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Abstract. Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEOF) is an invasive forb pervasive across the
Northern Great Plains in the United States, often linked to traits such as wide adaptability, strong stress tolerance,
and high productivity. Despite MEOF’s prevalent ecological-economic impacts and importance, knowledge of
its spatial distribution and temporal evolution is extremely limited. Here, we aim to develop a spatial database of
annual MEOF abundance (2016–2023) across western South Dakota (SD) at 10 m spatial resolution by applying
a generalized prediction model on Sentinel-2 imagery. We collected in situ quadrat-based total vegetation cover
with MEOF percent cover estimates across western SD from 2021 through 2023 and synthesized with other avail-
able percent cover estimates (2016–2022) of several federal, state, and non-governmental sources. We conducted
drone overflights at 14 sites across Butte County, SD in 2023 to develop very high spatial resolution (4–6 cm)
and accurate MEOF cover maps by applying a random forest (RF) classification model. The field-measured and
uncrewed aerial system (UAS) derived MEOF percent cover estimates were used to train, test, and validate a RF
regression model. The predicted MEOF percent cover dataset was validated with UAS-derived percent cover in
2023 across four sites (out of 14 sites). We found that the variation in the Normalized Difference Moisture Index
and Distance to roads were among the top predicting variables in predicting MEOF abundance. Our predictive
model yielded greater accuracies with an R2 of 0.76, RMSE of 15.11 %, MAE of 10.95 %, and MAPE of 1.06 %.
We further validated our 2023 predicted maps using the 3 m resolution PlanetScope imagery for regions where
field samples could not be collected in 2023. The database of MEOF abundance showed consecutive years of
average or above-average precipitation yielded a higher MEOF abundance across the study region. The database
could assist local land managers and government officials pinpoint locations requiring timely land management
to control the rapid spread of MEOF in the Northern Great Plains. The developed invasive MEOF percent cover
datasets are freely available at the figshare repository (https://doi.org/10.6084/m9.figshare.29270759.v1, Saraf
et al., 2025).
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1 Introduction

Invasive plant species pose severe threat on ecosystem struc-
ture and functions (Rai and Singh, 2020). In particular, the
Northern Great Plains (NGP) grasslands in the United States
are being threatened by long-established and newly arrived
invasive plant species and loss of diversity (Hendrickson et
al., 2019). These invasive species compete against native
species, diminishing ecological goods and services and de-
grade vulnerable grassland ecosystems (Gaskin et al., 2021).
Furthermore, the ecosystem responses of grasslands in gen-
eral including NGP are becoming increasingly variable in
space and time due to the myriad influences from climate
change (Bernath-Plaisted et al., 2023; Cleland et al., 2013;
Zhang et al., 2022). These conditions accelerate and con-
tribute to the difficult to predict dynamics of invasive plant
species that often are spread unintentionally (Spiess et al.,
2020). The NGP comprises public, tribal, and private lands,
resulting in a patchwork of management goals and invasive
plant control strategies (Langholz, 2010). Ecological stud-
ies that operate within restricted spatial boundaries or plot-
based datasets are advantageous in providing comprehensive
insights into local invasion scenarios (Martins et al., 2016).
However, previous studies often lack important spatiotempo-
ral data on invasion dynamics, such as changes in species
cover, spread rates, and environmental drivers, making it dif-
ficult to fully understand invasion processes that unfold con-
tinuously across space and time (Larson et al., 2020). Devel-
oping timely updates of the spatial and temporal spread of
invasive plant species therefore have been increasingly urged
to effectively and efficiently address the challenges posed by
invasive species in changing habitats is an urgent need (Van
Rees et al., 2022).

In general, understanding the spatio-temporal patterns of
a biennial plant species that are either ephemeral in nature
or bloom in specific years is challenging due to their pheno-
logical cycle. Yellow sweetclover (Melilotus officinalis (L.)
Lam., MEOF), a common invasive legume in the NGP, ex-
emplifies this biennial phenology. There has been little to
no literature on mapping blooms of such plant species un-
til the 2010s. In recent years, MEOF has attracted attention
from land managers in South Dakota (SD) as it is becom-
ing a prominent invasive species in the NGP region. We re-
fer to years with MEOF super blooms (Preston et al., 2023)
in the Dakota region as “sweetclover years”. MEOF is a
nitrogen-fixing, biennial legume forb native to Eurasia (Luo
et al., 2016). It has noticeable pea-like, strongly scented yel-
low flowers arranged in a narrow raceme, which can grow
more than 4 cm long (Varner, 2022). The ability of MEOF
to establish and grow in a wide range of temperature, pre-
cipitation, and soil conditions has naturalized its presence in
the NGP region (Kan et al., 2023). It is often one of the first
plants to appear in disturbed or open sites, including pastures,
agricultural fields, roadsides, rangelands, and open slopes in
badlands, prairies, or floodplains (Wolf et al., 2003).

Invasive forbs such as MEOF develop yellow inflores-
cences that are prominent during flowering time and can be
detected using 10 m resolution Sentinel-2 derived reflectance
and quantitative indices, provided the plants meet the op-
timal size or developmental stage for detection (Saraf et
al., 2023). Previous studies have shown that multi-temporal
analysis using remote sensing data can be a powerful tool
for addressing challenges in monitoring invasive species dy-
namics (Bradley, 2014; Mouta et al., 2023). For example,
Sentinel-2 imagery with 10 m spatial resolution has sufficed
for mapping a range of invasive plant species (Kattenborn
et al., 2019). In addition, the high temporal resolution of
the Sentinel-2 can help capture phenological characteris-
tics and identify species with pronounced flowering peri-
ods. However, there have been relatively very few efforts to
map MEOF in the NGP due, in part, to its unreliable an-
nual aboveground establishment resulting in low to moder-
ate abundance during drier years complicating attempts to
map its distribution. Moreover, its yellow flowers can be eas-
ily mistaken in remote sensing imagery for other yellow-
flowered forbs such as yellow salsify, black eyed susan, west-
ern wallflower, annual sunflower or leafy spurge. MEOF
tends to grow in dense patches and invade vast areas with
the capability of growing up to 2 m tall when ample moisture
is available during its growth period. In the recent wet year
of 2019, MEOF thrived across the NGP, resulting in mini-
mal spatial overlaps with other yellow flowered plants and
enabling researchers to map its spatial distribution. Specific
years with an enhanced bloom of MEOF, such as 2019 and
2023, were easily distinguished in image time series due to
their extensive spread, tall canopy, and prolific yellow flow-
ers during summer (Preston et al., 2023). Such climate con-
ditions create an opportunity to collect more ground samples
to increase accurate mapping of MEOF distribution.

