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Abstract. Road surface types not only influence the accessibility of road networks and socio-economic devel-
opment but also serve as a critical data source for evaluating the United Nations Sustainable Development Goal
(SDG) 9.1. Existing research indicates that Africa generally has a low road paved rate, which limits local socio-
economic development. Although the International Road Federation (IRF) provides statistical data on paved
road length and road paved rates for certain African countries, this data neither covers all African countries nor
specifies the surface type of individual roads, making it challenging to support decision-making for improving
Africa’s road infrastructure. To address this gap, this study developed the first dataset for 50 African coun-
tries and regions, incorporating the surface type of every road. This was achieved using multi-source geospatial
data and a tabular deep learning model. The core methodology involved designing 16 proxy indicators across
three dimensions – derived from five open geospatial datasets (OpenStreetMap road data, GDP data, popula-
tion distribution data, building height data, and land cover data) – to infer road surface types across Africa.
Key findings include: the accuracy of the African road surface type dataset ranges from 77 % to 96 %, with F1
scores between 0.76 and 0.96. Total road length, paved road length, and road paved rates calculated from this
dataset show high correlation (correlation coefficients: 0.69–0.94) with corresponding IRF statistics. Notably,
the road paved rate also exhibits strong correlation with GNI per capita and the Human Development Index
(HDI) (correlation coefficients: 0.80–0.83), validating the reliability of the dataset. Spatial analysis of African
road paved rates at national, provincial, and county scales revealed an average paved rate of only 17.4 % across
the 50 countries and regions. A distinct pattern emerged, with “higher paved rates in the north and south and
lower rates in the central region”; the average paved rate north of the Sahara is approximately three times that
of Sub-Saharan Africa (excluding South Africa). The African road surface type dataset developed in this study
(https://doi.org/10.6084/m9.figshare.29424107, Liu and Zhou, 2025) not only provides data support for enhanc-
ing road infrastructure and evaluating progress toward SDG 9.1 in Africa but may also facilitate research on
how road surface types impact road safety, energy consumption, ecological environments, and socio-economic
development.
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1 Introduction

Road surface types, such as paved and unpaved roads, not
only affect vehicle driving safety and energy consumption
but also affect road accessibility and socio-economic devel-
opment (Anyanwu and Erhijakpor, 2009; Shtayat et al., 2020;
Sha, 2021; Styer et al., 2024; Chen et al., 2025). Gener-
ally, paved roads have a durable structure and are resistant
to erosion, allowing them to remain passable year-round. In
contrast, unpaved roads are often impacted by natural fac-
tors such as rain and snow, making them typically difficult
to traverse throughout the year. The proportion of the rural
population living within 2 km of an all-season road has been
adopted by the World Bank as a key indicator for evaluating
road infrastructure. This indicator was incorporated by the
United Nations into Sustainable Development Goal (SDG)
9.1 in 2015. Data on road surface types are considered essen-
tial for assessing progress toward SDG 9.1.

Existing studies indicate that the road paved rate in African
countries is highly positively correlated with national poverty
rates, in some regions, the lack of all-season passable roads
has significantly increased transportation costs (Anyanwu
and Erhijakpor, 2009; Abdulkadr et al., 2022). Particularly
in Sub-Saharan Africa, more than 70 % of roads remain un-
paved (Greening and O’Neill, 2010); In Nigeria, for exam-
ple, over 30 million rural residents have long been unable
to access road transportation services. In these countries and
regions, the lag in transportation infrastructure has become a
major bottleneck restricting socio-economic development (Li
et al., 2021). To address these challenges, the World Bank,
the International Automobile Federation (FIA), and the In-
ternational Transport Forum (ITF) signed a Memorandum
of Understanding (MoU) in 2018, aiming to strengthen in-
frastructure construction in Africa over the next fifty years
(World Bank, 2018). The Agenda 2063: The Africa We Want,
endorsed by multiple African countries, also sets goals to im-
prove residents’ quality of life and enhance infrastructure
across the continent (African Union Commission Agenda
2063, 2015). Therefore, high-quality road surface type data
for Africa are of great significance for improving local trans-
portation infrastructure and promoting socio-economic de-
velopment.

