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Abstract. Solar-induced chlorophyll fluorescence (SIF) is a crucial proxy of photosynthetic processes in veg-
etation. In recent decades, advancements in remote sensing technology have facilitated long-term global SIF
monitoring, significantly enhancing our understanding of vegetation dynamics on a global scale. Despite this
progress, current SIF datasets face major challenges, including temporal inconsistencies among various satellite-
derived products and a lack of long-term, high-resolution observations. In this study, we developed a “Long-term
Harmonized SIF” (LHSIF) dataset spanning 1995 to 2024 with a fine spatial resolution of 0.05° by coordinating
SIF satellite observations from GOME, SCIAMACHY, GOME-2, and OCO-2. Light use efficiency (LUE)-based
spatial downscaling models were employed for each SIF product to generate fine-resolution global SIF maps.
The long-term dataset was constructed using temporally corrected GOME-2A SIF (TCSIF) as a benchmark and
was combined with a cumulative distribution function (CDF) normalization method for far-red SIF harmoniza-
tion across satellite sensors from GOME, SCTAMACHY, and OCO-2. The resulting harmonized dataset shows a
49 % reduction in inter-sensor differences compared to the uncorrected data and exhibits a stable interannual in-
crease of 0.31 4£0.07 % yr~!. This result strongly aligns with the growth rate of gross primary production (GPP,
0.47 £0.03 % yr~!) and is consistent with ground-based SIF observations (R > 0.60). Therefore, the long-term
harmonized SIF dataset with a fine 0.05° resolution is valuable for estimating global photosynthesis over ex-
tended periods. The LHSIF dataset is available at https://doi.org/10.5281/zenodo.16394372 (Zou et al., 2025).

1 Introduction

Solar-induced chlorophyll fluorescence (SIF) is an optical
signal naturally released by plants, closely linked to their
photosynthetic dynamics (Zhang et al., 2016; Zhang and
Peiiuelas, 2023; Zhu et al., 2024; Rascher et al., 2015; Porcar-
Castell et al., 2014; Damm et al., 2015; Mohammed et al.,
2019). SIF has garnered significant attention due to its po-
tential as a novel proxy for gross primary productivity (GPP)
(Ryu et al., 2019), bridging the gap in our understanding of
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global photosynthetic processes (Beer et al., 2010; Anav et
al., 2015; Chen et al., 2024).

Following the publication of the initial global SIF map
from the Greenhouse Gases Observing Satellite (GOSAT),
interest in the SIF-GPP association greatly increased
(Frankenberg et al., 2011; Guanter et al., 2012; Joiner et
al., 2011). Subsequent satellite-based analyses have consis-
tently revealed strong spatial and temporal correlations be-
tween SIF and GPP, showcasing remarkable alignment be-
tween SIF and GPP in terms of spatial distribution and sea-
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sonal variability (Anav et al., 2015; Li et al., 2018; Verma
etal., 2017; Yang et al., 2015; Guanter et al., 2014; Zheng et
al., 2024). However, these results are mostly based on coarse-
resolution SIF datasets such as the Global Ozone Monitor-
ing Experiment (GOME)-2, leading to potential spatial mis-
match issues. Additionally, the SIF-GPP link varies by veg-
etation type, emphasizing the critical need for SIF datasets
with higher spatial resolution and spatiotemporal consistency
to better support ecosystem monitoring and interpretation.

Long-term global SIF observations are important for ana-
lyzing the vegetation functions and changes under different
climatic conditions. Multiple high-spectral-resolution satel-
lite missions have provided publicly available global SIF
products since 1995. The earliest records originated from
the GOME sensor on European Remote sensing Satellite
(ERS) in 1995, followed by the SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CartograpHY (SCIA-
MACHY) onboard Environmental Satellite (EnviSat) in
2003. However, these sensors had relatively short opera-
tional lifespans, ceasing operations in 2003 and 2012, re-
spectively. The GOME-2 sensor onboard the MetOp-A satel-
lite, launched in January 2007, operated until November
2021; this sensor provided the longest SIF time series to
date (Joiner et al., 2013). The Orbiting Carbon Observatory
(OCO)-2 satellite, launched in 2014, features exceptionally
high spatial resolution and has been validated through syn-
chronized airborne campaigns (Sun et al., 2017) to ensure the
reliability of resulting SIF products. Recent studies highlight
the potential of the TROPOMI sensor onboard Sentinel-5P
(Koren et al., 2018; Wen et al., 2020), but its SIF products are
currently constrained to a relatively short time series (May
2018 to April 2021).

Despite the availability of multiple satellite SIF products,
most have a temporal coverage shorter than 10 years, and
large discrepancies have been observed between different
SIF products (Parazoo et al., 2019). These temporal inconsis-
tencies may stem from differences in retrieval algorithms, ab-
solute radiometric calibration errors, instrumental artifacts,
directional effects, and variations in satellite overpass times
and footprint sizes (Zhang et al., 2018c; Bacour et al., 2019).
To address these challenges, Wen et al. (2020) proposed a
harmonization framework that used the cumulative distribu-
tion function (CDF) to integrate SIF datasets from SCIA-
MACHY and GOME-2 during their overlapping period, re-
sulting in a continuous record from 2002 to 2018.

While Wen’s framework laid the foundation for cross-
sensor harmonization, it did not explicitly address instrument
degradation — a key factor that compromises the long-term
consistency of single-sensor records. Such degradation, as
observed in GOME-2, poses a significant challenge for long-
term consistency and introduces uncertainties in trend anal-
yses (Parazoo et al., 2019). For instance, Yang et al. (2018)
reported diverging trends between EVI and SIF, attributing
the latter’s decline to reduced photosynthetic activity. How-
ever, Zhang et al. (2018a) argued that this conclusion was
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impacted by the deterioration of the GOME-2A instrument.
Further research by Koren et al. (2018) showed that the de-
cline in SIF persisted even after correcting for sensor degra-
dation. The SIFTERvV2 product (van Schaik et al., 2020) em-
ployed in Koren’s study was simply corrected using linear
models; the reliability of SIFTERv2 decreased significantly
after 2016, limiting its application for long-term trend analy-
sis.

