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Abstract. Wheat, as one of the main food crops in the world, plays a vital role in shaping agricultural trade
patterns. China is the largest producer and consumer of wheat globally, characterized by extensive cultivation
areas and diverse planting systems. However, current remote sensing-based wheat mapping studies often rely on
uniform phenological feature variables, without adequately accounting for the significant differences in wheat
growth cycles across China’s diverse agro-ecological zones. In addition, the lack of large-scale training samples
severely limits both the accuracy and the spatial-temporal generalization capacity. Furthermore, existing re-
search in China focuses mainly on winter wheat monitoring and mapping, while spring wheat research remains
largely inadequate, especially in the major spring wheat-producing areas of northern China, resulting in limited
availability of targeted remote sensing products. These limitations hinder the development of high-accuracy, spa-
tially comprehensive wheat mapping datasets and reduce the completeness of agricultural monitoring and food
security assessments. To address these issues, this study proposes a cross-regional training sample generation
method that integrates time-series remote sensing data with crop distribution products. Furthermore, a province-
level, differentiated feature selection strategy is introduced to enhance the regional adaptability and classifica-
tion performance of the model. Based on these methods, we developed 10 m resolution wheat distribution dataset
(CN_Wheat10) covering the years 2018–2024. The dataset includes spring and winter wheat harvested area maps
for 15 provinces and detailed winter wheat planted area maps for 10 provinces across China. Validation using a
large-scale reference dataset built from field surveys and high-resolution imagery visual interpretation indicates
that CN_Wheat10 achieves mapping accuracies above 0.93 for winter wheat and above 0.91 for spring wheat.
When compared with wheat area statistics from the China Statistical Yearbook, the coefficient of determination
(R2) exceeds 0.94 at the provincial level and remains above 0.88 at the municipal level. Spatially, wheat culti-
vation in China is characterized by a pattern of concentration in the east, dispersion in the west, a dominance of
winter wheat, and a supplementary role of spring wheat. CN_Wheat10 provides spatial distribution information
on both spring and winter wheat harvested areas and winter wheat planted regions in key production areas. Com-
pared with existing products that mainly focus on winter wheat, this dataset expands both the spatial coverage
and the crop types, offering more comprehensive data support for agricultural monitoring and management in
China. The CN_Wheat10 product is freely accessible at https://doi.org/10.6084/m9.figshare.28852220.v2 (Liu
et al., 2025a).
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1 Introduction

Wheat, as one of the world’s three major staple crops, holds
an irreplaceable strategic role in maintaining social stability
(Singh et al., 2023). As the largest wheat producer and con-
sumer globally, China has consistently ranked among the top
in annual wheat output, serving both as a cornerstone of na-
tional food security and an important player in global grain
trade regulation (Dong et al., 2024). In recent years, driven
by population growth, dietary transitions, and increasing de-
mand from the livestock sector, domestic wheat consump-
tion in China has continued to rise. Despite a relatively high
self-sufficiency rate, China still engages in wheat import and
export to optimize variety structure and supplement high-
quality grain supply. Currently, global climate change has
caused a rise in the occurrence of extreme weather events,
while geopolitical conflicts have triggered fluctuations in in-
ternational food markets, posing dual threats to the stabil-
ity of wheat production and the security of trade chains (Li
and Song, 2022; Tilman et al., 2011). Against this backdrop,
developing a high-accuracy, wide-coverage remote sensing
monitoring system for wheat, and achieving nationwide, high
spatiotemporal resolution mapping, is not only a technical
foundation for advancing precision agriculture, but also a
critical component for strengthening early warning and emer-
gency response capabilities in national food security.

The continuous evolution of remote sensing technology
has made satellite imagery indispensable for agricultural
monitoring (Dong et al., 2024; Blickensdörfer et al., 2022).
In particular, for large-scale and cross-regional crop map-
ping tasks, the implementation of automated and standard-
ized workflows based on satellite imagery has proven critical
for the timely acquisition and dynamic updating of agricul-
tural datasets (Lin et al., 2022; Ghassemi et al., 2024). Cur-
rently, several international organizations and governmen-
tal agencies have developed publicly accessible crop map-
ping products, some of which incorporate dedicated layers
for wheat. For instance, the European Crop Type Map at
10 m resolution leverages Sentinel imagery to enable fine-
scale mapping of major crop types across Europe, includ-
ing key staples such as wheat (D’Andrimont et al., 2021). In
the United States, the Cropland Data Layer (CDL) has be-
come the most authoritative and widely used crop mapping
product, with consistently high accuracy in wheat mapping
(Boryan et al., 2011). Similarly, Statistics Canada provides
30 m Annual Crop Inventory product, which covers the en-
tire agricultural zone of the country and includes multiple
crop types (Amani et al., 2020). These crop products not only
support domestic agricultural policy formulation and scien-
tific research, but also serve as valuable benchmarks for the
development and validation of crop mapping methodologies
at the global scale.

China is among the world’s top wheat producers, boast-
ing extensive cultivation areas and diverse cropping systems
nationwide (Mottaleb et al., 2023; Dong et al., 2024; Tao

et al., 2012). Due to variations in climatic and geographi-
cal conditions, winter wheat and spring wheat exhibit sig-
nificant differences in phenology, climatic adaptability, and
spatial pattern. Winter wheat is predominantly cultivated in
the eastern plains, while spring wheat is mainly grown in
the northwest and northeast regions (Liu et al., 2018; Zhang
et al., 2022b). Several researches have conducted thematic
mapping of wheat distribution in China, resulting in remote
sensing-based wheat products with relatively high spatial res-
olution. For instance, some studies have employed the Time-
Weighted Dynamic Time Warping method combined with
time-series imagery to produce 30 m winter wheat product
in China from 2001 to 2023 (Dong et al., 2020). Other stud-
ies have used phenology-based algorithms to generate 30 m
winter wheat product across 11 provinces from 2001 to 2020
(Dong et al., 2024). Additionally, researchers have utilized
spectral phenological features and elevation data to map win-
ter wheat planted and harvested areas from 2018 to 2022 (Hu
et al., 2024). Another approach integrated winter wheat phe-
nology, spectral, and polarization characteristics into sam-
ple generation methods, combined with Random Forest (RF)
algorithm, to produce 10 m winter wheat product between
2018 and 2024 (Yang et al., 2023). Other studies combined
Sentinel-1/2 data to map wheat planting patterns in China in
2020, including the distribution of spring and winter wheat
and rotation patterns (Qiu et al., 2025). However, these ex-
isting studies and publicly available products have primar-
ily focused on the mapping of winter wheat, with limited
attention to the systematic characterization of spring wheat
distribution. As a key staple crop in northwest and north-
east China, spring wheat accounts for a certain portion of the
national wheat production system. Neglecting spring wheat
leads to incomplete representation in remote sensing-based
wheat mapping. Moreover, most current mapping approaches
adopt uniform spectral features across the entire country,
without fully accounting for regional differences in pheno-
logical patterns, climatic conditions, and agricultural prac-
tices. This lack of regional adaptability limits the accuracy
of wheat products.