However, the currently available global data on road sur-
face types are primarily statistical, and most analyses of road
surface types rely on such statistics. For example, the Inter-
national Road Federation (IRF) provides statistical data re-
lated to road surface types, such as paved road length and
road paved rate (Turner, 2008; Central Intelligence Agency,
2025). Greening and O’Neill (2010) found, based on IRF and
other road statistics, that in Sub-Saharan Africa, the propor-
tion of “all-season roads” (e.g., paved roads) does not exceed
30 %. Kresnanto (2019) used statistical data on paved road
lengths from Badan Pusat Statistik Indonesia (BPS Indone-
sia) to analyze the relationship between road paved rates and
vehicle ownership in Indonesia from 1957 to 2016. Patrick

and Yves (2022) conducted a survey to estimate the road
paved rate in rural areas of Sub-Saharan Africa. However,
analyses of road surface types based on statistical data have
many limitations. On the one hand, existing statistical data on
road surface types do not cover all countries; for example, in
2020, IRF provided statistics on paved road lengths for only
19 African countries, and some countries still face issues
with untimely data updates (Barrington-Leigh and Millard-
Ball, 2017). On the other hand, these statistical data are col-
lected indirectly by relevant statistical departments or road
authorities through surveys and coordination of data from
various sources (Turner, 2008; Central Intelligence Agency,
2025), making it impossible to accurately determine whether
each road within a country or region is paved or unpaved.

In recent years, with the development of sensing devices,
remote sensing, and big data technologies, many researchers
have proposed methods to identify road surface types based
on multiple data sources (Louhghalam et al., 2015; Sattar
et al., 2018; Pérez-Fortes and Giudici, 2022). For exam-
ple, some scholars have suggested methods using vehicle-
mounted sensing devices to identify road surface types. Chen
et al. (2016) designed a road surface type identification sys-
tem that can be connected to distributed vehicles and was
tested on 100 taxis in Shenzhen to assess the roughness of
road surfaces. Harikrishnan and Gopi (2017) collected ve-
hicle speed data using the XYZ three-axis accelerometer of
smartphones and established road surface type identification
models for four different vehicle speeds. Li and Goldberg
(2018) developed a similar system using smartphones, col-
lecting data from five different drivers over 15 d to classify
road roughness into three categories: “good”, “moderate”,
and “poor”. Other researchers have proposed methods us-
ing street view data to identify road surface types. Rand-
hawa et al. (2025) used a deep learning model combining
SWIN-Transformer and CLIP-based segmentation on Mapil-
lary street-view images to classify road surfaces globally into
paved and unpaved. Menegazzo and von Wangenheim (2020)
collected street view data for some roads in Anita Garibaldi,
Brazil, using vehicle-mounted cameras and identified paved
and unpaved roads based on a CNN neural network model.
Zhou et al. (2025a) recently utilized crowdsourced street
view data from Mapillary to develop a dataset of road sur-
face type annotations (paved and unpaved) for the African re-
gion. Additionally, some scholars have proposed methods us-
ing high-resolution remote sensing imagery to identify road
surface types. Workman et al. (2023) developed a framework
using high-resolution optical satellite imagery and machine
learning to predict the condition of unpaved roads in Tan-
zania. Zhou et al. (2024) proposed a method that integrates
OpenStreetMap (OSM) and high-resolution Google satellite
imagery to identify road surface types and used this method
to develop the road surface type dataset for Kenya. How-
ever, methods based on vehicle-mounted sensing devices re-
quire on-site data collection for each road, which inevitably
demands significant manpower, materials, and financial re-
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sources, making them difficult to apply to large-scale study
areas such as continents or countries. Data like Google street
view are available only in a limited number of countries or
specific regions within countries, making it challenging to
identify the surface types of all roads nationwide. Therefore,
although datasets developed based on street views covers a
global range, it only has 36 % of the complete global roads,
this proportion is even lower in Africa and Asia (Randhawa
et al., 2025). Remote sensing methods may suffer from low
accuracy in identifying road surface types due to dense veg-
etation or building shadows obscuring roads (Zhou et al.,
2024). Therefore, Zhou et al. (2025b) recently proposed a
new method based on multisource big data and deep learn-
ing models to infer road surface types, which has been vali-
dated in two African countries. Compared to remote sensing
methods, this approach can address the low accuracy of road
surface type identification in areas with poor remote sensing
image quality; for example, the accuracy of remote sensing
methods in Cameroon is only 67 %, whereas the multisource
data method achieves accuracy exceeding 85 % in the same
region.