To mitigate this limitation, Wang et al. (2022) attempted
to create a temporally corrected long-term SIF product
(LT_SIFc*) by correcting the degradation trends in gridded
GOME, SCIAMACHY, and GOME-2 SIF products. How-
ever, the method lacks a physically based correction of the
actual sensor radiance degradation and instead applies ad-
justments on the SIF product, which may not accurately re-
flect the true instrumental change. This is further compli-
cated by the nonlinear characteristics inherent in the SIF re-
trieval methodology and subsequent processing procedures
(e.g., zero-bias correction and quality filtering), which pre-
vent a direct and linear propagation of sensor degradation
into the final SIF retrievals. Recently, the temporally cor-
rected GOME-2A SIF dataset (TCSIF) included a calibration
of the radiance measurements of GOME-2A using a pseudo-
invariant method (Zou et al., 2024). This correction effec-
tively eliminates the influence of sensor degradation over
time, providing a practical reference for generating long-term
harmonized SIF products.

So far, the cross-sensor consistency of existing long-term
SIF records remains to be further evaluated. In this study,
we employed the TCSIF dataset as a physically calibrated
benchmark to constrain the long-term consistency of GOME,
SCIAMACHY, and OCO-2 SIF observations. By harmoniz-
ing these multi-sensor datasets against a radiometrically cor-
rected reference, we generated a continuous and temporally
consistent SIF product spanning from 1995 to 2024, which
is the longest multi-satellite harmonized SIF dataset to date.
Additionally, we performed light use efficiency (LUE)-based
spatial downscaling on the coarse spatial resolution dataset
derived from the satellite SIF products. This downscaling
reduced the spatial difference between satellite-derived SIF
and ground-based measurements of SIF and GPP, thereby fa-
cilitating our understanding of vegetation photosynthesis at
the global scale.

2 Method and materials

2.1 Satellite-based SIF datasets
2.1.1 GOME SIF

GOME, which was launched in 1995 on the ERS-2 satellite
of the European Space Agency (ESA), was initially devel-
oped to measure the column densities of ozone and nitrogen
dioxide (Hahne et al., 1993). GOME’s channel 4 operates
within a spectral range of 590-790 nm, achieving a spectral
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resolution of about 0.5 nm for far-red SIF retrieval. Although
GOME is characterized by a relatively low spatial resolution
of 320km x 40 km, it provides the earliest available record
of SIF data. The GOME SIF product utilized in this research
is the daily averaged SIF signal at 740 nm, which is retrieved
by data-driven algorithms (Joiner et al., 2019). The dataset
spans the period from July 1995 to June 2003.

2.1.2 SCIAMACHY SIF

The SCIAMACHY instrument was in operation from
2002 to 2012 onboard ESA’s Envisat satellite, overlapping
with the timeframe of GOME. The instrument enhanced
GOME’s capabilities by offering a finer spatial resolution
of 30 km x 60 km. The comparable spectral ranges and spec-
tral resolutions of SCIAMACHY and GOME allowed for the
use of analogous techniques for SIF retrievals. The SCIA-
MACHY SIF products we used were retrieved using the same
data-driven algorithms and fitting window (734-758 nm) as
those used for GOME. Daily SCIAMACHY SIF datasets at
740 nm from January 2003 to April 2012 were employed
(Joiner et al., 2021).

2.1.3 GOME-2A SIF

As a successor to GOME, GOME-2 is part of EUMETSAT’s
MetOp satellite series, with three satellites (MetOp-A, B, and
C) launched between 2007 and 2018. GOME-2 improved
upon its predecessor by providing enhanced spatial resolu-
tion (40 km x 40km or 80 km x 40 km, contingent upon the
specific platform utilized). The GOME-2A SIF datasets were
obtained from the MetOp-A satellite, launched in 2007 and
operating until 2021.

Research has shown apparent differences between
GOME-2A SIF products using different retrieval methods
(Parazoo et al., 2019). For instance, SIF retrieval using a fit-
ting window of 720-758 nm and a backward elimination al-
gorithm (Kohler et al., 2015) yields values up to twice as
large as the retrievals using a 734—758 nm window (Joiner et
al., 2013). The GOME-2A SIF dataset used in this study was
retrieved using the same data-driven algorithm and fitting
window as Joiner et al. (2013), ensuring consistency with
GOME and SCIAMACHY SIFE. Furthermore, the GOME-2
SIF we use has undergone correction for sensor degradation
and was found to avoid spurious trends caused by instrument
deterioration (Zou et al., 2024). Therefore, this temporal-
corrected GOME-2A SIF dataset with degradation correction
is used as a benchmark to harmonize the data from the other
three sensors.

2.1.4 0OCO-2 SIF

OCO-2 was a satellite mission launched by the National
Aeronautics and Space Administration in 2014. Unlike ear-
lier missions, OCO-2 focuses on small target areas, attain-
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ing a considerably greater spatial resolution of approximately
1.3km x 2.3 km. The spectral range of OCO-2 extends from
757 to 775 nm, facilitating the initial SIF retrievals at 757
and 771 nm. Drawing upon the empirical correlation of SIF
across various wavelengths, the product offers daily global
SIF at 740 nm (OCO-2/0CO-3 Science Team et al., 2020).
The SIF datasets from OCO-2 and GOME-2 have eight over-
lapping years (2014 to 2021). As a result, a thorough com-
parison and validation of the consistency can be conducted
between the two datasets.

The product specifications and sensor information are
listed in Table 1. This study resampled the orbital SIF data
from different satellites into global gridded datasets of vary-
ing sizes according to the footprint and the global coverage
of the satellites. Satellite-derived SIF measurements from
GOME, SCIAMACHY, GOME-2, and OCO-2 were aggre-
gated into monthly maps with grid sizes of 1° x 1°, 1° x 1°,
0.5° x 0.5° and 1° x 1°, respectively.

