDS – Weighted Regression on Time, Discharge and Season. Note that detailed metadata are provided for each data file in the
repository, for an overview see Table B1.

Variable Section Data basis Temporal
(Spatial)
Aggregation

Temporal
resolution

File in repository Source

Concentrations of nutrient
species (NO3-N, NH4-N,
DIN, TN, PO4-P, TP,
DOC, TOC), major ions
(SO4, Cl, Ca, Mg), O2 and
Chl a, and T

3.1 observed median annual c_annual.csv Musolff et al. (2026); Ebeling
et al. (2022)

daily estimated
using WRTDS

median monthly wrtds_monthly.csv Musolff et al. (2026); Ebeling
et al. (2022)

observed long-term
median

monthly c_q_avg_months.csv Musolff et al. (2026); Ebeling
et al. (2022)

Discharge 3.2 observed median annual q_annual.csv Musolff et al. (2026); Ebeling
et al. (2022); Loritz et
al. (2024); Dolich et al. (2024)

observed median monthly wrtds_monthly.csv Musolff et al. (2026); Ebeling
et al. (2022); Loritz et
al. (2024); Dolich et al. (2024)

observed long-term
median

monthly c_q_avg_months.csv Musolff et al. (2026); Ebeling
et al. (2022); Loritz et
al. (2024); Dolich et al. (2024)

Precipitation 3.3 observed
gridded

sum (average) monthly climate_monthly.csv E-obs v25.0e, Cornes et
al. (2018)

Potential
evapotranspiration

3.3 estimated sum (average) monthly climate_monthly.csv E-obs v25.0e, Cornes et
al. (2018)

Mean air temperature 3.3 observed
gridded

average
(average)

monthly climate_monthly.csv E-obs v25.0e, Cornes et
al. (2018)

Diffuse N (from two
sources) and P input as
total

3.4 estimated (average) annual input_N_P.csv see Sect. 3.4

Diffuse N input from
agricultural areas

3.4 estimated (average) annual input_N_P.csv see Sect. 3.4

Point source N and P
input

3.4 estimated (average) annual input_N_P.csv see Sect. 3.4

The highest data availability with more than 1370 sta-
tions covered is presented for the inorganic nitrogen (NO3-
N, NH4-N, DIN) and phosphorus (PO4-P) compounds, as
well as for chloride (Cl), sulfate (SO4), oxygen (O2) and wa-
ter temperature (T ). The highest temporal coverage stretches
from the mid-2000s to the mid-2010s. Overall, the median
time series lengths vary between 13 (for Chl a) and 24 (O2,
T ) years. The median number of samples per station varies
between 104 (for Chl a) and 205 (for T ), while the me-
dian average number of samples per year ranges from 10.1
(for DOC) to 11.9 (for NO3-N, PO4-P, and T ) and 12.0 (for
Chl a), i.e. corresponding to a monthly sampling frequency
on average.

3.1.2 Monthly median concentrations and mean fluxes
for stations with high data availability

As in version 1 of QUADICA, we provide monthly and an-
nually aggregated water quality data for the subset of stations

with high data availability based on Weighted Regression on
Time, Discharge and Season (WRTDS; Hirsch et al., 2010),
referred to as “WRTDS stations”. To fit WRTDS, we used
the R package EGRET (version 3.0.9; Hirsch and De Cicco,
2015). WRTDS considers long-term trends, seasonal compo-
nents and discharge-dependent variability to estimate daily
concentrations from low-frequency observations, e.g., from
monthly grab samples (Hirsch et al., 2010). We included sta-
tion and compound combinations using the same quality cri-
teria as in QUADICA v1 on the preprocessed concentration
data (Sect. 2). Accordingly, water quality time series had to
cover at least 20 years, at least 150 samples, and no data gaps
larger than 20 % of the total time series length. Discharge
time series with daily temporal resolution are required to run
WRTDS, but in contrast to version 1 of QUADICA, gaps in
discharge were allowed with the consequence that no con-
centration estimate is provided for that day. The number of
WRTDS stations varies between 97 for TN and 322 for Cl

Earth Syst. Sci. Data, 18, 691–712, 2026 https://doi.org/10.5194/essd-18-691-2026
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Figure 2. Temporal coverage of water quality and quantity time series data per compound: (a) number of stations with available annual
medians per year and compound and (b) the number of years covered by each station per compound. For visualization purposes in (a) station
counts from 1950 are shown, omitting one sample before 1954.

(Table 3), while the fraction of stations with high data avail-
ability varies between 12.0 % for TOC and 23.3 % for Cl.

As in QUADICA v1, monthly and annual values were
only provided if 80 % of the days of the respective period
were covered. The provided water quality time series con-
tain median concentrations, flow-normalized concentration,
and mean flux estimates from WRTDS models. We now also
added discharge-weighted mean concentrations. Discharge
corresponds to the median observed, as WRTDS takes dis-
charge as input and does not modify it (Sect. 3.2.2).

The model performance of WRTDS varies across water
quality variables and stations with 64.1 % of the station and
compound combinations with R2 > 0.5 and 58.2 % with a
percent bias< 1 % and 92.7 % below< 5 %. Average perfor-
mances per compound are given in Table 3, while the dis-
tribution of performance values is provided in Fig. A3, as
well as all individual values provided in the repository. The
performance metrics should allow the users to select suitable
catchments and compounds for reliable analysis.