Nevertheless, existing research still has limitations. (1)
The method proposed by Zhou et al. (2025b) has only been
validated in only a few (1–2) African countries, and it re-
mains to be verified whether these methods can be applied
to develop road surface type dataset for different African
countries. (2) Existing road surface type data are still mainly
statistical data at the national scale, with Zhou et al. (2024)
provided a road surface type dataset only for Kenya, leaving
a gap in data products covering other countries and regions
across Africa.

Therefore, this study aims not only to evaluate the univer-
sal applicability of a method for developing road surface type
dataset based on multisource big data and deep learning mod-
els but also to apply this method to create the first dataset of
road surface types (paved and unpaved) for 50 countries and
regions in Africa. The dataset developed in this study not
only provides information on the surface type of each road
in various countries or regions of Africa but also verifies the
accuracy of the dataset: accuracy ranges from 77 % to 96 %,
and the F1 score ranges from 0.76 to 0.96. Compared to IRF
and other road statistical data, the dataset developed in this
study can support detailed mapping of road surface types in
various African countries or regions and provide data support
for road infrastructure construction.

The remainder of this paper is organized as follows: Sect. 2
describes the study area and the source data used for develop-
ing and evaluating the road surface type data. Section 3 out-
lines the methods employed for data development and eval-
uation. Section 4 presents the evaluation results of the road
surface type data. Section 5 discusses the implications and
limitations of the study. The final two sections detail the data
acquisition methods and provide the research conclusions.

2 Study Area and Data

2.1 Study area

This study takes 50 countries and regions in Africa, the
second-largest continent on Earth, as the study area (Fig. 1),
with a total road length of approximately 6 822 516 km.
Africa was selected as the study area primarily because
existing research indicates a high proportion of unpaved
roads across the continent (Biber-Freudenberger et al., 2025).
However, the IRF only provides statistics on paved road
lengths and paving rates for some African countries. Due to
the lack of a spatially detailed road surface type dataset, it
is challenging to offer decision support for improving road
infrastructure in Africa.

2.2 Data

2.2.1 Geospatial data

1. OpenStreetMap road data. OpenStreetMap (OSM) is
an open geospatial dataset contributed by global vol-
unteers and made available online (Harikrishnan and
Gopi, 2017). This dataset includes various geographic
elements such as roads, buildings, and water bodies.
Each geographic element not only contains geometric
information but also describes its characteristics or at-
tribute information through a series of tags. Specifically,
the “surface” tag in OSM road data is designed to de-
scribe the road surface type of each road segment. The
value of this tag typically refers to the surface mate-
rial of the road, such as asphalt, concrete, or gravel.
Although OSM data for different countries or regions
in Africa include information on road surface types, in-
complete statistics show that the length of OSM roads
with surface type information in a single country usually
accounts for less than 30 %, meaning that most OSM
road data lack surface type information, highlighting an
urgent need for supplementation and improvement. This
study obtained road data for 50 countries and regions in
Africa (in ESRI Shapefile format) from the Geofabrik
platform (http://download.geofabrik.de/index.html, last
access: 2 July 2025), which allows obtaining OSM road
data by country.

2. GDP grid data. This dataset is a 1km spatial resolution
GDP grid dataset developed by Southwestern Univer-
sity of Finance and Economics (Chen et al., 2022). The
dataset was developed by integrating nighttime light
remote sensing data (NPP-VIIRS), land use data, and
regional economic statistics using spatial interpolation
and machine learning algorithms. This dataset over-
comes the limitations of traditional administrative unit
statistics and accurately captures the spatial heterogene-
ity of economic activities. The dataset covers the pe-
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Figure 1. Study Area.

riod from 1992 to 2019; this study utilized data from
the most recent year, 2019.