Throughout the crop growth cycle, a range of environmen-
tal and human factors can affect development from planting
to harvest, often causing noticeable differences in both time
and space between the sown area and the area actually har-
vested (Wei et al., 2023; Baker et al., 2019). Wheat is typi-
cally sown during periods with favorable climatic conditions
to ensure successful germination and early growth. However,
during subsequent growth stages, certain regions may be sub-
ject to environmental challenges such as drought, prolonged
heat, or pest and disease outbreaks, potentially leading to
yield reduction, premature senescence, or even total crop fail-
ure (Wu et al., 2021; Tao et al., 2022). While remote sensing
can effectively identify wheat planting areas at large scales,
some fields may ultimately fail to be harvested due to poor
yield performance or complete crop loss. Consequently, the
final harvested area often falls short of the area originally
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planted. According to agricultural statistics from the United
States, crop harvest rates were generally below 85 % between
1970 and 2017 (Zhu and Burney, 2021). Similarly, in China,
the harvested area of winter wheat between 2018 and 2022
was approximately 12.88 % lower than the planted area (Hu
et al., 2024). Therefore, remote sensing-based mapping that
encompasses both the planted and harvested area of wheat
is essential not only for improving the timeliness and accu-
racy of crop distribution identification, but also for provid-
ing early warning information to agricultural management
authorities. Such approaches enhance the capacity to detect
potential yield losses and contribute to the advancement of
food security management toward more refined and intelli-
gent decision-making frameworks.

Mainstream methods for wheat mapping using remote
sensing largely rely on spectral phenology, often supported
by machine learning algorithms to boost precision and adapt-
ability (Ashourloo et al., 2022; Xie and Niculescu, 2022; Hu
et al., 2019). Spectral phenology-based methods exploit the
distinct multispectral reflectance characteristics of different
types and utilize phenological curves over the crop growth
cycle to enable dynamic crop type identification. These
methods are particularly effective for crops such as winter
wheat, which exhibit relatively stable and predictable phe-
nological patterns. Several studies have extracted key phe-
nological characteristics from winter wheat growth curves
to identify spatial distribution (Qu et al., 2021; Tao et al.,
2017; Fu et al., 2025), while others have designed mapping
indices based on the temporal variation between stages (Qiu
et al., 2017; Yang et al., 2023). However, the effectiveness
of these approaches is contingent upon the temporal con-
sistency of remote sensing imagery, which can be signifi-
cantly compromised by cloud cover and discontinuities in
data acquisition. The integration of spectral phenological fea-
tures with machine learning methods allows for the fusion
of multi-source feature information and supports automated
learning of the spatiotemporal distribution patterns of wheat,
significantly improving model generalization and robustness.
For instance, some studies have successfully applied time-
series Sentinel-1/2 imagery in combination with the RF algo-
rithm to map winter wheat across multiple countries (Yang et
al., 2024). Others have employed deep learning models and
time-series imagery to accurately delineate wheat produc-
tion systems in eight countries worldwide (Luo et al., 2022).
While spectral phenology provides a solid data foundation
for wheat identification, and machine learning offers strong
adaptability in large-scale and topographically complex re-
gions, these strategies are highly dependent on the presence
of accurate field-validated samples. Acquiring such sam-
ples typically requires time-consuming and labor-intensive
field surveys. Therefore, in the development of national-scale
wheat remote sensing products, the construction of reliable
sample datasets and the integration of multi-feature infor-
mation that accounts for regional variability are critical to
achieving high-accuracy wheat mapping.

To address the aforementioned challenges, this study
developed a systematic sample generation strategy and a
province-level feature selection approach for wheat map-
ping, and subsequently produced a remote sensing monitor-
ing dataset of wheat in China, named CN_Wheat10. This
dataset covers 15 provinces from 2018 to 2024 and was gen-
erated from time series Sentinel images. By integrating mul-
tiple spectral and phenological features, CN_Wheat10 ac-
counts for the region-specific spatial layouts of both spring
and winter wheat, and includes information on both planted
and harvested areas. First, spring and winter wheat train-
ing samples applicable to China were constructed using U.S.
remote sensing imagery and the CDL product. Second, a
region-specific feature selection strategy was implemented to
accommodate the phenological differences of wheat across
provinces, thereby improving mapping accuracy. Third, rely-
ing on the Google Earth Engine platform, annual large-scale
wheat distribution maps were generated with high timeli-
ness and spatial resolution. Finally, the resulting dataset was
systematically evaluated using extensive manually validated
samples, existing public products, and agricultural statistical
data. Compared to existing wheat remote sensing products,
CN_Wheat10 expands the spatial coverage and provides a
more detailed understanding of wheat’s spatial distribution
across China.

2 Study area and data

2.1 Study area

The study area (Fig. 1) encompasses 15 provinces and 3 mu-
nicipalities in China, including Anhui (AH), Gansu (GS),
Hebei (HB), Henan (HN), Hubei (HuB), Jiangsu (JS), Inner
Mongolia (NM), Ningxia (NX), Qinghai (QH), Shandong
(SD), Shanxi (SX), Shaanxi (SAX), Sichuan (SC), Xinjiang
(XJ), Zhejiang (ZJ), Beijing (BJ), Tianjin (TJ), and Shanghai
(SH). In 2022, these provinces and municipalities accounted
for approximately 97.8 % of China’s total wheat area and
99 % of wheat production (https://www.stats.gov.cn/sj/ndsj/,
last access: 1 May 2025). Given the relatively small adminis-
trative areas of the municipalities and the strong spatial con-
tinuity of their agricultural zones with adjacent provinces,
appropriate regional adjustments were made during the map-
ping process. Specifically, BJ and TJ were integrated into the
HB province mapping zone, while SH was merged with JS
province. Among the 15 provinces included in this study,
the ten provinces located in eastern and southern China,
which encompass the Huang–Huai–Hai Plain and the middle
and lower reaches of the Yangtze River Plain, constitute the
country’s core winter wheat production regions. These areas
are characterized by large cultivation scales and highly con-
tiguous fields, which enables the extraction of both planted
area maps and harvested area maps. In contrast, in the five
provinces located in northern and northwestern China, wheat
cultivation is relatively limited and fragmented, and some
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regions involve mixed planting of spring wheat and winter
wheat with harvest periods that occur close to each other. As
a result, only harvested area maps were generated for these
provinces in this study.

2.2 Study data

2.2.1 Remote sensing data

Sentinel-2 imagery, with rich spectral information, is par-
ticularly well-suited for large-scale crop monitoring (Xu et
al., 2024a; Fan et al., 2024). In this study, 10 spectral bands
with spatial resolutions of 10 and 20 m were selected to bal-
ance spectral completeness with data processing efficiency
(Xu et al., 2024b). Furthermore, 15 typical spectral indices
were extracted based on the original bands, and Table S1
in the Supplement provides details of the indices. To com-
plement the limitations of optical remote sensing, Sentinel-1
data were also incorporated, leveraging its capability to pen-
etrate cloud cover and complex surface conditions to support
the extraction of spatiotemporal dynamics of wheat growth
(Qiu et al., 2025). For winter wheat mapping, images ac-
quired from October in the current calendar year to June
of the subsequent year were used, while spring wheat map-
ping utilized imagery from April to August each year. To
enhance the quality and stability of the time-series data, the
Google Earth Engine (GEE) was employed. First, Sentinel-
2 data with cloud cover exceeding 60 % were excluded to
improve overall data quality. Subsequently, cloud masking
was performed on the remaining imagery using the QA60
band and the MSK_CLDPRB cloud probability band to ef-
fectively remove residual cloud contamination. A stable and
continuous time series was generated from the cloud-filtered
data through linear interpolation (Qiu et al., 2025). Utilizing
the above-stated remote sensing imagery, spatial distribution
dataset of spring and winter wheat was generated at 10 m
resolution for the years 2018 to 2024. This dataset is called
CN_Wheat10 for short.

