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Abstract. Ice cover of water bodies in the northern high latitudes (NHL) is highly sensitive to the changing
climate, and its dynamics exert substantial impacts on the NHL ecosystems, hydrological processes, and the
carbon cycle. Yet, operational quantification of ice cover dynamics for smaller water bodies (e.g., ≤ 25 km2)
over vast, remote NHL regions remains limited. Here, we developed an ice fraction dataset for small water bodies
(ponds, lakes, and rivers; 900 m2 to 25 km2) across the Arctic Coastal Plain of Alaska (ACP) from 2017 through
2023, using Sentinel-1 Synthetic Aperture Radar (SAR) imagery, texture features, and Daymet air temperature
data. The dataset has a spatial resolution of 1 km and a temporal resolution of approximately 6 d. Compared
with the Google Dynamic World (DW) product derived from Sentinel-2 optical remote sensing, our dataset
shows high consistency with DW (R = 0.91, RMSE= 0.19) while having enhanced temporal coverage due to
less SAR constraints from solar illumination, cloud cover, and atmospheric conditions. Validation against in-situ
observations suggests that our dataset is more capable of capturing small water body ice phenology (e.g., freeze-
up and break-up dates) relative to DW, with an 11 d reduction in mean absolute error. Our ice fraction dataset
reveals high spatial heterogeneity in ice conditions mainly occurring in June for small water bodies across the
ACP. The ice phenology analysis over three selected subregions further shows that a warmer transition period
generally leads to earlier ice break-up and later freeze-up, while the responses of ice fraction to warming climate
vary among and within individual water bodies. The resulting dataset is anticipated to fill a gap in ice phenology
studies for small water bodies, improve our understanding on the interactions between ice dynamics and climate
change, and enhance the coupled modelling of ice and carbon processes. The S1 ice fraction dataset is publicly
available at https://doi.org/10.5281/zenodo.17033546 (Lin et al., 2025).

1 Introduction

Ice cover of rivers and lakes in the northern high latitudes
(NHL) is a key indicator of climate change (Adrian et al.,
2009). The seasonal dynamics of water ice cover, includ-
ing freeze-up, break-up, and ice duration, are collectively re-
ferred to as ice phenology (Sharma et al., 2020). Changes
in ice phenology can exert broad socio-economic and eco-

logical impacts, such as influencing transportation networks
(Hori et al., 2018), fisheries resources (Orru et al., 2014),
wildlife habitats (Caldwell et al., 2020), hydrological cycle
(Wang et al., 2018), and carbon cycle (Matthews et al., 2020).
Consequently, lake and river ice are of high scientific rele-
vance and have become an important focus in climate-related
research (Culpepper et al., 2024; Yang et al., 2020).
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Small water bodies dominate in number among global sur-
face water bodies and contribute significantly to variations
in global surface water area and carbon emissions (Mullen
et al., 2023; Pi et al., 2022). With the Arctic warming rate
exceeding three times the global average (Rantanen et al.,
2022), the tens of thousands of Arctic water bodies are ex-
periencing uncertain changes in the extent and timing of sea-
sonal ice cover, which is vital for understanding the arctic
carbon, water, and energy cycles (Sharma et al., 2022). More-
over, the rising instability of seasonal ice cover is increasing
risks to human welfare in Arctic communities, which depend
on frozen lakes and rivers as major conduits for winter travel.
In addition, small water bodies are key sources of methane,
surpassing big lakes by over tenfold in total emissions due
to their high carbon content, low oxygen levels, and shallow
nature (Wik et al., 2016). The ice dynamics from these small
water bodies thus strongly regulate the magnitude and tim-
ing of Arctic methane emissions, which may be increasing
and exacerbating global warming (Matthews et al., 2020).
Despite the broad importance, knowledge of ice cover dy-
namics for small water bodies in the vast and remote NHL
remains limited partly due to the lack of all-weather satel-
lite observations with high-resolution and frequent-sampling
capabilities. One representative study region is the Arctic
Coastal Plain of Alaska (ACP), which contains a high density
of small surface water bodies (Smith et al., 2007). Since the
early 21st century, this region has experienced marked hy-
drological changes due to climate warming and permafrost
thaw (Webb et al., 2022). However, major lake ice observa-
tion datasets and related phenological analyses do not include
lakes in the ACP (Benson et al., 2000; Sharma et al., 2019,
2022). Studies based on lake modeling also face limitations,
as their coarse spatial resolution (e.g., 0.5 or 1°) makes them
unsuitable for characterizing ice cover dynamics in small wa-
ter bodies (Grant et al., 2021; Huang et al., 2022).

Satellite remote sensing is currently the most practical ap-
proach for mapping open-water ice over the remote Arctic re-
gions where field measurements and airborne campaigns are
very limited. Satellite observations collected using optical-
infrared (IR) and active and passive microwave sensors have
been widely used for mapping ice cover over large regions
(Du et al., 2019).

High-resolution IR satellites such as Planet Super-
Dove/Skysat, Sentinel-2, Landsat, and Terra/Aqua are partic-
ularly useful for delineating ice cover extent from sub-meter
to 1000 m scales (Arp et al., 2013; Brown et al., 2022; Mullen
et al., 2023; Šmejkalová et al., 2016; Wang et al., 2022; Yang
et al., 2020; Zhang et al., 2021). For example, the Google
Dynamic World (DW) product characterizes snow and ice
conditions along with other land covers globally based on
Sentinel-2 observations, with a revisit frequency of about 4–
10 d (Brown et al., 2022). However, the utility of these data
is strongly constrained in the Arctic by signal degradation
and data loss stemming from extended polar darkness and
persistent cloud cover or smoke (Brown et al., 2022). Satel-

lite microwave observations are capable of distinguishing be-
tween water and ice due to their contrasting dielectric prop-
erties, while exhibiting relatively low sensitivity to solar il-
lumination and atmosphere constraints at lower frequencies
(∼< 89 GHz) (Antonova et al., 2016; Du et al., 2017; Kang
et al., 2012; Šmejkalová et al., 2016).

