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Abstract. Decadal-scale satellite-based climate data records of chlorophyll-a (chl-a), an essential climate vari-
able, are now readily available at high accuracy and precision. These data are being extensively used for research
and, increasingly, for operational services. However, these observations rely on availability of sunlight and the
satellite sensor being able to view the ocean, so there are gaps in data due to the presence of clouds and more
widely during the polar winter. This is an issue when spatially complete data are needed for global climate stud-
ies, or as inputs to machine learning methods and for data assimilation. Whilst addressing cloud cover is well
studied, methodologies to overcome missing data due to the polar winter has received little attention and sim-
ple approaches to overcome these gaps can lead to unrealistic values. Biogeochemical Argo (BGC-Argo) floats
have widely been deployed, and they represent an opportunity to address these gaps. We present an approach
that combines BGC-Argo data and a satellite chl-a climate data record to produce a spatially and temporally
complete, global monthly chl-a record between 1997–2024 at 0.25° spatial resolution. Clouds gaps were filled
using an established spatial kriging approach. Polar wintertime chl-a were reconstructed using relative changes
between the wintertime BGC-Argo chl-a, and the previous autumntime or next springtime satellite observations,
for individual hemispheres. Uncertainties were calculated on a per-pixel basis to retain the underlying uncer-
tainty fields in the climate data record and were modified to account for the uncertainties related to the gap
filling. The seasonal cycles in the resulting polar data are consistent with light availability. Clear interannual and
inter-hemisphere variability in the wintertime chl-a were observed. Independent assessment of solely the gap
filled wintertime chl-a estimates against in situ data (N = 201 total) indicates that the accuracy and precision
of the underlying satellite data, a key component of a climate data record, are maintained. The 26 year global
and spatially complete chl-a data, that are consistent with the underlying climate data record can be downloaded
from Zenodo (https://doi.org/10.5281/zenodo.15689006, Ford et al., 2025b).
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1 Introduction

Chlorophyll-a (chl-a), the dominant photosynthetic pigment
in phytoplankton, has been identified as an essential climate
variable by the Global Climate Observing System for as-
sessing current and future changes to oceanic global bio-
geochemical cycles (GCOS, 2021). Satellite-ocean-colour-
based synoptic chl-a fields of the surface and near-surface
ocean (varying from a few millimetres depth to tens of me-
tres dependent upon the water constituents) have routinely
been produced since the launch of Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) in September 1997 and the more
advanced satellite ocean colour sensors that have followed.
The ocean colour signal at different wavelengths of light
can be related to in situ chl-a concentrations and used to
estimate synoptic scale chl-a (e.g. Gohin et al., 2002; Hu
et al., 2012; O’Reilly and Werdell, 2019). These observa-
tions from multiple satellites that cover different time peri-
ods and often with different sensor characteristics, are now
routinely merged into continuous climate data records, the
main effort of which results in the Ocean Colour Climate
Change Initiative (OC-CCI) (Sathyendranath et al., 2019).
These records are essential for assessing global and regional
changes in phytoplankton abundance and primary production
(Kulk et al., 2020). Additionally they are routinely used for
ecosystem monitoring, understanding biogeochemistry, sup-
porting fisheries management, water quality monitoring and
operational ocean forecasting (Sathyendranath et al., 2023b).

However, ocean-colour observations of chl-a have the lim-
itation of data gaps due to cloud cover, and high sun zenith
and viewing angles which routinely occur during polar win-
ter. Multiple methods have been developed to fill the data
gaps due to cloud cover on both regional and global scales.
For example, Saulquin et al. (2018)

used an optimum interpolation technique (commonly used
in sea surface temperature records) to gap fill a merged op-
erational chl-a record. Liu and Wang (2018) used the Data
Interpolating Empirical Orthogonal Functions (DINEOF),
which reconstructs the missing chl-a based on empirical or-
thogonal functions, to fill Visible Infrared Imaging Radiome-
ter Suite (VIIRS; one of the inputs to the multi-sensor OC-
CCI record) observations. Recently, Hong et al. (2023) used a
convolution neural network that ingests environmental infor-
mation, including sea surface temperature and photosynthet-
ically active radiation, to aid in the reconstruction of chl-a
underneath clouds between ∼ 50° N and ∼ 50° S within the
OC-CCI record. These methods show differing accuracies,
but they are generally effective at reconstructing gaps due to
cloud cover (Stock et al., 2020). However, none of these stud-
ies attempt to reconstruct the persistent gaps at high latitudes
that occur during the polar winter.

These missing high-latitude polar winter data often make
the exploitation of the overall chl-a record more challeng-
ing or result in assumptions being made about the missing
wintertime chl-a concentrations. For example, within efforts

to reconstruct the global ocean carbon dioxide (CO2) sink,
these missing data are often manually filled with a fixed value
(e.g. Chau et al., 2022; Gregor and Gruber, 2021), or the gaps
mean that chl-a data are avoided for the input variables used
to interpolate other data which means that any explicit bio-
logical signal within the interpolation is omitted (Ford et al.,
2024a). Example fixed values include Gregor and Gruber
(2021) who use a fixed value of 0.3 mgm−3 for all missing
polar wintertime data, whereas Chau et al. (2022) use a value
of 0.0 mgm−3. These practical choices likely influence the
underlying interpolation and reconstructions of the data (in
this case the ocean CO2 sink) and are unlikely to be scien-
tifically applicable across all times and geographic locations
as they overlook regional and temporal variations and create
unnatural boundaries or characteristics (e.g. the Arctic and
Southern Ocean likely have different bio-geochemical char-
acteristics). The expanding availability of autonomous BGC-
Argo profilers with chl-a sensors (Roemmich et al., 2019)
that collect observations within the polar winter provides an
opportunity to generate a data-driven reconstruction of these
missing wintertime chl-a. Whilst able to provide data during
polar winter, the BGC-Argo chl-a data have reduced accu-
racy with respect to the satellite observations, so using them
to directly gap-fill the higher accuracy climate data record
presents some challenges.