3.1.3 Monthly long-term median concentrations

To be consistent with QUADICA v1, we provide monthly
long-term medians, and 25th and 75th percentiles (i.e. in-
terquartile range), providing information on the average sea-
sonality patterns of each respective time series. Figure 3
shows the scaled medians indicating the variability of sea-
sonal timing across stations for each compound. For exam-
ple, water temperature and oxygen show very similar sea-
sonality in terms of timing with summer maxima and sum-
mer minima, respectively, in contrast to, e.g., Ca2+, Mg2+,
DOC and TOC, for which seasonal timing varies strongly
across stations. The nitrogen and phosphorus species show

dominant seasonal patterns, but still more variability across
stations.

3.2 Water quantity time series

In total, discharge was provided for 637 stations, taking all
data sources together. The earliest time series starts in 1893,
the maximum number of stations with 620 stations with
available discharge data was in 2011 and the longest time
series extends until 2022.

From the QUADICA v1, we updated the discharge time
series of 284 out of the 324 stations with daily data provided
from our request to the authorities (232) and from GRDC
(52) based on the matches identified in QUADICA v1. For
the remaining stations, no updated data was provided.

In addition, we complemented the QUADICA discharge
data from the CAMELS-DE (Loritz et al., 2024) and
Caravan-DE (Dolich et al., 2024) data sets. We found 554
matches (449 from CAMELS, 105 from Caravan), out of
which 313 stations had no matching discharge values in
QUADICA yet, while 241 overlapped. We matched stations
based on location and by manually checking if they lie on the
same river. We differentiate cases between (1) close stations
within a maximum distance of 1 km (n= 305) and (2) dis-
charge stations that are further away. In the latter case, dis-
charge stations could be located either (2i) upstream (n=
202) or (2ii) downstream (n= 47) of the water quality sta-
tion. For (2), we accepted matches only if the relative differ-
ence between the intersected area of the CAMELS/Caravan
and QUADICA catchments and the area of the QUADICA
catchment was ≤ 30 %. For downstream discharge stations
(2ii), in addition, we accepted matches only if the CAMELS
area was larger than the QUADICA area.

https://doi.org/10.5194/essd-18-691-2026 Earth Syst. Sci. Data, 18, 691–712, 2026
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Figure 3. Median monthly water quality observations inform about seasonal variability. Medians at each station are scaled to a range between
0 and 1. Note that only time series covering all 12 months are displayed.

We additionally checked the correlations between QUAD-
ICA and CAMELS/Caravan time series with a median cor-
relation coefficient of r > 0.9999 and only 5 out of the 241
overlapping stations with r < 0.95. We then used the dis-
charge time series of the matched stations to fill up the
QUADICA data. To account for differences in the locations
(and thus catchments’ area) of water quantity and water qual-
ity stations, we scaled the discharge of upstream discharge
stations (i.e. case 2i) with the ratio between the QUADICA
catchment area to the intersected area and of downstream
stations (i.e. case 2ii) with the ratio between the QUADICA

to CAMELS/Caravan catchment area. In case of several po-
tential matches (because of identical station locations within
CAMELS, n= 24), we manually checked the time series to
decide for the more complete one or merged them with pri-
ority on the more recent time series (n= 2).

3.2.1 Annual median discharge

Similar to version 1, annual median discharge is aggregated
from available observed discharge data. As described above

Earth Syst. Sci. Data, 18, 691–712, 2026 https://doi.org/10.5194/essd-18-691-2026
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Table 3. Number of stations with high data availability (WRTDS
stations) for each compound and median coefficient of determina-
tion of WRTDS models. The unit of all variables is mg L−1.

Variable Number of Median Median
WRTDS stations R2 bias [%]

total 347 0.58 −4.9× 10−2

NO3-N 317 0.64 0.20
NH4-N 302 0.48 0.96
DIN 303 0.68 0.18
TN 97 0.71 5.1× 10−3

PO4-P 288 0.62 −0.73
TP 270 0.48 −0.53
DOC 140 0.45 −0.65
TOC 195 0.46 −0.40
Ca2+ 175 0.62 2.8× 10−2

Mg2+ 174 0.57 −6.6× 10−2

Cl 322 0.53 −3.9× 10−2

SO4 234 0.67 5.5× 10−2

(Sect. 3.2), daily Q data is available for 637 water quality
stations. The data density distribution is visualised in Fig. 2.

3.2.2 Monthly median discharge

Similar to version 1, monthly median discharge is provided
for WRTDS stations. Note that we did not gap-fill the daily
discharge time series for the WRTDS models, but instead
provide median values only if at least 80 % of the days are
covered. This criterion refers both to the monthly and annual
discharge data provided with the WRTDS data tables (as de-
scribed in Sect. 3.1.2).

3.2.3 Monthly long-term median discharge

Similar to version 1 of QUADICA and the water quality
variables (Sect. 3.1.3), long-term monthly median discharge,
25th and 75th percentiles, as well as the corresponding num-
ber of samples are provided. These values can be an indica-
tor of average discharge seasonality across solutes and catch-
ments in the long term.

3.3 Meteorological time series

As in QUADICA v1, meteorological time series (precipita-
tion, potential evapotranspiration and average air tempera-
ture) are provided as spatial catchment averages on monthly
resolution from 1950 to 2020. To obtain these, we fol-
lowed the same approach on a newer version from the Euro-
pean Climate Assessment and Dataset project (E-obs v25.0e,
Cornes et al., 2018) for the daily gridded data of climate vari-
ables.