2.2 Spatial downscaling

An LUE-based model was used for downscaling the gridded
SIF datasets with coarse spatial resolutions. Assuming that
SIF can be represented using the LUE model in a manner
that is comparable to GPP (Berry et al., 2012; Guanter et al.,
2014; Damm et al., 2015), then:

SIF = PAR x fPAR x SIFyjelq (1)

where SIFy;elq is the fluorescence quantum yield, which is in-
fluenced by hydric and thermic stresses. fPAR represents the
fraction of photosynthetically active radiation (PAR) that is
absorbed by vegetation, which exhibits a positive correlation
with vegetation indices. Assuming that PAR is uniformly dis-
tributed over small areas and can be considered constant, then
Eq. (1) can be further expressed as (Duveiller and Cescatti,
2016; Duveiller et al., 2020):

SIF ~ by x f (NIRvY) x f (VPD) x f (AT) )

where NIRv is the near-infrared reflectance of vegetation,
VPD represents vapor pressure deficit (accounts for the ef-
fect of hydric stresses), and AT is the air temperature at 2 m
(accounts for the impact of thermic stresses). A quadratic
function, sigmoid function, and Gaussian function with un-
known coefficients were used to express f (NIRv), f (VPD),
and f (AT), respectively, as follows:

1
SIF &~ b NIRv?2 x [ ]
(1 +exp (b3 (bs — VPD)))

. |:exp (‘O'S(AT; bs)zﬂ . 3

The unknown coefficients by to be in Eq. (3) can be de-
termined by a nonlinear iterative approach. Here, we im-
plemented this approach using the “L-BFGS-B” algorithm
(Byrd et al., 1995).
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Table 1. Information on multiple satellite SIF datasets used to construct long-term SIF products.

Satellite/ Temporal Footprint ~ Equatorial =~ Swath Wavelength  Grid size Reference
Sensor range Size overpass width (nm)
(km?) time (km)

(Local

time)
ERS-2/ Jul 1995— 40 x 320 10:30 960 740 1°x1° Joiner et al. (2019)
GOME Jun 2003
Envisat/ Jan 2003— 30 x 240/ 10:00 960/240 740 1°x1° Joiner et al. (2021)
SCIAMACHY  Apr2012 30 x 60
MetOp-A/ Jan 2007— 40 x 80/ 09:30 1920/960 740 0.5°x0.5°  Zouetal. (2024)
GOME-2 Nov 2021 40 x 40
0CO-2 Sep 2014— 1.3x22 13:30 10.3 757/771 1°x1° OCO-2/0CO-3 Science

Dec 2024 Team et al. (2020)

NIRv, VPD, and AT were the three driving variables of
the spatial downscaling model. NIRv datasets characterized
by a spatial resolution of 0.05° were partially derived from
the Advanced Very High Resolution Radiometer (AVHRR)
(Jeong et al., 2024) for 1995-2021, while the NIRv for 2022—
2024 were calculated using MODIS MCD43C4 nadir re-
flectance (Schaaf and Wang, 2021). AT and VPD data for
1995-2024 were obtained from the TerraClimate product
with an original spatial resolution of 1/24° (Abatzoglou et
al., 2018). The driving variables were aggregated to coarse
spatial resolutions (0.5° x 0.5° for GOME-2 and 1° x 1° for
other satellites) for training the LUE model described in Eq.
(3) and to estimate the coefficients (b; to bg). The 50 clos-
est neighbors of the center pixel were utilized to train the
LUE model in an 11 x 11 sliding window. Subsequently, SIF
datasets, characterized by a spatial resolution of 0.05°, were
produced by inputting the 0.05° driving variables into the
trained model. Since the coefficients (b to bg) were com-
puted for each coarse-resolution pixel, gridded artifacts may
appear in the final product. To further ensure smooth spatial
transitions, for each high-resolution pixel within a coarse-
resolution pixel, a 3 x 3 block of coarse-resolution pixels was
selected, and nine sets of six coefficients (b; to bg) were com-
puted. Meanwhile, a fine-resolution (0.05°) weighting grid
was established within the 3 x 3 low-resolution pixels using
a two-dimensional Gaussian function with a standard devi-
ation of 15km. The final downscaled result for each high-
resolution pixel was obtained as the weighted average of the
nine sets of model-predicted values, following the approach
of Duveiller and Cescatti (2016).

2.3 CDF matching method

The cross-sensor SIF normalization was implemented using
a stratified CDF matching approach to account for environ-
mental variability. Specifically, the stratification was done
based on a combination of Koppen climate zones (Beck et al.,
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2023) and the MODIS land cover types product (MCD12C1;
Friedl and Sulla-Menashe, 2022). The land cover map of the
central year within the overlapping period was used to con-
struct the CDFs, while the CDFs were applied each year ac-
cording to the yearly land cover types. For the period be-
fore 2001, when MCD12C1 data were unavailable, the land
cover map of 2001 was applied. The degradation-corrected
GOME-2A dataset was used as the normalization reference
for all other satellite-derived SIF datasets, based on their
overlapping periods. The normalization of GOME data was
based on the SCTAMACHY dataset, which had been previ-
ously normalized with GOME-2 data.

For each sensor pair, the cumulative distribution functions
of both the reference and target datasets were calculated
across their overlapping temporal coverage. A linear inter-
polation was used to match the quantiles of the target dataset
with those of the reference. Separate CDF transfer functions
were derived for each calendar month to account for phe-
nological variations. For SCTAMACHY and GOME, due to
the limited temporal overlap, the entire period (from January
to June 2003) was used to construct the CDF function. The
complete workflow is shown in Fig. 1.

Further, the discrepancy between the two SIF time series
can be quantified by the mean squared difference (MSD):

1 2
MSD = ;ZL (D1, — D2,) )

where D; and D, are the SIF time series of the two SIF
datasets to be compared. i represents the ith month of the
chosen period. Furthermore, Eq. (1) can be broken down into
three terms (Bacour et al., 2019):

2 2
MSD = (Dy — D2)"+ (op, —op,) +20p, op, (1 — 1) (5)

where D and D, are the expected values of the time se-
ries, while op, and op, signify the respective standard devi-
ations. Additionally, r is the Pearson correlation coefficient
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Figure 1. The workflow for spatial downscaling and temporal alignment for generating the LHSIF products from 1995 to 2024.

that quantifies the relationship between the datasets. The first
and second terms in the formula represent the square of the
mean deviation (denoted as bias?) and difference in stan-
dard deviation (denoted as variancez) between the corrected
datasets and the target datasets. The final term quantifies
the inconsistency of the linear correlation between the two
datasets (denoted as phase).

