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Abstract. The latest generation of geostationary satellites provide Earth observations similar to widely used
polar-orbiting sensors but at intervals as frequently as every 5—10 min, making them ideal for studying the diur-
nal dynamics of land—atmosphere interactions. The NASA Earth Exchange (NEX) group created the GeoNEX
datasets by collating data from several geostationary platforms, including GOES-16/17/18, Himawari-8/9, and
GK-2A, and placing them on a common grid to facilitate use by the Earth science community. Here, we doc-
ument the GeoNEX Coincident Ground Observations (GeCGO) dataset for terrestrial ecosystem studies and
provide examples for its use. Currently, GeCGO provides GOES-16 Advanced Baseline Imager (ABI) data over
a 10km x 10km area surrounding 1586 network sites across the Americas. GeCGO makes it easy to compare
the time series of geostationary data with the diurnal ground observations, including carbon/water fluxes and
aerosol optical depth, and is extensible to other regions. We also develop GeoNEXTools to facilitate analyses
that require both GeoNEX data and other NASA satellite data. The objectives of this paper are to introduce
GeCGO and GeoNEXTools and demonstrate their applications. First, we describe the details of GeCGO and
GeoNEXTools. Second, we explain how GeCGO can be integrated with other satellite data. Finally, we show-
case comparisons between GeCGO and observations from three ground-based networks. GeCGO is available at
https://doi.org/10.25966/ySpe-xp41 (Hashimoto et al., 2025).
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1 Introduction

Satellites monitor the Earth’s surface using sensors with a va-
riety of spatial-spectral-temporal characteristics. Sensors on
geostationary satellites have unique characteristics, includ-
ing high-frequency observations with a constant view zenith
angle. Geostationary satellite data have been regarded as less
effective for monitoring the Earth’s environment due to their
low spatial resolution and wide spectral bands. However, the
latest generation of geostationary satellites have advanced
imaging sensors, e.g., GOES-16/Advanced Baseline Imager
(ABI) and Himawari-8/Himawari Advanced Imager (AHI),
which can provide a spatial resolution (i.e., 1km x 1km)
comparable with MODIS (Schmit et al., 2017). MODIS
has been the most frequently used sensor for monitoring
the global land surface for decades. The high-temporal-
resolution data of the new geostationary satellites enable us
to scrutinize sub-daily/sub-hourly processes on the Earth’s
surface, which polar-orbiting sensors with low temporal res-
olution like MODIS are unable to capture (Xiao et al., 2021;
Yi et al., 2024). Therefore, the new generation of geosta-
tionary satellites have the potential to complement the polar-
orbiting sensors for global- and continental-scale research.

Recent studies have demonstrated the effectiveness of us-
ing the new-generation geostationary satellite data for ter-
restrial ecosystem modeling. For example, Li et al. (2023b)
used GOES ABI data to show that suppression of photo-
synthesis in the afternoon is caused by high vapor pressure
deficits (VPDs) in the Western United States. Hashimoto
et al. (2021) used the greater number of clear-sky observa-
tions from GOES ABI to analyze the leaf phenology over the
Amazon and identify seasonal patterns in greenness. Others
have shown that ABI data can be used to estimate sub-daily
gross primary production (GPP) through a vegetation index
(Khan et al., 2022), a machine learning technique (Stoy et al.,
2024), or a light use efficiency model (Xiao et al., 2021).
These efforts reveal the potential of using GEOS ABI for
monitoring and modeling the dynamics of land surface veg-
etation. However, there remain difficulties for scientists in
using geostationary satellite data due to their large volume,
inconsistent file formats across sensors, and insufficient doc-
umentation or software to handle the data.

Scientists faced similar challenges with MODIS data dur-
ing the early days of the Earth Observing System (EOS) era.
This led to the development of MODIS subset data (ORNL
DAAC, 2017), which have since been extensively used by
the land surface monitoring and modeling communities. The
NASA Earth Exchange (NEX) recognized the importance of
data compactness from the EOS experience and leveraged the
GeoNEX project (Wang et al., 2020) to create the GeoNEX
Coincident Ground Observations (GeCGO) dataset and facil-
itate the use of data from geostationary satellites. GeCGO is
focused on widely monitored field and flux tower sites across
the Americas and is accompanied by GeoNEXTools to help
users retrieve GeCGO data, similar to the manner in which
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MODISTools supported the retrieval of MODIS subset data.
The data processing flow is summarized in Fig. 1 and is
implemented with Ziggy, an automated processing software
for science data analysis pipelines (Tenenbaum and Wohler,
2024).