Moreover, for the stations for which we identified matches
from the CAMELS-DE/Caravan-DE datasets the users can
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access daily time series of several hydrometeorological vari-
ables and different products therein (Dolich et al., 2024;
Loritz et al., 2024). However, note that the water quality sta-
tions are not always located at the exact same location, please
refer to Sect. 3.2 and the details provided in the data reposi-
tory and data tables about the matches.

3.4 N and P input time series

3.4.1 Net N and P input from diffuse sources

Time series of catchment-scale N and P surplus
(kg yr−1 ha−1) from diffuse sources as shown in Fig. 4
are provided (file: input_N_P.csv). The catchment-scale
surplus corresponds to a soil surface budget and equals the
balance between nutrient inputs minus the output on agri-
cultural and non-agricultural areas at an annual resolution
normalized to the catchment area. Inputs include mineral
fertilizer, manure, other organic fertilizers (in the German
N surplus dataset only; such as sewage sludge, compost
and biogas digestate), atmospheric deposition, biological
fixation (N surplus only), weathering (P surplus only) and
seeds and planting material (in the German N surplus dataset
only). Outputs correspond to crop and pasture removal.

For N surplus, two different data sets were used: (1) A
Germany-wide county-scale data set as described in depth in
QUADICA v1 (Ebeling et al., 2022; Behrendt et al., 2003;
Häußermann et al., 2020), and (2) A European gridded data
set (Batool et al., 2022).

For the first source of N surplus, the N surplus time se-
ries on agricultural areas were updated with the German data
provided by Häußermann et al. (2020) for the period 1995–
2021, following Ebeling et al. (2022). However, we refined
the methodology to account for temporarily variant agricul-
tural areas, following Sarrazin et al. (2022). The data now
ranges from 1950–2021 (1950–2015 in the previous version).
We extended the N surplus from non-agricultural areas until
2021 by calculating the sum of atmospheric deposition and
biological N fixation as described in QUADICA v1. Note that
the values for transnational catchments have higher uncer-
tainties as they were calculated for the area within Germany
only (for the corresponding fraction, see f_areaGer).

For the second source of N surplus, N surplus time se-
ries were extracted from a gridded, European-scale dataset
(Batool et al., 2022) providing annual estimates of N sur-
plus from 1850 to 2019 at 5 arcmin (∼ 10 km at the equator)
resolution. It covers both agricultural and non-agricultural
soils. The N surplus time series across catchments from both
sources are compared in Fig. 4c, while a comparison of the
datasets can be found in Batool et al. (2022). Overall, there
is a correlation with r = 0.72 across all catchments, which
increases to r = 0.76 when considering only the catchments
with at least 70 %, 95 % or a 100 % of their catchment area
within Germany. Additionally, differences can arise from

methodological and scale differences as well as uncertainties
in general.

For P surplus, we used the European-scale dataset (Batool
et al., 2025) constructed with the same spatial and temporal
resolution and a similar methodology as the one of N surplus.
Both European datasets quantify uncertainties in key compo-
nents such as fertilizer use, manure allocation, and crop re-
moval. For QUADICA, we extracted the ensemble mean of
the total N and P surplus estimates to assess diffuse nutri-
ent inputs relevant at the catchment scale. For further details
on the data uncertainty, please refer to Batool et al. (2022,
2025).

3.4.2 N and P input from point sources from wastewater

While in QUADICA v1, point source data are available for
only one year (around 2016), QUADICA v2 provides time
series of N and P point source inputs from wastewater for
each catchment for the period 1950–2019. The data come
from the gridded dataset of Sarrazin et al. (2024) for Ger-
many. This data set provides estimates of N and P point
sources, accounting for wastewater emissions that are treated
in urban Wastewater Treatment Plants (WWTPs), including
domestic and industrial (indirect) emissions, as well as un-
treated domestic emissions collected in the sewer system.
These treated and untreated N and P emissions result from
human excreta, with additional emissions for P due to the
use of detergents. The data were constructed combining a
modelling approach and observational data of WWTP N and
P emissions. Sarrazin et al. (2024) provides ensemble runs
from two methods to spatially disaggregate the data to grid
resolution, that is, one based on population density and the
other one based on recent WWTP outgoing N and P emis-
sions. QUADICA v2 includes, for each catchment, two point
source time series corresponding to the respective ensemble
means of the two disaggregation approaches. For further de-
tails including time-dependent uncertainty of the two meth-
ods due to the shift in information detail and corresponding
representativeness, please refer to Sarrazin et al. (2024).

4 Catchment attributes

The catchment attributes describe the topography, land cover,
nutrient sources, lithology, and soils, and hydroclimate of
the catchments. The attributes provided in QUADICA v1
were partly updated and complemented. New attributes in-
clude the Strahler order, updated land cover fractions from
the CORINE Land cover dataset for 2018, the mean monthly
Leaf Area Index (LAI), the soil pH in water and in CaCl2-
solution as well as updated average nutrient source and hy-
droclimatic characteristics. Here, we describe only updated
and complemented characteristics; for a detailed description
of the previous characteristics, please refer to QUADICA v1
(Ebeling et al., 2022). The metadata table of all characteris-
tics in QUADICA v2 is provided in Appendix B2 and Ta-
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Figure 4. Nitrogen and phosphorus input time series from different sources shown as distributions across all catchments. In (a) point sources
data comes from Sarrazin et al. (2024) corresponds to the ensemble mean from two different spatial disaggregation approaches based on
population density (PointPopulation) and WWTP data (PointWWTP) (Sect. 3.4.2) and the ensemble mean of diffuse sources input of N from
Batool et al. (2022) and of P from Batool et al. (2025) (DiffuseBatool). In (b) diffuse source of N from Häußermann et al. (2020) is shown,
while in (c) the diffuse N input values for each year and each catchment of the two data sets (from the German and European data basis) are
compared, with the color indicating the fraction of catchment area within German boundaries (orange – ≥ 0.95, blue – < 0.95). Note that:
The boxes of the boxplots show the median, the 25th and 75th percentiles, while the whiskers extend up to 1.5× interquartile ranges with
outliers beyond this range; y axis scale is different for N and P.

ble S10 in the metadata of the data repository, while the at-
tributes data can be found in the file attributes.csv (see Ap-
pendix B1).