Passive microwave radiometers such as the Advanced
Microwave Scanning Radiometer–Earth Observing System
(AMSR-E/2) provide frequent (∼ daily) but relatively coarse
spatial-resolution (∼ 5–25 km) observations over northern
(≥ 45° N) land areas (Du et al., 2017; Kang et al., 2012). For
example, a daily lake ice phenology record (5 km resolution)
from 2002 to 2021 derived from AMSR-E/2 enabled precise
(95 % temporal accuracy) ice cover mapping for Northern
Hemisphere lakes regardless of cloud conditions (Du et al.,
2017). Despite a general tendency towards thinner ice, later
freezing, and earlier break-up in the Northern Hemisphere
driven by recent climate warming (Du et al., 2017; Kang et
al., 2012; Šmejkalová et al., 2016), the study also revealed
opposing trends toward earlier ice formation and later ice
break-up existing over specific lakes and periods. However,
the coarse resolution of passive microwave sensors restricts
their application to only the largest lakes (area≥ 50 km2),
while similar capabilities for monitoring the abundance of
smaller water bodies across the Arctic is lacking.

Space-borne radar instruments are highly sensitive to ice
conditions similar to passive microwave sensors, while hav-
ing comparable resolutions to optical sensors capable of de-
lineating ice cover of small water bodies. The radar open
water ice observations are governed by sensor configura-
tions (frequency, polarization, incidence angle) and scatter-
ing from or within snow/ice/water/sediment layers (Murfitt
and Duguay, 2021). For the ice formation period, the con-
trasting pattern of high backscatter from cracks and defor-
mations relative to the surrounding thin ice is indicative of
the initial ice cover (Antonova et al., 2016). As the ice thick-
ness grows, backscatter generally increases due to the rough-
ness and large dielectric contrast at the ice and water sur-
face (Murfitt and Duguay, 2021). When maximum ice thick-
ness is reached, decreased radar backscatter can be observed
from bedfast ice due to the small dielectric contrast at the
ice and ground surface. For the melting period, dark patch-
es/spots in radar images may be observed from open-water
areas or small water pools on ice; while increased backscat-
tering is also expected from the roughened ice surface during
melt and refreeze events (Murfitt and Duguay, 2021). Ac-
cordingly, statistics-based approaches have been widely used
to distinguish ice and water (Engram et al., 2018; Murfitt
and Duguay, 2021). Machine learning approaches were re-
cently utilized to leverage the characteristic radar backscat-
ter patterns observed at different ice freezing/thawing phases
for enhanced ice cover detection (Tom et al., 2020). Despite
the algorithm development, radar capabilities for routine lake
ice monitoring over large regions have been constrained by
the complex interactions between microwave and water body
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features, limited global coverage, and relatively sparse tem-
poral frequency of sampling from prevailing satellites (Du et
al., 2019). There remains a lack of databases that can pro-
vide all-weather and operational observations of ice cover
and phenology dynamics for small water bodies across the
ACP, where accelerated warming and thawing occurs.

In this study, we developed a dataset of ice fraction for
smaller water bodies (≤ 25 km2) on the ACP using Sentinel-
1 SAR data (S1), with a temporal resolution of about 6 d. The
total area of the studied water bodies is 6443.59 km2, with
the smallest unit measuring 900 m2. We analyzed 3717 S1
images acquired between 2017 and 2023. A random forest
(RF) classifier was applied to each image to generate 10 m
resolution ice cover maps. The study area was subsequently
divided into 1 km2 grid cells, and the ice fraction of small
water bodies within each grid was calculated. The reliabil-
ity of the dataset was evaluated based on classification accu-
racy, comparison with DW, and validation against observed
ice phenology data. We also applied the resulting dataset to
quantify multi-year ice fraction patterns during the melting
season across the ACP, and assessed the potential utility of
the data record for monitoring the regional ice phenology.

2 Study area and data set

2.1 Study area

Our study focused on ice cover conditions of small water
bodies (900 m2 to 25 km2) across the ACP (Fig. 1a). We se-
lected three representative regions (Fig. 1b–d) and estimated
the ice phenology of small water bodies within each region
based on satellite-derived ice fraction data (see Sect. 3.6).
These regions differ in latitude, longitude, and geomorpho-
logical characteristics. Region 1 (Fig. 1b) lies near the north-
ern coast of the ACP, adjacent to the Barrow flux tower,
and features thermokarst lakes (Arp et al., 2012). Region 2
(Fig. 1c) is underlain by an ancient sand dune field and con-
tains relatively deep lakes (Simpson et al., 2021). Region 3
(Fig. 1d) is situated near Prudhoe Bay, which is the largest
conventional oil field in North America (Jamison et al., 1980)
and is characterized by extensive infrastructure that supports
oil and gas exploration. The water bodies in Region 3 pro-
vide freshwater resources for local industrial activities and
are subject to greater human disturbance.

2.2 Data set

2.2.1 Water body data

We used the Global Lakes and Wetlands Database Version 2
(GLWD v2) (Lehner et al., 2025) and the Joint Research Cen-
tre Global Surface Water (GSW) products, including maxi-
mum water extent and water occurrence (Pekel et al., 2016),
to generate the small water body mask (Fig. 1a, Sect. 3.1.1).
GLWD v2 provides a global map of inland surface water with
a spatial resolution of 15 arcsec, including 33 categories of

water bodies such as lakes (Lehner et al., 2025). The GSW
maximum water extent product provides the maximum ex-
tent of surface water between 1984 and 2021 at 30 m spa-
tial resolution, while the GSW water occurrence product pro-
vides the frequency of surface water presence at each pixel
during 1984–2021 (Pekel et al., 2016).