In traditional remote sensing, in situ reference data are re-
quired to detect and validate complex patterns and ecolog-
ically relevant processes (Mayr et al., 2019). The reference
data collection is usually labor-intensive, time-consuming,
and logistically difficult across large spatial areas. Uncrewed
Aerial Systems (UAS), combined with high-resolution mul-
tispectral or hyperspectral cameras, offer a promising, user-
friendly, and low-cost alternative data source to in situ data
collection (Horstrand et al., 2019; Li and Tsai, 2017; Rako-
toarivony et al., 2023). Despite the limited spatial extent of
each swatch, UAS still enables the acquisition of spatially
continuous information on species cover with ultra-high spa-
tial resolution (e.g., ground sampling distance of < 10 cm)
and temporal flexibility (Turner and Wallace, 2013). Numer-
ous studies have demonstrated the potentials of UAS data as
an alternative source to supplement or even replace the tradi-
tional sampling methods of detecting species presence in the
field (Alvarez-Taboada et al., 2017; Baena et al., 2017; Kat-
tenborn et al., 2019). UAS data can be used to train models
that employ fine-to-medium spatial resolution data, such as
Sentinel-2 imagery, to map invasives at regional scales (Pre-
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ston et al., 2023), despite a small survey extent (Colomina
and Molina, 2014).

Previously, we lacked sufficient statistical power and com-
prehensive spatial coverage due to small sample size to con-
duct regional scale mapping for the 2019 MEOF blooms
(Saraf et al., 2023). Preston et al. (2023) used an ensemble
of MaxEnt models to map MEOF fractional cover for 2019
using UAS data at 16 sites across three counties in SD and
Montana using satellite imagery trained from regional UAS
imageries. Our team also examined the contribution of var-
ious biophysical factors to MEOF and tested different ma-
chine learning algorithms to determine the best algorithm to
map the MEOF for 2019 (Saraf et al., 2023). We found that
the random forest (RF) algorithm (Breiman et al., 1984) out-
performed other machine learning algorithms in mapping the
distribution of invasive MEOF cover. However, our results
also indicated a significant underestimation of the percent
cover due to the limited sample size. We, therefore, aimed to
increase the sampling size by collecting quadrat-based per-
cent cover and UAS imagery over MEOF blooms and syn-
thesizing estimates from various state and federal sources
to overcome uncertainties and the limitation of underestima-
tion.

We endeavored to optimize the utilization of UAS and
Sentinel-2 data to create a reference percent cover dataset,
which was then used as a training and validation inputs for
a RF modeling framework. This approach helped develop
an annual time-series percent cover database for the inva-
sive MEOF. Developing a generalized model that can be ap-
plied across space and time allows for efficient mapping of
irruptive invasive plant species, which often bloom episodi-
cally and occur in clustered patches. Such distributions are
often underrepresented in conventional field survey datasets,
including our ground reference data, because random sam-
pling rarely captures them adequately. Effective management
of plant invasives such as MEOF will require spatially con-
tinuous, multitemporal maps of species occurrence and cover
as its first step. Building such a database for invasive MEOF
can help to comprehend the spatial and temporal dynamics
of its invasion patterns (Müllerová et al., 2017). Therefore,
our objectives are threefold: (1) to develop a generalized pre-
diction model using field-collected and UAS-derived percent
cover samples along with Sentinel 2 imagery to map the frac-
tional cover of invasive MEOF across western SD; (2) to
compare and validate our model-derived percent cover es-
timates against the drone-derived estimates; and (3) to fur-
ther validate the predicted yellow sweetclover maps using
PlanetScope imagery, which provides higher temporal res-
olution and independent data for cross-sensor validation, and
to assess MEOF cover in regions lacking UAS coverage. We
ask two research questions. First, what are the spatiotemporal
distributions of invasive MEOF across western SD? Second,
are the spatiotemporal distributions of MEOF explained by
precipitation in bloom years? For land managers, it is crucial
to both understand the current distribution of MEOF in re-

cent years and appreciate its invasion dynamics, to curb fur-
ther spread of MEOF into previously unaffected areas. The
developed invasive species cover database would therefore
help to design mitigation strategies effectively and promote
the proactive conservation of grassland ecosystems.

2 Methods

2.1 Study Area

Western SD is located within the Upper Missouri River
Basin and is a part of the NGP, characterized by the Black
Hills along with prairie at the southwestern corner, along
with high buttes, canyons, and wide expanses of nearly
level tablelands (Fig. 1). This region experiences a semi-
arid climate with high interannual variability in precipita-
tion, averaging around 300–400 mm (Agnew et al., 1986).
About three-fourths of the precipitation occurs during sum-
mer, and snowfall ranges from 650 to 5000 mm through-
out western SD (Paul et al., 2016). Despite the substan-
tial conversions of rangeland to cultivated lands in the US
Midwest, most of the central and western SD landscapes
are still dominated by rangelands. The landscape of west-
ern SD is a mosaic of mixed-grass prairie interspersed with
cultivated lands. The mixed grass prairie shifts into short-
grass and sagebrush grassland in the extreme western portion
of the state. The dominant grasses include western wheat-
grass (Pascopyrum smithii (Rydb.) Á. Löve), needle and
thread (Hesperostipa comata (Trin. & Rupr.) Barkworth),
little bluestem (Schizachyrium scoparium (Michx.) Nash),
prairie sandreed (Calamovilfa longifolia (Hook.) Scribn),
green needlegrass (Nassella viridula (Trin.) Barkworth), blue
grama (Bouteloua gracilis (Willd. ex Kunth.) Lag. ex Grif-
fiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland
sedges (Carex spp. L.), prairie threeawn (Aristida oligan-
tha Michx.), and fringed sagewort (Artemisia frigida Willd.)
increase with disturbance (Owensby and Launchbaugh,
1977; Reinhart et al., 2019; Sanderson et al., 2015). Sev-
eral perennial forbs such as western wallflower (Erysimum
asperum (Nutt.) DC.), Canada thistle (Cirsium arvense (L.)
Scop.)), leafy spurge (Euphorbia esula L.), purple prairie
clover (Dalea purpurea Vent. var. purpurea) and shrubs such
as big sagebrush (Artemisia tridentata Nutt.), broom snake-
weed (Gutuerrezia sorothrae Pursh) and leadplant (Amor-
pha canescens Pursh) are prevalent. The most common inva-
sive grasses include Kentucky bluegrass (Poa pratensis L.),
smooth brome (Bromus inermis Leyss.), cheatgrass (Bromus
tectorum L.), and curlycup gumweed (Grindelia squarrosa
(Pursh) Dunal). Yellow salsify (Tragopogon dubius Scop.)
and yellow sweetclover (Melilotus officinalis (L.) Lam.) are
common invasive annual-biennial forbs in this region (John-
son and Larson, 1999).

https://doi.org/10.5194/essd-18-655-2026 Earth Syst. Sci. Data, 18, 655–674, 2026



658 S. Saraf et al.: MEOFcoverWesternSD2016–2023

Figure 1. The top panel shows field observations used in this study (n= 22 972) collected from 2016 to 2023 across the Northern Great
Plains, including our own surveys as well as publicly available datasets such as BLM AIM and NEON (© Esri, Maxar, Earthstar Geographics,
and the GIS User Community). The bottom panel shows the UAS training and validation sites overlaid on the National Land Cover Database
(NLCD, 2019) land cover map with county boundaries of western South Dakota.