The objectives of this paper are to introduce GeCGO and
GeoNEXTools and demonstrate their applications. First, we
describe the details of GeCGO and GeoNEXTools. Second,
we explain how GeCGO can be integrated with other satel-
lite data. Finally, we showcase comparisons between GeCGO
and observations from three ground-based networks.

2 Description of the GeoNEX data, GeCGO, and
GeoNEXTools

2.1 GeoNEX dataset

The GeoNEX data are a collection of land surface images
collected by new-generation geostationary weather satellites,
including the Himawari-8/9 Advanced Himawari Imager
(AHI), GOES-16/17/18 ABI, and Geo-KOMPSAT-2A (GK-
2A) Advanced Meteorological Imager (AMI). Although in-
tended for weather observations, the quality of the data
from these satellites is now suitable for studying land sur-
face dynamics. NEX has been producing geostationary data
for land surface research communities from Level-1B full-
disk scenes (Wang et al., 2020). The GeoNEX data are tiled
into 6° by 6° with 0.005-0.02° spatial resolutions in geo-
graphic projection. Each sensor covers a square region ap-
proximately =+ 60° from its nadir point to remove the edge
pixels with a large viewing angle. Tiles including only oceans
are not processed. Because the GeoNEX data were made
from full-disk images, the temporal resolution is between
10 and 15 min.

We first georectified Level-1B data using information pro-
vided by institutions that operate the geostationary satellites.
Although each sensor has its own state-of-the-art onboard
georeferencing system, there are still residual pixel shifts
in each image. For example, 1-pixel shifts for 500 m band
data were observed almost every day in the AHI data, while
ABI shifts were well under 4 0.5 pixel (Wang et al., 2020).
The phase-only correction (POC) method was employed by
matching Shuttle Radar Topography Mission (SRTM) digi-
tal elevation model (DEM)-based coastlines with the geosta-
tionary satellite images (Takenaka et al., 2020). We also cor-
rected the relief displacement caused by the large viewing
angle and high-elevation terrain, which is critical for com-
paring the satellite images with ground observation data.

The lowest level of the GeoNEX data is Level-1G, which
contains top-of-the-atmosphere (TOA) reflectance and/or
brightness temperature. The Level-2 data contain surface re-
flectance, which is retrieved by applying the Multi-Angle
Implementation of Atmospheric Correction (MAIAC) (Lya-
pustin et al., 2011a). Other higher-level data are also avail-
able, i.e., land surface temperature (LST) data (Jia et al.,
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Figure 1. Flowchart showing how GeCGO is created. Geostationary satellite L1B data were used to produce the suite of GeoNEX datasets,
then observations over the network site were extracted to create GeCGO (a—c). Users can download and analyze GeCGO data using GeoNEX-
Tools for multi-sensor analysis (d), spatial analysis (e), and time series analysis (f).

2022) and solar radiation data (Li et al., 2023a). Currently,
the Level-2 LST data are available only for North Amer-
ica (i.e., Canada, US, and Mexico). The GeoNEX data are
provided in the HDF-EOS2 format and available from the
NASA Advanced Supercomputing Data Portal (https://data.
nas.nasa.gov/geonex, last access: 29 September 2025).

NOAA also provides the ABI land Level-2 products, such
as TOA reflectance, TOA brightness temperature, bidirec-
tional reflectance distribution function (BRDF), and fire clas-
sification (Losos et al., 2024). The differences between the
GeoNEX data and NOAA Level-2 products are that the
GeoNEX data are (1) geo-corrected for each image, (2) re-
projected to the geographic projection, (3) tiled for each area
covering 6° by 6°, and (4) compiled such that they include in-
ternational geostationary satellite data (see Wang et al., 2020,
for more details).

2.2 GeCGO

To make it convenient for users to get time series of GeoNEX
data where ground-based observations are collected, we cre-
ated GeCGO by extracting observations from the GeoNEX
data over 1586 field or flux tower sites in various observa-
tion networks. To further facilitate its use, GeCGO is pro-
vided in the same file format as the Oak Ridge National Lab-
oratory (ORNL) Terrestrial Ecology Subsetting & Visualiza-
tion Services (TESViS) fixed sites subset data (https://modis.
ornl.gov/sites/, last access: 29 September 2025) (ORNL
DAAC, 2017), formerly known as MODIS/VIIRS Subset
Tools, which will be familiar to most scientists. Specifically,
GeCGO data are available in the comma-separated value
(CSV) and JavaScript Object Notation (JSON) formats for
each year (see the example of Fig. 2 and Table 1 for metadata
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Table 1. The metadata in the GeCGO JSON file.