2.2.2 Sentinel-1 SAR data

In this study, we used Sentinel-1 SAR imagery to de-
tect ice within small water bodies in the ACP. The
Sentinel-1 constellation includes two satellites, S1A and
S1B, which were launched in 2014 and 2016, respec-
tively, with sun-synchronous descending/ascending orbits
and 06:00 a.m./p.m. LT mean local sampling times. The
revisit frequency of the Sentinel-1 constellation is 6 d
from both satellites but was reduced to 12 d after the
S1B satellite ceased operating in December 2021 (https://
sentinels.copernicus.eu/copernicus/sentinel-1, last access: 1
July 2025). SAR is less affected by cloud cover or illumi-
nation conditions relative to optical-IR sensors, enabling all-
weather monitoring. Due to differences in dielectric proper-
ties and surface roughness, ice and water typically exhibit
distinct backscatter characteristics in SAR imagery (Stonevi-
cius et al., 2022; Sect. 1) for facilitating ice/water classifica-
tions. The Sentinel-1 Ground Range Detected (GRD) prod-
uct, which was generated from the SAR observations under
Interferometric Wide Swath (IW) mode and both ascending
and descending orbits, was used in the study. The vertically
(VV) and cross (VH) polarized radar backscatters and their
incidence angles were analysed for ice and water mapping.
A total of 3717 S1 images (1451 ascending and 2266 de-
scending scenes) covering the ACP at 10 m resolution were
collected for the period from 2017 through 2023.

2.2.3 Dynamic World and Sentinel-2 data

Dynamic World (DW) is a 10 m resolution land cover dataset
derived from Sentinel-2 (S2) optical-IR imagery. It includes
nine classes, with snow and ice among them (Brown et al.,
2022). Due to the application of cloud filtering, the tempo-
ral resolution of the DW product is approximately half that
of Sentinel-2, around 4–10 d (Brown et al., 2022). The land
cover classes in DW are predicted using a fully convolutional
neural network (FCNN), with the snow/ice class achieving a
user accuracy of 71.2 % and a producer accuracy of 94.2 %
(Brown et al., 2022). The DW data were used for training
the RF model and validating S1-based classifications. Specif-
ically, we used the label band from DW, which represents the
land cover class label with the highest estimated probability.
Then, the DW images from 2017 through 2023 were con-
verted into binary ice and non-ice masks (i.e., label dataset)
for the identified small water bodies in the ACP. DW is gen-
erated from S2 images with cloud cover ≤ 35 %. However,
to ensure higher-quality samples for training the RF model,
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Figure 1. Numerous small water bodies are distributed across the study area. (a) Small water bodies (blue) investigated within the ACP,
locations of observed ice phenology records (green triangles), and the three selected regions for ice phenology analysis (orange circles).
(b–d) Enlarged views of the three selected regions, with orange borders indicating 5km× 5km areas. Panels (b)–(d) use basemaps Powered
by Esri from Esri World Imagery.

we paired DW scenes with S2 imagery acquired on the same
day and retained only those with cloud cover ≤ 20 %.

2.2.4 Daymet data

The Daily Surface Weather and Climatological Summaries
(Daymet V4) dataset provides daily estimates of surface
weather parameters over North America at 1 km spatial res-
olution since 1980 (Thornton et al., 2021). The air tem-
perature parameters of Daymet V4 are estimated through a
weighted multivariate regression model based on observed
weather station data. The cross-validation results of Daymet
V4 show that the average daily mean absolute error (MAE)
is 1.78 °C for daily minimum air temperature (Tmin) and
1.52 °C for daily maximum air temperature (Tmax) (Thorn-
ton et al., 2021). For each image from 2017 through 2023,
we selected Tmax, Tmin, and a 5 d lagged mean air temper-
ature (Tmean5d) as part of the RF predictors. To derive the
Tmean5d, we first computed the daily average air temper-
ature (Tavg) by averaging Tmax and Tmin, then calculated
the mean Tavg over the current day and the preceding four
days. Temperature was selected as a predictor because it is a
key atmospheric factor influencing the dynamics of ice cover
(Woolway et al., 2020). Considering the data uncertainties
due to the spatial interpolation from limited station measure-
ments over the region, we added random noise of ±1.5 °C
to the original Daymet Tmax, Tmin, and Tmean5d data to
improve the robustness of the RF model.

2.2.5 Observed ice phenology data

To assess the accuracy of our ice fraction dataset in estimat-
ing ice phenology, we collected seven observational records
from four rivers within the study area (Fig. 1a) from the River
and Lake Ice Phenology Dataset for Alaska and Northwest
Canada (Arp and Cherry, 2022). The seven collected records
are derived from ground-based visual observations. This ob-
servational dataset provides information such as the dates
of ice break-up and freeze-up, and the coordinates of each
record (Table S1 in the Supplement). The dataset does not
provide specific definitions for break-up and freeze-up dates,
nor does it include specific accuracy metrics, but it notes that
observations of river and lake ice conditions are primarily
conducted by shore-side community members and are quali-
tative in nature.

3 Methods

3.1 Data preprocessing

3.1.1 Generating small water body mask

To delineate the extent of small water bodies, we first ex-
tracted lakes larger than 25 km2 from the GLWD v2 product.
These large lakes were then removed from the GSW maxi-
mum water extent to generate an initial mask of small wa-
ter bodies. To reduce ice detection errors along littoral zones
and riverbanks, we used the GSW water occurrence prod-
uct to retain only areas with water occurrence greater than
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80 % within the initial small water body extent. The total
area of the remaining small water bodies used in this study
is 6443.59 km2. We applied the resulting water body mask to
the S1 imagery, the DW product, and the Daymet air temper-
ature data for ice cover mapping over small water bodies in
the ACP.