2.2 UAS Survey

Ultra-high spatial resolution UAS imagery were acquired for
14 sites during a field campaign from 9 to 15 July 2023. The
flight locations were randomly selected across Butte County
in western South Dakota to capture large, continuous patches
of MEOF, ensuring that the imagery encompassed the full
range of percent cover within each site, including areas with-
out MEOF. We collected multispectral (Visible, RedEdge,
and Near InfraRed) imagery using a MicaSense RedEdge-
MX (MicaSense Inc., 2015) camera deployed on a DJI Ma-
trice 200 UAS platform. The radiometric calibration of the
sensor was implemented by converting the digital values of
the orthomosaic to the values of surface spectral reflectance
by Micasense calibration panel. The area covered for each

flight ranged between 1 and 10 ha, depending on the patch
size of the MEOF invasion (Table S7). The imagery was
captured with at least 80 % forward and 75 % side overlap
(Table 1). We flew the flight at an average altitude of 30–
60 m above ground, ensuring a spatial resolution of at least
3 cm. We used the recorded inertial measuring unit (IMU)
and Global Navigation Satellite System (GNSS) module of
the UAS along with Real-Time Kinematic (RTK) positioning
(∼ 1 cm accuracy) to guide the drone by placing four Ground
Control Points (GCPs) at each site to ensure the geomet-
ric accuracy of the images taken by the drone matched the
Sentinel-2 imagery. Several studies have demonstrated that
using GCPs can lead to higher accuracies in the processed
orthoimages than direct georeferencing (Jurjević et al., 2020;
Padró et al., 2019). Moreover, GCPs help advance the up-
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Table 1. Details of the drone flights covered in sample collection
for summer 2023.

Site Date Spatial Area Sampling
Resolution (m) (ha)

1 9 July 0.06 10.5 Validation
2 9 July 0.03 1.9 Training
3 10 July 0.04 4.9 Training
4 10 July 0.04 4.1 Training
5 11 July 0.07 30.5 Training
6 11 July 0.04 3.2 Training
7 12 July 0.05 7.2 Training
8 12 July 0.03 3 Training
9 13 July 0.04 4.9 Validation
10 13 July 0.04 4.6 Validation
11 14 July 0.03 4.2 Training
12 14 July 0.05 7.2 Training
13 15 July 0.05 10.5 Training
14 15 July 0.04 4.7 Validation

scaling of UAS to Sentinel-2 imagery with the best alignment
and minimum shift (Gränzig et al., 2021). Therefore, we pro-
cessed the UAS images in Pix4D mapper (Pix4D S.A., 2022),
and georeferenced the orthomosaics using the GPS coordi-
nates of plot center and corner targets collected with Trimble
Catalyst DA2 GNSS receiver kit (Trimble Inc., 2025) with a
precision level of 1 cm accuracy. All 14 sites captured the ob-
served range of MEOF percent cover, but they differed in to-
tal area covered by MEOF presence and the number of sam-
ples derived from each site. To ensure a balanced split, the
10 smaller sites were randomly selected for training the RF
model, while the remaining four larger sites were reserved
for validation. This approach ensured that both the training
and validation sets contained approximately equal numbers
of samples, providing an unbiased assessment of model per-
formance.

2.3 Field measurements and sample collection

We used a total of 22 972 MEOF percent cover samples
collected across western South Dakota rangelands and sur-
rounding regions during 2016–2023 (Table S1 in the Sup-
plement). This included 5283 samples derived from UAS
imagery collected during the peak blooming months (June–
August) in 2023 (details in Sect. 2.2 and 2.4) across west-
ern South Dakota rangelands. In addition, 17 689 MEOF
cover samples were retrieved and synthesized from multi-
ple federal, state, and non-governmental sources for 2016–
2022 across four states: South Dakota, North Dakota, Mon-
tana, and Wyoming (Fig. 1a; Table S1). Although the his-
torical samples were obtained using different field proto-
cols, they were integrated with our field-collected data to in-
crease spatial and temporal coverage. These sources included
RCMAP data from the USGS Center for Earth Resources
Observation & Science, USGS Northern Rocky Mountain

Science Center (Montana), the Bureau of Land Manage-
ment (BLM) database, the Northern Great Plains Inventory
& Monitoring Network, the National Ecological Observa-
tory Network (NEON), and the Montana Natural Heritage
Program. The source, year-wise distribution, and frequency
of the samples are summarized in Tables S2 and S3. At the
10 m mapping scale, this compilation provided a suitable ref-
erence for model training and validation. Our field-collected
surveys recorded the plant species composition, including
dominant species and percent cover of all species present,
using the conventional plot-based quadrat method. Within
each 30 m× 30 m plot, a minimum of three 0.5 m× 0.5 m
quadrats were sampled. Percent cover for each plot was cal-
culated as the average of the quadrat measurements, with
each quadrat considered representative of its portion of the
plot. Within each quadrat, we estimated percent cover of
MEOF by averaging the grids it occupied, allowing fine-
resolution observations to be scaled up to the plot level while
capturing spatial variability (John et al., 2018). We recorded
flowering and non-flowering MEOF individuals separately.
The separation was done to document phenological variabil-
ity and population structure, which can be useful for un-
derstanding interannual flowering dynamics in future anal-
yses. However, only the flowering MEOF percent cover was
used for remote sensing–based mapping, as flowering indi-
viduals exhibit a distinct spectral signal that can be con-
sistently detected in aerial and satellite imagery. This ap-
proach ensured that the satellite-derived cover estimates cor-
responded specifically to the detectable, flowering compo-
nent of MEOF. For 2023, the GPS locations of the field-
collected quadrat samples were utilized as the ground con-
trol points for enhancing the processing of drone imagery to
derive percent cover samples.

2.4 UAS derived yellow sweetclover cover

MEOF is prominently visible in orthomosaics using a com-
bination of green, green, and blue bands. This prominence
occurs because yellow flowers of MEOF increase reflectance
of green while slightly decreasing reflectance of blue color
(Sulik and Long, 2016). We first visually delineated several
polygons of MEOF on the georeferenced orthomosaics using
these band combinations. We then used 3000 absence and
3000 presence samples derived from these polygons to train
a machine learning classification model and classify MEOF
presence pixels from other land cover pixels. We used five
spectral bands (Blue, Green, Red, RedEdge, and NIR) and
the Normalized Difference Yellowness Index (NDYI) to clas-
sify the yellow-flowered blooms in the imagery. The equation
for NDYI is provided in Table S4. We implemented an RF
classification model on randomly split 80 : 20 ratio samples
to segregate MEOF pixels from other pixels. We tuned the
RF hyperparameters (mtry= 4, ntrees= 1500) to optimize
model predictive performance, specifically by minimizing
the Root Mean Square Error (RMSE) using 10-fold, 5-repeat
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cross-validation. We assessed model efficiency both visually,
using green–green–blue false color composites, and quantita-
tively, by calculating Overall Accuracy and the Kappa coeffi-
cient (Landis and Koch, 1977). We converted the continuous
RF predictions to binary presence/absence using a threshold
of 0.5, assigning pixels with predicted probability≥ 0.5 as
MEOF presence (assigned as 1) and pixels < 0.5 as absence
(assigned as 0) (Josso et al., 2023; Steen et al., 2021). We cal-
culated the area-based weighted average of MEOF classified
pixels from the total number of pixels within a 10m pixel to
derive MEOF percent cover at 10 m resolution. The percent
cover of MEOF within each 10 m resolution pixel was calcu-
lated as the proportion of classified MEOF pixels within that
10 m area.