4.1 River network position

In the version 2 of QUADICA, we add the attribute of stream
Strahler order, derived from the EU Hydro data set (EEA,
2020). For each catchment, the largest Strahler order of
streams intersecting the catchment was selected and manu-
ally checked. The Strahler order provides context of the size
and position of the streams with headwater streams starting
with Strahler order 1, going up to the order 8 for the down-
stream part of the Elbe river. Most streams classify as order 3
(n= 417) and 2 (n= 321), i.e. small to medium sized rivers.

To further support network analyses, we link each station
to its next downstream station in the river network and count

the number of upstream stations, enabling spatially consis-
tent analyses and modelling of water quality patterns and
network connectivity. More than half of the stations (731)
have no station further upstream, while 95 have no further
downstream station.

4.2 Land cover

The fractions of land cover classes were calculated from the
CORINE Land cover map (as in QUADICA v1) but with the
newer data set for 2018 (version 2020_20u1; EEA, 2019a).
We both provide level 1 (artificial, agricultural, forested land,
wetland, and surface water cover) as well as level 2 data with
refined classes, as described in Appendix B.

For each catchment, the mean monthly LAI across the pe-
riod 2003–2020 was extracted from high-quality reprocessed
MODIS LAI data (Yan et al., 2024). Generally, the LAI is
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defined as the ratio of green leaf area to unit ground surface
area, which can be estimated from spectral remote sensing
data. The LAI serves as an indicator for e.g. photosynthe-
sis, evapotranspiration and rainfall interception capabilities
of vegetated areas.

4.3 Nutrient sources

Average inputs of nitrogen and phosphorus from diffuse and
point sources for each catchment are provided based on the
respective annual time series described in Sect. 3.4. We cal-
culated the mean values starting from 1991 (i.e. 1991–2021
in case of Häußermann and 1991–2019 in case of Batool
and Sarrazin), representing long-term average historic in-
puts since the year the Nitrate Directive was amended (EC,
1991). In addition, we calculated mean values over the last
decade starting in 2010, representing current nutrient pollu-
tion pressures. We also renewed the measure of N source
apportionment considering the data sets covering the same
spatial scale for Germany, i.e. using the updated data product
of the German-wide N surplus data and the newly added N
point source data set for both the long-term period and the
recent decade.

In addition, we provide catchment-averages of soil P bud-
get data from the European data set provided by Panagos et
al. (2022). The data set provides maps for P available for
crops and P total in agricultural topsoil (0–20 cm) based on
the Land Use and Cover Area frame Survey (LUCAS) as
raster data with 500 m resolution, as well as the soil P input
and output budget components over the period 2011–2019.
The input components inorganic fertilizers and manure are
provided as vector data at NUTS (Nomenclature of Territo-
rial Units for Statistics) 2 level, whereas the atmospheric de-
position and chemical weathering data are in raster format.
The extracted output components include the output through
crop harvesting and removal of crop residues, both provided
at NUTS2 level. Based on that we calculated the P surplus as
a balance component at the soil level. For raster data we cal-
culated the mean across each catchment, providing available
and total P on agricultural soils, and scaled it to the catchment
area by the fraction of agriculture based on CORINE land
cover data (EEA, 2016). To estimate the catchment-scale val-
ues from the data sets at NUTS2 level, we first intersected
them with the catchments, second calculated the fraction of
agriculture to scale the input and output components, and fi-
nally calculated area-weighted means for each catchment.

4.4 Soil properties

In addition to average total soil nutrient content in the topsoil
(0–20 cm), we added data on average soil pH. The topsoil
pH in water and CaCl2 0.01 M solution was derived from
the European soil chemistry map, which is based on the LU-
CAS database (Ballabio et al., 2019). Historically, soil pH
was often only measured in water. However, soil pH mea-

sured in a salt solution of CaCl2 or KCl is now preferred,
as it is less affected by electrolyte concentrations in the soil
and thus provides a more consistent measurement of fluctuat-
ing salt content (Minasny et al., 2011). For comparability, the
mean topsoil pH from both methods was extracted for each
catchment.

4.5 Hydroclimatic characteristics

The hydrologic characteristics such as mean discharge and
metrics of discharge variability were calculated from the
updated observed daily discharge data for 637 stations
(Sect. 3.2). We calculated long-term time series character-
istics starting in November 1990 (hydrological year of 1991)
until October 2020, i.e. covering 30 years if available. The
exact starting and ending dates used for calculation are pro-
vided along with the characteristics, as well as information
on missing values. For a list of characteristics, refer to Ap-
pendix B and the data repository. For those stations matching
with CAMELS-DE/Caravan-DE (Dolich et al., 2024; Loritz
et al., 2024), further hydrometeorological characteristics can
be accessed directly from these datasets.

5 Limitations

Although some of the previously discussed limitations have
been addressed, other limitations and uncertainties remain
present in QUADICA v2.