We present a methodology for producing a spatially com-
plete monthly chl-a record between October 1997 and De-
cember 2024 at a spatial resolution of 0.25° with spatially
resolved uncertainties. Cloud gaps were initially filled using
an established spatial kriging approach. The missing polar
wintertime chl-a data were then filled using relationships be-
tween BGC-Argo measured chl-a and the first spring or last
autumntime observations within the satellite record. Relative
changes between the satellite record and BGC-Argo chl-a
were used rather than relying on the absolute values to over-
come the difference in depth relevance of the BGC-Argo
chl-a vs. the satellite record. The relationships were con-
structed for both the Northern Hemisphere (which includes
all of the Arctic Ocean) and Southern Hemisphere (contain-
ing the Southern Ocean) separately, which highlights the bio-
geochemical differences evident in these different wintertime
chl-a response.

2 Data and Methods

2.1 BGC-Argo Chl a data

BGC-Argo profilers have been deployed globally, and at
the time of writing ∼ 400 (∼ 60 %) of these have fluoro-
metric chl-a sensors. Delayed mode BGC-Argo profile data
(2008–2024, last ingestion: 8 September 2025) (Argo, 2025)
were retrieved from the Argo Global Data Assembly Cen-
ters (GDAC) for the Southern Hemisphere (south of 40° S)
and the Northern Hemisphere (north of 40° N; Fig. 1). These
delayed mode profiles have undergone automatic processing,
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and quality control within the GDAC following Schmechtig
et al. (2015, 2023). For each BGC-Argo profile the quality
flagging was applied to only retain the highest quality data
(quality flag 2). The mean chl-a concentration was extracted
from the first optical depth. The first optical depth was es-
timated from the diffuse attenuation coefficient at 490 nm
(Kd(490)) which was determined using the shallowest chl-a
observation (shallower than 10 m) and the relationship de-
scribed in Morel et al. (2007). The mean was calculated
in log10 space due to the logarithmic distribution of chl-
a (Campbell et al., 2002). Profiles with a mean chl-a less
than 0.014 mgm−3 were discarded as this value was twice
the factory-specified sensitivity of the fluorescence sensors
(Long et al., 2024). The spatial and temporal distributions
of the resulting chl-a profiles in the Southern and Northern
Hemispheres are displayed in Fig. 2. The BGC-Argo chl-a
data were then gridded (mean in log10 space) into monthly
0.25° composites to match the resolution of the satellite ob-
servations described in the next section, using existing pub-
licly available software (Ford et al., 2024b).

2.2 Satellite observational data

The OC-CCI (v6) chl-a data were retrieved at daily and
monthly temporal resolution at their native spatial resolution
(4 km) between October 1997 and December 2024 (Sathyen-
dranath et al., 2019, 2023a). The process for cross-calibrating
and merging the data from multiple satellite ocean colour
sensors used within the OC-CCI are described in Sathyen-
dranath et al. (2019). The OC-CCI monthly composites were
aggregated after log10 transformation, to compute mean val-
ues at 0.25° degree spatial resolution using existing pub-
licly available software (Ford et al., 2024b). The uncertain-
ties (1σ ; given as the root mean square difference; RMSD)
provided with the OC-CCI product are calculated with re-
spect to in situ observations within each optical water class
(Jackson et al., 2017). These uncertainties were converted to
a 0.25° resolution by calculating the mean of the 4 km uncer-
tainties that contribute to each 0.25 grid cell, which assumes
spatial uncertainties within adjacent cells are dependent and
spatially correlated (Taylor, 1997). Daily sea ice concentra-
tion at ∼ 25 km spatial resolution were obtained from Ocean
and Sea Ice Satellite Application Facility (OSISAF) (OS-
ISAF, 2022). The daily OSISAF sea ice concentrations were
combined into monthly composites and regridded to the same
spatial grids as the monthly OC-CCI data, by using the same
software (Ford et al., 2024b).

To assess the impact of gridding the BGC-Argo and OC-
CCI data, a comparison between the daily OC-CCI at 4 km
and the individual BGC-Argo chl-a profiles was conducted,
following standard ocean colour comparison protocols (Bai-
ley and Werdell, 2006; Ford et al., 2021). Each BGC-Argo
profile was matched daily to the OC-CCI record (i.e. coin-
cident day), and the mean chl-a (in log10 space) extracted
from a 3-by-3 pixel grid (which represents ∼ 12km× 12km

region at the equator). The same analysis was then repeated
for the monthly 0.25° BGC-Argo and OC-CCI data. A stan-
dard suite of statistics was calculated in log10 space for both
the daily 4 km and the monthly 0.25° data and the results
were then compared. The metrics included the bias (accu-
racy), root mean square deviation (RMSD; precision) and
the slope and intercept of a Type II regression. This analy-
sis assessed the impact of averaging the BGC-Argo and OC-
CCI observations to monthly 0.25° composites (Fig. S1 in the
Supplement) and indicated that the averaging had limited ef-
fect on the retrieved unweighted bias (accuracy) and RMSD
(precision) for the Southern and Northern Hemisphere (i.e.
the bias and RMSD results for the daily matches were sim-
ilar to the monthly 0.25° gridded data). The high intercept
values at both 4 km and 0.25° (Fig. S1), particularly for the
Northern Hemisphere, illustrate why the absolute values of
the BGC-Argo data cannot be used to directly fill the satel-
lite record.