We collected and averaged minimum of three field sam-
ples per 30 m× 30 m plot at each drone site in 2023. Over-
all, we had 30 observed percent cover samples collected
across 14 drone sites. We employed a jackknife resampling
procedure using leave-one-out cross-validation to calibrate
RF classification-derived percent cover estimates of MEOF
against field-observed percent cover values. For each iter-
ation, one observation was excluded from the dataset, and
a linear regression model was fitted using the remaining
field samples. The excluded field observation was then pre-
dicted using the fitted model, based solely on its derived
cover value. This process was repeated for all observations,
resulting in a set of cross-validated predictions for the en-
tire dataset. Calibration accuracy was assessed by comparing
predicted and observed values using root mean square er-
ror (RMSE) and the correlation coefficient of determination
(R2). We used linear regression to calibrate RF-derived per-
cent cover estimates because it provides a simple and trans-
parent way to correct systematic biases. To ensure unbiased
predictions and minimize overfitting, we applied a leave-one-
out jackknife procedure, where each observation was pre-
dicted independently of the data used to fit the model (Wolter,
2007). We then combined field and UAS-derived samples
from 2016–2023, resulting in a total of 22 972 MEOF per-
cent cover samples for the regional-scale regression analysis
described in Sect. 2.6 and shown in Fig. 2.

2.5 Satellite-derived predictor variables

We obtained 64 predictor variables with spatial resolutions
ranging between 10 m and 1 km. We derived maximum value
composites of various indices and tasseled caps for the peak
summer months with a maximum of 10 % cloud cover to en-
hance the spectral information of the Sentinel 2A imagery
(Table S4) (Gascon et al., 2017). We also derived the co-
efficient of variation (standard deviation/mean) composites
to represent the variability of the indices or the tasseled cap
components across the summer months. For variables af-
fected by high cloud cover or limited image availability in
the seasonal composites, we used the standard deviation as
an alternative to the coefficient of variation.

For climate predictors, we utilized the Daymet monthly
and annual dataset (Version 4R1) available at 1 km spatial
resolution (Thornton et al., 2022). From the monthly data,
we calculated mean annual precipitation (MAP) as the sum
of monthly precipitation values and mean annual temperature
(MAT) as the average of the monthly mean temperatures for
each year corresponding to the MEOF cover samples. To ac-
count for potential biennial effects, we also calculated bien-
nial precipitation (MAP2) and biennial temperature (MAT2)
by combining the values from the sample year with those of
the preceding year (e.g., total precipitation across both years
and average temperature across both years). We also com-
puted seasonal composites of precipitation and mean tem-
perature for each year separately corresponding to the MEOF
cover samples, including spring (March–May; P_MAM and
T_MAM) and summer (June–August; P_JJA and T_JJA).We
acquired percent snow cover at 500m resolution from the
MODerate resolution Imaging Spectroradiometer (MODIS)
MOD10A1 V6.1 snow cover product (Hall et al., 2015).
Snow depth and snow water equivalent were acquired at
1 km spatial resolution from NOAA National Weather Ser-
vice’s SNOw Data Assimilation System (SNODAS) (Barrett,
2004). We computed mean composites for all snow variables
during the winter (Dec-Feb).

For soil properties, we obtained soil pH, texture (sand,
silt, clay, and bulk density), volumetric water content, sat-
urated water content, and soil organic matter from the Po-
laris database (Chaney et al., 2019) available at 30 m resolu-
tion. We used the National Elevation Dataset from the NASA
Earthdata portal available at 10 m resolution to derive eleva-
tion, slope, aspect, hillshade, terrain wetness index, and ter-
rain roughness index. We used a land cover/use map to mask
out non-rangeland areas before implementing the regression
model to emphasize the habitat of MEOF in the western SD
rangelands. The land cover/use data were derived at 30 m res-
olution from the 2019 National Land Cover Database (NLCD
2019, Dewitz, 2021). We also derived the distance to devel-
oped/urban areas, including non-primary roads as a proxy
for proximity to roads. Lastly, the distance to stream product
was derived from the national hydrography dataset developed
by the U.S. Geological Survey National Geospatial Program.
All the variables were acquired from the Google Earth En-
gine (GEE) platform and processed in ArcMap 10.8.1. All
variables were resampled to 10 m resolution and projected in
Albers Equal Area projection and WGS 84 datum. We used
bilinear interpolation for predictor variables to preserve data
integrity during resampling. A detailed summary of all the
independent variables utilized in this study is provided in Ta-
ble S5. The method workflow for predicting the invasive yel-
low sweetclover percent cover for 2016–2023 is illustrated in
Fig. 2.
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Figure 2. Workflow to predict invasive yellow sweetclover percent cover at 10 m resolution using UAS and ancillary data for 2016–2023.

2.6 Regional MEOF cover regression model

We compiled a total of 22 972 MEOF percent cover sam-
ples for the regional-scale regression analysis. After remov-
ing duplicate records (samples from different sources falling
within the same pixel and year), 20 275 unique samples re-
mained. Most machine learning models such as RFs work
on the assumption that the samples are independent and ran-
domly distributed. If this assumption is violated due to spa-
tial autocorrelation, model performance metrics (like accu-
racy, R2) can be overestimated (Liu et al., 2022). To deal
with this issue, we calculated Global Moran’s I with a min-
imum distance of 50 m on the MEOF percent cover samples
to test for spatial autocorrelation between the samples within
each year (Moran, 1950). We implemented permutation test
for the samples to generate the null distribution and assess
the significance of the Moran’s I . A 50 m threshold is equiv-
alent to five pixels which helps in mitigating the influence of
immediate neighbors, which often exhibit strong spatial au-
tocorrelation due to their proximity. By setting this distance,
we aimed at reducing local clustering while ensuring a de-
gree of spatial independence among samples, which is crit-
ical for robust estimation of global spatial autocorrelation.
Similar buffer distances have been used in previous ecolog-
ical studies to distinguish between fine-scale spatial depen-
dence and broader spatial patterns, particularly in heteroge-
neous landscapes where plant cover could be spatially clus-
tered at short ranges (Baumann et al., 2025). We removed the
spatially correlated samples and later used 11 235 observed

samples to develop a generalized percent cover regression
model using the RF algorithm. We constructed a predictor
variable database by extracting observed sample points from
the satellite-derived predictor variables (rasters) for training
the RF model. We implemented a spearman correlation co-
efficient (r) threshold of 0.8 to remove highly correlated pre-
dictor variables (Dubuis et al., 2011; Stohlgren et al., 2010;
Zar, 2005). We then implemented a Recursive Feature Elimi-
nation (RFE) method with 5-repeat, 10-fold cross-validation
to determine the top predicting variables (Breiman, 1984;
Guyon et al., 2002). The observation samples were split in
an 80 : 20 ratio for training and testing sets using the boot-
strap method with replacement. All the variables were scaled
and centered before the development of the prediction model.
We implemented hyperparameter tuning (mtry and ntrees)
and used the mean absolute error (MAE), mean absolute per-
centage error (MAPE), root mean square error (RMSE), and
the coefficient of determination (R2) metrics to evaluate the
model performance during the testing phase. The MEOF per-
cent cover was predicted using the best generalized model
and the best statistical metrics. We used the reference of the
habitat suitability map from Saraf et al., (2023) to mask out
the low probability of occurrence regions and to develop final
MEOF prediction maps. All the analyses were performed us-
ing the “caret” package in the RStudio environment (Kuhn,
2015).
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3 Results