2.4 Temporal Trend Analysis Metrics

To assess long-term trends in vegetation dynamics, we
employed the Mann-Kendall (MK) test, a non-parametric
method suitable for detecting monotonic trends in time se-
ries data, using the Python package pyMannKendall (Hus-
sain and Mahmud, 2019). Trend estimation uncertainty was
quantified by the standard deviation and 95 % confidence in-
tervals of the estimated temporal trend.

2.5 Datasets for validation and comparison analysis

Multiple long-term satellite-derived products were utilized
for cross-validation in this study. Key characteristics of these
benchmark datasets, along with the proposed LHSIF product,
are summarized in Table 2.

2.5.1 Boreal Ecosystem Productivity Simulator GPP

The Boreal Ecosystem Productivity Simulator (BEPS) is an
ecological process model that integrates vegetation parame-
ters with meteorological data to simulate ecosystem produc-
tivity. We used the GPP dataset generated by the BEPS model
for 1995-2019 (Ju and Zhou, 2021). The original spatial
resolution of the dataset is 0.072727° x 0.072727°, provid-
ing fine-scale insights into productivity dynamics. This high-
resolution dataset allows for detailed spatiotemporal analysis

https://doi.org/10.5194/essd-18-55-2026

and facilitates comparisons with downscaled SIF datasets in
this study to help our understanding of ecosystem carbon dy-
namics.

2.5.2 Long-term satellite SIF products

The LT_SIFc* dataset provides long-term SIF retrievals cor-
rected for temporal inconsistencies between GOME, SCIA-
MACHY, and GOME-2 SIF datasets (Wang et al., 2022). A
CDF method was employed for the harmonization of differ-
ent SIF datasets, and the LUE-based model was used for spa-
tial downscaling. The LT_SIFc* dataset spans 1995 to 2018
at a spatial resolution of 0.05° x 0.05°.

The SIF_005 dataset is a SIF product spanning 2003 to
2017, with a spatial resolution of 0.05° x 0.05° (Wen et al.,
2020). This product integrates data from SCIAMACHY and
GOME-2 SIF datasets, and it is downscaled using a machine
learning-based method. The v2.2 (trend_corrected) version
was utilized in this study; the original SIF dataset used for
this version has been preliminarily corrected for temporal
degradation.

The LCSIF dataset provides global SIF estimates from
1982 to 2022 at 0.05° x 0.05° resolution, derived from bias-
corrected AVHRR and MODIS reflectance data (Fang et al.,
2023). A neural network (NN) model was trained to pre-
dict OCO-2 SIF using two surface reflectance bands (red and
near-infrared), after inter-sensor radiometric calibration be-
tween AVHRR and MODIS during their overlapping period.

2.5.3 AVHRR vegetation indices

Global NDVI and NIRv datasets from 1995 to 2021, de-
rived from the AVHRR sensors, were utilized in this study.
These datasets were developed by Jeong et al. (2024) based
on the AVHRR Long-Term Data Record version 5 (LTDR

Earth Syst. Sci. Data, 18, 55-75, 2026
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Table 2. The long-term products used in this study and relevant details about them.

Dataset Description Time coverage Sensors for SIF product Processing method
LHSIF Multi-sensor harmonized SIF with Jul 1995-Dec 2024 GOME, SCIAMACHY, CDF matching
extended temporal coverage GOME-2, OCO-2
LT_SIFc* Multi-sensor harmonized SIF Jul 1995-Dec 2018 GOME, SCIAMACHY, CDF matching
GOME-2
SIF_005 Harmonized SIF Jan 2003-Dec 2017 SCIAMACHY, GOME-2 CDF matching
LCSIF Spatially continuous reconstructed  Jan 1982-Dec 2023 0CO-2 Neural network
SIF
BEPS GPP  Simulated GPP using ecological Jan 1981-Dec 2019 - -
process model
AVHRR Long term NDVI product Jan 1982-Dec 2021 - -
NDVI addressed for temporal
inconsistency
AVHRR Long term NIRv product addressed ~ Jan 1982-Dec 2021 - -
NIRv for temporal inconsistency

V5) surface reflectance product. To address temporal incon-
sistency in long-term AVHRR records, a three-step correc-
tion was applied, including cross-sensor calibration, orbital
drift correction, and machine learning-based harmonization
with MODIS vegetation indices. This post-processing sig-
nificantly improved the temporal consistency of NDVI and
NIRv from 1982 to 2021, as verified using detrended anoma-
lies and trends at calibration sites. The final product enables
more robust analyses of long-term vegetation dynamics and
reduces spurious trends due to sensor artifacts.

2.5.4 Ground-based observations

Ground-based SIF and GPP observations were integrated
into this study to validate and enhance the interpretation
of satellite-derived datasets. Specifically, FLUXNET GPP
observations were employed, which are based on in-situ
measurements from a global network of flux towers dis-
tributed across diverse ecosystems (Pastorello et al., 2020).
FLUXNET sites with more than five years of data were
grouped into climate zones and vegetation functional types
(see Fig. S1 in the Supplement for site distribution and
types). The field “GPP_DT_VUT_REF” was used. To en-
sure the quality of the GPP data used for validation, only
GPP records with the quality flag greater than 0.7 (Verma et
al., 2015) were retained in this study.

In addition, tower-based SIF observations from the Chi-
naSpec network, including sites such as DM, GC, HL, XTS,
and AR (Zhang et al., 2021), were used to validate the ac-
curacy and spatiotemporal consistency of the long-term SIF
dataset generated in this study. The locations and cover types
of the ChinaSpec sites used are listed in Table S1 in the Sup-
plement. To ensure consistent comparisons, the tower-based
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SIF at 760.6 nm was converted to 740 nm using an empiri-
cal correction factor of 1.48 (Du et al., 2023). Additionally,
the original half-hourly tower-based SIF data were tempo-
rally upscaled to daily and monthly values with the aid of
PAR and NDVI, following the method described by Hu et al.
(2018).