The two sets of observations (i.e. satellite sensor vs. Argo),
dependent upon the water constituents, overlap in terms of
their depth relevance. However, the BGC-Argo chl-a mea-
sured by in vivo fluorescence are considered less accurate
than the measurement of chl-a by high performance liquid
chromatography (HPLC) that is predominantly used for the
calibration and evaluation of ocean colour data (Long et al.,
2024; Roesler et al., 2017). These differences could lead to
an underlying bias between the OC-CCI and the BGC-Argo
chl-a observations (e.g. see Fig. S1). To minimise these dif-
ferences, the BGC-Argo chl-a were corrected with respect to
the OC-CCI data where coincident observations were avail-
able by using a slope factor correction as outlined in Roesler
et al. (2017) (i.e. the median of all individual slope factors for
each hemisphere). The Northern and Southern Hemisphere
slope factor corrections were 0.916 and 1.967, respectively.
These corrections appear initially smaller than those reported
in Roesler et al. (2017) and Long et al. (2024), however the
delayed mode processing of the BGC-Argo chl-a already in-
cludes a slope factor correction of 2. Therefore our slope
factors are consistent to the previous work. The slope fac-
tor correction does not assume that the OC-CCI record is
the “truth”, but our objective is to fill gaps in the OC-CCI
data using relative changes to the BGC-Argo chl-a, which
requires the two datasets to be consistent.

2.3 Spatial Kriging for cloud gap filling

Ocean-colour sensors on board polar orbiting satellites col-
lect data at multiple wavebands in the visible domain, which
is used to estimate the chl-a concentration (e.g. Gohin et al.,
2002; O’Reilly and Werdell, 2019). Clouds are optically
thick in the visible spectrum, and so they block the sensor’s
view of the ocean, leading to missing data within the ocean-
colour chl-a data record. The use of monthly composites of
ocean-colour-based chl-a reduces the gaps due to cloud cover
as clouds tend to evolve (i.e. appear to move) faster than the
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Figure 1. Schematic showing the methodology for producing the gap filled chlorophyll-a (chl-a) Ocean Colour Climate Change initiative
(OC-CCI) record. In flowchart acronyms are Biogeochemical Argo (BGC-Argo), Argo Global Data Assembly Centers (GDAC), diffuse
attenuation coefficient at 490 nm (Kd(490)) and Ocean and Sea Ice Satellite Application Facility (OSISAF).

ocean conditions. Multiple daily observations within the one-
month allows the impact of the faster moving clouds to be av-
eraged out. But aggregating data over multiple days cannot
help in regions where clouds can be more prevalent, such as
the inter-tropical convergence zone, or in regions where other
features, such as coccolithophore blooms, inhibit the satel-
lite retrieval of chl-a. Stock et al. (2020) evaluated multiple
approaches to fill data gaps due to cloud cover, suggesting
that approaches including spatial kriging or DINEOF were
the most accurate. More complex approaches could be im-
plemented such as Optimum Interpolation or spatio-temporal
kriging, but these, as well as DINEOF, come with increased
computational requirements. Here we implement a spatial or-
dinary kriging approach to fill cloud cover (or other) gaps
(Fig. 1) as the use of monthly composites in this study re-
duces the number of data gaps, and therefore the computa-
tional requirements of more complex approaches are unlikely
to improve the estimates further.

To perform the kriging, a semi-variogram was computed
for each monthly timestep in the timeseries using SciKit-
Gstat v1.0.0 (Mälicke, 2022) with the ‘martheon’ estima-
tor and an exponential function. A visual inspection of the
semi-variogram output was used to optimise the estimator
and function. The semi-variogram was fit to a ∼ 5 % sub-
set of the OC-CCI observations that were equally distanced
in space, for a monthly varying latitude band (e.g. 50° N

to 80° S; Fig. 1) where at least 20 % of the OC-CCI obser-
vations are available. The subset size was a computational
choice because the number of pairwise distances that must be
calculated by the semi-variogram is a n2 function, where n is
the number of locations. Setting the monthly varying latitude
limits (i.e. latitude band where at least 20 % of the OC-CCI
observations are available) prevents the kriging from filling
data that are missing due to the polar winter and not due to
cloud cover or other features (Fig. 1). The ordinary kriging
was applied only to the missing data locations (i.e. the origi-
nal OC-CCI observations are left unchanged) and was set to
use the nearest six observations to fill a missing data location
to limit the influential distance of each observation.

2.4 BGC-Argo Wintertime filling

The approach developed with the BGC-Argo profilers to re-
construct the wintertime observations is based on the as-
sumption that wintertime chl-a will decline due to lower light
availability before then increasing again as the light returns
in the spring. Therefore, the wintertime chl-a would be lower
than the last available OC-CCI observations in autumntime
and first available observations in springtime. Thus, the de-
cline in chl-a during the polar winter can be estimated using
the BGC-Argo profiler chl-a as an observational constraint.
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Figure 2. Spatial and temporal distribution of the BGC-Argo chlorophyll-a profiles used. (a) Geographical distribution of the individual
profiles (i.e. individual profilers appear multiple times). (b) Temporal distribution in years of the number of profiles used for the Southern
Hemisphere (< 40° S) and Northern Hemisphere (> 40° N). (c) Temporal distribution in months of the profiles used for the Southern Hemi-
sphere (< 40° S) and Northern Hemisphere (> 40° N). Basemap in (a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/, last
access: 2 February 2025).