Key Value

xllcorner  longitude at the lower-left corner (degree)

yllcorner  latitude at the lower-left corner (degree)

cellsize pixel size in north—south and west—east
direction (degree)

nrows number of pixels in north—south direction

ncols number of pixels in west—east direction

band name of the band

units physical unit of data values

latitude latitude of the flux tower

longitude  longitude of the flux tower

subset time in UTC and data values

descriptions). The data values were organized as 17 x 17,
9x9,and 5 x 5 grids for 0.005, 0.01, and 0.02° resolution,
respectively. For instance, the TOA band 1 reflectance data
has a 0.01° spatial resolution at nadir, and thus its GeCGO
data consist of 9 pixel x 9 pixel value data. The data val-
ues represent sequences of pixels from the northwest cor-
ner to the southeast corner in row-major order (Fig. 2). The
data are organized into directories named after the site IDs
used in the TESViS Subset. Currently, we provide the Level-
1G and Level-2 data within the GeCGO products, available
at the NASA GeoNEX data portal (https://data.nas.nasa.gov/
gecgo/data.php, last access: 29 September 2025). The avail-
able GeoNEX data are summarized in Table 2.

GeCGO has the same ground network information as the
TESViS Subset and currently includes 1586 sites across
14 ground networks in the Americas. The GeCGO sites were
entirely distributed over the continents in GOES-16 coverage
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JSON file

CSVfile

{

"xllcorner": -91.120,
"yllcorner": 46.680,

geonex,L1G, BAND16,20200101T0000,(value at pixel #1),
(value at pixel #2), (value at pixel #3), ..., (value at pixel #25)

"cellsize": 0.020,
"nrows": 5,
"ncols": 5,
"band": "BAND16",
"units": "K",
"latitude": 46.73850,
"longitude": -91.07460,
"subset": [
{
"calendar_date": "20200101T0000",
"data":[(value at pixel #1), (value at pixel #2),
(value at pixel #3), ..., (value at pixel #25)]
..

}

i
Y —

21 22 23 24 25

Figure 2. Example of JSON file and CSV file. The number in the 5 x 5 grid indicates the pixel position in the grid to clarify the order in the

JSON and CSV files.

Table 2. The product summary of GeCGO. Each product has several bands with different spatial resolutions and grid sizes.

Product name  Band name

Spatial resolution (°)  Grid size

Level 1G band 1-6 TOA reflectance 0.005-0.02 17x17,9%x9,5%x5
band 7-16 TOA brightness temperature  0.02 5x5
Level 2 band 1-6 surface reflectance 0.005-0.02 17x17,9%x9,5%x5
solar zenith angle 0.01 9%x9
solar azimuth angle 0.01 9x9
status QA 0.01 9%x9
AOD 0.01 9%x9
land surface temperature 0.02 5x5
solar radiation 0.01 9x%x9

(Fig. 3). Approximately 76 % of the sites are in the Amer-
iFlux (Chu et al., 2023; Novick et al., 2018), AERONET
(Aerosol Robotic Network) (Holben et al., 1998), and Phe-
noCam (Richardson et al., 2018a) networks (Table 3). We
excluded the island AERONET sites where the island area is
less than 1000 km?.

There is another existing subset of geostationary satel-
lite data products over AmeriFlux sites (Losos et al., 2024).
This subset of data provides half-hourly ABI fixed grid prod-
ucts for the AmeriFlux sites, including TOA reflectance,
surface reflectance, cloud mask, aerosol, and solar radia-
tion. Those data were single-pixel time-series-derived mainly
from NOAA high-level products with the terrain correction.
The ABI fixed grid products have different algorithms and
procedures from GeCGO. For instance, GeoNEX and NOAA
use different atmospheric correction (MAIAC (Wang et al.,
2022) for GeoNEX and 6S (He et al., 2019) for NOAA)
and geolocation correction (further orthorectification and ge-
olocation correction in GeoNEX; Wang et al., 2020) algo-
rithms. The different processing algorithms and procedures
also make the spatial resolution and time step different. There
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are many ongoing international efforts to develop geosta-
tionary satellite products for various applications. We be-
lieve that the subset datasets, including GeCGO and the ABI
fixed grid products, available through global ground net-
works provide ready-to-use hypertemporal Earth observa-
tions and inter-comparison data that can advance modeling
and address important scientific questions.