3 Results

3.1 Downscaled SIF dataset

The comparison of fine-resolution (0.05°) and coarse-
resolution (1°) SIF datasets, derived from GOME, is illus-
trated in Fig. 2. The top two rows (panels a—f) illustrate
the enhanced spatial variability achieved through the down-
scaling process, revealing finer vegetation patterns and dis-
tinct intensity gradients. The downscaled SIF datasets ren-
der subtle patterns in SIF more apparent compared to the
original coarse-resolution data (panels g-k). Additionally,
the downscaling method, which incorporates neighborhood-
based pixel searching, effectively fills in data gaps in the
original data while preserving spatial continuity. The resid-
ual, which was calculated as the difference between the
downscaled SIF (which was re-aggregated to the original
1° resolution) and the original SIF, is shown in panels (1)-
(p). It can be observed that in major vegetated regions,
the residuals are concentrated within the range of —0.50 to
0.50mW m~2 sr~! nm~!. The histograms of the downscal-
ing residuals across different years and sensors are shown in
Fig. S2. Overall, the absolute values of the mean residuals
are less than 0.008 mW m~2 sr— ! nm~!, and the standard de-

viations are below 0.105 mW m~2sr—! nm~!.
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Figure 2. Spatially downscaled SIF maps (a—f) compared to the original SIF maps at a coarser resolution (g-k). SIF data from GOME
observations in July 1996 are shown as an example. The bottom row (I-p) shows the downscaling residuals, which were calculated as the
difference between the original SIF and the downscaled SIF, which was re-aggregated to the original resolution (1° x 1°). Panels (b), (g), and
(1) depict North America; (c), (h), and (m) focus on Europe; (d), (i), and (n) depict East Asia (centered on China); (e), (j), and (0) represent

the Amazon Basin; and (f), (k), and (p) show Sub-Saharan Africa.

The distribution of monthly SIF before and after spatial
downscaling is shown using GOME as an example (Fig. 3),
while results for the other three satellites are provided in
Figs. S3-S5. The spatially downscaled SIF (0.05° x 0.05°)
was re-aggregated to 1° x 1° or 0.5° x 0.5° resolution for
comparison with the original coarse-resolution SIF. The re-
sults demonstrate that the SIF values from the re-aggregated
pixels are generally consistent with the original SIF values,
closely clustering along the 1:1 line and showing strong
agreement (R?>0.73, RMSE < 0.11mWm—2sr~ ! nm™"),
indicating that the LUE-based downscaling model effectively
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captures the relationship between SIF and its driving vari-
ables.

The temporal and spatial distributions of the spatial
downscaling residuals were analyzed (Fig. 4). The monthly
mean residuals across different latitudes and months were
generally below 0.2mWm~2sr— ! nm~! (Fig. 4a). In ad-
dition, the regions with relatively larger residuals (e.g.,
>0.1mWm~2sr ' nm~!) were mainly located in high-
latitude areas. As shown by the temporally averaged resid-
uals (Fig. 4b), for most areas below 70° N, the absolute mean
residuals are less than 0.05mWm~2sr~! nm~! for regions
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Figure 3. The relationship between the reaggregated GOME SIF (SIF_reagg) and the original GOME SIF (SIF_original) for 1998 (by

month).
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Figure 4. The (a) time series and (b) temporal average of the latitudinally distributed residual generated by the LUE-based downscaling
model. The residuals are calculated as the difference between the reaggregated SIF (SIF_reagg) and the original SIF (SIF_original). For
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Earth Syst. Sci. Data,

18, 55-75, 2026

https://doi.org/10.5194/essd-18-55-2026



C. Zou et al.: Development of the long-term harmonized multi-satellite SIF dataset 63

below 70°N. These results indicate that the downscaling
method maintains high consistency with the original data
across a broad range of temporal and spatial conditions.

3.2 Temporal harmonization

The time series of the original SIF datasets from individual
satellites and the resulting long-term harmonized SIF dataset
(1995-2024) are presented in Fig. 5. Before normalization,
substantial inter-sensor discrepancies were observed: mean
SIF values ranged from 0.19mWm™2sr~' nm~! (SCIA-
MACHY) to 028 mWm 2sr~! nm~!' (GOME), while in-
terannual trends varied from —0.76 % ylr_1 (GOME) to
0.54 % yr~! (GOME-2). Among the original sensor datasets,
only the GOME-2 dataset showed a statistically signifi-
cant trend (p < 0.05), whereas other sensors exhibited non-
significant variations (p > 0.05). In contrast, the harmonized
LHSIF dataset demonstrated a significant positive trend
(p <0.001, Trend =0.31 % yr~!).

Error analyses were conducted for different climatic zones
and plant functional types. Figure 6 shows the comparison
between GOME-2 and SCIAMACHY SIF, both before and
after normalization. In all tested scenarios, the normaliza-
tion process substantially reduced the differences between
the two sensors. Overall, the MSD decreased by more than
49 % following normalization. In most cases, the difference
in the average (bias, shown in red) was the dominant compo-
nent of the MSD between GOME-2 and SCIAMACHY SIF
before normalization. In the temperate and tropical zones of
the Southern Hemisphere, discrepancies were primarily at-
tributed to variations in variance (shown in green) and weak
correlations (shown in blue). The MSD was reduced after
temporal correction, with a decrease in the proportion of
bias. Only a small proportion (~0.002mW m~2sr™ ! nm™!)
of phase-related errors remained in the corrected dataset.

The annual maximums of the global-averaged SIF were
used to investigate the fluctuation of the worldwide vegeta-
tion from 1995 to 2024. Noticeable interannual fluctuations
were found for the SIF time series without normalization,
with an overall decline (blue line in Fig. 7a). The normalized
SIF time series reveals a growth rate of 0.31 % yr—!. After
normalization, the standard deviation of the fitted slope de-
creases from 0.25 % to 0.07 %, indicating a reduction in un-
certainty. The boxplot in Fig. 7b further shows a narrower
range of SIF values after temporal normalization, suggesting
a more concentrated data distribution and improved compa-
rability across sensors.