We significantly increased the number of stations with dis-
charge from daily time series and thus the number of stations
with high data availability (WRTDS-stations) more than dou-
bled to now 347 in total. Still, co-located water quantity and
quality stations remain limited with less than half of the sta-
tions covered (637 out of 1386 stations).

Unfortunately, one of the main drawbacks related to data
policies remains. More specifically, data handed over by fed-
eral state agencies cannot generally be handed over to third
parties, so raw data of water quality and quantity cannot be
provided here. We thus adhere to the provision of ready-to-
use aggregated data, which can still serve various purposes,
e.g. trend analysis (Ehrhardt et al., 2021) and long-term water
quality modelling (Nguyen et al., 2022).

Uncertainties related to transboundary catchments (be-
yond the German borders) were reduced for the diffuse nu-
trient input time series by integrating the European data sets
that have become available. However, the uncertainty for the
point source time series, which only includes German ter-
ritory, remains high and such stations may be excluded for
certain analysis. For the diffuse N inputs, both time series
from German as well as European data bases are provided
enabling direct comparison to assess reliability and uncer-
tainty related to the input time series.
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6 Data availability

The data set can be accessed in the data
repository under https://doi.org/10.4211/hs.
c2866cd416b94ca386deb5758834311f (Ebeling et al.,
2025). It includes all time series, catchment attributes and
summary data as well as detailed data description files.
Alongside with the repository, we provide an interactive R
Shiny application that allows users to check data coverage
and visualise selected time series. In addition, a browser-
based web app is available for exploring the data set through
the institutional UFZ GeoData Infrastructure, accessible at
https://web.app.ufz.de/gdi/wq-monitor/en (Ebeling et al.,
2026). Due to license agreements, the raw data itself cannot
be published but are deposited in a long-term institutional
repository (https://www.ufz.de/record/dmp/archive/16457,
Musolff et al., 2026).

7 Conclusions

This paper aims to provide an updated and extended ver-
sion of the QUADICA data set for Germany (Ebeling et al.,
2022) to enhance both the breadth and the depth (Gupta et
al., 2014). Therefore, we focused on describing the new ad-
ditions in more detail. The main novelties are:

– Extension of water quality and quantity time series for
four years up to 2020, covering severe drought years and
generally longer time series (Sect. 3.1 and 3.2)

– New water quality parameters were added including
those relevant for ecological impact studies such as oxy-
gen, water temperature and chlorophyll a concentra-
tions (Sect. 3.1)

– Linkage to recently published large-sample water quan-
tity data sets for Germany (CAMELS-DE by Loritz et
al., 2024 and Caravan-DE by Dolich et al., 2024) almost
doubled the number of water quality stations with con-
junctive continuous discharge data from 324 (version
1) to 637 (version 2), allowing for more comprehensive
studies of water quantity and quality (Sect. 3.2)

– The increase in stations with daily discharge data has
also increased the number of stations with high data
availability (version 2: 347, before: 140) with monthly
concentration time series derived from WRTDS models
(Sect. 3.1.2)

– Addition of diffuse phosphorus input and nitrogen and
phosphorus point source input time series for German
catchments (Sect. 3.4)

– Addition and update of catchment characteristics in-
cluding network position (Sect. 4)

These additions allow for further comprehensive investiga-
tions from drivers of nutrient pollution to water quality re-
sponses in streams, including ecological implications, and
conjunctive water quality and quantity assessment.
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Appendix A

Figure A1. Annual median concentrations observed at the 1386 water quality stations (described in Table 1, Fig. 1 and Sect. 3.1). The colors
are gradual from light to dark corresponding to the OBJECTID numbers, the grey line shows the median concentration across all annual
medians.
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Figure A2. Annual median O2 concentrations, water temperature, and chlorophyll a concentration observed at the 1386 water quality stations
(described in Table 1, Fig. 1 and described in Sect. 3.1). The colors are gradual from light to dark corresponding to the OBJECTID numbers.

Figure A3. WRTDS-model performances for each compound: (a) coefficient of determination R2 and (b) bias. Boxes highlight the median
and quartiles of each distribution. In (a) the number of time series is given on top for each compound. Colors according to the substance
group, i.e. nitrogen, phosphorus, organic carbon and major ions. Note that in (a) values of R2 < 0 were omitted, accounting seven catchments
for NH4-N, five for PO4-P, and one for Cl; in (b) values of bias <−30 were omitted, accounting five values of NH4-N and one value for Cl.
The users can define their quality criteria to subset the provided time series.

Appendix B

Table B1. Overview of files and metadata tables in the description file (Metadata_QUADICA_v2.pdf) of the data repository.

Table in metadata file Data file in repository Corresponding section in manuscript

S1 metadata_c.csv 3.1 general
S2 metadata_q.csv 3.2 general
S3 wrtds_summary.csv 3.1.2, 3.2.2
S4 c_annual.csv 3.1.1
S5 c_q_avg_months.csv 3.1.3, 3.2.3
S6 wrtds_monthly.csv, wrtds_annual.csv 3.1.2, 3.2.2
S7 q_annual.csv 3.2.1
S8 climate_monthly.csv 3.3
S9 input_N_P.csv 3.4
S10 (same as Table B2) attributes.csv 4
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Table B2. Catchment attributes, associated methods and original data sources used for calculating the attributes. It contains both attributes
from QUADICA v1 and the newly added and updated attributes. For more details see Sect. 4, data file: attributes.csv.