3. Population grid data. This dataset is the LandScan
global population dataset developed by Oak Ridge Na-
tional Laboratory (ORNL) in the United States, with
a spatial resolution of 30 arcsec in latitude and longi-
tude (approximately 1km at the equator) (Dobson et al.,
2000). The dataset integrates census data, satellite im-
agery, and mobile communication data, using dynamic
modeling methods to simulate 24 h population distri-
bution. Existing research has found that compared to
other population grid datasets (such as WorldPop and
Global Human Settlement Population Grid), LandScan
has higher accuracy (Jiang et al., 2021; Mohit and Slo-
bodan, 2021; Yin et al., 2021). Therefore, this study ob-
tained the 2020 LandScan population raster data for the
African region (https://landscan.ornl.gov/, last access: 2
July 2025).

4. Building height data. This dataset provides building
height information at a 100 m resolution and is re-
leased by the Global Human Settlement Layer (GHSL).
The dataset is based on Sentinel-1/2 and Landsat im-
agery, using machine learning algorithms to extract the

three-dimensional morphology of buildings (Pesaresi et
al., 2021). The dataset includes raster data represent-
ing building heights. GHSL-BUILT is the world’s first
building height dataset, and this study obtained the 2018
building height data recommended by GHSL for analy-
sis (https://human-settlement.emergency.copernicus.eu/
ghs_buH2023.php, last access: 2 July 2025).

5. Land cover data. This dataset is a global land cover
dataset with a 10 m spatial resolution released by ESRI.
The dataset was developed based on Sentinel-2 im-
agery and deep learning methods, including nine dif-
ferent land cover categories (water, trees, flooded veg-
etation, crops, buildings, bare land, snow, clouds, and
pasture) (Karra et al., 2021). Existing research indi-
cates that ESRI land cover data exhibits higher ac-
curacy compared to other similar datasets (such as
ESA World Cover and Dynamic World) (Yan et al.,
2023). This study obtained the 2020 Land Cover data
for the African region (https://livingatlas.arcgis.com/
landcover/, last access: 2 July 2025).
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2.2.2 Statistical data

To verify the effectiveness of the data, this study also col-
lected two types of statistical data, IRF road statistics and
socio-economic statistics.

1. IRF Road Statistics. The International Road Federation
(IRF) is a non-profit international organization dedi-
cated to promoting development and cooperation in the
global road transport sector (Turner, 2008). IRF pro-
vides free, comprehensive statistical data resources to
users worldwide (https://www.irf.global/, last access: 2
July 2025). These data primarily come from authorita-
tive reports and statistical agencies of various govern-
ments, covering multiple fields such as road networks
and the transportation industry. This study utilized three
statistical data provided by IRF for the African region in
2020: the length of paved roads, total road length, and
road paved rate.

2. Socio-economic Statistics. Existing research has found
that the road paved rate is strongly positively corre-
lated with the level of socio-economic development
(Anyanwu and Erhijakpor, 2009). Therefore, this study
also introduced two indicators related to the level of
socio-economic development, namely the Human De-
velopment Index (HDI) and Gross National Income per
capita (GNI per capita, based on Purchasing Power
Parity current international dollar). HDI, compiled and
published by the United Nations Development Pro-
gramme since 1990, is derived from a comprehensive
evaluation of a country’s life expectancy, average years
of schooling, and gross national income, and is used to
measure the socio-economic development level of vari-
ous countries. GNI per capita is published by the World
Bank, where GNI is the sum of the incomes of all res-
idents in a country or region; GNI per capita is the av-
erage GNI of a country or region, which can measure
the average economic income level of the nationals in
a country or region. This study obtained 2020 HDI and
GNI per capita data, covering 44 and 36 African coun-
tries and regions, respectively.

3 Methods

The technical roadmap of this study is shown in Fig. 2.