Significant SIF increases are observed in South and South-
east Asia, as well as parts of Eastern Europe. Conversely, sig-
nificant declines in SIF are mainly found in Southern Africa
and parts of Western North America. In Australia, the east-
ern regions show slight increases in SIF, while the western
regions experience declines. Overall, SIF growth occurred in
about 63 % of the world’s vegetated areas, with significant
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increases observed in around 28 % of these areas between
1996 and 2024 (Fig. 8b).

3.3 \Validation and comparative analysis

The annual maximum LHSIF exhibited a positive trend
(0.31£0.07 % yr~1), with data points clustering around the
trendline (Fig. 9a). The growth rate of LHSIF (0.31 % yr—')
closely aligns with that of BEPS GPP (Fig. 9f, 0.47 % yr— 1),
demonstrating LHSIF’s stability in capturing long-term
trends of GPP. LT_SIFc* also shows a positive trend but with
a lower growth rate (Fig. 9b). The SIF_005 product exhibits
a negative trend during 2003-2017 in stark contrast to all
other datasets (Fig. 9c). Although the spurious trends have
been largely corrected for the original SIF products used by
SIF_005, the long-term trend remains suboptimal.

From 1995 to 2021, less pronounced trends were shown
by AVHRR NDVI (Fig. 9d, 0.18 £0.02 % yr—!) and NIRv
(Fig. 9e, 0.3440.02 % yr~!) compared with SIF and GPP.
Compared to SIF-based products, NDVI is more suscepti-
ble to interference from vegetation canopy structure and non-
photosynthetic processes; thus, it is less effective at captur-
ing photosynthetic activity. In this regard, LHSIF provides a
more direct indication of photosynthesis and can supplement
NDVI and NIRv in detecting changes in GPP.

The interannual trends of several long-term SIF products
— including LHSIF, LT_SIFc*, SIF_005, and LCSIF — were
compared. The annual maximum of global monthly SIF was
used for comparison. Figure 10 presents the results for the
global scale as well as for several representative climate
zones and land cover types.

Among the four SIF products, all except SIF_005 show in-
creasing global trends. LHSIF exhibits the strongest upward
trend at 0.31 % yr—!, while LCSIF presents the most stable
interannual variation, with a trend standard deviation of only
0.01 % yr—!. LHSIF and LCSIF display statistically signif-
icant increases on the global scale, whereas the trends for
LT_SIFc* and SIF_005 are not statistically significant. The
divergent trend between SIF_005 and the other SIF products
is further demonstrated on regional scales. For example, in
continental cropland regions (Fig. 10h) and temperate de-
ciduous broadleaf forest (DBF) biomes (Fig. 10e), LHSIF,
LT_SIFc*, and LCSIF generally exhibit consistent positive
trends, whereas SIF_005 shows a declining trend.

In most cases shown in Fig. 10, LHSIF, LT_SIFc*, and
LCSIF display consistent trends. An exception occurs in arid
regions, where LCSIF shows an increasing trend while both
LHSIF and LT_SIFc* exhibit decreasing trends (Fig. 10j, k).
This divergence may be attributed to the machine learning—
based nature of LCSIF, which relies heavily on predictor
variables and may not fully capture the actual SIF dynamics
under stress conditions. In contrast, the observational basis of
LHSIF enables it to more directly reflect regional responses
to environmental variability.

Earth Syst. Sci. Data, 18, 55-75, 2026
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Figure 5. Global-averaged SIF time series derived from GOME (yellow), SCIAMACHY (blue), GOME-2 (green), and OCO-2 (red), along
with the long-term harmonized SIF time series (LHSIF, gray dotted line), which aligns the satellite datasets based on overlapping periods.
The table on the right summarizes the statistical characteristics of each sensor, including the mean, standard deviation (std), and the annual
trend (Trend) averaged over the respective periods. The statistical significance of the trends is indicated as follows: n.s. for not significant
(p >0.05), * for significant (p < 0.05), and ** for highly significant (p < 0.01).

In addition to long-term satellite products, ground-based
observations were also incorporated for comparison. The re-
lationships of LHSIF and AVHRR NDVI with FLUXNET
GPP are illustrated in Fig. 11. The LHSIF product shows a
strong ability to track GPP, especially for cropland and mixed
forest types (Fig. 11a). In contrast, NDVI consistently ex-
hibits lower R? values (Fig. 11b) and a more pronounced
nonlinear relationship with GPP due to saturation effects.
Apart from a few groups in the Southern Hemisphere (such
as grasslands in tropical and arid areas), where only a small
number of sites are available (see Fig. S1), SIF outperforms
NDVI in most cases.

Additionally, comparisons were conducted between LH-
SIF and the tower-based SIF measurements at five ChinaSpec
sites. As a result, LHSIF demonstrated strong agreement with
tower-based SIF measurements both temporally and spatially
(Fig. 12). The consistency of the intra-annual variations was
evident between LHSIF and the in-situ measurements for
each site. As shown in the right panel, the monthly composite
values are highly correlated, with most points clustering near
the 1: 1 line and correlation coefficients generally exceeding
0.6.

However, some deviations were observed. For example, at
the Gucheng (GC) and Xiaotangshan (XTS) sites, which are
characterized as wheat-maize rotation croplands, discrepan-
cies occurred in June. During this month, tower-based SIF
measurements recorded a trough when wheat was harvested
and maize had yet to emerge. Due to spatial heterogeneity,
LHSIF was unable to capture this phenomenon, resulting in
a reduced correlation between LHSIF and in-situ measure-
ments at these two sites. To highlight the overall correlation,
the data in June for these two sites were removed from the
scatter plot (Fig. 12h, j).