Category Variable Unit Description and method Data source

General OBJECTID – Unique identifier

Station – Station name

Area_km2 km2 Catchment area

f_AreaGer – Fraction of catchment area within Germany

Network strahler_order – Strahler order based on EU Hydro river network EEA (2020)

id_downstream – OBJECTID of next downstream station

n_upstream – Number of upstream stations

Topography dem.mean m a.m.s.l. Mean elevation of catchment, from DEM rescaled from 25 to 100 m
resolution using average

EEA (2013)

dem.median m a.m.s.l. Median elevation of catchment, from DEM rescaled from 25 to
100 m resolution using average

EEA (2013)

slo.mean ° Mean topographic slope of catchment, from DEM EEA (2013)

slo.median ° Median topographic slope of catchment, from DEM EEA (2013)

twi.mean – Mean topographic wetness index (TWI, Beven and Kirkby, 1979) EEA (2013)

twi.med – Median topographic wetness index (TWI, Beven and Kirkby, 1979) EEA (2013)

twi.90p – 90th percentile of the TWI as a proxy for riparian wetlands (follow-
ing Musolff et al., 2018)

EEA (2013)

ddhad km−1 Average drainage density of the catchment. Gridded drainage den-
sity is provided as the length of surface waters (rivers and lakes) per
area from a 75 km2 circular area around each cell centered.

BMU (2000)

DrainDens km−1 Average drainage density of the catchment, calculated from EU-
Hydro River Network and intersection with Catchment polygons
(contains several implausible values (often too small values due to
coarser resolution of river network))

EEA (2019b)

Land cover f_artif, f_artif_18 – Fraction of artificial land cover based on CORINE map from 2012
(f_artif) and 2018 (f_artif_18)

EEA (2016, 2019a)

f_agric, f_agric_18 – Fraction of agricultural land cover based on CORINE map from
2012 (f_agric) and 2018 (f_agric_18)

EEA (2016, 2019a)

f_forest, f_forest_18 – Fraction of forested land cover based on CORINE map from 2012
(f_forest) and 2018 (f_forest_18)

EEA (2016, 2019a)

f_wetl, f_wetl_18 – Fraction of wetland cover based on CORINE map from 2012
(f_wetl) and 2018 (f_wetl_18)

EEA (2016, 2019a)

f_water, f_water_18 – Fraction of surface water cover based on CORINE map from 2012
(f_water) and 2018 (f_water_18)

EEA (2016, 2019a)

f_urban, f_urban_18 – Fraction of Class 11 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_industry, f_industry_18 – Fraction of Class 12 Level 2 CORINE Land Cover EEA (2016, 2019)

f_mine, f_mine_18 – Fraction of Class 13 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_urban_veg, f_urban_veg_18 – Fraction of Class 14 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_arable, f_arable_18 – Fraction of Class 21 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_agri_perm, f_agri_perm_18 – Fraction of Class 22 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_pastures, f_pastures_18 – Fraction of Class 23 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_agri_hetero,
f_agri_hetero_18

– Fraction of Class 24 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_fores, f_fores_18 – Fraction of Class 31 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_scrub, f_scrub_18 – Fraction of Class 32 Level 2 CORINE Land Cover EEA (2016, 2019a)

f_open, f_open_18 – Fraction of Class 33 Level 2 CORINE Land Cover EEA (2016, 2019a)

lai_01, . . . , lai_12 Monthly mean leaf area index (LAI) as catchment average. The
number indicates the month from 1 for January to 12 for Decem-
ber.

Yan et al. (2024)

pdens inhabitants km−2 Mean population density CIESIN (2017)
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Table B2. Continued.

Category Variable Unit Description and method Data source

Nutrient sources Nsurp_Haussermann_from1991,
Nsurp_Haussermann_from2010

kg N ha−1 yr−1 Mean nitrogen (N) surplus per catchment from the German wide
data set based on Häußermann et al. (2020) during the period 1991–
2021 (from1991) and 2010-2021 (from2010). It includes the N sur-
plus on agricultural and non-agricultural areas. Details in Sect. 3.4.

Bach et al. (2006),
Bach and Frede (1998),
Bartnicky and
Benedictow (2017),
Bartnicky and Fagerli
(2006), Behrendt et
al. (1999), Cleveland et
al. (1999),
Häußermann et
al. (2020), Van Meter
et al. (2017)

Nsurp_Batool_from1991,
Nsurp_Batool_from2010

kg N ha−1 yr−1 Mean nitrogen (N) surplus per catchment from the European data
set (Batool et al., 2022) during the period 1991–2021 (from1991)
and 2010–2021 (from2010). It includes the N surplus on agricul-
tural and non-agricultural areas. Details in Sect. 3.4.

Batool et al. (2022)

Psurp_Batool_from1991,
Psurp_Batool_from2010

kg N ha−1 yr−1 Mean phosphorus (P) surplus per catchment from the European data
set (Batool et al., 2025) during the period 1991–2021 (from1991)
and 2010–2021 (from2010). It includes the P surplus on agricultural
and non-agricultural areas. Details in Sect. 3.4.

Batool et al. (2025)

Npoint_Pop_from1991,
Npoint_Pop_from2010

kg N ha−1 yr−1 Mean annual nitrogen (N) input from point sources with the
population disaggregated approach during the period 1991–2021
(from1991) and 2010–2021 (from2010).

Sarrazin et al. (2024)

Ppoint_Pop_from1991,
Ppoint_Pop_from2010

kg N ha−1 yr−1 Mean annual phosphorus (P) input from point sources with the
population disaggregated approach during the period 1991–2021
(from1991) and 2010–2021 (from2010).