3.1 Developing of Road Surface Type Dataset of Africa

This study utilizes a method recently proposed by Zhou et
al. (2025b), which leverages multi-source geospatial big data
and deep learning models to develop the road surface type
dataset for 50 African countries and regions. The main idea
of this method involves the following steps: First, sampling
points and their corresponding OpenStreetMap (OSM) road
surface type labels are acquired based on OSM road data.

Next, proxy indicators that characterize road surface types
are calculated based on multi-source open geospatial big
data. Third, a deep learning model is trained using these
proxy indicators and road surface type labels of the sampling
points. Finally, the trained model is applied to the road net-
works of various African countries and regions to identify the
surface type of each road.

3.1.1 Road Sampling

According to the definition of OSM road level tags
(highway=) outlined in the OSM wiki (https://wiki.
openstreetmap.org/wiki/Key:highway, last access: 2 July
2025), roads passable by four-wheeled motor vehicles are
selected. These specifically include: “highway=motorway,
motorway_link, trunk, trunk_link, primary, primary_link,
secondary, secondary_link, tertiary, tertiary_link, residential,
living_street, service, track, road, unclassified”. Other roads
primarily intended for bicycles or pedestrians (e.g., cycle-
way, footway) are excluded from the analysis.

Afterward, the selected OSM road data are sampled at
100 m intervals to generate sampling points. The 100 m in-
terval is chosen because most roads are greater than or equal
to 100 m in length, ensuring that most roads have at least one
sampling point. For roads shorter than 100 m, the midpoint
of the road is used as the sampling point.

3.1.2 Calculation and Selection of Proxy Indicators

1. Calculation of Proxy Indicators. It has been found by
Zhou et al. (2025b) that road surface types are not only
related to road classes but also to the socio-economic
and geographical environment of the area where the
road is located. Therefore, Zhou et al. (2025b) designed
16 proxy indicators across three feature dimensions –
Road network features, Socio-economic features, and
Geographical environment features – as shown in Ta-
ble 1. These indicators serve as “proxies” to identify or
infer road surface types.

- For a single road sampling point. Road network
features: The road class is directly obtained from
the OSM “highway=” tag. To calculate road length,
degree centrality (Degree), closeness centrality
(Closeness), and betweenness centrality (Between-
ness), the road networks of each country or region
are constructed into strokes based on the “every
best fit” method (Zhou and Li, 2012). The core prin-
ciple of this method is to connect continuous road
segments into individual roads (called “strokes”),
according to the deflection angle between adjacent
road segments. These metrics (Road length, De-
gree, Closeness, Betweenness) are calculated for
each stroke, by referring to Zhou and Li (2015);
Zhou et al. (2025b). Finally, the values are assigned
to the corresponding sampling points on the road.
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Figure 2. Technical Roadmap.

- Socio-economic features. The sampling point is as-
signed the value of the grid cell it falls into for
corresponding data (GDP, population, or building
height).

- Geographical environment features. A
100 m× 100 m grid unit is established. The
sampling point’s grid unit is identified. The propor-
tion of each land cover type within that grid unit is
calculated.

2. Feature Selection. Since proxy indicators may be highly
correlated, this study employs correlation and contri-
bution analyses to select appropriate proxy indicators
for model training, aiming to reduce data dimension-
ality, simplify model complexity, and eliminate multi-
collinearity.

- For a single country or region: First, the correla-
tion between pairs of proxy indicators is calculated
using Phi_k (Baak et al., 2020), chosen because it
can measure the correlation coefficient between dif-
ferent types of variables. Second, Shapley Additive
exPlanations (SHAP) are used to analyze the in-
terpretability of each proxy indicator, quantifying
its contribution to the model’s predictions. Third,

proxy indicators without multicollinearity are di-
rectly used as input features. If two proxy indicators
exhibit multicollinearity, the one with the highest
contribution (based on SHAP values) is retained as
the input feature for that country or region. In this
study, the selected proxy indicators for 50 African
countries can be found in Appendix A.

3. Road surface type classification. Road surface types
from OSM data are treated as output variables and de-
fined into two categories based on whether the road is
paved. Paved roads: roads with a structured surface. Un-
paved roads: roads without a structured surface.