2.2.2 Cropland Data Layer

The Cropland Data Layer (CDL) is a high-resolution crop
mapping product and covers the primary agricultural regions
of the United States (Boryan et al., 2011; Hao et al., 2020).
In addition to providing pixel-level mapping of major crop
types, the CDL also includes a confidence layer, which repre-
sents the classification confidence score for each pixel and in-
dicates the reliability of the assigned label (Liu et al., 2004).
In this study, the CDL products from 2018–2024 were used
to generate training samples for China wheat mapping. Given
the similarities in climate and cropping systems, Kansas and
North Dakota were selected as representative regions for
winter wheat and spring wheat, respectively.

2.2.3 Validation sample set

The wheat validation dataset was constructed by integrating
field survey data with visually interpreted results from high-
resolution remote sensing imagery. Extensive field surveys
were conducted from 2020 to 2024. During these processes,
the GPS-Video-GIS (GVG) mobile application was used to
collect georeferenced validation samples (Wu and Li, 2012;
Yang et al., 2025), including land cover types and coordi-
nates, with approximately 2000–3000 field survey sample
points per year. In addition to field data, visual interpreta-
tion was employed to supplement and enhance the validation
dataset (Zheng et al., 2022). The sampling design of valida-
tion samples refers to the methods in previous studies (Liu
et al., 2024b; Liu and Zhang, 2023), and has been adjusted
according to the specific conditions of this study to ensure its
scientific and rationality. Multi-temporal Sentinel-2 imagery
from 2017 to 2024 was dynamically explored through the
Google Earth Engine (GEE) visualization platform. Manual
interpretation was conducted by combining spectral, textural,
and temporal variation characteristics. A spatially stratified
sampling strategy based on quadrilateral grids was adopted
to mitigate the effects of spatial autocorrelation. To fur-
ther improve interpretation accuracy and boundary delin-
eation, historical very high-resolution imagery (GE-VHR)
from Google Earth was used for auxiliary verification. Based
on the above approach, more than 50 000 valid sample points
were collected annually within the study area, covering di-
verse ecological zones and cropping systems. These samples
included spring wheat, winter wheat, and non-wheat land
cover types, ensuring comprehensive representation across
different growing conditions and regional planting patterns.
Section S1 introduces the validation point data; the Fig. S1
illustrates the spatial distribution of the field survey samples;
the Figs. S2 and S3 present the visual interpretation process
of the validation points; and the Table S2 shows the provin-
cial distribution of the wheat validation points.

2.2.4 Other datasets

We used provincial- and municipal-level wheat area statistics
from the China Statistical Yearbook as reference data. The
CN_Wheat10 product was compared with the correspond-
ing statistical records on a year-by-year basis. Specifically,
complete provincial-level data were available for the period
2018–2023, while complete municipal-level data were avail-
able for 12 provinces from 2018 to 2022. To quantify the
agreement between the estimates and the statistical data, the
coefficient of determination (R2) was employed as the ac-
curacy assessment metric (Liu et al., 2024b). The accuracy
and temporal consistency of the CN_Wheat10 dataset were
evaluated by comparing it against publicly available, high-
resolution wheat mapping products for China. Details of the
five wheat product maps are presented in Table 1.
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Figure 1. Location of study area in China. (a) Location of 15 provinces and 3 municipalities included in the study area. (b) Proportion of
wheat production in 2022.

Table 1. Information on the reference wheat mapping products used for comparison.

Wheat maps Wheat types Study area Resolution Time range Reference

ChinaWheat10 winter wheat 11 provinces 10 m 2018–2024 Yang et al. (2023)
ChinaWheatMap10 winter wheat 8 provinces 10 m 2018–2022 Hu et al. (2024)
ChinaCP-Wheat10m spring and winter wheat China 10 m 2020 Qiu et al. (2025)
WorldCereal spring and winter cereals Global 10 m 2021 Van Tricht et al. (2023)
TWDTW_Map winter wheat 11 provinces 30 m 2001–2023 Dong et al. (2020)

Note: ChinaWheatMap10 includes planted area maps (ChinaWheatMap10_P) and harvested area maps (Chinawheatmap10_H). The last product was generated
by TWDTW algorithm, we call this product TWDTW_Map for short.

3 Methods

The process of generating the annual distribution map of
wheat is shown in Fig. 2: (1) Generation of wheat sam-
ples: High-quality spring and winter wheat samples for China
were generated using the CDL data and the RF algorithm. (2)
Selection of provincial feature sets: Based on the separabil-
ity between wheat and non-wheat types, feature separability
evaluations and feature set selection were conducted for each
province. (3) Generation of annual distribution map: Using
the wheat samples and provincial feature sets, RF algorithms
were applied on the GEE platform to generate annual wheat
distribution maps for China from 2018 to 2024. (4) Accu-
racy assessment of wheat distribution maps: The accuracy of
the generated dataset was systematically evaluated based on
large-scale manually validated samples, existing public prod-
uct layers, and data from the China Statistical Yearbook.

To distinguish spring and winter wheat, we first predefined
provinces as winter-dominant, spring-dominant, or mixed
based on agronomic expertise and provincial cropping statis-
tics. Classification workflows were then tailored accordingly.
In provinces dominated by a single crop season, only the cor-
responding seasonal time series was used: October–June of

the following year for winter wheat and April–August for
spring wheat. The resulting maps in these regions therefore
represent only that season’s wheat distribution, without over-
lap between spring and winter wheat. In mixed provinces,
two independent classification chains were applied: one us-
ing winter-season imagery to detect winter wheat, and the
other using spring-season imagery to detect spring wheat.
Pixel-level outputs were merged based on classification prob-
abilities, when one seasonal probability was substantially
higher, the pixel was assigned to that season. This “province-
level predefinition plus season-specific classification” strat-
egy ensures consistency with dominant cropping systems
while adequately capturing the complexity of mixed spring–
winter wheat regions.

3.1 Generation of wheat samples

In this study, sample datasets suitable for spring-winter
wheat regions in China were constructed using CDL data
from Kansas and North Dakota, respectively, along with cor-
responding Sentinel-2 imagery from 2017 to 2024. Kansas
and North Dakota are representative of winter and spring
wheat systems, respectively, and their mid-latitude condi-
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Figure 2. Flowchart for mapping annual wheat distribution.

tions result in strong phenological alignment with China’s
major wheat zones. As illustrated in Fig. 3, the phenologi-
cal profiles from the United States closely match those of the
corresponding wheat types in China, confirming the repre-
sentativeness of the constructed samples.