Sarrazin et al. (2024)

Npoint_WWTP_from1991,
Npoint_WWTP_from2010

kg N ha−1 yr−1 Mean annual nitrogen (N) input with the wastewater treatment plant
disaggregated approach during the period 1991–2021 (from1991)
and 2010–2021 (from2010).

Sarrazin et al. (2024)

Ppoint_WWTP_from1991,
Ppoint_WWTP_from2010

kg N ha−1 yr−1 Mean annual phosphorus (P) input from point sources with the
wastewater treatment plant disaggregated approach during the pe-
riod 1991–2021 (from1991) and 2010–2021 (from2010).

Sarrazin et al. (2024)

f_Npoint_Pop_from1991,
f_Npoint_Pop_from2010

kg N ha−1 yr−1 Fraction of point source loads from total N input loads based on the
population disaggregated point source data (Npoint_Pop) during the
period 1991–2021 (from1991) and 2010–2021 (from2010).
f_Npoint =Npoint / (Npoint+ NsurpHaussermann)

f_Npoint_WWTP_from1991,
f_Npoint_WWTP_from2010

kg N ha−1 yr−1 Fraction of point source loads from total N input loads based on the
WWTP disaggregated point source data (Npoint_Pop) during the
period 1991–2021 (from1991) and 2010–2021 (from2010).

N_T_YKM2 t N km−2 yr−1 Mean N input from point sources summing all N emission values
provided in the EU domestic waste emissions data base

Vigiak et al. (2019,
2020)

P_T_YKM2 t P km−2 yr−1 Mean P input from point sources summing all P emission values
provided in the EU domestic waste emissions data base

Vigiak et al. (2019,
2020)

BOD_T_YKM2 t O km−2 yr−1 Mean five-days biochemical oxygen demand (BOD) input from
point sources summing all BOD emission values provided in the
EU domestic waste emissions data base

Vigiak et al. (2019,
2020)

N_T_YEW t N inh−1 yr−1 Calculated N input per person (from EU domestic waste emissions
data base)
N_T_YEW =N_T_YKM2 / nEW ∗ Area_km2

Vigiak et al. (2019,
2020)

P_T_YEW t P inh−1 yr−1 Calculated P input per person (from EU domestic waste emissions
data base)
P_T_YEW =P_T_YKM2 / nEW ∗ Area_km2

Vigiak et al. (2019,
2020)

nEW – Calculated number of inhabitants,
nEW=pdens ∗ Area_km2

CIESIN (2017)

n_UWWTP – Number of point sources from European data base (UWWTP data
base)

EEA (2017)

f_sarea – Fraction of source area in the catchment. Source areas were defined
as seasonal, perennial cropland and grassland land cover classes us-
ing a highly resolved land use map (Pflugmacher et al., 2018)

Source areas based on
Pflugmacher et
al. (2018)
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Table B2. Continued.

Category Variable Unit Description and method Data source

Nutrient sources het_h m−1 Slope of relative frequency of source areas in classes of flow dis-
tances to stream as a proxy for horizontal source heterogeneity. For
details refer to Ebeling, Kumar, et al. (2021)

Source areas based on
Pflugmacher et
al. (2018)

R2_het_h – Coefficient of determination of horizontal source heterogeneity
het_h

sdist_mean m Mean lateral flow distance of source areas to stream. For details
refer to Ebeling, Kumar, et al. (2021)

Source areas based on
Pflugmacher et
al. (2018)

het_v – Mean ratio between potential seepage and groundwater NO3-N con-
centrations as proxy for vertical concentration heterogeneity. For
details refer to Ebeling, Kumar, et al. (2021)

Knoll et al. (2020)

P_available_agri kg ha−1 Available P stock in the agricultural topsoil (0–20 cm) Panagos et al. (2022)

P_available Available P stock from agricultural topsoil scaled to the whole
catchment area, i.e. P_available_agri is scaled by the fraction of
agriculture (f_agric)

Panagos et al. (2022),
EEA (2016)

Lithology and soils f_calc – Fraction of calcareous rocks (Lithology level 4) BGR and UNESCO
(2014)

f_calc_sed – Fraction of calcareous rocks and sediments (Lithology level 4,
coarse and fine sediments aggregated)

BGR and UNESCO
(2014)

f_magma – Fraction of magmatic rocks (Lithology level 4) BGR and UNESCO
(2014)

f_metam – Fraction of metamorphic rocks (Lithology level 4) BGR and UNESCO
(2014)

f_sedim – Fraction of sedimentary aquifer (Lithology level 4, coarse and fine
sediments aggregated)

BGR and UNESCO
(2014)

f_silic – Fraction of siliciclastic rocks (Lithology level 4) BGR and UNESCO
(2014)

f_sili_sed – Fraction of siliciclastic rocks and sediments (Lithology level 4,
coarse and fine sediments aggregated)

BGR and UNESCO
(2014)

f_consol – Fraction of consolidated rocks (Lithology Level 5) BGR and UNESCO
(2014)

f_part_consol – Fraction of partly consolidated rocks (Lithology Level 5) BGR and UNESCO
(2014)

f_unconsol – Fraction of unconsolidated rocks (Lithology Level 5) BGR and UNESCO
(2014)

f_porous – Fraction of porous aquifer (code 1 and 2 of aquifer type) BGR and UNESCO
(2014)

f_porous1 – Fraction of porous aquifer (code 1 of aquifer type) BGR and UNESCO
(2014)

f_porous2 – Fraction of porous aquifer (code 2 of aquifer type) BGR and UNESCO
(2014)

f_fissured – Fraction of fissured aquifer (code 3 and 4 of aquifer type) BGR and UNESCO
(2014)

f_fiss1 – Fraction of fissured aquifer (code 3 of aquifer type) BGR and UNESCO
(2014)

f_fiss2 – Fraction of fissured aquifer (code 4 of aquifer type) BGR and UNESCO
(2014)

f_hard – Fraction of locally aquiferous and non-aquiferous aquifer (code 5
and 6 of aquifer type)

BGR and UNESCO
(2014)

f_hard1 – Fraction of locally aquiferous rocks (code 5 of aquifer type) BGR and UNESCO
(2014)

f_hard2 – Fraction of non-aquiferous rocks (code 6 of aquifer type) BGR and UNESCO
(2014)

f_inwater Fraction of inland water (code 200 of aquifer type) BGR and UNESCO
(2014)
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Table B2. Continued.