For each BGC-Argo observation, we count backwards in
time to the last autumntime observation up to nine months
prior to the BGC-Argo observation time (Fig. 1). For exam-
ple, a time lag of zero indicates a coincident OC-CCI obser-
vation with the BGC-Argo, and a lag of one month indicates
the OC-CCI observation occurred in the previous month to
the BGC-Argo. The percentage difference was calculated be-
tween the OC-CCI and bias-corrected BGC-Argo chl-a in
mgm−3 (to avoid the switch from positive to negative values
within the log10 transformed values). All of the available per-
centage differences at each time lag were consolidated and
the median of all the individual percentage differences were
calculated. This constructs a median relative change relation-

ship between the autumntime OC-CCI and BGC-Argo chl-a
observations in terms of the time to the OC-CCI observa-
tion (i.e. the median of all the percentage differences between
2010–2024 at each time lag; Fig. 2). The procedure was ap-
plied to the Southern and Northern Hemispheres separately,
which allows for the known biogeochemical differences be-
tween the two polar regions (Ardyna and Arrigo, 2020; Dep-
peler and Davidson, 2017). As the cloud gap filling approach
was applied before this step, the “OC-CCI observation” is
likely to be an original OC-CCI retrieval but may in some
instances be a cloud-filled value. Although the process was
applied up to nine months back in time, in practice the ma-
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jority of data are filled within ±4 month (Fig. S2 in the Sup-
plement).

The whole procedure was then applied in reverse, count-
ing forwards to the first springtime observation. This pro-
vides both a backwards looking and forwards looking rela-
tionship over the wintertime period for each hemisphere. The
obtained relationships between OC-CCI and BGC-Argo data
were then used to gap fill the gridded wintertime OC-CCI
data. For each wintertime pixel, the time lag between the au-
tumntime and springtime OC-CCI observations was calcu-
lated, and the relationship with the lowest time lag was used
(i.e. either the forward or backward in time relationship). If
both had the same time lag, the autumntime relationship was
used in preference as these were generally constrained by
more BGC-Argo observations (N = 1072; Fig. 3a) than the
springtime relationship (N = 719; Fig. 3b).

Chl a concentrations in regions with a sea ice coverage
greater than 95 % as indicated by the OSISAF sea ice con-
centrations were set to a fixed value of 0.1 mgm−3(Fig. 1).
We selected this value from literature (e.g. Boles et al., 2020;
Randelhoff et al., 2020), based on wintertime chl-a concen-
trations from under ice regions that are not experiencing an
significant or enhanced under ice phytoplankton growth, but
we acknowledge the potential for highly heterogenous under
ice chl-a concentrations.

Any remaining pixels that were not gap filled by any of
the previous procedures are filled with a final kriging pass,
following the same methodology as in Sect. 2.3, but glob-
ally, which was applied to ∼ 3 % of the data (Fig. S3 in the
Supplement). This final step was mainly applied in regions of
partial sea ice coverage (i.e. those with ice coverage between
∼ 10 %–95 %; Fig. 1). A breakdown of the area filled by each
stage in the gap filling methods are given in Fig. S3, and the
BGC-Argo relationship month lags are given in Fig. S2.

An implication of applying the BGC-Argo gap filling ap-
proach to monthly resolution data leads to artificial latitude
banding due to the month lag relationship changing at each
latitude. This banding in the monthly gap-filled record is
highlighted here as it is dependent upon the methodological
choices and data limitation issues. The month lag relation-
ships could instead be linearly interpolated and applied to 8 d
composites and then averaged to monthly composites which
would likely reduce this banding. But constructing the BGC-
Argo relationships using 8 d composites is currently not fea-
sible due to limited BGC-Argo data availability, especially at
the higher time lags.

2.5 Uncertainty propagation (1 standard deviation; 1σ)

The cloud gap filling kriging approach uses observations in
the vicinity of the empty pixel (based on the semi-variogram
described in Sect. 2.3) to construct the missing chl-a. The
uncertainties arising from using the ordinary kriging are a
combination of: (1) the underlying OC-CCI uncertainties in
the measurements and (2) those arising from the method used

to estimate the missing chl-a. Therefore, the accompanying
OC-CCI uncertainty fields were also kriged using the same
semi-variogram estimated from the chl-a observations pro-
ducing uncertainty values for each gap filled pixel.

The polar wintertime data filled with the BGC-Argo rela-
tionships use the spring- and autumntime observations which
are then multiplied by the percentage reduction in chl-a.
Therefore, two sources of uncertainty combine to form the
total uncertainty: (1) the uncertainty in the OC-CCI spring-
and autumntime observations (1σ ), and (2) the uncertainty
in the percentage difference estimated from the BGC-Argo
profiler (1σ ). We estimate the uncertainty in the percent-
age difference by calculating the median absolute deviation
(MAD) and convert this to a standard deviation equivalent
with the scaling factor of 1.4826 (Rousseeuw and Croux,
1993). Using the MAD reduces the sensitivity to “outliers”
within the percentage differences. Both sources of uncer-
tainty were propagated through the analysis using a Monte
Carlo uncertainty approach with 1000 ensembles, assuming
they are independent and uncorrelated. Each source of un-
certainty was propagated by randomly perturbing the input
value (i.e. the percentage difference and OC-CCI chl-a ob-
servation) using a random number generator that produces a
normal distribution with a standard deviation defined by the
uncertainty. The wintertime chl-a was then recalculated for
each perturbed input in the ensemble. The standard devia-
tion of the 1000 ensembles was taken as the uncertainty and
the resulting spatially varying uncertainty were provided in
log10 (mgm−3) units for each of the polar wintertime filled
pixels (to be consistent to the underlying OC-CCI record).

The under ice chl-a uncertainty was set to
0.4 log10 (mgm−3), owing to the complex dynamics
under sea ice based on a range of sources (Ardyna and
Arrigo, 2020; Arrigo et al., 2012, 2014; Boles et al., 2020;
Randelhoff et al., 2020) – see the discussion section for fur-
ther details on this decision. The uncertainties are provided
alongside the gap-filled chl-a data, providing consistent
spatially and temporally varying uncertainties.