3.1 Yellow sweetclover cover from UAS imagery

We used 6000 training points to train and test an RF clas-
sification model by splitting them to an 80 : 20 ratio, ob-
taining 4795 training and 1205 testing samples. The devel-
oped RF classification model exhibited an overall accuracy
of 98.76 % and kappa coefficient of 0.97 in distinguishing
flowering MEOF pixels. The confusion matrix for the clas-
sification model is provided in Table S6. The RF classifica-
tion accuracies can be visually validated in three representa-
tive UAS sites with MEOF blooms (Fig. 3). The estimated
area covered with the classified MEOF presence pixels de-
rived from the RF classification model can be found in Ta-
ble S7. We generated 5283 percent cover samples from UAS,
which were divided into 2736 samples for training sites and
the remaining 2547 samples for validating the RF regression
model. The samples were segregated based on ten training
and four validation locations. We implemented the jackknif-
ing to calibrate the derived MEOF cover. The cross-validated
predictions showed good agreement with the field observed
samples with the R2 of 0.68 and RMSE of 6.24 %, suggest-
ing relatively low average prediction error.

3.2 Regional-scale Random Forest predictions of
MEOF cover

We used the spearman correlation test (r) on all 64 indepen-
dent variables with a threshold of 0.8 and selected 25 pre-
dictor variables (Fig. S1). We later implemented a recursive
feature selection on the 25 predictor variables and selected
the 13 top predictor variables. The top 13 predictor vari-
ables included climatic variables – mean annual precipita-
tion (MAP), coefficient of variation of MAP (MAPcv), mean
annual temperature (MAT), coefficient of variation of MAT
(MATcv), snow depth (SnowDepth), and coefficient of vari-
ation of snow depth (SnowDepth_cv); topographic variables
– elevation (Elevation) and slope (Slope); proximity to roads
(Dist_Roads); and remote sensing indices capturing moisture
and vegetation properties – Normalized Difference Moisture
Index (NDMI), coefficient of variation of Normalized Dif-
ference Water Index (NDWIcv), coefficient of variation of
Land Surface Water Index (LSWIcv), and coefficient of vari-
ation of Tasseled Cap Wetness (TCWcv; Table 2).We took
the threshold of 0.3 for Moran’s I to reduce the positive spa-
tial autocorrelation among the samples. We used sampling
with replacement to calculate the significance of the Moran’s
I . We found that all the years except 2019 and 2023 showed
very low spatial autocorrelation with Moran’s I of < 0.2 (Ta-
ble S8). We reduced the spatially autocorrelated samples for
2019 and 2023 by selecting samples beyond a minimum dis-
tance of 50 m. Overall, we used a total of 11 235 training
samples to develop an RF model to predict invasive MEOF
cover across western SD. We used 80 % of these samples

(9006 total) for training and 20 % (2229 total) for testing
the model, with 3 mtry and 1500 ntrees as the optimized
hyperparameters for the regression model. We noticed that
the reduction in sample size had little-to-no effect on the
model statistics and metrices. The developed RF model ex-
hibited an R2 of 0.76, RMSE of 15.11, MAE of 10.95, and
MAPE of 1.06 %. The predicted cover maps for 2019 and
2023 showed a relatively higher percent cover range than
those for other years (Fig. S2). The temporal maps showed
a higher cover of MEOF in the western counties compared
to the eastern counties of western SD (Fig. 4). We also found
that the western section of the study region, including Butte,
Harding, Pennington, Custer, and Fall River counties, were
the major hotspots for MEOF cover and showed persistent
higher percent cover particularly in 2018, 2019 and 2023.
This region tends to have a wider spread of high-density
cover over the years. The hotspots were more evident in
wet years especially along the floodplains of the Missouri
River tributaries, as we move along the west-to-east gradi-
ent across western SD. Variable importance showed Normal-
ized Difference Moisture Index (NDMI), proximity to roads
(Dist_roads), variability in Normalized Difference Water In-
dex (NDWIcv), and Elevation were the top contributing vari-
ables for predicting MEOF cover (Fig. S3).

We created a MEOF percent cover map series for 2016–
2023 and compared it with precipitation anomaly maps to
assess the potential relationship between MEOF cover and
interannual climatic variability. These precipitation anomaly
maps showed that the western SD witnessed above-average
precipitation in a few regions for 2018 and 2023 and most
of the western SD for 2019 (Fig. S4). The central and east-
ern counties in 2019 and the central and southern counties
in 2023 showed a greater range of MEOF covers showing a
consistent pattern of MEOF resurgence with the return of wet
conditions. Despite 2016 being a relatively normal or slightly
dry year, sweetclover cover remained moderate with less spa-
tial variability, indicating less widespread establishment. The
widespread establishment of MEOF could be seen increasing
in 2018, with a high Coefficient of Variation (CV) of 0.5 and
the percent cover reached a peak in the subsequent year of
2019. For the years 2020, 2021 and 2022, most regions expe-
rienced average to below-average rainfall conditions. During
these years, the MEOF percent cover reached up to 50 %,
with a sharp drop in percent cover in 2021, where the maxi-
mum cover was only 43 %. This showed drought conditions
likely limit growth and establishment. The year 2020 and
2022 acted as transitional years, possibly due to lagged eco-
logical response. For dry years, the majority of western SD
predicted less than 50 % cover.

Overall, we found a high percent cover range in the west-
ern counties of western SD including Butte, Meade, Penning-
ton, Custer, Fall River, Jackson, Bennet and Oglala Lakota
counties. Central South Dakota counties showed fluctuating
trends, with moderate to high coverage in some years (e.g.,
2018, 2019, 2023) and relatively low coverage in other years
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Figure 3. Representative figures for three Unmanned Aerial Systems (UAS) sites with yellow sweetclover (MEOF) blooms (a) UAS or-
thoimages in green, green and blue band combination (b) Normalized Difference Yellowness Index (c) Random Forest classified image
showing yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10 m pixel size.

Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover cover (%).