Previous studies have demonstrated that the CDL-based
cross-regional approach for generating large-scale winter
wheat training samples is effective and reliable in the main
production areas of the Huang–Huai–Hai Plain (Liu et al.,
2025b). Building upon this foundation, the present study fur-
ther extends the approach to develop a comprehensive sam-
ple set that encompasses both spring and winter wheat. First,

pixels with classification confidence scores greater than 95 %
in the CDL product were selected. A 20 km × 20 km grid-
based sampling strategy was applied to extract representa-
tive wheat and non-wheat samples. These samples were then
matched with multi-temporal Sentinel-2 imagery, and pix-
els with abnormal spectral characteristics or incomplete tem-
poral information were removed, resulting in a high-quality
source-domain sample dataset. After applying confidence fil-
tering, grid-based sampling, and temporal matching of im-
agery, 5000 samples each in Kansas and North Dakota were
generated, including 2500 for wheat and 2500 for non-wheat.
The non-wheat category includes buildings, water, fallow
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Figure 3. Comparison of NDVI time series curves between spring and winter wheat in China and the United States. (a) Spring wheat NDVI
profile from field survey data in Northwest China. (b) Spring wheat NDVI profile from CDL data in North Dakota, USA. (c) Winter wheat
NDVI profile from field survey data in the eastern plains of China. (d) Winter wheat NDVI profile from CDL data in Kansas, USA.

land, tree, grassland, and other crops. These source-domain
samples were then transferred to China region using Random
Forest classifier in combination with Sentinel-2 time-series
imagery, thereby generating wheat probability maps for the
target region.

To analyze the distribution of different land-cover types
within the derived wheat probability map, we randomly se-
lected 500 sample points for each land-cover category from
the field survey data and plotted their frequency distribu-
tion against the corresponding wheat probability values. As
shown in Fig. 4, confusion often occurs between wheat,
rapeseed, and garlic due to similar cropping patterns, es-
pecially within the 40 %–70 % probability range. To im-
prove mapping accuracy, VH-polarized backscatter coeffi-
cient from Sentinel-1 were incorporated. In calculating the
VH backscatter threshold, some of the 2020 field survey data
were utilized for both threshold determination and valida-
tion. It should be noted that the sample set used for this
VH analysis constitutes a randomly selected subset of the
overall validation samples. This approach ensures the repre-
sentativeness of the analysis while using the existing high-
quality ground-truth data. Figure 5 demonstrates that April
is optimal for distinguishing winter wheat, while July is best
for differentiating spring wheat from other spring crops. A
uniform VH backscatter threshold of −17.5 dB was applied
to exclude non-wheat crops within the ambiguous probabil-
ity range. To evaluate the robustness of the threshold, in-

dependent samples from different years and agro-ecological
zones were further tested, including: (i) Hebei Province in
2021, representing a typical winter wheat-garlic intercrop-
ping area in China; (ii) Jiangsu Province in 2022, represent-
ing a region where winter wheat coexists with winter rape-
seed in China; and (iii) Qinghai Province in 2019, repre-
senting a spring wheat-spring rapeseed coexistence area in
northwestern China. The results demonstrate that the thresh-
old of −17.5 dB consistently distinguished wheat from other
crops across various years and regions, confirming its robust-
ness and transferability (Fig. S4). Finally, by integrating spa-
tial filtering techniques with a stratified sampling strategy, a
comprehensive training sample set was systematically con-
structed across 15 provinces in China. To ensure both re-
gional representativeness and class balance, the number of
samples in each province was determined based on a stan-
dardized grid approach, whereby each 0.5° × 0.5° grid cell
was required to contain 500 sample points for wheat and 500
for non-wheat. This design effectively supports the robust-
ness and generalizability of the classification model across
heterogeneous agro-ecological zones. Figure S5 shows the
sample size selection process.

3.2 Selection of provincial feature set

To effectively reduce remote sensing mapping errors caused
by phenological differences across regions, this study
adopted a province-level differentiated feature selection
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Figure 4. Probability distribution range for different land cover types.

Figure 5. VH values for different winter and spring crops.

strategy. Based on field survey samples, we examined the
Normalized Difference Vegetation Index (NDVI) profiles of
dominant land cover types across four provinces (Fig. 6).
The results indicated that spring and winter crops exhibit dis-
tinct temporal patterns compared to other land cover types
throughout their growth cycles. Winter crops mainly grow
from October to June of the following year, while spring
crops are mainly grown from April to August. Based on
the clear differences in crop growth cycles, we designed
two separate processes to distinguish between winter and
spring crops. In Sect. 3.1, we have distinguished between
spring wheat and winter wheat pixels, and the remaining
non-wheat pixels are processed based on the Winter Crop
Index (WCI) (Yang et al., 2023) and automatic thresholding

methods (Otsu algorithm) (Otsu, 1979). Specifically, for the
winter growing season (October–June), the remaining non-
wheat pixels were classified into winter crops (non-wheat)
and non-winter crops using a binary classifier. Similarly, for
the spring growing season (April–August), another binary
classifier was applied to the remaining non-wheat pixels to
separate spring crops (non-wheat) from non-spring crops.
Then, non-winter and non-spring crops were classified into
forest, water, built-up, and others based on their NDVI char-
acteristics. Taking winter wheat as an example, the general
classification process is illustrated in Fig. 7. Following our
previous work (Liu et al., 2024a), 500 random points were
selected for each class, and spectral separability index (SI)
between wheat and five non-wheat land cover types were
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calculated on a monthly basis. The SI is used to assess the
sensitivity of the spectral separability of two classes under
certain conditions, determined by the ratio of inter-class and
intra-class variability (Somers and Asner, 2013). The higher
the value, the better the separation between the two classes in
the specified condition. This analysis quantitatively assessed
the discriminative power of 25 spectral features (15 vege-
tation indices and 10 Sentinel-2 spectral bands) at different
time periods (Somers and Asner, 2013). A weighted averag-
ing approach was applied to integrate all SI results, produc-
ing an overall separability score relative to wheat. To address
the potential masking of highly discriminative but unevenly
distributed features by mean-based aggregation, a threshold-
based filtering mechanism was introduced to exclude fea-
tures with separability scores below 0.5, thereby enhancing
the effectiveness and distinctiveness of feature selection. Fi-
nally, for each province, the top five spectral features with
the highest mean separability scores were used and combined
with Sentinel-1 VV and VH polarization bands to construct
a province-specific feature set for wheat mapping.

3.3 Mapping and accuracy evaluation of wheat annual
distribution

Based on the constructed wheat sample dataset for China
and the province-specific remote sensing feature sets, annual
wheat distribution maps from 2018 to 2024 were generated
using the RF classifier on the GEE. The classifier was im-
plemented with 100 decision trees, there was no more sig-
nificant difference in accuracy starting with 100 trees and
continuing until 200 trees (Fig. S6). The remaining param-
eters were maintained at their default values, following the
approach adopted in recent remote sensing studies (Yang et
al., 2023; Liu et al., 2024b). Given the long growth cycle of
winter wheat, there is often a temporal and spatial mismatch
between the planted area and the final harvested area. April
represents the peak of the wheat growing season, when the
canopy is well developed and spectral characteristics are sta-
ble and distinct, making it an optimal period for winter wheat
identification using remote sensing imagery (Qiu et al., 2017;
Dong et al., 2020; Feng et al., 2019; Cai et al., 2018). The
middle and late April is the key stage for winter wheat to
enter heading. The subsequent grain filling period is easily
affected by meteorological disasters such as dry-hot wind,
which will cause obvious yield reduction or even no harvest
in some areas. The period from early October to early April
captures the full early growth stages of winter wheat, includ-
ing sowing, overwintering, greening, and jointing. Remote
sensing imagery acquired during this window is more repre-
sentative of the actual planted area (Hu et al., 2024). There-
fore, to identify the winter wheat planted area, Sentinel-2 im-
agery from early October to early April was used. To map
the winter wheat harvested area, imagery from early Oc-
tober to late June was utilized. For spring wheat, the har-
vested area was identified based on imagery from early April

to late August during the same period. All remote sensing
time series were generated at 10 d intervals to ensure faster
and more reliable crop type detection. The final products in-
clude harvested area maps of spring and winter wheat for 15
provinces, as well as planted area maps of winter wheat for
10 provinces.