2.3 GeoNEXTools

We developed GeoNEX Subset Tools, or GeoNEX-
Tools (https://github.com/nasa/GeoNEXTools, last access:
29 September 2025), to facilitate downloading and manipu-
lating GeoNEX data for specific ground observation sites and
time ranges. Although the GeCGO data volume is smaller
than the original GeoNEX full-disk and tiled data, han-
dling GeCGO data remains challenging due to the length of
the high-frequency time series. The MODIS science com-
munity solved a similar issue by developing MODISTools
(Tuck et al., 2014), which is an open-source R package
that helps users download and read the MODIS Subset data

https://doi.org/10.5194/essd-18-397-2026
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Figure 3. Spatial map of locations in the GOES16 coverage for each network used in GeCGO. The colors of dots represent various network

names. Networks with less than 10 sites were categorized as “others”.

Table 3. Network names and number of sites of each network in
the current GeCGO. Networks that had less than 10 sites were cat-
egorized as “others”. Each site was assigned only a single network
based on TESViS data, though there were many sites that were in-
volved in multiple networks.

Network name Number of stations

AmeriFlux 540
AERONET 425
PhenoCam 247
USCRN 170
NEON 54
FLUXNET Canada 22
FLUXNET 21
unaffiliated 18
ForestGEO 17
URBANFLUXNET 13
LTER 12
others 47
Total 1586

(https://github.com/ropensci/MODISTools, Hufkens, 2025).
The MODISTools package has become one of the most

https://doi.org/10.5194/essd-18-397-2026

widely used tools for handling TESViS Subset data. Because
many scientists are accustomed to using MODISTools, we
developed GeoNEXTools to provide functionality similar to
that of MODISTools. The function names in GeoNEXTools
are the same as those in MODISTools except for the pre-
fix (e.g., mt_< function name> for MODISTools and gt_<
function name> for GeoNEXTools). A full list of the func-
tion names and descriptions is provided in Table Al.

Figure 4 illustrates how GeCGO and GeoNEXTools can
be used to analyze the diurnal variation in biophysical and
meteorological variables. The figure includes data from the
Harvard Forest EMS Tower (US-Hal) from 23 July to 5 Au-
gust, 2020, and clearly illustrates the diurnal variability in
NDVI, LST, downward shortwave radiation, and aerosol op-
tical depth (AOD). Preliminary examination of the data re-
veals several other insights. A cloudy day, i.e., 30 July to
1 August, is clearly evident in the diurnal variation in LST,
which is smaller than on the other days. Figure 4a shows in-
verse patterns in diurnal surface and TOA NDVI on clear
days (23 to 26 July), which indicates the importance of an
atmospheric correction study in diurnal cycle studies. The
clear-day NDVI calculated using TOA data shows peak val-
ues at noon, while the diurnal variation of the surface NDVI
exhibits a U-shaped curve. Even though each of the GeoNEX

Earth Syst. Sci. Data, 18, 397-410, 2026
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Figure 4. Time series from GeCGO at Harvard Forest EMS Tower
(US-Hal) from 23 July 2020 to 5 August 2020. (a) NDVI calcu-
lated from band 2 and band 3 at a 10 min interval. Blue and pur-
ple dots were top-of-the-atmosphere (TOA) (Level-1G dataset) and
surface (Level-2 dataset) NDVI, respectively. (b) Land surface tem-
perature (LST) at hourly intervals. (¢) Downward shortwave radi-
ation at hourly intervals. (d) Aerosol optical depth at 550 nm at a
10 min interval.
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products contains a large volume of data, GeoNEXTools sig-
nificantly simplified the process of retrieving and examining
single-point time series.