2.6 Independent accuracy and precision evaluation

To independently assess the accuracy and precision of the
gap filled wintertime chl-a concentrations we used the OC-
CCI chl-a validation dataset (Valente et al., 2022; v3). These
data provide the chl-a concentration measured on ships by
either HPLC or fluorometric approaches. This dataset is used
routinely to assess the accuracy and precision of the OC-CCI
record (but are not used to tune the algorithms used). Fur-
thermore, the wintertime values remain independent as these
cannot be matched to the original OC-CCI record as there are
gaps in the original satellite data record. The individual chl-a
observations were quality controlled with the flags provided
within the dataset and the chl-a was retained if greater than
0.01 mgm−3. The retained chl-a observations were gridded
onto the same monthly 0.25° grid (mean in log10 space) as
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Figure 3. (a) Boxplots indicating the percentage difference between the Ocean Colour Climate Change Initiative (OC-CCI) and slope-
corrected BGC-Argo chlorophyll-a (chl-a) based on time lag since the last autumntime observation in the Southern Hemisphere. Red line
indicates the median, the box indicates the 25 % and 75 % quartiles, and circles indicate data considered as outliers. In axis abbreviations are
number of samples (N ) and median bias (Med). (b) same as (a), but for the Southern Hemisphere springtime relationship. (c) same as (a),
but for the Northern Hemisphere autumntime relationship. (d) same as (a), but for the Northern Hemisphere springtime relationship. Y axis
limits have been selected to emphasise the lower time lags, where the higher time lags are constrained by less data and have limited use in
the methodology.

the gap-filled OC-CCI record, separately for the HPLC and
fluorometric chl-a observations. The gridded in situ observa-
tions were then compared with the gap-filled OC-CCI data
record at the locations where the BGC-Argo relationships
were applied (i.e the polar wintertime filled data) for the
Northern Hemisphere and Southern Hemisphere, separately.
The standard suite of statistics described in Sect. 2.2 were
calculated to assess the accuracy and precision of the gap
filled wintertime chl-a against these independent in situ ob-
servations.

3 Results

The relationships between the autumntime (backwards;
Fig. 3a and c) and springtime (forwards; Fig. 2b and d) OC-
CCI and wintertime BGC-Argo profilers showed clear dif-
ferences between the Southern (Fig. 3a and b) and North-
ern Hemisphere (Fig. 3c and d). The Southern Hemisphere
indicated a slower decline in the chl-a concentration from
the previous autumntime compared to the Northern Hemi-
sphere. For example, the one-month lag showed a median
24 % decrease in chl-a for the Southern Hemisphere com-
pared with a median 69 % decrease for the Northern Hemi-
sphere. The springtime comparison also showed similar re-
gional differences (Fig. 3b). The forward relationships both

indicate similar percentage differences for month lags 1–
5. The backward and forward relationships at month lags
greater than 5 showed more variability, which is likely due
to the lower number of available data to construct the rela-
tionships (Fig. 3).

Applying both the spatial kriging to fill the cloud gaps,
and then BGC-Argo approach to fill the wintertime polar
chl-a, allowed for the production of a globally complete
observation-based gap-filled chl-a dataset (Fig. 4). Using
monthly composites reduced the need to broadly apply the
cloud gap filling approach and it was mainly applied in ear-
lier years of the timeseries when SeaWiFS was the only
ocean colour satellite available (1997–2002; see Fig. S3). Fo-
cusing on further analysis of polar regions where the BGC-
Argo wintertime approach was applied, four exemplar lo-
cations showed regional differences in the chl-a wintertime
concentrations (Fig. 4a, b, d, and e). The selected locations in
the Northern Hemisphere (Fig. 4a and b) generally showed
larger decreases in the wintertime chl-a, although concen-
trations in the North Atlantic Ocean (Fig. 4a) had a much
larger decline than in the North Pacific Ocean (Fig. 4b). The
Southern Hemisphere also showed regional difference across
the three selected locations (Fig. 4d and e). These timeseries
highlight that the approach was able to produce a consistent
timeseries that captured interannual variability in the winter-
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time chl-a (e.g. particularly evident in Fig. 4d and e). Con-
densing the full timeseries into a multi-year monthly clima-
tology illustrates the full coverage and spatial and temporal
variability of the wintertime period that has been filled by the
BGC-Argo approach (Fig. 5). These multi-year monthly cli-
matologies show the advantage between using only OC-CCI
observations and the gap-filled data, especially at the begin-
ning and end of the winter period, where the cloud gap fill-
ing approach aids in reconstructing the seasonality (Fig. 5b,
d, and e). They also reinforce the regional differences in the
magnitude of the chl-a decline during winter.