It is important to note that the delineation of “planted area”
and “harvested area” in this study was not based on indepen-
dent labels explicitly recording planting or harvesting events,
but rather on adjusted temporal windows designed to cap-
ture key phenological phases of wheat growth. The maps de-
rived from temporal window adjustment can be interpreted
as phenology-based representations of winter wheat distribu-
tion. Specifically, the “planted area map” is phenologically
closer to an in-season distribution, while the “harvested area
map” is more comparable to an end-season distribution. Nev-
ertheless, this correspondence should be regarded as an inter-
pretive perspective rather than a strict equivalence to single-
date mid-season or end-season classification results. In addi-
tion, to satisfy the logical requirement that the harvested area
should be a subset of the planted area, the harvested area in
this study was masked within the extent of the planted area.

Three complementary data sources were integrated to as-
sess product accuracy and stability. First, large-scale field
survey and manually labelled validation samples covering
15 provinces were used to calculate standard mapping ac-
curacy metrics, including Overall Accuracy (OA), User’s
Accuracy (UA), and Producer’s Accuracy (PA) (Liu et al.,
2024a). Second, spatial consistency comparisons were con-
ducted with existing publicly available remote sensing-based
wheat maps to assess the spatial distribution reliability of the
CN_Wheat10 product. Third, a quantitative regression anal-
ysis was performed using provincial- and municipal-level
wheat area statistics from the China Statistical Yearbook. The
R2 was used as the evaluation metric to quantify the prod-
uct’s area-based accuracy across different administrative lev-
els (Liu et al., 2024b).

4 Results

4.1 Comparison with existing wheat maps

Figure 8 presents the spatial distribution of spring-winter
wheat across China, delineating the nationwide patterns of
both crop types. To enhance the understanding of spatial de-
tails, 18 representative regions were selected for zoomed-
in visualization. The planted area (CN_Wheat10(P)) and
harvested area (CN_Wheat10(H)) were compared with ex-
isting publicly available remote sensing products. Spring
wheat is predominantly distributed in northwest China, in-
cluding five provinces: XJ, GS, NX, QH, and NM. In Sites
1–4, we compared the CN_Wheat10 with the WorldCe-
real spring cereal map in 2021. The results showed that
the identified wheat areas were largely consistent between
the two products and exhibited high spatial agreement with
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Figure 6. NDVI curves for different land cover types in four provinces.

Figure 7. Flowchart of non-wheat crop classification and wheat feature set selection.

wheat-growing regions observed in Sentinel-2 imagery. In
some regions, CN_Wheat10 delineated spring wheat fields
more precisely, with clearer representation of field bound-
aries and roads. In Sites 5–8, we compared the CN_Wheat10
with the ChinaCP-Wheat10m spring wheat map in 2020.
The ChinaCP-Wheat10m results exhibited excessive noise,
blurred field boundaries, and poor spatial continuity, whereas
CN_Wheat10 demonstrated superior classification perfor-
mance and spatial consistency, particularly in clearly dis-
tinguishing spring wheat from bare land and non-cropland.

Winter wheat covers a much broader region, mainly concen-
trated in eastern China’s Huang-Huai-Hai region, including
the provinces of HN, SD and HB provinces. When compared
to existing remote sensing products, CN_Wheat10 demon-
strates significant advantages in identifying winter wheat. It
not only achieves higher mapping accuracy but also main-
tains complete spatial coverage. For example, in Site 14 (Jin-
ing, SD province), the dark green areas in the Sentinel-2 im-
agery represent winter wheat, while light green areas are pre-
dominantly garlic fields. Several existing products show no-
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table misclassification in this region, incorrectly identifying
garlic as wheat and thereby reducing mapping precision. In
contrast, CN_Wheat10 effectively distinguishes between the
two crops, accurately excluding interference from non-wheat
vegetation.

Figure 9 systematically summarizes the mapping accu-
racy for spring and winter wheat from 2018 to 2024.
Across multiple accuracy metrics, the CN_Wheat10 prod-
uct demonstrates notable advantages and stable performance
in mapping the spatial distribution. Specifically, for win-
ter wheat, the planted area accuracy (CN_Wheat10(P)) con-
sistently exceeds 0.96, while the harvested area accuracy
(CN_Wheat10(H)) remains above 0.95, significantly outper-
forming existing comparable products. For spring wheat, al-
though the mapping accuracy shows slight fluctuations (rang-
ing from 0.919 to 0.987) due to ecological heterogeneity
and the complexity of crop types in its growing regions,
the overall accuracy remains at a high level. Taken to-
gether, CN_Wheat10 exhibits strong temporal-spatial relia-
bility, with high interannual consistency and robust mapping
performance.

We further analyzed the mapping accuracy of wheat at
the provincial level. As shown in Fig. 10, the CN_Wheat10
product demonstrates consistently high accuracy across all
provinces, with particularly outstanding performance in re-
gions dominated by a single wheat type. For instance, in ma-
jor winter wheat production areas such as the Huang-Huai-
Hai region, where cropping structures are stable and phe-
nological stages are well synchronized, the average planting
accuracy exceeds 0.95, and the average harvesting accuracy
surpasses 0.94. In northwest provinces such as XJ, GS, and
NX, where both spring and winter wheat coexist and their
phenological cycles partially overlap, spectral confusion re-
mains a challenge in certain years and regions. Nonetheless,
CN_Wheat10 maintains high mapping accuracy even under
these complex agro-ecological conditions. The Fig. 10 shows
that ChinaCP-Wheat10m and WorldCereal achieve relatively
high accuracies in certain provinces. This is largely because
both products provide wheat distribution maps for a sin-
gle year, reflecting the accuracy for that specific year only,
whereas the other products report multi-year average accura-
cies. Notably, the accuracy of mapping planted areas is gen-
erally higher than during the harvested area. This discrepancy
can be attributed not only to the inherent spectral differences
in the remote sensing time series but also to the influence of
natural hazards during wheat development. During the har-
vest stage, some wheat fields may be affected by extreme
weather events such as hot-dry winds, floods, or pest and
disease outbreaks, which can lead to premature senescence,
yield loss, or even crop failure. These stress-induced changes
often result in sharp declines or irregular fluctuations in veg-
etation indices, weakening the expression of typical wheat
spectral patterns and increasing the likelihood of misclassi-
fication or confusion in remote sensing-based harvest-stage
mapping.

4.2 Comparison with agricultural statistics

The annual wheat areas and their associated uncertainties
for the period 2018–2024 were estimated using the method
recommended by existing studies (Olofsson et al., 2014),
with key results summarized in Table 2. For the ten ma-
jor wheat provinces, the estimated planted area ranged from
16 680.34 ± 431.36 thousand hectares to 19 702.84 ± 277.17
thousand hectares, accounting for an average of approxi-
mately 10.6 % of the total area. The estimated harvested
area in these provinces ranged from 16 121.57 ± 561.61
thousand hectares to 19 130.85 ± 407.08 thousand hectares,
averaging about 10.14 % of the total. For the fifteen
wheat provinces, the estimated harvested area was be-
tween 20 362.92 ± 1513.43 and 24 684.57 ± 2049.75 thou-
sand hectares, with a mean proportion of approximately
3.91 %. Overall, the annual wheat maps demonstrate good
performance, as reflected in the 95 % confidence intervals of
the area estimates. It is important to note that the relatively
higher uncertainty in the harvested area estimates is primar-
ily attributed to the class imbalance in the stratified valida-
tion samples. This does not necessarily indicate poor map
accuracy but reflects a statistical limitation of the sampling
design, a phenomenon documented in previous studies (Liu
and Zhang, 2023; Yadav and Congalton, 2017).