3 Use cases

3.1 Pairing GeCGO data with TESVIiS Subset data for
scientific insight

One of the key advantages of GeCGO is its ability to be
combined with data from polar-orbiting satellites. Creating
GeCGO in the same format as the TESViS Subset makes it
easy to integrate and analyze the two datasets together. Fig-
ure 5 illustrates the approach, combining multiple satellite
data from the TESViS Subset with GeCGO. Satellite obser-
vations are usually made at different times of the day. For ex-
ample, Terra and Aqua MODIS observe their target around
10:30 AM and 1:30 PM local time, respectively. The observa-
tion time of sensors on board ISS (e.g., ECOsystem Space-
borne Thermal Radiometer Experiment on Space Station, or
ECOSTRESS) varies due to changing altitude and orbital in-
clination of the station. As a result, the phenomena in ecosys-
tem processes observed by different satellite sensors could
be specific to the observation time. Thus, using single satel-
lite data may lead to biased results. Using multiple satellites
can overcome the observation-time issue, and the geostation-
ary satellite data can serve as a bridge between the instanta-
neous observations from multiple satellites. For example, the
drought impact on vegetation quantified by ECOSTRESS’s
instantaneous evaporative stress index (ESI) can be tempo-
rally extended to an entire day using radiometric tempera-
tures from geostationary satellite data. In addition, the spa-
tial pattern of drought impacts can be scrutinized using re-
flectance and radiometric temperature from MODIS or VI-
IRS finer-spatial-resolution data (Xiao et al., 2021). Such
analyses can be easily implemented using the GeCGO and
TESViS Subset data (Fig. 5). Beyond the analysis of diurnal
changes, GeCGO can be useful for BRDF modeling, which
requires observations from multiple sun-target-satellite ge-
ometries (e.g., Adachi et al., 2019). Combining GeCGO with
the TESViS Subset can help users find the scenes that meet
their research needs.

Spatial resolution and projection differences between a
geostationary satellite and other low Earth orbit satellites
(e.g., MODIS, VIIRS) are challenging issues for users in-
terested in using them together for various scientific appli-
cations. We thus chose to convert the geostationary satellite
view projection to geographic projection for its easy useabil-
ity. The original Level-1b data of GOES ABI is skewed at
the edge of the coverage, where the viewing angle is large.
Meanwhile, the TESViS Subset data has different projections
for each product. For example, MODIS data in the TESViS
Subset were reprojected from swath images to sinusoidal
projection. As a result, the MODIS subset data show the skew
cutout as shown in Fig. 5g and i. Therefore, matching all the

https://doi.org/10.5194/essd-18-397-2026
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Figure 5. Example of instantaneous satellite observations in a single day (7 June 2020) at the Bondville, Illinois, flux tower site. The yellow
arrow represents the time of the day in local time (Central Daylight Time, UTC — 5). The two-dimensional images were obtained from
GeCGO or the TESViS Subset. The ABI band 2 reflectance (0.59-0.69 um) subset data are shown in the upper row of panels (a—c). The ABI
band 14 radiometric temperature subset data are shown in the middle row of panels (d—f). The lower panels show the low Earth orbit satellite
data: Terra MODIS reflectance (MOD09A1) band 2 (0.84-0.88 um) (g), ECOSTRESS Evaporative Stress Index (ESI) (h), Aqua MODIS
reflectance (MYD09A1) band 2 (0.84—0.88 um) (i), and VIIRS reflectance (VNP0O9A1) band I1 (0.60-0.68 um) (j). The outside boundaries
of the black line box for each satellite image have the same spatial extent, i.e., 40.06-39.96° N, 88.3811-88.1970° W. The red cross shows
the location of the Bondville flux tower (40.0062° N, 88.2904° W). The light-blue triangles indicate the approximate observation time of each

satellite image.

pixels between the subset data is not straightforward. Using
only the center pixels where the ground observation sites ex-
ist is the easiest way to avoid such complex projection con-
version processes.

3.2 Examples of using GeCGO with ground observation
network data

3.2.1  AmeriFlux: can NDVI or NIRv represent annual

GPP?

AmeriFlux is a network of sites that use the eddy covari-
ance technique to measure ecosystem CO,, water, and energy
fluxes across North, Central, and South America (Chu et al.,
2023). Due to its wide distribution across diverse ecosystems
and climate gradients, AmeriFlux data have been used for
validating satellite products (Baldocchi et al., 2001) and for
upscaling site-specific observations from AmeriFlux sites to
regional and global scale using remote sensing data (Running
et al., 2004). However, because each MODIS on TERRA or
AQUA provides only one observation at a specific time of
the day in the daytime, converting MODIS observations to
representative daily values requires various assumptions or
models to align with the daily average of the half-hourly ob-