Total uncertainties in the wintertime chl-a were
∼ 0.6 log10 (mgm−3) in the Northern Hemisphere (Fig. 5)
where this value is driven mainly by the uncertainty in the
relationship determined via the BGC-Argo profilers. The
higher uncertainty in the relationship was a combination
of fewer Argo profiles, which in turn effects the constraint
of the complex wintertime chl-a response in the Northern
Hemisphere (Fig. 4a and b). The Southern Hemisphere has
lower total uncertainties of ∼ 0.4 log10 (mgm−3) (Fig. 5)
that contained more equal contributions to the uncertain-
ties from the BGC-Argo relationship and the underlying
spring- and autumntime OC-CCI chl-a uncertainty. The
accuracy and precision of the wintertime chl-a (i.e. the
polar gap filled data) was assessed against independent
in situ chl-a observations, determined either by HPLC
(Fig. 6a and c) or fluorometric methods (Fig. 6b and
d). Comparisons to the in situ HPLC chl-a concentra-
tions show higher numbers of coincident observations for
the Northern Hemisphere (N = 136; Fig. 6a) compared
with the Southern Hemisphere (N = 65; Fig. 6c). Both
hemispheres show consistent accuracy and precision be-
tween the in situ observations and wintertime chl-a, with
small biases (less than 0.1 log10 (mgm−3)) and RMSD of
∼ 0.4 log10 (mgm−3). Comparison with the in situ fluoro-
metric chl-a resulted in insufficient coincident observations
to draw conclusions for the Southern Hemisphere (N = 11;
Fig. 6d). For the Northern Hemisphere, the accuracy of
the wintertime chl-a is consistent to the previous com-
parisons to the BGC-Argo chl-a displaying the same
regional biases (N = 875; Figs. 6b and S1d). Although,
the precision is larger as highlighted by the RMSD values
∼ 0.6 log10 (mgm−3) compared to ∼ 0.4 log10 (mgm−3)
for the comparison to the BGC-Argo chl-a (Fig. S1d).
These precision estimates for the Southern Hemisphere
(∼ 0.4 log10 (mgm−3); Fig. 6c) and Northern Hemisphere
(∼ 0.6 log10 (mgm−3); Fig. 6b) support the validity to
the propagated uncertainty estimates for the Southern
Hemisphere of ∼ 0.4 log10 (mgm−3) and the Northern
Hemisphere of ∼ 0.6 log10 (mgm−3). In the Southern Hemi-
sphere these uncertainties are of similar magnitude with the
OC-CCI uncertainties for the region, however they are larger
within the Northern Hemisphere.

4 Discussion

The exploitation of satellite-based chl-a data records can be
hampered by missing data due to cloud cover and missing
data during the polar winter due to low solar elevations. In
this study, we have presented an observation-based approach
to gap filling the missing polar wintertime chl-a data within
a satellite climate data record, using the relative change in
BGC-Argo profiler chl-a data as an observational constraint.
This process has been preceded by using a relatively sim-
ple kriging approach to fill missing data due to clouds or
other features (such as coccolithophore blooms) that limit
the chl-a retrieval. This kriging is then used again as a fi-
nal step (after the polar data have been filled) to fill any re-
maining missing data (generally in marginal sea ice zones)
which ensures an ocean-colour-based chl-a data record with
full global coverage. The cloud gap filling based on a spa-
tial kriging approach used in this study could be regarded
as a simple method. Stock et al. (2020) showed that spatial
kriging performed well for cloud gap filling, when compared
to more complex methods, such as DINEOF. In this study
the use of monthly composites does reduce the number of
observations that need to be gap-filled by the cloud kriging
approach (Fig. S3), and therefore the computational cost of
more complex methodologies likely outweighs any benefit
to the retrieved chl-a. This situation is confirmed as the chl-
a in regions where gaps were filled using the spatial kriging
approach showed good performance with respect to the in-
dependent in situ observations (Fig. S4 in the Supplement).
Applying the full methodology to generate a higher-temporal
resolution dataset (e.g. by using 8 d composites instead of
monthly composite) is possible but could present challenges
when larger regions are covered by clouds. This may suggest
that more complex methodologies, such as those proposed by
Hong et al. (2023), using a convolution neural network (that
considers the physical and biological conditions), could be
more applicable to filling larger cloud cover gaps. With these
larger gaps, the computational cost of these more complex
methodologies could be beneficial in improving the retrieved
chl-a.

It is important to note that spatial gap filling methods make
assumptions about the missing data and use chl-a observa-
tions from clear sky conditions to fill these gaps. This will
likely lead to an underestimation of chl-a concentrations due
to photoacclimation by phytoplankton under reduced light
from persistent cloud cover (i.e. increasing intracellular chl-
a due to lower light conditions) (Begouen Demeaux et al.,
2025). The construction of monthly composites of chl-a from
observations in clear sky conditions could lead to a vary-
ing underestimation of chl-a based on regional cloudiness,
for example subtropical gyres are likely less effected due
to persistent atmospheric high pressure. This limitation is
not unique to this study as it will affect any ocean colour
chl-a data product (e.g. Hong et al., 2023; Saulquin et al.,
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Figure 4. (a) Chl a timeseries extracted for the location marked by the arrow between 1997–2024 (plotted using consistent y axes). Blue
line indicates the OC-CCI timeseries without gap filling and black lines indicate the gap filled data. Grey shaded region indicates the 1σ
uncertainty in chlorophyll-a. (b), (d), and (e) same as (a) but for their respective locations. (c) Ocean Colour Climate Change Initiative (OC-
CCI) chlorophyll-a (chl-a) with gap filling approach applied to the full timeseries climatology (1997–2024). We note that areas with a sea ice
coverage greater than 90 % are set to a fixed value of 0.1 mgm−3. Basemap in (c) from Natural Earth v4.0.0 (https://www.naturalearthdata.
com/, last access: 2 February 2025).

2018) and we therefore consider this outside the scope of the
present study.