Since the labels for training samples are automatically
extracted from the OSM “surface=” tag, all OSM
tags are reclassified into “paved” or “unpaved” roads,
as shown in Table 2. The reclassification criteria fol-
low the guidelines provided by OSM’s wiki (https:
//wiki.openstreetmap.org/wiki/Surface, last access: 2
July 2025).
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Table 1. Proxy Indicators.

Dimension Data Source No. Input Type

Road network features OSM road data 1 Road class Category
2 Road length Value
3 Degree
4 Closeness
5 Betweenness

Socio-economic features GDP 6 GDP Value
Population 7 Population
Building height 8 Building height

Geographical environment features Land cover 9 Water proportion Value
10 Trees proportion
11 Flooded vegetation proportion
12 Crops proportion
13 Building proportion
14 Bare land proportion
15 Snow land proportion
16 Pasture proportion

Table 2. Reclassifying OSM “surface=” Tags into Paved and Unpaved Roads.

OSM “surface=” Tag Reclassification

Asphalt, Concrete, Concrete: Plates, Paved, Paving Stones, Sett Paved

Compacted, Dirt, Earth, Fine_Gravel, Gravel, Ground, Mud, Pebblestone, Sand, Unpaved Unpaved

3.1.3 Model Training and Application

Zhou et al. (2025b) compared six machine learning and
deep learning models for identifying road surface types and
found that the TabNet model achieved the highest accuracy
(approximately 86 %). Consequently, this study adopts Tab-
Net to develop the road surface type dataset for 50 African
countries and regions. TabNet, proposed by Arik and Pfis-
ter (2021), combines the end-to-end learning and representa-
tion learning characteristics of deep neural networks (DNNs)
with the interpretability and sparse feature selection advan-
tages of decision tree models.

For a single African country: From sampling points with
“surface=” tags, 5000 paved and 5000 unpaved sampling
points are randomly selected as training samples for two
reasons: Firstly, the positive and negative samples are con-
trolled at a 1 : 1 ratio to achieve equal weights, ensuring suf-
ficient learning for both types. Secondly, we found that the
model’s accuracy improves as the number of sampling points
increases, although it tends to stabilize once the sample size
reaches approximately 3000 points. Despite of this, in some
countries or regions where the number of paved sampling
points is less than 5000 (e.g., a minimum of approximately
3000), all paved sampling points (e.g., 3000) and an equal
number of unpaved sampling points (e.g., 3000) are used.

For each training sample, the 16 proxy indicators from
Table 1 are calculated. After feature selection, the selected
proxy indicators serve as input features for model training.
The OSM road surface type of the training sample is used as
the model output. The TabNet model is trained, with param-
eters (e.g., learning rate, number of steps, training epoch) au-
tomatically determined using the Optuna framework, which
searches for optimal parameters during training. The core
principle of the Optuna framework is to explore various pa-
rameter combinations until it identifies the one that yields the
highest accuracy. In this study, the search ranges for the pa-
rameters – learning rate, number of steps and training epochs
– were set to 0.001–0.2, 3–10, and 10–100, respectively.

Each country trains a separate model. The trained model
predicts the road surface type of each sampling point within
that country. A correction strategy proposed by Zhou et
al. (2025b) is applied to determine the final surface type of
each road segment, where the surface type is determined by
the majority surface type of its sampling points.

3.2 Result evaluation

This study evaluates the effectiveness of the developed road
surface type dataset from three aspects.
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3.2.1 Accuracy assessment

For each African country or region: From all sampling
points (excluding training samples), 500 points predicted as
“paved” and 500 predicted as “unpaved” are randomly se-
lected, totaling 1000 validation points. Three different oper-
ators visually interpret the classification results for each val-
idation point using high-resolution Google satellite imagery
and Google street view, with the final reference surface type
is determined by voting.

Finally, the model’s predictions are compared with the ref-
erence road surface types, and its effectiveness is assessed by
calculating accuracy, precision, recall, and F1 score.