https://doi.org/10.5194/essd-18-397-2026

servations provided by AmeriFlux products. In contrast, the
geostationary satellite data can be directly compared with the
half-hourly AmeriFlux data. Several data-driven models us-
ing geostationary satellite data have been proposed to esti-
mate carbon and water fluxes (Khan et al., 2022; Li et al.,
2023b; Stoy et al., 2024; Xiao et al., 2021) and vegetation
indices for tracking the diurnal cycle of GPP (Jeong et al.,
2023). Given the dynamic nature of fluxes and the environ-
mental factors that influence them throughout the day, com-
bining hypertemporal geostationary satellite data with Amer-
iFlux data provides a more accurate representation of diurnal
variations in fluxes compared to using polar-orbiting satel-
lite data. GeCGO further enables users to work with specific
datasets without needing to download the entire GeoNEX
data, making it especially valuable for model development.
As an example of using AmeriFlux data, we compared an-
nual GPP with mean NDVI and NIRv (Badgley et al., 2019)
to analyze the spatial representation of vegetation indices
from ABI data in 2018 (Fig. 6). The annual GPP was ob-
tained from the AmeriFlux FLUXNET data product (Pas-
torello et al., 2020) for each site. The mean annual NDVI and
NIRv were derived from daily values of NDVI and NIRv, and
the daily NDVI and NIRv were calculated from the median
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ear regression line. The dashed lines represent the 95 % confidence
intervals of the regression.

of the 90th percentile data for each day. Unlike TOA prod-
ucts (i.e., L1G), L2 data contain significant gaps due to the
cloud mask derived from the MAIAC algorithm. Therefore,
we excluded the AmeriFlux sites with fewer than 100d of
available daily data.

We found significant relationships across all comparisons
between mean annual GPP and vegetation indices (VIs).
Even TOA VIs, which did not undergo cloud screening,
had high correlations (r =0.73 for NDVI and r =0.64 for
NIRv) with annual GPP (Fig. 6a and b). Moreover, surface
VIs showed strong correlation with GPP compared to TOA
VIs (r=0.83 for NDVI and r =0.81 for NIRv) (Fig. 6¢
and d), suggesting that surface reflectance VIs better repre-
sented spatial patterns of annual GPP despite the limited data
availability. For both L1G and L2, NDVI showed a slightly
stronger correlation with annual GPP than NIRv.

However, these results do not imply that NDVI is inher-
ently better than NIRv for representing the spatial variabil-
ity of annual GPP. The resolutions of the GeoNEX datasets
are greater than 0.005° (approximately 500 m at the nadir).
While a spatial resolution of 500 m may be comparable to
the footprint of many flux sites, this resolution applies only
to a red visible band (0.64 um) of ABI at the nadir. As a re-
sult, high spatial heterogeneity within the pixels can lead to a
scale mismatch between the flux data and the GeoNEX data
footprints, although this footprint scale mismatch issue is
not limited only to GeoNEX datasets. Chu et al. (2021) pro-
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vide representativeness information of the tower footprint for
all AmeriFlux sites. We encourage users to consult with the
footprint information to select appropriate sites for directly
analyzing the relationship between flux data and GeCGO.
Additionally, in this example, we did not account for other
factors such as BRDF dependency on sun-target-satellite ge-
ometry (Morton et al., 2014). Further analysis, considering
these factors, would provide a more appropriate conclusion
regarding the spatial representation of vegetation indices.

To validate and calibrate VIs derived from GeCGO, high-
frequency vegetation indices estimated at the ground level
can be valuable. For example, some scientific instrument
manufactures produce sensors capable of measuring NDVI
at sub-hourly intervals (e.g., Apogee Instruments, Holland
Scientific). While these sensors can be installed on flux tow-
ers and are used at some sites, they are not standard com-
ponents of flux towers. More notably, a group of flux and
remote sensing scientists recently developed a method to de-
rive sub-hourly NDVI and NIRv using quantum sensors and
pyranometers, which are commonly installed on flux towers
(Mallick et al., 2024). This approach can be used to validate
and calibrate VIs derived from geostationary satellites, ad-
dressing footprint mismatches, improving accuracy, and re-
ducing uncertainties.

3.2.2 AERONET: validation of the Level-2 AOD
products using AERONET AOD

AERONET is a global aerosol monitoring network that mon-
itors the aerosol optical depth using sun photometers. The
time interval of observation is less than an hour. The aerosol
optical depth (AOD) has large diurnal variability. Therefore,
the sub-hourly observations of GOES data are suitable for
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large-scale AOD estimation compared to once-a-day obser-
vation of polar-orbiting satellites (Sorek-Hamer et al., 2020).
AOD in the GeoNEX Level-2 data is a product of estimating
surface reflectance using MAIAC (Lyapustin et al., 2011b).