3.1.2 Pre-processing of Sentinel-1 imagery

The S1 data were pre-processed before being fed into the
RF model, which included incidence angle normalization,
de-speckling using Refined Lee filtering, texture calculation,
image clipping, and water body masking (Fig. 2a).

To correct for SAR incidence angle effects (Koyama et al.,
2019), we normalized the incidence angles to 40° using a
well-established cosine correction method (Mladenova et al.,
2012) (Eq. 1).

σcorrected = σθ

(
cosθref

cosθ

)n
(1)

ln(σθ )= n× ln(cosθ )+ b (2)

where σθ is the backscatter coefficient of a pixel in the SAR
image, cosθ is the cosine of the incidence angle for that pixel,
and cosθref is the cosine of the reference incidence angle (set
to 40° in this study). σcorrected represents the backscatter co-
efficient corrected to the reference angle. The exponent n de-
scribes surface roughness, and b is the intercept of the linear
equation. The exponent n in Eq. (1) is derived by performing
a linear fit between ln(σθ ) and ln(cosθ ), as shown in Eq. (2).

Based on Eq. (1), we applied incidence angle normaliza-
tion to the VV and VH bands of both ascending and descend-
ing S1 data. To determine the four corresponding n values,
we sampled each S1 image within the small water body ex-
tent during the study period. A total of 318 400 data points
were collected from ascending orbit images and 401 560 data
points from descending orbit images. The correction coeffi-
cients (n) derived using Eq. (2) were 4.43 and 2.6 for as-
cending VV and VH, and 4.11 and 2.6 for descending VV
and VH, respectively.

To reduce SAR speckles, we applied the Refined Lee fil-
ter (Lee and Pottier, 2017) to each S1 image after incidence
angle normalization. We then calculated the correlation tex-
ture for the VV band (VV_corr), which quantifies the sim-
ilarity between a pixel and its neighbors. The inclusion of
radar backscatter texture information provides spatial con-
text for the RF model, enabling the classifier to utilize not
only the value of individual pixels but also statistical char-
acteristics of their surrounding neighborhood. For example,
VV_corr texture information is indicative of ice and water
conditions (e.g., ice patches, open water patches, and ice-
water boundaries) during the break-up period (Fig. S1 in the
Supplement), and thus supports the machine-learning based
classification. Among the commonly used texture features
(Soh and Tsatsoulis, 1999), such as correlation, variance,

contrast, energy, and entropy, VV_corr was found to be most
important for ice detection. Considering the importance of
VV_corr and the increased computational burden introduced
by multiple texture features, we ultimately selected VV_corr
as the only texture predictor.

To avoid the impacts of S1 degradations over image edges,
we removed the pixels within a 100 m buffer area from the
image edges. Finally, the small water body mask was applied
to each S1 scene.

3.2 Constructing sample dataset

To train and test our RF-based ice detection model, we first
constructed a dataset using DW ice/non-ice classifications
as predictand, and S1 VV and VH backscatter coefficients,
VV_corr, and Daymet air temperature variables as predictors
(Fig. 2b). We paired all same-day S1, S2, DW, and Daymet
images over the study area from 2017–2023 to form the S1-
S2-DW-Daymet image collection. The ACP study area was
divided into 23 longitudinal zones at 1° intervals. For each
S1-S2-DW-Daymet image pair within a given longitudinal
zone, we sampled 20 points per class (ice and non-ice) based
on the DW labels.

In total, we collected 51 858 samples, consisting of 31 579
ice samples and 20 279 non-ice samples (Fig. 3). Of these,
19 124 samples (11 466 ice and 7658 non-ice) were from as-
cending orbit scenes, and 32 734 samples (20 113 ice and
12 621 non-ice) from descending orbit scenes. We separated
the ascending and descending orbit samples to develop inde-
pendent ice detection models for each orbit.

3.3 Generating ice fraction

We used the RF model to detect ice cover in small water bod-
ies, specifically performing binary classification (ice vs. non-
ice) at the pixel scale (Fig. 2c). The RF is an ensemble learn-
ing algorithm with high computational efficiency and robust-
ness against overfitting (Belgiu and Drăguţ, 2016; Maxwell
et al., 2018). The input features for the ice detection model
included six predictors: VV, VH, VV_corr, Tmax, Tmin,
and Tmean5d. The predictand is the ice/non-ice classifica-
tion. Considering the different passing time, S1 ascending
(06:00 PM LT) and descending (06:00 AM LT) observations
were processed separately. Therefore, separate RF models
were trained using S1 ascending and descending orbit sam-
ples. The dataset was randomly split into 80 % for training
and 20 % for testing (Table S2 in the Supplement). Optimal
model hyperparameters were determined through tuning (Ta-
ble S3 in the Supplement). Model performance was evaluated
using the test set, with metrics including overall accuracy,
user accuracy, and producer accuracy.

The trained ice detection models were applied to each S1
image throughout the study period to produce 10 m reso-
lution ice cover maps for small water bodies in the ACP
(Fig. 2c). The study area was then divided into 1 km grid
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Figure 2. Workflow for generating ice fraction dataset, comparing S1 and DW ice fraction, and analyzing ice phenology.

cells, and the ice fraction was calculated for each grid based
on the 10 m ice cover maps. Only grid cells with at least 95 %
spatial coverage of small water bodies with RF ice classifica-
tions were retained. The 1 km ice fraction dataset from 2017–
2023 was generated by merging the results for the respective
S1 ascending and descending observations. In addition, we
generated a corresponding 1 km ice fraction dataset from the
DW product for inter-comparisons.