Category Variable Unit Description and method Data source

Lithology and soils f_ice Fraction of snow or ice field (code 300 of aquifer type) BGR and UNESCO (2014)

dtb.median cm Median depth to bedrock in the catchment Shangguan et al. (2017)

f_gwsoils – Fraction of water-impacted soils in the catchment (from soil map
1:250,000), including stagnosols, semi-terrestrial, semi-subhydric,
subhydric and moor soils

BGR (2018)

f_sand
f_silt
f_clay

– Mean fraction of sand in soil horizons of the top 100 cm
Mean fraction of silt in soil horizons of the top 100 cm
Mean fraction of clay in soil horizons of the top 100 cm

FAO/IIASA/ISRIC/ISSCAS/JRC
(2012)

f_clay_agri Mean fraction of clay in soil horizons of the top 100 cm on agricul-
tural land use (Class 2 Level 1 CORINE; see f_clay and f_agric)

FAO/IIASA/ISRIC/ISSCAS/JRC
(2012), EEA (2016)

WaterRoots mm Mean available water content in the root zone from pedo-transfer
functions

Livneh et al. (2015),
Samaniego et al. (2010), Zink
et al. (2017)

thetaS – Mean porosity in catchment from pedo-transfer functions Livneh et al. (2015),
Samaniego et al. (2010), Zink
et al. (2017)

soilN.mean g kg−1 Mean top soil N in catchment Ballabio et al. (2019)

soilP.mean mg kg−1 Mean top soil P in catchment Ballabio et al. (2019)

soilCN.mean – Mean top soil C/N ratio in catchment Ballabio et al. (2019)

soilpH_CaCl – Mean top soil pH from CaCl2 0.01 M solution in the catchment Ballabio et al. (2019)

soilpH_H2O – Mean top soil pH measured in water in the catchment Ballabio et al. (2019)

Hydrology Q_StartDate YYYY-MM-DD Starting date of Q time series used for calculating hydrological in-
dices (from November 1990, if possible and at least 3 years of data
(all 637 stations fulfilled that))

Q_EndDate YYYY-MM-DD End date of Q time series used for calculating hydrological indices
(up to October 2020 if available)

Q_gaps boolean If there are missing discharge values (a gap) in between
Q_StartDate and Q_EndDate, the value is 1; without any gap the
value is 0.

Q_nNAs – Number of missing values in between Q_StartDate and Q_EndDate.

Q_mean m3 s−1 Mean discharge (data for the period Q_StartDate-Q_EndDate)

Q_median m3 s−1 Median discharge (data for the period Q_StartDate-Q_EndDate)

Q_spec mm yr−1 Mean annual specific discharge (data for the period Q_StartDate-
Q_EndDate)

Q_CVQ – Coefficient of variation of time series of dailyQ (data for the period
Q_StartDate-Q_EndDate)

Q_medSum m3 s−1 Median summer discharge (months May–October) (data for the pe-
riod Q_StartDate-Q_EndDate)

Q_medWin m3 s−1 Median winter discharge (months November–April) (data for the
period Q_StartDate-Q_EndDate)

Q_Sum2Win – Seasonality index of Q, as ratio between median summer and me-
dian winter Q (data for the period Q_StartDate-Q_EndDate)

BFI – Base flow index calculated according to WMO (2008) with lfstat
package (version 0.9.4) in R (data for the period Q_ StartDate-
Q_EndDate)

flashi – Flashiness index of Q as the ratio between 5 % percentile and
95 % percentile of Q time series (data for the period Q_StartDate-
Q_EndDate)
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Table B2. Continued.

Category Variable Unit Description and method Data source

Climate P_mm mm yr−1 Mean annual precipitation (period 1986–2015) Cornes et al. (2018)

P_SIsw – Seasonality of precipitation as the ratio between mean summer
(June–August) and winter (December–February) precipitation (pe-
riod 1986–2015)

Cornes et al. (2018)

P_SI – Seasonality index of precipitation as the mean difference between
monthly averages of daily precipitation and year average of daily
precipitation (period 1986–2015)

Cornes et al. (2018)

P_lambda d−1 Mean precipitation frequency λ as used by Botter et al. (2013) with
rain days for precipitation above 1 mm (period 1986–2015)

Cornes et al. (2018)

P_alpha mm d−1 Mean precipitation depth as used by Botter et al. (2013) with rain
days for precipitation above 1 mm (period 1986–2015)

PET_mm mm yr−1 Mean annual potential evapotranspiration (period 1986–2015) Cornes et al. (2018)

AI – Aridity index as AI=PET_mm/P_mm (period 1986–2015) Cornes et al. (2018)

T_mean ° C Mean annual air temperature (period 1986–2015) Cornes et al. (2018)
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