To assess the applicability of the CN_Wheat10 product in
estimating wheat areas, we conducted a systematic compari-
son between the planting and harvesting areas and the official
agricultural statistics of China from 2018 to 2023 (Figs. 11–
14). In this study, the areas of two wheat types were com-
bined and analyzed. The results show a high level of consis-
tency between CN_Wheat10 estimates and the official statis-
tics across multiple spatial scales, indicating strong agree-
ment. Specifically, the R2 for provincial-level planted area
ranges from 0.948 to 0.979, while for the municipal level it
ranges from 0.892 to 0.934. For harvested area, the R2 for
provincial-level values range from 0.951 to 0.976, and from
0.889 to 0.926 at the municipal level. These findings demon-
strate that the CN_Wheat10 product not only effectively cap-
tures the overall spatial patterns of wheat cultivation at a na-
tional scale, but also their ability to capture spatial detail,
which is suitable for more sophisticated agricultural manage-
ment and policy formulation needs.

4.3 Discrepancies between winter wheat planted and
harvested areas

Figure 15 illustrates the spatial differences between wheat
planted and harvested area across major wheat-producing re-
gions in China. Overall, some inconsistencies were observed
between the two map types, particularly in the provinces of
SD, HN, and HB, which represent the core winter wheat
production zones with the largest cultivation areas and high-
est sowing densities in China. To further quantify these spa-
tial discrepancies and analyze their temporal trends, we con-
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Figure 8. Comparison of wheat details between CN_Wheat10 products against existing published products and Sentinel-2 images.
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Figure 9. The mapping accuracy for spring and winter wheat from 2018 to 2024.

ducted a statistical analysis of the annual area difference (i.e.,
planted area minus harvested area) in 10 provinces during
2018–2024 (Fig. 16). The results show that the most signif-
icant area differences occurred in 2018 and 2023, each ex-
ceeding one million hectares, which corresponds to approxi-
mately 5 % of the total planted area for those years. Spatially,
HB, HN, and SD provinces experienced the greatest reduc-
tions. In these regions, a considerable proportion of areas
identified as wheat in spring could no longer maintain consis-
tent spectral characteristics in summer. It should be empha-
sized that these “planted–harvested differences” do not rep-
resent precise yield losses, but rather provide an indicative
and uncertainty-prone measure to reveal the potential spa-
tiotemporal patterns and relative magnitude of wheat reduc-
tion. The observed discrepancies and interannual fluctuations

highlight the sensitivity of wheat cultivation to climatic vari-
ability and natural hazards, but should be interpreted primar-
ily as qualitative or semi-quantitative signals rather than ab-
solute production loss estimates. Since both the planted and
harvested area estimates are derived from statistically based
area-estimation methods recommended in previous studies,
each estimate is associated with its own standard error. Ac-
cordingly, the error of the area difference should be regarded
as a combination of the uncertainties from the two area es-
timates, and its magnitude can be quantified using standard
error-propagation formulas. Based on the calculations using
Table 2, the annual uncertainty range of the area differences
across the ten provinces is approximately 251.26 to 487.19
thousand hectares. In addition, the imbalance in class pro-
portions among the validation samples may further increase
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Figure 10. The average overall accuracy of wheat at the provincial level from 2018 to 2024.

the uncertainty of area estimation, thereby affecting the sta-
bility of the area differences.

To provide a more intuitive representation of these spa-
tial discrepancies, five representative regions were selected
for detailed visualization (Fig. 17). In these regions, the
spring-stage remote sensing imagery (typically in April) ex-
hibited characteristic wheat canopy features, such as high
vegetation index values and strong reflectance in the green
spectral bands, indicating that the wheat was in a vigorous
growth phase (typically from stem elongation to early grain
filling) with high leaf area index and dense ground cover,
making crop identification relatively accurate during this pe-
riod. However, by mid to late May, a noticeable reduction
in wheat extent was observed in some areas during the pre-
harvest stage. This change can primarily be attributed to a
variety of adverse meteorological and biological factors, in-
cluding drought stress, hot-dry winds, pest and disease out-

breaks, and flooding. These factors may have led to prema-
ture senescence, yield reduction, or even total crop failure in
certain fields. Such abnormal growth events result in signifi-
cant spectral changes in remote sensing imagery, where pre-
viously vegetated areas with high reflectance become spec-
trally similar to bare soil or non-crop surfaces, thereby in-
creasing the likelihood of misclassification or exclusion in
harvest-stage mapping. It is important to emphasize that the
observed “planted area > harvested area” discrepancy does
not result solely from remote sensing misclassification, but
reflects potential agronomic instability and environmental
stress. At the same time, this difference should be inter-
preted as an indicative, uncertainty-prone measure, used to
reveal the potential spatiotemporal patterns and relative mag-
nitude of wheat reduction, rather than as a direct estimate
of actual yield loss. By explicitly capturing and analyzing
these differences between planting and harvesting stages, the
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Figure 11. Provincial comparison of wheat planted area (CN_Wheat10(P)) with Statistical Yearbook data.

Figure 12. Municipal comparison of wheat planted area (CN_Wheat10(P)) with Statistical Yearbook data.
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Figure 13. Provincial comparison of wheat harvested area (CN_Wheat10(H)) with Statistical Yearbook data.

Figure 14. Municipal comparison of wheat harvested area (CN_Wheat10(H)) with Statistical Yearbook data.
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Figure 15. Comparison of wheat planted and harvested area in 10 provinces.

https://doi.org/10.5194/essd-18-465-2026 Earth Syst. Sci. Data, 18, 465–491, 2026



482 M. Liu et al.: CN_Wheat10

Table 2. Error-adjusted area estimates for annual CN_Wheat10 from 2018 to 2024.

Year Attribute/Strata planted area harvested area harvested area
(10 provinces) (10 provinces) (15 provinces)

2018 Area proportion (%) 10.18 9.58 3.86
Standard error (×103 ha) 244.24 270.53 752.89
Estimated area (×103 ha) 17 607.72 16 570.03 21 980.48
95 % CI in ±(×103 ha) 478.71 530.25 1475.67

2019 Area proportion (%) 9.64 9.32 3.57
Standard error (×103 ha) 220.08 286.54 772.16
Estimated area (×103 ha) 16 680.34 16 121.57 20 362.92
95 % CI in ±(×103 ha) 431.36 561.61 1513.43

2020 Area proportion (%) 10.16 9.81 3.96
Standard error (×103 ha) 155.55 223.10 715.43
Estimated area (×103 ha) 17 583.70 16 966.48 22 552.06
95 % CI in ±(×103 ha) 304.88 437.27 1402.24

2021 Area proportion (%) 11.39 11.06 4.15
Standard error (×103 ha) 141.41 207.69 700.33
Estimated area (×103 ha) 19 702.84 19 130.85 23 654.27
95 % CI in ±(×103 ha) 277.17 407.08 1372.66

2022 Area proportion (%) 10.73 10.26 3.84
Standard error (×103 ha) 162.02 227.36 745.15
Estimated area (×103 ha) 18 560.11 17 752.06 21 863.52
95 % CI in ±(×103 ha) 317.56 445.63 1460.50

2023 Area proportion (%) 11.09 10.46 4.33
Standard error (×103 ha) 317.15 369.83 1045.79
Estimated area (×103 ha) 19 181.10 18 096.78 24 684.57
95 % CI in ±(×103 ha) 621.62 724.86 2049.75

2024 Area proportion (%) 11.01 10.53 3.69
Standard error (×103 ha) 269.37 289.78 650.31
Estimated area (×103 ha) 19 042.65 18 219.26 21 003.42
95% CI in ±(×103 ha) 527.97 567.97 1274.61

CN_Wheat10 product provides valuable information on ab-
normal crop dynamics, supporting applications such as disas-
ter impact assessment, crop insurance verification, and agri-
cultural policy development.