The data gaps in optical satellite data due to the polar
winter have so far received little attention within gap fill-
ing methodologies. The approach within this study provides

an observation-based gap filling that exploits the expected
underlying temporal signal due to light availability and the
fundamental requirement for biological growth to need light.
The results appear consistent with previous studies of winter-
time chl-a variability. For example, Randelhoff et al. (2020)
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Figure 5. (a) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with gap filling approach applied to the full timeseries
climatology (1997–2024). We note that areas with a sea ice coverage greater than 90 % are set to a fixed value of 0.1 mgm−3. (b) Monthly
climatology calculated at the location marked by the arrow. Blue line indicates the monthly climatology for the OC-CCI timeseries. Black
line indicates the monthly climatology for the gap-filled OC-CCI, where the grey shading indicates one standard deviation of the gap-filled
climatology. Dashed blue line indicates a chl-a value of 0.3 mgm−3 and is referred to in the text. (c), (d), (e), and (f) same as (b), but for
their respective locations. Basemap in (a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/, last access: 2 February 2025).

showed a decline in chl-a to ∼ 0.03 mgm−3 in January in
Baffin Bay in the Arctic Ocean. We showed wintertime chl-
a consistent to these observations (Figs. 3d and 4d) dur-
ing January. Ko et al. (2024) showed wintertime values of
∼ 0.15 mgm−3 in the Chuckhi Sea, which would be consis-
tent with the observations near the shelf in the North Pacific
Ocean (Fig. 4a, 5a). These comparisons to earlier results in
the literature indicate that the BGC-Argo relationships ap-
plied to the OC-CCI data are able to capture the wintertime
chl-a concentrations and their regional differences. The in-
dependent assessment conducted using the OC-CCI in situ
chl-a validation dataset (Valente et al., 2022) in this study re-
inforces that the wintertime chl-a values are consistent with
the observations (Fig. 6) and that they maintain any potential
regional biases in the underlying OC-CCI dataset. However,
both the comparisons to literature and the validation dataset
are limited by the number of in situ measurements collected
during winter.

The decline in chl-a during winter as identified by the
BGC-Argo relationships indicate clear differences between
the Southern and Northern Hemisphere (Fig. 3). This appears
to be consistent with our understanding of biogeochemical
differences between the two regions (Arteaga et al., 2020;
Deppeler and Davidson, 2017). For example, the Southern
Hemisphere showed a slower decline in chl-a during the win-
ter compared with the Northern Hemisphere (Fig. 3). The
difference may reflect the competing limitations of light and
iron availability on the evolution of phytoplankton chl-a (e.g.
Arteaga et al., 2020) and the associated variations in phy-
toplankton bloom phenology across a relatively large geo-
graphical area (Sallée et al., 2015; Turner et al., 2024) in
the Southern Ocean. In the Northern Hemisphere, which in-
cludes the Arctic Ocean, phytoplankton growth is closely re-
lated to the retreat of sea ice and the subsequent availability
of light. Macronutrients (nitrate, phosphate and silicate) are
rapidly depleted by phytoplankton growth in the sunlit layer
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Figure 6. (a) Comparison between monthly 0.25°-gridded in situ HPLC chl-a concentrations and the wintertime gap-filled chl-a data in the
Northern Hemisphere. Solid line is 1 : 1 and dashed blue line indicates a Type-II linear regression. In text the abbreviations for the statistical
measures are root mean square difference (RMSD) and number of samples (N ). (b) Comparison between monthly 0.25°-gridded in situ
fluorometric chl-a concentrations and the wintertime gap-filled chl-a in the Northern Hemisphere. (c) same as (a), but for the Southern
Hemisphere. (d) same as (b), but for the Southern Hemisphere.

during the spring bloom and remain depleted until wintertime
mixing replenishes these from deeper waters (e.g. Manizza
et al., 2023), at which time phytoplankton growth becomes
light limited (Ardyna and Arrigo, 2020). These limitations
at the onset of winter may produce the steeper decline in
chl-a concentrations in the Northern Hemisphere, from the
spring- and autumntime chl-a. The relationships determined
from the BGC-Argo profilers would therefore appear con-
sistent with our understanding of the seasonal variability in
phytoplankton.

Interannual variability in the response of the wintertime
chl-a was apparent, particularly in the Southern Hemisphere
(Fig. 4d, e). Although the observation-based approach devel-
oped here does appear to capture interannual variability in
the winter chl-a response, it is potentially underestimated.
Reasons for this include the possibility that the BGC-Argo
relationship may not fully capture the interannual variabil-
ity between the autumn or springtime chl-a and the winter-
time response. Alternatively, the mean interannual relation-
ship will inherently be weighted towards the years (and their
conditions) in which more BGC-Argo profiles were avail-
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able during winter, i.e. the 2014, 2018 and 2024 periods
(Fig. 2). This uneven sampling of the BGC-Argo profilers
could have a larger impact in regions that are experiencing
rapid changes, for example the Arctic Ocean which has de-
clining sea ice concentrations and increasing primary pro-
duction (e.g. Lewis et al., 2020). We do not see this as a limi-
tation of the gap filling method as the differences are likely to
be captured within the calculated uncertainties. As the BGC-
Argo network reaches the intended ∼ 1000 profilers (Roem-
mich et al., 2019; although not all of these could have chl-a
sensors), the interannual differences in the BGC-Argo chl-a
wintertime relationships could be further investigated. How-
ever, at the time of writing there are ∼ 700 BGC-Argo floats
globally, of which ∼ 400 floats have chl-a sensors.

The exploitation of satellite-based chl-a data records
within, for example, ocean CO2 sink assessments, is cur-
rently hampered by the missing data due to both cloud cover
and in polar regions during wintertime. Within these assess-
ments, the biological component has been shown to be an
important predictor variable in approaches to estimate the in-
water CO2 concentrations (Ford et al., 2022). However, cur-
rently to exploit chl-a (or primary production) data within
these assessments the missing polar winter data are filled
with fixed chl-a concentrations. For example, Gregor and
Gruber (2021) set a fixed value of 0.3 mgm−3 (blue dashed
line in Fig. 5). Here, the results show that the use of fixed
values for wintertime chl-a concentrations overlooks the re-
gional variability in wintertime chl-a and can in some cases
lead to an elevated chl-a concentration above that of the
spring bloom during wintertime (Fig. 5e and f). These fixed
values will also not capture the interannual variability in the
wintertime data, which could lead to discontinuities in the
chl-a data record and the predicted in-water CO2 concentra-
tions. The approach and resulting data presented here could
therefore be used for these studies as it provides a gap-filled
chl-a data record that is consistent with the underlying ocean
colour satellite climate data record.