To assess the accuracy of GeoNEX Level-2 AOD esti-
mates, we compared the AERONET version 3 data (Sinyuk
et al., 2020) to the GeCGO AOD data. AERONET pro-
vides the AOD data estimated from sun photometer radi-
ance measured approximately every 3 min. We plotted the
GeCGO AOD data against AERONET version 3 data for
matching times within 2 min in 2019 (Fig. 7). In this exam-
ple, the GeCGO AOD overestimated the AERONET AOD,
especially for low AOD less than 0.3. GeCGO will facilitate
the development of an AOD estimation algorithm and will
contribute to improving high-temporal AOD estimation al-
gorithms for the geostationary satellite mission focusing on
air quality monitoring (i.e., Tropospheric Emissions: Moni-
toring of Pollution (TEMPO), Global Environmental Moni-
toring System (GEMS), and Sentinel-4).

3.2.3 PhenoCam: time-series comparison between
L1-G NDVI and PhenoCam greenness

PhenoCam is a phenology ground observation network us-
ing time-lapse cameras. Each site provides time series of
digital camera images, with the objective of capturing the
seasonal cycle of vegetation phenology (Richardson et al.,
2018b). PhenoCam provides daily statistics of the image val-
ues, including the daily Green Chromatic Coordinate (GCC).
The GCC was calculated by dividing the Green Digital Num-
ber (DN) by the sum of the Red, Green, and Blue DNs. The
DNs of the PhenoCam were extracted from regions of inter-
est (ROIs), which focus on dominant vegetation types in the
images. The GCC time series aligned well with the polar-
orbiting satellite NDVI (Richardson et al., 2018a). Miura
et al. (2019) reported that the geostationary satellite data can
track the detailed phenological and environmental change
captured by time series in camera images.

To demonstrate the usefulness of GeCGO for analyzing
the time-series difference between geostationary data and
PhenoCam data, we conducted six comparisons between the
GeCGO VIs and PhenoCam Dataset V2 data (Seyednasrol-
lah et al., 2019) (Fig. 8). Note that there is an intrinsic scale
mismatch between PhenoCam and GOES data, as the target
area captured by PhenoCam is much smaller than the spatial
resolution of the GOES ABI visible bands (km1 x 1 km).

In Fig. 8a and b, the PhenoCam sites were located within
the same GOES target pixel. The GCC time series of Harvard
Farm North (Fig. 8a) aligned well with GOES NDVI, while
Harvard Farm South (Fig. 8b) did not. This difference may be
attributed to the fact that the PhenoCam ROI at Harvard Farm
South was covered by heterogeneous landscapes including
vegetation types (grass in this case), leading to an undesirable
condition for this comparison with the GOES pixel. Similar
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mismatch issues have been observed in comparisons between
GCC and MODIS NDVI (Richardson et al., 2018a).

Figure 8c—f provides additional examples that show a high
correlation between seasonal GCC and GOES NDVI time se-
ries. At the deciduous vegetation sites (Fig. 8c—e), mismatch
between GCC and GOES NDVI was observed early in the
growing season. Specifically, GCC peaked in the early grow-
ing season, while the peak of GOES NDVI was delayed. This
discrepancy can be explained by the emergence of new bright
leaves or understory greening (Ryu et al., 2014). The detailed
observations and analysis at the Harvard Forest Environment
Measurement Site (EMS) revealed that the GCC peak can
be explained only by a combination of changes in leaf traits
and canopy structure (Keenan et al., 2014). Meanwhile, the
GCC and GOES NDVI aligned well at evergreen forest sites,
where seasonal canopy changes are less pronounced than in
deciduous trees (Fig. 8f). These examples demonstrate that
the GeoNEX can be a convenient tool for analyzing leaf phe-
nology.

4 Data availability

The DOI of GeCGO is https://doi.org/10.25966/y5pe-xp41
and available at the NASA Ames Data Portal (https://
data.nas.nasa.gov/gecgo/data.php, last access: 29 September
2025) (Hashimoto et al., 2025). We will add more products
on the data portal and announce updates on the NEX web-
site at https://www.nasa.gov/nasa-earth-exchange-nex/ (last
access: 29 September 2025).

5 Code availability

GeoNEXTools is available at the GeoNEXTools GitHub site
(https://github.com/nasa/GeoNEXTools, last access: 10 Jan-
uary 2026, DOI: https://doi.org/10.5281/zenodo.17731754,
Hashimoto, 2025).