4.4 Spatial distribution pattern of wheat in China

As depicted in Fig. 18, the distribution of wheat cultivation
in China exhibits a distinct pattern characterized by “con-
centration in the east, dispersion in the west,” with winter
wheat dominating and spring wheat serving a supplemen-
tary role. At the regional scale, wheat planting shows marked
spatial heterogeneity. In eastern China, the Huang-Huai-Hai
region represents the primary production zone for winter
wheat. This region features flat terrain, fertile soils, and well-
developed irrigation infrastructure. Moreover, its favorable
climatic conditions create an optimal environment for winter
wheat to overwinter safely and achieve stable, high yields.

Consequently, large-scale, contiguous, and highly intensive
winter wheat cultivation has been established in this region,
making it the core area with the highest planting area of
winter wheat. In contrast, the central hilly regions are con-
strained by rugged topography and fragmented arable land.
Here, wheat cultivation exhibits a pronounced terraced pat-
tern. Although some areas maintain winter wheat at mod-
erate scales, the lack of large contiguous fields, combined
with lower levels of mechanization and farm management,
limits the overall planting scale. In northwest China, spring
wheat is predominant. However, its spatial distribution is rel-
atively scattered and typified by an “oasis agriculture” pat-
tern. These areas are generally arid, with low precipitation,
and agricultural development is highly dependent on irriga-
tion. Major wheat-producing zones are primarily located in
irrigated oases along the edges of the Tarim Basin, the Hexi
Corridor, and the Hetao Plain.
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Figure 16. Differences between planted and harvested wheat area by province from 2018 to 2024. (a) Annual difference between planted and
harvested wheat areas (in hectares) and its proportion of the total planted area; (b) Annual percentage of planted–harvested area difference
for each province.

5 Discussions

Based on a systematic wheat sample generation strategy and
a province-level feature selection approach, we developed a
high spatiotemporal resolution dataset of spring and winter
wheat distributions (CN_Wheat10), which effectively fills
the existing gap in spring wheat monitoring. CN_Wheat10
dataset covers the harvested areas of spring-winter wheat
across 15 provinces in China, as well as the planted areas of
winter wheat in 10 provinces, spanning the period from 2018
to 2024. CN_Wheat10 provides a robust data foundation for
applications such as food security monitoring, agricultural
management, and crop growth modelling.

5.1 Advantages of the CN_Wheat10 dataset

The systematic sample generation strategy adopted in this
study ensures the representativeness and mapping accuracy
of the CN_Wheat10 dataset. While numerous automated
sample generation approaches have been proposed in recent
research, many of these methods tend to treat winter rapeseed
as the primary confusion class in winter wheat identification,
while overlooking crops such as garlic that share highly sim-
ilar phenological characteristics with winter wheat (Fu et al.,
2025; Yang et al., 2024; Dong et al., 2020). This limitation
is particularly problematic in regions with widespread mixed
cropping or crop rotation, where sample purity may be com-
promised, ultimately reducing the mapping model’s perfor-
mance and generalizability. To address this issue, we propose
a cross-regional sample generation method that integrates

time-series remote sensing imagery with existing crop dis-
tribution products. This approach leverages the phenological
dynamics captured in temporal satellite data and incorporates
geographic knowledge and regional cropping structure to en-
force multi-dimensional constraints during sample selection.
This strategy not only enhances the inter-class separability
of samples but also significantly improves their spatiotempo-
ral diversity and consistency. Especially in the main spring
wheat producing areas, due to the difficulty of sample acqui-
sition and strong spatial and temporal heterogeneity, histor-
ical research has obvious shortcomings in sample construc-
tion. Moreover, the cross-regional sample generation strategy
based on existing products proves to be practical and repli-
cable in real-world applications, greatly minimizing depen-
dence on comprehensive field surveys for data sampling (Li
et al., 2024; Tran et al., 2022). By more effectively excluding
highly confounding crops such as garlic, the method also in-
creases the class purity of wheat in remote sensing mapping,
providing technical support for the development of stable and
high-precision spring and winter wheat distribution products.

The feature selection process at the provincial scale sig-
nificantly enhanced the regional adaptability of the mapping
model. Given China’s vast geographic expanse, the wide dis-
tribution of wheat-growing regions, and substantial regional
variation in phenological characteristics (Tao et al., 2012), a
unified set of feature variables often fails to meet the crop
identification requirements across all areas. To address this
limitation, we implemented a differentiated feature selection
strategy at the provincial level. This approach adapts the in-
put variable combinations based on each province’s wheat
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Figure 17. Spectral characteristics of wheat at different growth stages from Sentinel-2 images and differences between planted and harvested
area.

phenological development, cropping structure, and charac-
teristics of potential confusion crops, thereby allowing the
model to better capture local wheat growth patterns and tem-
poral dynamics. Taking Henan Province as an example, we
calculated the variation of wheat precision before and after
feature selection (Table 3). Without provincial feature selec-
tion, the overall precision ranged from 0.960 to 0.980; after
feature selection, the overall precision increased to 0.974 to
0.988. Although the model already achieved relatively high
accuracy without feature selection, the use of provincial fea-
ture selection further enhanced its discriminative capacity.
To better illustrate this improvement, six representative lo-

cations were selected for comparison in Fig. 19, where it is
evident that feature selection enabled more precise spatial
identification of winter wheat, thereby increasing the relia-
bility and robustness of the results. This region-specific strat-
egy mitigates the risk of generalization failure commonly ob-
served in “one-size-fits-all” models when applied across het-
erogeneous regions. It thus provides a scalable and widely
applicable framework for remote sensing-based crop map-
ping. According to the statistical results presented (Table S3),
the top five most frequently selected spectral variables across
provinces highlight notable regional differences in the im-
portance of crop identification features. Figure S7 shows the
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Figure 18. Distribution pattern of spring and winter wheat in China identified in CN_Wheat10 product.

high selection frequency of the Normalized Red-edge3 Dif-
ference Vegetation Index (NREDI3) and Normalized Red-
edge2 Difference Vegetation Index (NREDI2) underscores
the critical role of red-edge bands in wheat mapping. These
indices are particularly effective in distinguishing different
growth stages and reflecting crop health status (Delegido et
al., 2013; Qiu et al., 2025). The vegetation vigor indices
such as the Optimized Soil Adjusted Vegetation Index (OS-
AVI) and NDVI remain core indicators of wheat identifica-
tion performance, reflecting the fundamental importance of
plant growth conditions (Qu et al., 2021; Zhao et al., 2020;
Radočaj et al., 2023). Notably, in provinces with significant
winter rapeseed cultivation, spectral indices such as the Nor-
malized Difference Yellowness Index (NDYI) and the Winter
Rapeseed Index (WRI) were found to play a substantial role
in model performance (Zhang et al., 2022a; Sulik and Long,

2016). It can be inferred that the province-specific feature se-
lection approach not only improves wheat mapping accuracy
but also strengthens the model’s ability to distinguish wheat
from spectrally similar crops.