3.2.2 Comparative evaluation with existing statistical
data

Based on the developed road surface type dataset, the paved
road length, total road length, and road paved rate for each
country and region are calculated and compared with Inter-
national Road Federation (IRF) statistical data. Specifically,
correlation coefficients between the results calculated from
this data product and IRF statistical values are explored.

Since IRF provided statistical values for only 19 African
countries in 2020, only these 19 countries are included in the
correlation analysis.

3.2.3 Correlation evaluation with socio-economic
indicators

Existing research indicates that the road paved rate is
strongly positively correlated with socio-economic develop-
ment levels (Anyanwu and Erhijakpor, 2009). Therefore, this
study explores the correlation between the road paved rate
calculated from this data product and two indicators: Human
Development Index (HDI), Gross National Income per capita
(GNI per capita, based on Purchasing Power Parity current
international dollar).

More precisely, the analysis includes 44 African countries
with HDI data and 36 countries with GNI per capita statisti-
cal data to verify the effectiveness of the data product.

4 Results and Analyses

4.1 Description of the Africa Road Surface Type Dataset

This study has developed the road surface type dataset that
records the roads and its surface type attribute information
for 50 African countries and regions, as shown in Fig. 3.

This dataset was developed based on OpenStreetMap
(OSM) road data for Africa, with each country and region
stored as a separate vector file in ESRI Shapefile format, us-
ing the WGS 1984 Web Mercator projection. The road data
for each country and region include five attribute fields: road
ID, coordinates of the start and end points (see Table 3), road
length, and road surface type. The entire dataset comprises

approximately 13 309 000 road segments, with a total length
of about 6 822 516 km.

4.2 Accuracy Assessment of the Road Surface Type
Identification Model

The accuracy assessment results for the road surface type
dataset across 50 African countries and regions are presented
in Fig. 4. As shown in the figure, the average accuracy across
the 50 countries and regions is 86.8 %. Out of these, 44 coun-
tries and regions have an accuracy above 80 %, and 12 out of
50 have an accuracy exceeding 90 %. The country with the
highest accuracy is Burundi, surpassing 96 %, while the low-
est is Egypt, at approximately 77 %.

For paved roads, the average precision, recall, and F1 score
across 50 countries and regions are 88.0 %, 85.0 %, and 0.86,
respectively. Specifically, 45 countries and regions have a
precision above 80 %, 32 have a recall above 80 %, and 43
have an F1 score above 0.80 for paved roads.

For unpaved roads, the average precision, recall, and F1
score are 86.3 %, 88.2 %, and 0.87, respectively. Among the
50 countries and regions, 36 have a precision above 80 %, 46
have a recall above 80 %, and 46 have an F1 score above 0.80
for unpaved roads.

These results demonstrate that the road surface type
dataset developed in this study has relatively high accuracy,
consistent with the accuracy reported in existing research
(approximately 86 %) (Zhou et al., 2025b), indicating that
the method using multi-source geospatial big data and deep
learning models for identifying road surface types has a de-
gree of generalizability.

4.3 Comparative Assessment with IRF Statistical Data

Figure 5 presents the correlation analysis results between the
total road length, paved road length, and road paved rate cal-
culated based on the road surface type dataset developed in
this study, and the corresponding statistical data from the In-
ternational Road Federation (IRF).

The correlation coefficients for total road length, paved
road length, and road paved rate are 0.89, 0.94, and 0.69,
respectively, all indicating strong correlations. This suggests
that the calculations based on our data product are generally
consistent with the IRF statistical data in terms of trends. For
example, South Africa has the longest total and paved road
lengths, while Gambia has the shortest; Tunisia and Morocco
have the highest road paved rates. These results indicate the
validity of the road surface type dataset.

However, as shown in the scatter plots (Fig. 5), discrep-
ancies remain between the calculations based on our data
product and the IRF statistical data. Specifically, the total
road length calculated from our data product is consistently
higher than that reported by IRF (as seen in Fig. 5a, where
points are located to the left of the diagonal). Similarly, for
18 out of 19 countries, the paved road length is higher than
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Figure 3. Visualization of Road Surface Type Dataset For 50 African Countries and Regions (source: © Google Maps 2025, https://www.
google.com/maps/, last access: 2 July 2025).