6 Conclusion

In contrast to the MODIS satellites, which will soon reach the
end of their respective missions, the operational geostation-
ary satellites are expected to provide a long-term data record
due to their essential role in weather forecasting. Because the
sensors on the latest geostationary satellites are equivalent to
the MODIS sensors and thus suitable for observing the land
surface at global scale, we anticipate that the GeoNEX data
and GeCGO will have a valuable role to play in research con-
tinuity at the end of the MODIS era.

The GeoNEX project aims to develop key Earth obser-
vation and science products using data from a global con-
stellation of geostationary satellite sensors. Initially focusing
on the GOES domain (covering North and South America),
the GeoNEX dataset is expanding to include additional geo-
graphic regions served by other geostationary satellites (i.e.,
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Figure 8. Examples of time series of L1G 1 km NDVI (black dot) and the Green Chromatic Coordinate (GCC) (green line) at six PhenoCam
sites in 2019. (a) Harvard Farm, Petersham, MA (ID: harvardfarmnorth, 42.5205°N, 72.1822° W, grassland). (b) Harvard Farm South,
Petersham, MA (ID: harvardfarmsouth, 42.5225° N, 72.1823° W, grassland). (¢) Lost Creek, WI (ID: lostcreek, 46.0827° N, 89.9792° W,
deciduous shrub wetland). (d) Russell Sage State Wildlife Management Area, LA (ID: russellsage, 32.4570°N, 91.9743° W, deciduous
broadleaf). (e) Willow Creek, Chequamegon—Nicolet National Forest, WI (ID: willowcreek, 45.8060° N, 90.0791° W, deciduous broadleaf).
(f) Hemlock Tower, Harvard Forest, Petersham, MA (ID: harvardhemlock?2, 42.5394° N, 72.1780° W, evergreen needleleaf).

Himawari, GK2A, MTG-I, etc.). NEX has already obtained
L1B data of Himawari AHI (84°E to 156° W) and GK2A
AMI (72°E to 168° W) and created L1G data. We have also
initiated the importing and processing of MTG-I FCI data
to cover Europe and Africa. This extended spatial coverage
of GeoNEX will further support global ground networks that
are not currently included in GeCGO. Furthermore, in re-
sponse to the needs of the scientific community, we plan to
incorporate additional datasets, such as cloud cover. To in-
crease data accessibility, GeoNEX and the AmeriFlux Man-
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agement Project have closely collaborated to make GeCGO
available through the AmeriFlux website. This collaboration
enables users to download and visualize time series of var-
ious GeCGO products, including the spectral vegetation in-
dex, land surface temperature, and downwelling shortwave
solar radiation. We hope this collaborative effort fosters in-
terdisciplinary research among the flux, remote sensing, and
modeling communities to better understand Earth systems
and address critical environmental challenges.
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In conclusion, we described the details of GeCGO and
GeoNEXTools in this paper. GeCGO is convenient for users
who want to analyze the large volume of GeoNEX data for
land ecosystem monitoring and modeling. GeCGO can help
users achieve synergistical use of the GeoNEX data with
other satellite sensor data. GeCGO is also useful to analyze
the relationship between the GeoNEX data and ground obser-
vation network data. We showed three examples to demon-
strate how we can relate GeCGO with ground observation
networks. The first example analyzed the relationship be-
tween annual GPP from AmeriFlux and the summation of
VIs. The linear relationship showed the possibility of the
GeCGO VIs to estimate annual GPP and develop algorithms
for the spatial variability of annual GPP. The second exam-
ple used the geostationary data to track phenological changes
observed in PhenoCam data. These examples highlight the
value of frequent observations from geostationary satellites
in helping mitigate cloud cover problems and for capturing
quick responses of vegetation to environmental changes. As
such, they demonstrate the value of ready-to-use GeCGO in
terrestrial ecophysiology research.

Appendix A

Table A1. Function names and description of GeoNEXTools.

Function name Description

Lists all available GeoNEX Products Sub-
set products

gt_products()

gt_bands() Lists all available bands for a GeoNEX
Products Subset product
gt_sites() Lists all available GeoNEX Products Sub-

set pre-processed sites

Download a GeoNEX Products Subset
product for a given GeoNEX subset site

gt_subset()

Download a GeoNEX Products Subset
product for given multiple GeoNEX sub-
set sites

gt_batch_subset()
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