5.2 Uncertainties of the CN_Wheat10 dataset

The “planted area” and “harvested area” maps generated in
this study are essentially derived from remote sensing ob-
servations corresponding to different phenological stages.
Specifically, the “planted area” represents wheat distribu-
tion identified from imagery covering the overwintering to
regreening period, reflecting fields that successfully estab-
lished and survived early growth, and can be interpreted as
the “potential planted area.” The “harvested area” is further
derived by incorporating spectral information from heading
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Table 3. Comparison of wheat recognition accuracy in Henan Province before and after feature selection.

2018 2019 2020 2021 2022 2023

No feature selection 0.976 0.974 0.979 0.980 0.964 0.960
Feature selection 0.987 0.979 0.982 0.988 0.982 0.974

Figure 19. Comparison of wheat remote sensing recognition regions before and after feature selection with Sentinel-2 image.

to maturity on top of the planted area, aiming to capture
fields that successfully completed key reproductive growth
and reached a harvestable state, approximating the “actual
harvested area.” The choice of the terms “planted” and “har-
vested” is intended to more intuitively convey their agro-
nomic relevance and maintain consistency with previous
studies (Hu et al., 2024). Nevertheless, it should be empha-
sized that these maps can also be interpreted, in a strict sense,
as “in-season” and “end-season” distributions. The differ-
ences in area between the two maps largely reflect dynamic
changes in crop extent caused by environmental stresses,
pests, and management decisions (e.g., replanting or fallow-
ing) from overwintering to maturity. It should also be noted
that the observed difference between “planted” and “har-

vested” areas cannot be directly equated with precise yield
losses. This difference represents an estimate influenced by
uncertainties in remote sensing classification, which may in-
clude systematic errors caused by mid-season commission
errors and end-season omission errors. Therefore, these re-
sults are primarily intended to reveal the spatiotemporal pat-
terns and relative trends of potential yield reduction events
rather than provide absolute production loss data. Future
research could incorporate independent crop records and
higher-temporal-resolution remote sensing observations to
further constrain and quantify these uncertainties.
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Figure 20. Comparison of wheat remote sensing recognition regions based on Sentinel-2 and Landsat8 images.

5.3 Limitations and future work

Despite the high spatial resolution and annual consistency
achieved by the CN_Wheat10 product at the national scale,
which significantly improves both the scope and accuracy of
spring and winter wheat mapping, certain limitations and un-
certainties remain in practical applications, particularly with
regard to data completeness and regional adaptability. To en-
hance the stability of phenological feature extraction and the
temporal continuity of the time series, this study adopted sev-
eral pre-processing strategies, including cloud masking, me-
dian compositing, and linear interpolation. However, in re-
gions frequently affected by cloud cover or with a high pro-
portion of missing observations, the temporal continuity and
availability of remote sensing imagery are still constrained.
As a result, critical phenological signals during key peri-
ods may be inadequately captured, thereby affecting map-
ping accuracy and the spatial consistency of mapping out-
puts. Furthermore, in areas characterized by complex terrain
and highly variable weather conditions, remote sensing ob-

servations are more prone to anomalies and noise, posing ad-
ditional challenges for the accurate identification of wheat
growth cycles. Although the current methodology alleviates
data gaps to a certain extent, its effectiveness varies across
regions, which still limits the generalizability of the product
under heterogeneous environmental conditions. To enhance
the applicability of CN_Wheat10 in regions with challenging
topography and climatic variability, future work should focus
on advancing multi-source remote sensing data fusion strate-
gies and developing more robust temporal feature extrac-
tion and gap-filling mechanisms. Such improvements would
contribute to increased stability and reliability of the dataset
across diverse agroecological zones.

The feature selection in this study was based on provin-
cial administrative units. Although it captures regional dif-
ferences better than global feature selection methods, it may
not completely eliminate the effects of phenological and cli-
matic variations within provinces. Future studies can further
optimize the feature selection process by using more refined
agroclimatic zoning (Liu et al., 2024c) to better character-
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ize phenological differences in wheat. In addition, while this
study provides a novel multi-year, high-resolution wheat map
product for China using the capabilities of Sentinel-1 and
Sentinel-2, its temporal depth is inherently limited by the op-
erational lifespan of these satellite constellations. To explore
the applicability of our method over longer time series, we
conducted a preliminary mapping of spring and winter wheat
in Heze City, Shandong Province, for 2024 using Landsat
8 imagery, and compared the results at five representative
sites with the CN_wheat10 product. The results in Fig. 20
indicate that wheat-growing areas can be identified, demon-
strating cross-sensor transferability, though classification ac-
curacy is lower than with Sentinel-2. This is primarily due
to Landsat 8’s coarser spatial resolution (30 m) and longer
revisit interval (16 d), which constrain cloud-free observa-
tions during key growth stages and reduce the completeness
of composites and the accuracy of time-series feature extrac-
tion. In contrast, Sentinel-2’s 5 d revisit allows dense tem-
poral composites that capture subtle phenological dynamics.
These results suggest that while Landsat 8 can support ap-
proximate wheat mapping, achieving Sentinel-2–level preci-
sion for specific growth stages is challenging. Future inte-
gration of multi-source satellite data could enable long-term,
continuous monitoring of wheat distribution, providing in-
sights into the dynamics of winter and spring wheat and crop-
ping system transitions.

6 Data availability

The CN_Wheat10 product is freely accessible at
https://doi.org/10.6084/m9.figshare.28852220.v2 (Liu
et al., 2025a).

7 Conclusions

In this study, we developed CN_Wheat10, a high-resolution
(10 m) distribution product of spring-winter wheat across
China for the period 2018–2024. CN_Wheat10 product in-
cludes harvested area maps for both spring and winter wheat
nationwide, as well as harvested area maps for winter wheat
in major producing regions, providing a comprehensive de-
piction of the spatiotemporal dynamics of wheat cultiva-
tion in China. Compared to existing wheat remote sensing
products, CN_Wheat10 offers a key innovation by simul-
taneously mapping both spring and winter wheat distribu-
tions with high precision. Accuracy assessments demonstrate
that CN_Wheat10 consistently achieves high mapping per-
formance across years and regions. For winter wheat, both
planted and harvested area accuracies exceed 0.95, while
spring wheat mapping during the harvested area achieves
accuracies above 0.91. Additionally, comparison with offi-
cial statistics (2018–2023) reveals a strong agreement, with
R2 values exceeding 0.94 at the provincial level and consis-
tently above 0.88 at the municipal level. Overall, mapping

performance at the planted area slightly outperforms that at
the harvested area, likely due to adverse weather events such
as dry-hot wind, extreme heat, pests, and diseases, which can
cause premature senescence or crop failure and reduce map-
ping reliability during the later growth stages. In summary,
CN_Wheat10 is a high-precision, high-reliability, and high-
completeness remote sensing product that integrates spatial
information for both spring and winter wheat while offering
detailed planted area data for core winter wheat regions. By
extending the scope of wheat monitoring and enriching spa-
tial distribution information, this product provides valuable
support for agricultural monitoring, yield estimation, and dis-
aster response applications in China.
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