Although we advocate for dynamic values and using
observation-based approaches, the under-ice regions were
filled with a fixed value of 0.1 mgm−3. The observational
chl-a information under ice coupled with no availability of
satellite ocean-colour data inherently limits our ability to as-
sign a dynamic value for these under-ice regions. Many stud-
ies have identified localised under ice phytoplankton blooms
that can reach chl-a greater than 1 mgm−3 (Arrigo et al.,
2012, 2014; Boles et al., 2020), but their prevalence over the
larger synoptic scales is unclear. Capturing these dynamics
will rely on further advances in our understanding of these
under-ice environments. BGC-Argo profilers have been de-
ployed with ice avoidance systems (Randelhoff et al., 2020),
which could be more widely deployed in sea ice regions to
provide an in situ constraint to these under ice environments.
Within our approach, the choice of a fixed under-ice chl-a
value will have different effects depending on the applica-
tion. But it likely has limited effect on the ocean CO2 sink

approaches previously mentioned due to the current assump-
tions of no CO2 exchange occurring in regions of high ice
concentrations (see references within Watts et al., 2022).

The OC-CCI provides a climate-quality and consistently
produced chl-a data record that performs well at the global
scale (Sathyendranath et al., 2019). For our approach, the
BGC-Argo chl-a were bias-corrected to the OC-CCI obser-
vations to maintain the consistency within the wintertime
gap filled values, with respect to the observational record.
Although the approach could be applied without first bias-
correcting the BGC-Argo chl-a, this would introduce a bias
“step” that could impact the retrieval of the seasonal cycle
and the determination of trends within the record (Van Oost-
ende et al., 2022). A bias “step” would reduce the consistency
with the OC-CCI observations and the whole record which is
a key component of a climate data record. The ability to pro-
duce consistent wintertime data with the underlying satellite
data record (Figs. 2 and 3) also allows the methods to be
transferred to other data records (e.g. Hong et al., 2023).

Our results would indicate further in situ observations
within the Southern Hemisphere and North Pacific Ocean
would improve the ability to incorporate and assess the ac-
curacy of approaches for estimating wintertime chl-a con-
centrations. But equally, it reinforces the need for continued
development of the OC-CCI record, and underlying chl-a re-
trieval algorithms (e.g. O’Reilly and Werdell, 2019).

5 Code and data availability

The monthly 0.25° gap-filled OC-CCI record are available
from Zenodo: https://doi.org/10.5281/zenodo.15689006
(Ford et al., 2025b). The OC-CCI cli-
mate data record (v6) were retrieved from
https://doi.org/10.5285/5011D22AAE5A4671B0CBC7D05C
56C4F0 (Sathyendranath et al., 2023a), and the 2023
and 2024 extension from https://www.oceancolour.org/
(last access: 23 May 2025). The OSI-SAF sea
ice concentrations (v3) were retrieved from
https://doi.org/10.15770/EUM_SAF_OSI_0013 (OSI
SAF, 2022). The BGC-Argo data are available from the
Argo GDAC, and the snapshot used within this work is
available from https://doi.org/10.17882/42182#121877
(Argo, 2025). The code supporting this work is avail-
able at https://github.com/JamieLab/SCOPE-ArgoChla
(last access: 15 December 2025) and archived at:
https://doi.org/10.5281/zenodo.15126352 (Ford et al.,
2025a).

6 Conclusions

In this study, we present an observation-based approach to fill
gaps in the polar wintertime chl-a satellite data using BGC-
Argo profiler observations. We apply the approach, along-
side a cloud gap filling approach based on spatial kriging, to
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monthly 0.25° composites of chl-a from the Ocean Colour
Climate Change Initiative (OC-CCI) climate data record to
produce a gap-filled and spatially complete data record be-
tween 1997–2024 along with the propagated uncertainties.
Data from BGC-Argo profilers during the polar winter were
used to construct relationships between the wintertime chl-a
and the last available autumntime and first available spring-
time satellite observations. The BGC-Argo based gap filling
approach retains the accuracy of the underlying dataset, as
assessed with independent in situ observations, to produce
a coherent timeseries. The resulting data identifies biogeo-
chemical differences in the wintertime chl-a response be-
tween the Southern and Northern Hemispheres, whereby the
Northern Hemisphere showed a faster and larger decline in
chl-a than that in the Southern Hemisphere. These differ-
ences appear consistent with our understanding surround-
ing the seasonality of phytoplankton in these biogeochemical
different regions.

Applying the polar winter gap filling approach indicated
that the gap-filled timeseries correctly captures the winter-
time decline in chl-a and the interannual variability in the
wintertime chl-a. The regional variability in the wintertime
chl-a illustrated that the use of fixed values (as often used
in the literature) to fill polar wintertime data is likely unsuit-
able and will result in misleading analyses and could even re-
sult in wintertime chl-a concentrations higher than those ob-
served during the spring when concentrations peak. The gap
filling approach could be applied to any satellite based chl-
a timeseries, and theoretically, for any biogeochemical vari-
able that displays a similar wintertime response (e.g. particu-
late organic carbon or primary production). This study there-
fore provides a gap-filled coherent timeseries that can be ex-
ploited by communities that require spatially complete, gap-
filled timeseries, for example as needed by machine learning
approaches.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-569-2026-supplement.
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