3.4 Post processing

Post-processing was performed to minimize retrieval uncer-
tainties and remove outliers from the ice fraction record. We
first corrected non-zero ice fraction values during the ice-
free season, which are likely artifacts from the misclassi-

fications under rough water surface conditions (Du et al.,
2016). Specifically, the 1 km S1 ice fraction time series for
each grid was divided into one-year segments, and a Gaus-
sian smoothing filter was applied to each segment. Periods
with smoothed ice fraction values below 0.5 were identified
as water-dominated periods. Within these periods, we located
the first and last days in the original (i.e., unsmoothed) series
where the ice fraction dropped below 0.1 and set all values
between the two dates to zero.

During the ice break-up process, the S1 radar backscatter
tends to be reduced first due to an increase in liquid water
content in snow on top of ice cover, followed by a possible
increase with greater snow and ice surface roughness as melt-
ing continues (Murfitt et al., 2024). In the ice fraction time
series, this effect can manifest as a dip followed by a rise. To
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Figure 3. The labelled data used for training and testing the ice detection models. (a) Spatial distribution of ice samples. (b) Spatial distri-
bution of non-ice samples.

address the snow melting impacts, we further applied a lo-
cal minimum smoothing filter to the ice fraction time series.
Specifically, if a given value was lower than both its preced-
ing and following values, it was replaced by the average of
those two neighbouring values.

3.5 Comparison of S1 and DW ice fraction

In addition to the RF model evaluations (Sects. 3.3 and
4.1), we also compared the S1 and DW ice fraction datasets
(Fig. 2d). For quantitative comparison (Sect. 4.2), we paired
each S1 ice fraction value with the corresponding DW value
on the same day and grid during 2017–2023. Only grids
where small water bodies cover at least 5 % of the grid
area were included. We then calculated the Pearson correla-
tion coefficient (R), root mean square error (RMSE), relative
RMSE (RRMSE), and bias between S1 and DW ice fraction
datasets. For qualitative comparison (Sect. 4.3), we used S1
and DW ice fraction datasets to generate maps of the multi-
year average ice fraction for small water bodies in the ACP
during May to July and analyzed their spatiotemporal pat-
terns.

3.6 Ice phenology analysis

The ice fraction dataset captures the small water body ice
phenology, such as the freeze-up and break-up dates. Freeze-
up refers to the process from the initial formation of ice to full
ice coverage, while break-up refers to the transition from the
initial fracturing of ice to the return of open water conditions
(Sharma et al., 2022). Definitions of freeze-up and break-up
dates vary across studies, commonly based on the initiation
or completion of these phases (Arp et al., 2013; Brown and

Duguay, 2010; Sun, 2018). In this study, we define the break-
up date as the first day on which the ice fraction drops below
0.95, and the freeze-up date as the last day below 0.95 before
the ice fraction rises above this threshold. The 0.95 thresh-
old represents the onset of break-up and the completion of
freeze-up.

To evaluate the accuracy of remote sensing-based ice frac-
tion data in estimating ice phenology, we extracted S1 and
DW ice fraction values from the 1 km grid cells correspond-
ing to the in-situ ice phenology records (Fig. 1a, Table S1).
Subsequently, ice phenology dates based on S1 and DW were
estimated and compared with the observed dates (Fig. 2e).
We also estimated ice phenology for three 5km× 5km re-
gions (Fig. 1b–d) within the ACP representing distinctive
lake geomorphological characteristics and compared the re-
sults between warm and cold years for understanding the im-
pacts of changing climate on lake ice dynamics (Fig. 2e).

3.7 Uncertainty assessment

To assess the S1 ice fraction data uncertainty, we collected all
paired DW and S1 ice fraction observations on the same dates
from 2017 through 2023 for each grid cell. Subsequently, the
RMSE of S1 and DW ice fractions was calculated for each
grid cell and normalized by the average DW ice fraction of
that grid cell across all temporally matched observations, to
derive the RRMSE, expressed in percentage. The RRMSE
for each grid cell is calculated as follows:

RRMSE=

√
1
n

∑n
i=1(S1i −DWi)2

DW
× 100% (3)
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where S1i and DWi denote the S1 and DW ice fraction of the
same 1 km grid cell at the ith temporally matched observa-
tion, respectively; n is the number of temporally matched ob-
servations available for that grid cell; and DW represents the
mean DW ice fraction of that grid cell across all n temporally
matched observations. The resulting RRMSE map serves as
a quality flag layer for the ice fraction product and will be re-
leased alongside the final dataset (Fig. S2 in the Supplement,
Sect. 6).

4 Results

4.1 Performance of 10 m ice detection

Our RF results were highly consistent with the DW for pixel-
based ice classifications. For S1 ascending orbits, the overall
accuracy, user accuracy, and producer accuracy were 0.91,
0.93, and 0.92, respectively. For descending orbits, these
metrics were 0.91, 0.92, and 0.93. Both temperature-based
and radar-based features are important, with comparable con-
tributions to the predictions (Fig. S3 in the Supplement). The
temperature variables provide regional temperature distribu-
tions and seasonal context, whereas the SAR variables pro-
vide the direct observations crucial for distinguishing pixel-
level ice conditions. Figure 4 shows good consistency be-
tween the 10 m S1 ice cover maps and the DW ice cover maps
on the same days. Unlike the DW ice cover maps, which suf-
fer from large data gaps due to cloud contamination, the S1
imagery provides valid estimates of ice cover under cloudy
conditions (Fig. 4b). Due to differences in overpass times on
the same date (03:00 UTC for ascending S1, 17:00 UTC for
descending S1, and 22:00 UTC for S2), S1 and S2 may cap-
ture different ice conditions when active ice melting occurred
(e.g., Fig. 4a).