S.No Independent Variables Codes Resolution

1 Mean annual precipitation MAP 1 km
2 Mean annual precipitation (coefficient of variation) MAPcv 1 km
3 Mean annual temperature MAT 1 km
4 Mean annual precipitation (coefficient of variation) MATcv 1 km
5 Snow Depth SnowDepth 500 m
6 Snow Depth (coefficient of variation) SnowDepth_cv 500 m
7 Elevation Elevation 10 m
8 Slope Slope 10 m
9 Proximity to roads Dist_Roads 30 m
10 Normalized Difference Moisture Index NDMI 10 m
11 Normalized Difference Water Index (coefficient of variation) NDWIcv 10 m
12 Land Surface Water Index (coefficient of variation) LSWIcv 10 m
13 Tasseled Cap Wetness (coefficient of variation) TCWcv 10 m

(e.g., 2020, 2021), whereas the eastern counties (i.e., Corson,
Dewey, and Stanley) consistently exhibited relatively low
percent cover (< 20 %) for the majority of years. In the east-
ern region, MEOF appeared to be more scattered and patchier
with fewer patches of higher percent cover near floodplains,
which are situated at lower elevations and benefit from high
moisture availability especially in the years 2018 and 2019.
During the summer fieldwork of 2022, we observed MEOF
predominantly in the first year of its life cycle. In the follow-
ing year, we observed ample coverage of MEOF blooms in
Butte County, SD forming patches substantial enough to be

captured by the drones. This temporal pattern arises from the
biennial growth period of MEOF. Additionally, we predicted
MEOF percent cover estimates for the year 2024 using our
trained model (Fig. S5). This 2024 prediction has been vali-
dated with the Planet imagery and is yet to be validated with
the field samples. Validation of model performance for 2024
and subsequent years with PlanetScope imagery remains a
key focus for future work.

Year-wise evaluation of model performance revealed con-
siderable variation in normalized RMSE (nRMSE), which
ranged from 0.12 in 2022 to 0.65 in 2023 (Table S9).
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Figure 4. Predicted yellow sweetclover distribution using a generalized Random Forest (RF) regression model for 2016–2023.

The year-wise sample distribution of observed MEOF cover
could be a partial reason for these differences. In 2018, the
observed cover exhibited the greatest variability (CV= 0.51)
and reached a maximum cover of 81 %. However, the
nRMSE remained low (0.19), indicating that the model ef-
fectively captured patterns in years with a broader range
of values. Conversely, 2023 exhibited the highest error
(nRMSE= 0.657) despite having the 100 % maximum cover

and the lowest variability (CV= 0.25). This high error oc-
curred despite a relatively large sample size, likely due to
spatial clustering and the reduced ability of the model to
predict extreme cover values. Consequently, the model’s ca-
pacity to generalize to high-cover conditions was restricted.
Similarly, 2020 had a moderate maximum cover (56 %) but
relatively high error (nRMSE= 0.55), which may reflect im-
balances in sample distribution across cover classes. In con-
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trast, the most optimal overall performance was achieved in
2022 (max= 57%, CV= 0.38) (nRMSE= 0.124), which im-
plies that predictive accuracy is enhanced by balanced sam-
pling across cover ranges. These results emphasize that the
distribution and variability of cover values across years have
a significant impact on predictive performance, although in-
creasing the sample size improves model stability.

4 Discussion

4.1 Significance of mapping MEOF superblooms

Our study offers a workflow for different plant species of
annuals, biennials, or geophytes that share dominance dur-
ing the bloom events, exhibiting huge blooms in specific
years with differences of 4 to 10 weeks in their length and
peak of the flowering period (Vidiella et al., 1999). These
blooms cause a sudden increase in annual net primary pro-
duction, triggering relevant changes in the ecosystem such as
increases in soil nitrogen content due to N-fixation, tempo-
rary plant composition modifications, attraction of predators,
etc. (Jaksic, 2001), as well as changes in the local climate:
an increase in evapotranspiration and a decrease in albedo
(He et al., 2017). Various bloom events in arid and semi-
arid regions, such as rare blooms in the arid Atacama Desert
or superblooms of wildflowers in California’s southeastern
deserts, have fascinated many researchers and media sources
recently (Chávez et al., 2019; Martínez-Harms et al., 2022;
Winkler and Brooks, 2020). Our workflow could be useful
for detecting and monitoring such events, as well as for man-
aging invasive plant species in grassland ecosystems. Effec-
tive management strategies can help mitigate the impact of
these invasive species, promoting the health and resilience of
grassland ecosystems.

The occurrence of sweetclover years is predominantly as-
sociated with wetter conditions, suggesting that precipitation
plays a key role in the resurgence of MEOF (Gucker, 2009).
Despite this, climate variables such as annual precipitation
or snow depth, did not rank among the top predicting vari-
ables. This may be due to MEOF’s biennial life cycle, where
precipitation from the previous year can influence current-
year cover (Klebesadel, 1992; Van Riper and Larson, 2009).
We tested this by including biennial precipitation (MAP2).
However, due to its high correlation with annual precipita-
tion (MAP) and the higher relative importance of MAP, nei-
ther variable alone, at the coarser 1 km resolution, adequately
captured the biennial dynamics. This unexpected result may
be due to the large disparity in spatial resolution between
Sentinel-derived variables at 10 m and the 1 km climate vari-
ables, which likely contributed to an underestimation of pre-
cipitation’s importance in the model (Latimer et al., 2006).
There is a possibility that MEOF blooms could be influenced
not just by precipitation but also by local groundwater avail-
ability or soil moisture, particularly in areas near floodplains.
While we observed some higher cover near floodplain re-

gions in certain years, the pattern was not consistent across
all years. Future analyses focusing on watersheds and hydro-
logical variables could help clarify the environmental drivers
of bloom events. Overall, our findings suggest that climate
contributes to interannual variation in MEOF cover, while
previous studies suggest that spatial heterogeneity and lo-
cal environmental conditions further modulate vegetation dy-
namics across the Northern Great Plains (Fore, 2024).

Despite experiencing ample moisture in some areas in
2016 or 2018, the “sweetclover year” super blooms were
limited only to 2019. This phenomenon may be attributed
to MEOF’s biennial life cycle, which plays a significant role
and acts as a lag effect provided average or above average
conditions persist (Van Riper and Larson, 2009). A distinct
drop in coverage is seen in the years of 2020 and 2021 across
the south, with a recovery in 2022–2023. Moreover, MEOF
with > 40 % percent cover was found in mostly regions that
received above-average precipitation during both dry and wet
years, highlighting the importance of moisture in regulating
dominance. This aligns with previous studies showing that
sweetclover cover can fluctuate substantially from year to
year, driven by its biennial growth habit and strong germi-
nation response in years with high precipitation (Turkington
et al., 1978). Although the RF model did not identify precip-
itation as the top predictor, our predicted MEOF cover maps
showed that years of high cover (e.g., 2018 and 2019) co-
incided with favorable moisture conditions, whereas lower
cover in 2020–2021 corresponded with drier years. This pat-
tern supports the hypothesis that ‘sweetclover years’ of high
MEOF abundance occur when favorable moisture conditions
are maintained, allowing successful establishment and dom-
inance despite losses from evapotranspiration. These favor-
able moisture conditions likely facilitate the successful es-
tablishment and dominance of MEOF across the Northern
Great Plains rangelands, consistent with broader patterns ob-
served for invasive species in semi-arid rangelands (Brooks
et al., 2004; D’Antonio and Vitousek, 1992). Similar patterns
have been observed for exotic annual grasses such as Cheat-
grass (Bromus tectorum L.), Red brome (Bromus rubens L.)
or Medusahead (Taeniatherum caput-medusae (L.) Nevski),
which often increase under periods of favorable precipitation
(Chen and Weber, 2014; Dahal et al., 2023).