Earth Syst. Sci. Data, 18, 55-75, 2026

4 Discussion

4.1 Improvements in cross-sensor harmonization

In this study, we applied a CDF normalization method to har-
monize cross-sensor SIF measurements. While the general
concept and algorithm are similar to previous studies (Wen
et al., 2020; Wang et al., 2022), our data processing frame-
work incorporates several key improvements.

Firstly, a temporally corrected GOME-2A SIF (TCSIF)
dataset (Zou et al., 2024) was used as the reference base-
line. The TCSIF product incorporates radiometric correction
of GOME-2A sensor degradation using a pseudo-invariant
method and underwent a two-step validation at both radi-
ance and SIF levels. As shown in Zou et al. (2024), the in-
terannual variability of TCSIF shows strong consistency with
GPP, providing a more robust reference for long-term harmo-
nization. In contrast, the SIF_005 dataset (Wen et al., 2020),
which was based on the original GOME-2 SIF, shows pro-
nounced interannual fluctuations and a declining trend over
2003-2017, likely due to residual degradation effects (see
Figs. 9c and 10).

Secondly, our harmonization strategy uses GOME-2A as
the reference sensor. Its extended data record (2007-2021)
provides over five years of overlap with both SCTAMACHY
and OCO-2, allowing single-step normalization for each sen-
sor and reducing the uncertainty propagation associated with
multi-step corrections. In contrast, the LT_SIFc* product
uses GOME as the benchmark, relying on only a six-month
overlap with SCIAMACHY and then sequentially calibrat-
ing SCIAMACHY and GOME-2A, which may accumulate
uncertainties.

To quantify the impact of overlap duration on harmo-
nization uncertainty, we performed normalization experi-
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Figure 6. The mean squared difference (MSD) between GOME-2 SIF and SCIAMACHY SIF before (SIF,) and after (SIF.) normalization.
The results show the average conditions across different climatic zones and vegetation functional categories during 2007.
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ments using 6-, 12-, and 24-month overlap periods between
GOME-2 and SCIAMACHY/OCO-2, each experiment was
repeated 10 times to assess the variability (Fig. 13).

The results show that a six-month overlap leads to a higher
standard deviation in SIF time series compared to longer
overlaps. As the overlap period was extended from 6 to 12
months, the standard deviations of the normalized SIF series
decreased from 0.015 to 0.007mWm~2sr~! nm~! (SCIA-
MACHY) and from 0.018 to 0.005mWm 2sr !nm™!
(OCO-2), representing a reduction of over 53.3 %. These
results confirm that short overlap periods increase normal-
ization uncertainty and highlight the robustness of our cho-
sen strategy, which avoids using GOME as the baseline. Be-
sides, the early-stage LHSIF exhibits stronger consistency
with data-driven LCSIF than LT_SIFc* (Fig. 10a), providing
additional support for its early-period reliability.

Furthermore, in contrast to the pixel-by-pixel matching
methods adopted in previous studies, we applied a region-
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based and month-specific normalization strategy. The region-
based approach allows for a larger sample size within each
region, potentially enabling an improved estimation of the
CDF, while the month-specific treatment helps account for
seasonal variations in the CDF. The improved stability
of interannual trends in the LHSIF product, compared to
LT_SIFc* and SIF_005 at both global and regional scales
(Fig. 10), appears to reflect the effects of this normalization
strategy.
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4.2 Limitations and future perspectives

Our investigation shows that the CDF normalization ap-
proach effectively reduces disparities across sensors, provid-
ing a unified reference framework with the longest time se-
ries to date. While the normalized dataset exhibits consis-
tent seasonal and interannual patterns across sensors, several
methodological considerations warrant discussion. First, as a
statistical approach distinct from physical calibration meth-
ods (e.g., pseudo-invariant target radiometry), CDF matching
may retain minor sensor-specific biases. Second, although
we incorporate annual land cover updates using MCD12C1
product to account for vegetation dynamics, inherent clas-
sification uncertainties in the reference dataset persist. Nev-
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Figure 10. Comparison of interannual variations in long-term SIF products. LHSIF (red), LT_SIFc* (green), SIF_005 (purple), and LCSIF
(blue) are compared for (a) the global scale and (b-m) various climatic and vegetation regions. All datasets were normalized using the
z-score method. Dashed lines represent yearly maximum values, and solid lines indicate linear trends. To aid visual comparison, trend lines
were anchored at the origin (2010, 0). The statistical significance of the trends is indicated as follows: n.s. for not significant (p > 0.05), * for

significant (p < 0.05), and ** for highly significant (p < 0.01). See Table 2 for dataset details.

ertheless, the percentile-based CDF matching demonstrates
inherent robustness against outliers (Wang et al., 2022), ren-
dering land cover-induced biases negligible in practice. The
most robust approach for cross-sensor calibration is based
on pseudo-invariant calibration sites (PICs) located in non-
vegetated areas (Markham and Helder, 2012; Khakurel et al.,
2021). This method has been successfully applied to the nor-
malization and long-term monitoring of reflectance data and
vegetation index products (Angal et al., 2013; Mishra et al.,
2014; Jeong et al., 2024; Tavora et al., 2023). However, in
commonly used PICs, such as deserts and water surfaces, SIF
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signals are inherently weak and highly susceptible to noise
that can cause significant uncertainty in PIC-based calibra-
tion for SIF applications.

Although the normalization method was designed to mini-
mize the influence of GOME-related uncertainties on the har-
monized dataset, the accuracy of early LHSIF data (1995-
2003) still warrants cautious interpretation. Additional anal-
yses were conducted for the GOME observation period. De-
spite the brief overlap with SCTAMACHY, the two datasets
showed broadly consistent seasonal dynamics (Fig. 14a). We
further compared the temporal trends of LHSIF, LCSIF, and
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Figure 11. Comparison of long-term relationships between SIF vs. GPP and NDVI vs. GPP at FLUXNET sites. Only those flux tower
sites that have accumulated over a decade of data were chosen and subsequently categorized according to their respective climate zones and

vegetation types.