4.2 Quantitative assessment of 1 km ice fraction

Quantitative comparisons showed high consistency between
the 1 km S1 and DW ice fraction results, with an R of 0.91,
RMSE of 0.19, RRMSE of 28.41 %, and a bias of 0.02
(Fig. 5). The S1 ice fraction shows a slight overestimation
relative to DW in low-value areas, such as when the ice frac-
tion ranges from 0 to 0.4. However, this overestimation ac-
counts for less than 10 % of the validation data pairs. Annual
comparisons from 2017 through 2023 also showed good con-
sistency, with R values ranging from 0.86 to 0.94, RMSE be-
tween 0.13 and 0.22, RRMSE between 0.16 and 0.38, and
bias ranging from −0.02 to 0.05 (Table S4 in the Supple-
ment).

The uncertainty of the S1 ice fraction dataset for each 1 km
grid cell was evaluated using RRMSE. About 5.16 % of the
1 km grid cells have an RRMSE below 10 %, indicating that
in these areas the model achieves high accuracy, with predic-
tions closely matching the DW ice fraction (Table 1). An ad-
ditional 17.30 % of the data fall within the 10 %–20 % range,

Table 1. Uncertainty distribution of S1 ice fraction data. The un-
certainty for each 1 km grid cell is measured by the RRMSE of ice
fraction between S1 and DW for that cell.

Uncertainty range Proportion of 1 km grid cells

< 10 % 5.16 %
[10%,20%) 17.30 %
[20%,30%) 31.17 %
[30%,40%) 21.27 %
[40%,50%) 11.31 %
> 50 % 13.79 %

reflecting good model performance (Table 1). The largest
portion of the dataset, 31.17 %, lies in the 20 %–30 % range,
indicating moderate accuracy for a substantial part of the ice
fraction predictions (Table 1). Furthermore, 21.27 % of the
data are within the 30 %–40 % range, showing areas with
larger errors. In addition, 11.31 % of the data have RRMSE
values between 40 %–50 %, and 13.79 % exceed 50 %, high-
lighting regions where the model performs poorly. For these
high-error areas, users should exercise caution and can filter
them using the provided quality layer. Relatively high errors
were mainly found along rivers as well as in very small water
bodies, where mixed land and water/ice conditions are likely
found in S1 observations (Fig. S2). For example, among the
1 km grid cells with RRMSE greater than 60 %, 46.7 % ar-
eas are distributed in river areas determined by a 1 km buffer
around the river centerlines. Contaminations in S1 observa-
tions from the surrounding land areas of the elongated or very
small water bodies likely led to the large classification uncer-
tainties.

4.3 Spatiotemporal patterns of ice fraction

We calculated monthly mean lake ice fraction maps for the
ACP in May, June, and July of each year from 2017 through
2023, and then averaged these to produce multi-year mean
ice fraction maps for each month (Fig. 6). The May com-
posite shows widespread ice coverage over small water bod-
ies across the ACP (Fig. 6a). June marks a period of rapid
melt, with a general decrease in ice fraction from higher to
lower latitudes. Most rivers exhibit melt conditions in June,
and adjacent lakes also show reduced ice coverage during
this period (Fig. 6b). This pattern is related to the spring
flood pulse and delivery of snowmelt runoff by river in-
flows from surrounding lake–watershed systems (Brown and
Duguay, 2010). By July, ice fractions are minimal, which
suggests most small water bodies have completed ice break-
up (Fig. 6c). This is consistent with previous findings indi-
cating that ice-out dates for lakes in the ACP generally occur
after the summer solstice (Arp et al., 2013).

The multi-year mean ice fraction maps derived from S1
(Fig. 6a–c) and DW (Fig. 6d–f) show good agreement, es-
pecially for May and July. In June, when ice melt is most

Earth Syst. Sci. Data, 18, 535–549, 2026 https://doi.org/10.5194/essd-18-535-2026



H. Lin et al.: Ice fraction record for small ACP water bodies 543

Figure 4. Comparison of Sentinel-2 RGB, Sentinel-1 VV, S1-based ice detection, and DW-based ice detection. Rows (a)–(e) show results
from different periods and regions. Each row of subplots presents, for the same day, the optical image, SAR image, the 10 m S1 ice cover
map from this study, and the 10 m ice cover map from DW. In row (b), significant portions of the S2 optical image and associated DW ice
classification are degraded by cloud contamination, whereas the S1 SAR based ice classification is unaffected by this atmosphere constraint.

dynamic, the DW ice fraction map indicates higher ice frac-
tions in the western to central ACP, but lower ice fractions in
the northeastern-central region compared to the S1 ice frac-
tion map (Fig. 6b and e). These differences are attributable to
differences in observation timing between the two datasets.
In the western to central ACP, DW observations are con-
centrated in early June (Fig. S4b in the Supplement), gen-
erally capturing pre-melt conditions, whereas the S1 obser-
vations in this region are more concentrated in mid-June
(Fig. S4a), reflecting more advanced melt. In contrast, in the
northeastern-central ACP, DW observations are concentrated

in late June (Fig. S4b) when ice had largely melted, while
the S1 observations occurred earlier in the month (Fig. S4a)
when ice was still present.

4.4 Ice phenology assessment

For ice phenology estimation, the S1 derived ice fraction
record produced more accurate results, with an overall MAE
of 7 d, whereas the DW-derived estimates had an overall
MAE of 18 d in relation to the 7 ice phenology observations
from the 4 ACP sites (Table 2). The error range for phe-
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Figure 5. Comparison of 1 km S1 and DW lake ice fraction re-
sults on the same days from 2017 through 2023 show good agree-
ment. The linear regression line and evaluation metrics (R, RMSE,
RRMSE, and bias), based on 867 238 data points, are shown in the
plot. The background is a kernel density estimate generated through
random sampling.

Table 2. Errors in ice phenology dates estimated from 1 km S1 and
DW ice fraction data. Errors are presented as mean absolute error
(MAE), calculated based on the results in Table S1. The table in-
cludes MAE for break-up dates, freeze-up dates, and overall MAE.