The comprehensive database developed for the invasive
MEOF provides a critical foundation for understanding its
spatial-temporal invasion dynamics across western SD. The
database facilitates detailed analyses of spread dynamics,
invasion pathways, and distributional hotspots, thereby im-
proving the ability to model present distribution patterns and
project future range expansions under diverse environmen-
tal conditions. It also offers a valuable resource for long-
term ecological monitoring and adaptive management of
MEOF. Furthermore, the database supports investigation of
the ecological consequences of MEOF invasion. For exam-
ple, MEOF’s nitrogen-fixing ability may alter soil nutrient
dynamics, potentially facilitate its own dominance while af-
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fect native plant communities. Increased MEOF cover could
lead to declines in native species richness, shifts in plant
community composition, and changes in ecosystem pro-
cesses such as nutrient cycling and primary productivity, par-
ticularly in nitrogen-limited prairie ecosystems. Understand-
ing these impacts is critical for predicting long-term vegeta-
tion changes and developing targeted management strategies.
Beyond immediate applications, this database contributes
to a broader understanding of community-level vegetation
changes driven by nitrogen-fixing invasive species in grass-
land environments.

4.2 Significance of predictor variables

The variable importance results for MEOF reveals that
NDMI is the most influential predictor, indicating that soil
and vegetation moisture play a crucial role in supporting
its invasion and growth (Fig. S2). NDMI characterizes the
water stress level in plants (Gao, 1996), which has been
used to monitor drought stress and vegetation moisture con-
tent (Strashok et al., 2022). Proximity to roads (Dist_roads)
emerged as the second most important predictor, explain-
ing the higher cover of MEOF near the roads and its dis-
persion through road corridors, as MEOF was previously
planted along roadsides for soil stabilization (Gucker, 2009).
These findings align well with those of Wurtz et al. (2010)
who showed that MEOF might have spread onto flood-
plains from roads, mines, and agricultural fields. This pat-
tern is also consistent with our field survey plots, where a
higher percent cover of MEOF was observed closer to roads
compared to the interior of plots. Nevertheless, the impor-
tance of road proximity should be interpreted cautiously,
as greater sampling accessibility near roads may have par-
tially inflated its role in the model. We also found variabil-
ity in Normalized Difference Water Index (NDWIcv) indi-
cating areas with fluctuating surface water availability may
create favourable conditions for MEOF establishment. Fur-
thermore, most climatic variables, such as snow depth, vari-
ability in snow depth, mean annual precipitation and Tem-
perature (MAP and MAT), and variability in mean annual
precipitation (MAPcv), were found to be of relatively low
importance, likely because of their coarser spatial resolu-
tions (500 m and 1 km). Overall, our results suggest that lo-
cal moisture dynamics, captured by NDMI and NDWIcv,
and human disturbances, reflected by proximity to roads,
are stronger determinants of MEOF distribution at fine spa-
tial scales than coarser-resolution climatic variables (snow
depth, MAP, MAT, and their variability). Although climate
may establish broad-scale suitability, our data indicate that
MEOF invasion patterns in western South Dakota are primar-
ily influenced by local hydrological conditions and human-
mediated dispersal.

4.3 MEOF cover in 2019

It is important to note that reducing the sample size from
22 972 to 11 235 due to high spatial correlation did not sub-
stantially affect model performance. However, in comparison
to Saraf et al., (2023), a much larger overall sample size was
required to improve predictive accuracy. We developed a sin-
gle generalized RF model across all years (2016–2023) and
applied it to predict MEOF cover annually. Thus, while tem-
poral imbalance in samples (e.g., more samples from bloom
years such as 2019 and 2023) influenced the overall distribu-
tion of training data, spatial balance and adequate coverage
across the full percent cover range were the most critical fac-
tors for model accuracy. We found that increasing the sample
size and ensuring a more balanced distribution significantly
improved model performance, raising R2 from 0.55 (Saraf
et al., 2023) to 0.76. RMSE increased from 7 % to 15 %, re-
flecting the inclusion of a wider range of percent cover val-
ues rather than insufficient sample size or overall imbalance.
Saraf et al., (2023) reported that their model underestimated
high percent cover due to a limited sample size (n = 1612).
In contrast, our model utilized a larger and more evenly dis-
tributed sample (n= 11 235) across years, improving predic-
tive accuracy and the representation of extreme cover val-
ues. These findings suggest that balanced sample sizes en-
hance both the predictive range and accuracy of RF models,
although temporal imbalance in certain years may still influ-
ence RMSE and require further investigation. Moreover, it
is noteworthy to highlight that it is difficult to fully stratify
samples temporally for a biennial species like MEOF, which
remains dormant during certain seasons and blooms only un-
der specific environmental conditions.

Both predicted maps exhibited similar spatial patterns,
with higher MEOF cover observed in the western SD coun-
ties, such as Butte and Pennington. However, our model pre-
dicted a full range of 0 %–100 % cover for 2019, in contrast
to the limited range observed in Saraf et al., (2023). This dif-
ference is particularly evident in the high MEOF probability
areas of western SD rangelands, as shown in Fig. 5.

We conclude that Saraf et al. (2023) significantly under-
estimated the extent of high percent cover, reporting that ar-
eas with > 50 % MEOF cover constituted only about 0.76 %
of SD’s total rangelands. In contrast, our updated predic-
tion model estimated that ∼ 12.6 % (10 256 km2) of the to-
tal rangeland area (81 442 km2) had > 50 % MEOF cover in
2019. The increase in sample size improved the model ability
to predict a wider range of percent cover, providing a more
accurate representation of the massive MEOF blooms across
western SD in 2019.

4.4 Uncertainties

We manually delineated MEOF presence and absence poly-
gons on the UAS imagery, which were used to train and vali-
date the RF classification model. The resulting classified im-
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Figure 5. Comparison of yellow sweetclover (Melilotus officinalis) cover in western South Dakota rangelands for 2019. (a) Percent cover
estimates from Saraf et al. (2023) based on 1612 samples, showing areas with high probability of yellow sweetclover occurrence. (b)
Predicted percent cover from the current study using 11 235 samples, highlighting the updated yellow sweetclover cover estimates compared
with Saraf et al. (2023).

age was then used to derive continuous, wall-to-wall frac-
tional cover estimates across the UAV sites. We used these
model-derived continuous MEOF cover values, rather than
the manual polygons, for regression analyses in order to gen-
erate numerous spatially explicit cover samples and to cap-
ture gradients of invasion across the landscape. The UAS
orthomosaics in a green-blue-blue band false color combi-
nation helped to delineate training polygons. This approach
highlighted the potential of multi-spectral bands to easily
detect MEOF patches. Furthermore, we randomly sampled

6000 pixels at 4–6 cm resolution corresponding to the pres-
ence and absence of the invasive MEOF. We anticipated
that errors might occur during the manual delineation, al-
though the RGB imagery employed in the study displayed
the MEOF’s characteristic features, such as color, canopy
shape, and flowers. The reliability of visual delineation could
be compromised in shaded areas. However, the RF classifi-
cation could accurately distinguish most MEOF pixels from
non-MEOF pixels with 98.6 %. Visual inspections revealed
no discrepancies between the derived percent cover maps at
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10 m resolution and submeter resolution MEOF classified
maps. This result suggests that any alignment errors were
likely minimal and did not significantly affect model accu-
racy at 10 m resolution especially after calibration of the de-
rived percent cover. While these results are specific to our
study area in the Northern Great Plains, the approach has
broader implications. We also produced a predictive map for
the year 2024 (Fig. S5) using the trained model. Assessing
the accuracy of the 2024 predictions and extending valida-
tion to upcoming future years constitutes an important di-
rection for continued research. Our workflow combined with
high-resolution UAS imagery and machine learning can be
adapted to other regions with similar vegetation structure and
invasion dynamics, offering a scalable and efficient tool for
detecting and mapping invasive biennials like MEOF across
diverse rangeland ecosystems. Our approach of scaling UAS-
derived observations to develop percent cover estimates at
broader spatial scales is conceptually similar to Rigge et
al. (2020), who demonstrated the utility of integrating high-
resolution reference data to improve landscape-scale predic-
tions of rangeland vegetation cover.