AVHRR NDVI during 1995-2003 (Fig. 14b—d). Some re-
gions, such as western Europe, northern Oceania, and the
southern parts of both North and South America, showed
broadly consistent increasing trends across datasets. Con-
versely, declines were commonly observed in central Africa,
southern Oceania, the Amazon rainforest, and northwestern
India. Nevertheless, noticeable discrepancies remain. For in-
stance, LHSIF displayed more extensive declines in high-
latitude regions and central North America, which were not
consistently captured by either LCSIF or NDVI.

These inconsistencies may reflect several limitations of the
early GOME record, including (i) the coarse spatial resolu-
tion that amplifies mixed-pixel effects (Joiner et al., 2013),
(ii) the relatively low signal-to-noise ratio of the GOME in-
strument (Burrows et al., 1999), (iii) increased retrieval un-
certainties in high-latitude regions with low fluorescence in-
tensity (Kohler et al., 2015), and (iv) potential uncorrected
sensor degradation effects. As our harmonization approach
primarily reduces inter-sensor biases through normalization,
it cannot fundamentally resolve these intrinsic limitations of
the original GOME data. In addition, errors may also arise
from the propagation and accumulation of uncertainties dur-
ing the normalization process, since GOME was further ad-
justed based on the corrected SCTAMACHY product.

Future work will require dedicated strategies to ad-
dress the intrinsic limitations of early GOME observations.
Such strategies may include radiometric recalibration using
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pseudo-invariant sites (Zou et al., 2024) and also physically-
based harmonization approaches to mitigate sensor incon-
sistencies arising from observation geometry, atmospheric
conditions, pixel size, and background signals. Implement-
ing these approaches will enhance the reliability of early
trends, providing a more robust foundation for interpreting
long-term variations in satellite-observed SIF.

Additionally, our downscaling approach follows the
methodology proposed by Duveiller and Cescatti (2016) and
Duveiller et al. (2020), where NIRv is used in the LUE
model instead of NDVI to enhance the model’s interpretabil-
ity for SIF (Badgley et al., 2017). Nevertheless, some ex-
planatory variables remain unaccounted for. For instance, in-
corporating PAR could improve model interpretability under
cloudy conditions (Ryu et al., 2018). However, discrepancies
in overpass time and scale effects can cause inconsistencies
between PAR and SIF products, which may increase uncer-
tainties in the downscaling model. Furthermore, incorporat-
ing fluorescence escape efficiency (Ryu et al., 2019) and to-
pographic factors (Chen et al., 2022; Tao et al., 2024) into the
downscaling model could further enhance its performance.

Model selection is ultimately more critical than the choice
of input variables (Duveiller et al., 2020). Previous research
on spatial downscaling was predominantly using purely em-
pirical machine-learning approaches (Gentine and Alemo-
hammad, 2018; Wen et al., 2020; Hong et al., 2022; Lu et al.,
2024). An alternative strategy redistributes the initial global
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downscaling results based on the original coarse-resolution
SIF values and retains the characteristics of the original ob-
servational signal to the greatest extent possible (Ma et al.,
2022; Chen et al., 2025). Our experimental results confirm
that our downscaled SIF products also remain consistent with
the original signals (Fig. 4). In addition, the LUE-based ap-
proach incorporates physiological constraints, ensuring that
the downscaled SIF values remain within a reasonable range
compared to traditional machine-learning models.

Another type of long-term SIF datasets have been gen-
erated by temporally extrapolating SIF observations based
on machine-learning methods. These datasets provide more
than two decades of high-temporal-resolution data beyond
the monthly scale (Zhang et al., 2018b; Li and Xiao, 2019;
Fang et al., 2023). However, such datasets predominantly
depend on model-driven predictions constrained by satellite
observation periods, rather than being based on actual ob-
servational data, which is fundamentally different from the
approach we employed here (Chen et al., 2025; Ma et al.,
2022).

Previous findings have demonstrated that satellite-
observed SIF is capable of capturing ecosystem responses
to major climatic extremes, such as the suppression of pho-
tosynthesis during the 2015/16 EI Nifio event in the tropics
and drought-induced declines in Europe and North Amer-
ica (Shekhar et al., 2020; Sun et al., 2015; Yoshida et al.,
2015). These findings provide support for the potential ad-
vantages of LHSIF in reflecting regional environmental vari-
ability. Nevertheless, detailed attribution of interannual dif-
ferences among products to specific climatic events requires
dedicated analyses and applications, which should be pur-
sued in future work.

Currently, the temporal resolution of purely observation-
based enhanced SIF products that span longer than 20 years
remains constrained at the monthly scale, largely due to noise
in the satellite SIF products. Overcoming this limitation will
require further refinement of existing downscaling models,
paving the way for future products to achieve a resolution of
16d or higher.

5 Data availability

The LHSIF dataset generated in this study is publicly avail-
able at https://doi.org/10.5281/zenodo.16394372 (Zou et al.,
2025). Additional information regarding the data and meth-
ods is available upon request from the corresponding author.

6 Conclusion

In this study, we developed a long-term harmonized SIF
dataset (LHSIF) spanning 1995 to 2024. SIF datasets from
various satellites were normalized using multi-sensor SIF
observations through a CDF normalization approach, using
the temporally corrected GOME-2A SIF dataset as a bench-
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mark. An LUE-based model was used for spatial downscal-
ing, yielding a fine resolution of 0.05° with an absolute mean
residual less than 0.05mW m~2 sr~! nm~".

Our analysis demonstrated that the harmonized dataset
reduced overall errors by more than 49 % and exhibited a
stable interannual increase (0.31 £0.07 % yr‘l). The inter-
annual trend of LHSIF closely aligns with the growth of
GPP (0.47 4 0.03 % yr~!) and demonstrates superior tempo-
ral and spatial consistency compared to NDVI. Validation
against ground-based SIF observations (R > 0.6) further un-
derscores the reliability of the harmonization approach and
the dataset’s utility in global vegetation studies.

By focusing on the harmonization of satellite-derived SIF
products, the LHSIF dataset offers a unified framework for
integrating multi-sensor SIF data to enable long-term mon-
itoring of global photosynthesis. This contribution provides
an essential tool for understanding vegetation responses to
environmental changes and advancing the field of Earth sys-
tem science.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-55-2026-supplement.
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