Data MAE (days)

Break-up Freeze-up Overall

DW 18 19 18
S1 4 13 7

nology dates derived from the S1 ice fraction record was 0
to 19 d (Table S1), comparable to a previous study at Lake
Hazen in Canada using Sentinel-1 imagery (2–17 d) (Mur-
fitt and Duguay, 2020). In contrast, DW-derived phenology
dates showed larger errors, ranging from 5 to 38 d. The es-
timation error of freeze-up dates from the S1 ice fraction
record is larger than that of break-up dates, mainly due to the
record from 2017 (Table S1). Notably, both S1 and DW es-
timates show large errors for this period. The S1-based ice
fraction data captured the ice phenology within 1 km grid
cells, whereas the in-situ data set were from eye-based visual
observations. Therefore, the two phenology measurements
may differ due to mismatches in spatial extent and time of
observation.

The ice phenology results derived from the S1 ice frac-
tion record captured the impact of an anomalous heatwave
in 2019 (Fig. S5a in the Supplement), which led to notably
earlier break-up dates across all three regions compared to
2018 (Fig. 7). In June 2019, Region 2 experienced the highest

mean air temperature among the three regions, reaching ap-
proximately 6 °C (Fig. S5a). Correspondingly, Region 2 also
exhibited the earliest break-up dates among the three regions
(Fig. 7d–f). In 2018, some irregularly shaped and smaller
water bodies in Region 3 experienced earlier ice break-up
(Fig. 7c). This pattern is consistent with previous findings
suggesting that lakes with more complex shapes and smaller
areas tend to break up earlier (Arp et al., 2013). Our results
also showed that freeze-up in 2021 occurred significantly
earlier than in 2019 across all three regions (Fig. 8), which
was related to a colder September in 2021 (Fig. S5b).

5 Discussion

This study provides a 1 km resolution ice fraction dataset for
small water bodies in the ACP from 2017 through 2023. The
dataset is derived from a 10 m resolution S1 derived ice clas-
sification and includes water bodies as small as 900 m2 in
size, which have been largely omitted in most previous re-
mote sensing-based studies (Arp et al., 2013; Du et al., 2017;
Šmejkalová et al., 2016; Wang et al., 2022; Zhang et al.,
2021). By leveraging the all-weather and day-night observa-
tion capability of satellite SAR sensors, the dataset provides
more timely ice cover detection relative to the optical-IR ob-
servations. In particular, optical-IR imagery may fail to re-
liably capture freezing events in high-latitude lakes due to
low solar elevation angles (Šmejkalová et al., 2016), or miss
critical ice information due to cloud contamination. Com-
pared to the operational DW classifications, our dataset offers
higher accuracy in ice phenology estimation (S1 MAE= 7 d;
DW MAE= 18 d) and is more capable of capturing ice dy-
namics during periods of rapid change (Table 2). This dataset
provides a new resource for tracking small water body ice dy-
namics complementary to optical-IR results and contributes
to enhanced monitoring of NHL environmental changes.

Our dataset shows that small water bodies within ACP are
generally covered by ice in May, experience major melting
events in June, and become mostly ice-free in July (Fig. 6a–
c). This pattern is consistent with the DW-based results
(Fig. 6d–f) and previous studies showing ACP ice break-up
events mainly occurring between June and July and ending
after the summer solstice (Arp et al., 2013). Our ice frac-
tion maps also show substantial spatial heterogeneity in June
ice cover, including a latitudinal gradient of decreasing ice
cover toward the south and lower ice fractions in rivers and
nearby water bodies (Fig. 6b). The ice cover conditions of
water bodies may vary with their distances from and connec-
tivity with rivers due to the influence of snowmelt runoff on
river–lake systems (Brown and Duguay, 2010; Prowse et al.,
2011; Woo and Heron, 1989). Compared to isolated lakes,
those connected to rivers tend to break up earlier due to the
inflow of relatively warmer meltwater (Arp et al., 2013).

Ice phenology analysis suggests that air temperature is the
main control of break-up and freeze-up events of small water
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Figure 6. Multi-year mean 1 km ice fraction maps for small water bodies in the ACP from May to July. (a)–(c) show the S1-derived ice
fraction results for May (a), June (b), and July (c). (d)–(f) show the DW-derived ice fraction results for May (d), June (e), and July (f). Only
grid cells where small water bodies cover ≥ 1 % of the area are shown.

Figure 7. The lake ice break-up dates in 2019 (d–f) were generally earlier than those in 2018 (a–c) across the three selected regions in the
ACP (Fig. 1). Each subplot shows a 5km× 5km area where water bodies are delineated by black lines. The phenology dates are calculated
based on 1 km S1 ice fraction data, and the color of each 1 km grid cell indicates the break-up date in day of year (DOY).

bodies in the ACP (Figs. 7 and 8), which was also confirmed
from satellite observations over large lakes (Du et al., 2017)
and in-situ observations over lakes and rivers (Weyhenmeyer
et al., 2011). In addition, our results show that break-up dates
tend to occur earlier in smaller and more irregularly shaped
water bodies (Fig. 7c), which is consistent with previous find-
ings (Arp et al., 2013).