4.5 Validation for 2023 estimates

We validated the predicted MEOF cover maps using four in-
dependent UAS-validation sites. Predictions showed strong
correlation with observed MEOF cover derived from UAS
imagery, with an R2 of 0.71, RMSE of 17.81 %, MAE of
13.17 %, and MAPE of 4.89 % (Figs. 6, S6). The visual com-
parison of the predicted maps with UAS imagery at the four
validation sites showed that the model generally captured the
spatial patterns of MEOF cover. We found that the prediction
model underestimated the high percent cover range and over-
estimated the low to no percent cover regions. In 2023, only
0.76 % (621.4 km2) of the total rangeland area (81 442 km2)
showed cover exceeding 50 %, supporting field observations
of widespread MEOF blooms in specific regions. The promi-
nent yellow blooms of MEOF are readily visible in UAS
and satellite imagery when found in adequately big clusters,
hence supporting the reliability of the model predictions.

In addition to UAS validation, we used four-band (visible
and near-infrared), 3 m resolution Dove Classic and Super-
Dove PlanetScope (PS) imagery for 2019 and 2023 through
the NASA CSDA program (Planet Labs PBC, 2023) to fur-
ther assess model predictions (Fig. 7). PS scenes were se-
lected for locations with predicted high MEOF cover, and
false-color combinations (green-green-blue) were applied to
enhance visualization of MEOF blooms. These imagery data
offered an independent and freely available means to com-
plement the UAS-based validation by visually verifying the
spatial patterns of predicted MEOF cover across sites where
field data were unavailable. In general, the validation results
indicate that the RF model effectively depicts spatial varia-
tion in MEOF cover throughout the study area, thereby pro-

viding a reliable foundation for evaluating invasion intensity
on a landscape scale.

4.6 Limitations

Our model does not explicitly incorporate the biennial life
cycle of MEOF; rather, we capture this variation indirectly by
generating annual time-series maps (2016–2023) that reflect
differences in cover between bloom and non-bloom years.
Most of the observed MEOF cover samples were collected
during the second year of its life cycle to enable capture of its
flowering stage. The yellow sweetclover cover peaked dur-
ing the wetter years (2019 and 2023) as shown in Fig. S3,
and most of the sampling strength was obtained during these
years (Table S1). We used the coefficient of variation to cap-
ture the temporal variation of the independent variables dur-
ing summer (JJA). However, cloud cover of > 10 % in the re-
gion remained the major limitation of this study. Sentinel-2
data provides high temporal resolution, fast data provision-
ing, and computing infrastructure, making it easier for land
managers to track invasive species in real-time. Our model
demonstrated high variable importance of high-resolution
variables performed better than climate variables due to their
coarser resolution. This underperformance of coarser vari-
ables suggests the need for higher spatial resolution datasets
in mapping invasive plant species. High-resolution mapping,
even at Sentinel-2 (10 m) or PlanetScope (3 m) resolution, is
complicated by the uneven spatial resolution of independent
variables, making it more difficult to understand their relative
roles in characterizing the niche of invasive species. Mapping
at very high resolution, such as 3 m PlanetScope imagery, has
its own limitations, including fewer spectral bands, lower ra-
diometric calibration, and higher noise levels in vegetation
indices, which can affect the accuracy of species-specific de-
tection.

5 Data availability

The developed invasive MEOF percent cover datasets are
freely available at the figshare repository (Saraf et al., 2025)
(https://doi.org/10.6084/m9.figshare.29270759.v1). The
repository has two folders: the first folder named “resampled
predicted cover maps” contains predicted percent cover maps
of invasive yellow sweetclover resampled at 20 m resolution
due to size limitations. We can provide the original 10 m
resolution images upon request. Each file is saved in GeoTiff
format in the Albers Conic Equal Area projection. Each file
is saved with an acronym of ‘m’ for MEOF followed by an
underscore and a year. Missing data are represented by “No
data”. The other folder named “sample_code_and_data”
contains the R code and an exemplary sample data to predict
the MEOF percent cover.
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Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS validation sites shown in green-green-blue false
color combination to highlight yellow sweetclover blooms.

6 Code availability

The codes used to produce the multitemporal MEOF maps
are publicly available on figshare repository (Saraf et al.,
2025) (https://doi.org/10.6084/m9.figshare.29270759.v1).

7 Conclusions

Our integrated approach combining high-resolution UAS im-
agery, RF classification and regression models, and multi-
year satellite and climatic data enabled the effective map-
ping and monitoring of MEOF cover across western South
Dakota. The models demonstrated strong performance with
high accuracy in both classification and regression tasks, val-

idating the use of drone-derived percent cover for landscape-
scale predictions. The findings highlight the critical role of
local moisture availability, proximity to roads, and surface
water variability in driving MEOF invasion, while broader
climatic variables played a comparatively limited role due to
their coarser resolution. Temporal maps revealed that MEOF
expansion is closely linked to wetter years, aligning with its
biennial life cycle and reinforcing the concept of “sweet-
clover years”. The updated 2019 cover map was significantly
improved from the previous estimates, capturing a broader
percent cover range and representing invasion hotspots. Val-
idation using 2023 UAS sites and PlanetScope imagery fur-
ther confirmed the model’s reliability. PlanetScope imagery
provided an independent means to visually assess predicted
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Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) at four different sites represented with numbers for
2019 (left) and 2023 (right). In each site, (a) 3 m resolution PlanetScope imagery shown in green, green, and blue band combination to
highlight yellow sweetclover blooms, and (b) fractional cover of MEOF. (PlanetScope imagery © Planet Labs PBC).

MEOF cover in areas where drone data are unavailable and
served as a complementary source of validation. Our study
proposes a workflow of a generalized model that could be ap-
plicable to various plant species annuals, biennials, and geo-
phytes that exhibit episodic dominance during bloom events.
Our database on MEOF enables analysis of its invasion dy-
namics, supports predictive modeling of current and future
distributions, and informs long-term monitoring and man-
agement. It also provides a foundation for assessing ecolog-
ical impacts on native species and community composition
in nitrogen-poor grasslands. Our study also provides a valu-
able tool for detecting and monitoring superbloom events and
can support the management of invasive plant species such
as MEOF in grassland ecosystems. Effective management
strategies informed by these insights may help mitigate the
ecological impacts of invasive species, thereby enhancing the
health and resilience of grassland environments.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-655-2026-supplement.
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