Our ice fraction retrievals are highly correlated with the
DW results (R = 0.91). The uncertainties mainly arise from
the complexity of SAR observations of ice and water, as
well as the limitations in the RF training data and ancil-

lary inputs. For example, wind-induced surface roughness
may cause strong radar backscatters from open water, lead-
ing to water misclassified as ice (Du et al., 2016). On the
other hand, the decrease in backscatters caused by melting
snow may lead to ice misclassified as water (Murfitt et al.,
2024). In addition, thin ice with a smooth surface may ap-
pear dark in S1 backscatter images, leading to ice misclas-
sified as water (Mahmud et al., 2022). As a result, wind ef-
fects may lead to nonzero ice fraction values during ice-free
periods, while wet snow and thin ice can cause anomalous
drops in ice fraction. Moreover, lake water salinity can affect

https://doi.org/10.5194/essd-18-535-2026 Earth Syst. Sci. Data, 18, 535–549, 2026



546 H. Lin et al.: Ice fraction record for small ACP water bodies

Figure 8. The lake ice freeze-up dates in 2021 (d–f) were earlier than those in 2019 (a–c) across the three selected regions in the ACP
(Fig. 1). Each subplot shows a 5km× 5km area with water bodies delineated by black lines. The phenology dates are calculated based on
1 km S1 ice fraction data, and the color of each 1 km grid cell indicates the freeze-up date in day of year (DOY).

SAR backscatter coefficients and thus influence ice detection
(Engram et al., 2018). This aspect warrants further investi-
gation in the future. Our ice detection models were trained
with diverse samples, yet occasional misclassifications re-
main unavoidable. Through post-processing, these residual
effects were effectively reduced by identifying and removing
outliers (Sect. 3.4). Errors can also arise from uncertainties
in the RF temperature predictors. Due to the relatively coarse
spatial resolution and reliance on sparse in-situ observations
of the Daymet product, the ice detection performance may be
affected by the zonal patterns in temperature. By introducing
random noises in the Daymet temperatures (Sect. 2.2.4), this
issue was effectively mitigated due to decreased RF sensi-
tivity to temperature. In addition, the RF model training was
constrained by the limited availability of a valid DW prod-
uct due to frequent unfavorable conditions for S2 optical-
IR remote sensing in the ACP. For example, periods without
S2 clear-sky observations were under-represented in the RF
training.

The error in ice phenology estimation based on the S1 ice
fraction dataset (MAE= 7 d) is close to the dataset’s tem-
poral resolution (∼ 6 d). The uncertainties in ice phenology
estimation partly stem from the uncertainty in the 10 m ice
cover maps and the limited temporal resolution of S1, but
may also arise from mismatches in spatial scales between
the 1 km ice fraction product and point-scale in-situ observa-
tions.

Despite the above constraints, our SAR-based record al-
lows for operational mapping of 1 km ice fraction from 10 m
ice/water classifications, and quantifying ice phenology over
small water bodies. Integrating multiple satellite products
holds promise for generating ice fraction and phenology
datasets with further enhanced spatial and temporal coverage
(Surdu et al., 2015). For instance, combining with the DW

product could enable temporally denser ice observations rel-
ative to either data set. In addition, our dataset of small water
bodies can be merged with operational products that focus
on relatively large lakes, such as the ESA Lakes_cci (Car-
rea et al., 2024). The complementary datasets allow for com-
prehensive assessment of water bodies across a wide range
of sizes. Our algorithm can be applied to additional SAR
sensors. For example, adapting our method to the upcoming
NISAR mission could provide independent L-band ice cover
observations every 6 d over the globe (Kellogg et al., 2020).
By leveraging multi-source remote sensing of ice dynamics
for small water bodies, a more comprehensive ice fraction
and phenology data set can be generated for better monitor-
ing and understanding of the fast-changing NHL.

6 Data availability

The 1 km S1 ice fraction dataset generated in this study, and
the code used for its production, are publicly available at
https://doi.org/10.5281/zenodo.17033546 (Lin et al., 2025).
The final released dataset is provided in GeoTIFF format
with a spatial resolution of 1 km, a temporal resolution of
about 6 d, and is projected in the Alaska Albers Equal Area
projection (EPSG: 3338). Each GeoTIFF image, named as
YYYYMMDD.tif, represents the ice fraction of small wa-
ter bodies in the ACP on a given day, observed by both as-
cending and descending Sentinel-1 passes, and recorded as
the fraction of ice-covered area within small water bodies
in each 1 km grid cell. The spatial coverage of each product
image is consistent with the corresponding Sentinel-1 acqui-
sition, which may not fully cover the entire study area. Each
image contains two bands: (1) ice fraction, with values rang-
ing from 0 to 1, and (2) the proportion of small water bodies
within each 1 km grid cell, also ranging from 0 to 1. The qual-
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ity flag information was also provided in the data product in
GeoTIFF format, with the band named “RRMSE” expressed
in percentage (%) and representing the RRMSE between S1
and DW ice fraction values for each 1 km grid cell, calculated
using all temporally matched observations over the study pe-
riod.

7 Conclusions

This study used Sentinel-1 SAR imagery, radar backscatter
texture features, and air temperature data to develop an ice
fraction dataset for small water bodies (900 m2 to 25 km2)
across the ACP from 2017 through 2023. The dataset is de-
rived from 10 m resolution ice cover maps and records the
fractional ice cover of small water bodies within each 1 km
grid cell in the ACP, with a temporal resolution of about
6 d. The RF models used for generating the 10 m ice cover
maps achieved an overall accuracy of 0.91, with user and
producer accuracies between 0.92 and 0.93. The ice fraction
dataset shows strong agreement with the ice fraction derived
from the operational DW product (R = 0.91, RMSE= 0.19,
RRMSE= 28.41 %, bias= 0.02). It also yields higher accu-
racy in estimating ice phenology compared to the DW data
(S1 MAE= 7 d; DW MAE= 18 d). Our ice fraction maps
show that ice cover in small water bodies across the ACP ex-
hibits high spatial variability during the thawing period (e.g.,
June). Ice phenology estimates suggest that ice dynamics of
small water bodies in the ACP are strongly regulated by air
temperature, while also being affected by lake and river in-
teractions, and lake properties such as area and shape. Adapt-
ing our algorithm framework to other SAR sensors and inte-
grating other complementary information from multi-source
remote sensing will help improve our products and enable
timely monitoring and enhanced understanding of the chang-
ing NHL.
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