Table 3. Descriptions of dataset.

Attribute Description Type

ID Road segment ID Int
Start point Coordinates of the road segment’s start point (x,y) String
End point Coordinates of the road segment’s end point (x,y) String
Road length Length of the road segment (calculated based on WGS 1984 Web Mercator) Float
Surface type Road surface type, i.e., paved or unpaved String

the IRF statistics. Existing research has pointed out that IRF
statistical data may underestimate total road length globally,
with an average underestimation of 36 %, and for 94 coun-
tries, the underestimation exceeds 50 % (Barrington-Leigh
and Millard-Ball, 2017). Therefore, IRF statistical data may
underestimate both total and paved road lengths in African
countries.

Additionally, in 15 out of 19 countries, the road paved rate
is lower than that reported by IRF. This may be because IRF
data underestimates the total road length in African coun-
tries, and the unaccounted roads are likely mostly unpaved,

leading to an overestimation of the road paved rate in IRF
statistics.

4.4 Correlation Assessment with Socio-economic
Indicators

The correlation analysis results between the road paved rate
calculated based on our data product for 50 African countries
and regions and both the Gross National Income per capita
(GNI per capita) and the Human Development Index (HDI)
are shown in Fig. 6. As shown, the correlation coefficients
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Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset.
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Figure 5. The Correlation Analysis Results with IRF Statistical Data.

between the road paved rate and GNI per capita and HDI
are 0.80 and 0.83, respectively, indicating a strong positive
correlation in both cases. This suggests that the road paved
rate in African countries is highly positively associated with
their level of socio-economic development, consistent with
findings from existing research (Anyanwu and Erhijakpor,
2009), indirectly validating the effectiveness of our road sur-
face type dataset.

4.5 Spatial Pattern Analysis of Road Paved Rates in
Africa

Based on the road surface type dataset, the spatial patterns of
road paved rates in 50 African countries and regions were an-
alyzed at the national, provincial, and county levels, as shown
in Fig. 7. Compared to IRF, which only provides statistical
data for 19 African countries (Gwilliam et al., 2008), our
dataset not only allows for the analysis of road paved rates
in all 50 African countries and regions but also enables de-
tailed analysis at different administrative levels.

At the national level, the average road paved rate across
the 50 African countries and regions is only 17.4 %, rang-
ing from a low of 5.54 % in Chad to a high of 50.77 % in
Morocco. Only six African countries have a road paved rate
above 40 %, while 37 countries and regions have rates be-
low 20 %. The average road paved rate for 43 countries and
regions in Sub-Saharan Africa (excluding South Africa) is
merely 13.6 %. These results indicate that road paved rates
in African countries and regions are generally low, with sig-
nificant north-south disparities. At the provincial and county
levels, only 9 % of provincial administrative divisions have a
road paved rate above 40 %, mostly located in North Africa
and South Africa. Similarly, only about 20 % of county ad-
ministrative divisions have a road paved rate above 40 %, pri-
marily in North Africa, South Africa, and some urban areas.
Therefore, the overall spatial pattern of road paved rates in
Africa shows a “higher in the north and south, lower in the
central region” distribution, with higher rates in North Africa

and South Africa, and lower rates in Sub-Saharan Africa ex-
cluding South Africa. The average road paved rate in the
North Africa (40.7 %) is approximately three times that of
Sub-Saharan Africa (excluding South Africa).

5 Discussion

5.1 Data Quality

This study employed multi-source geospatial data and deep
leaning model to develop road surface type dataset for 50
African countries and regions and verified its validity (accu-
racy ranging from 77 % to 96 %; F1 score ranging from 0.76
to 0.96). However, the quality of the dataset varies across
different African countries and regions. For example, Bu-
rundi has an accuracy of 96 %, while Egypt’s accuracy is only
77 %. This is likely because the proposed approach relies
heavily on the proxy indicator “Road class” (Appendix A),
and thus the proportions of various road classes may influ-
ence the quality of the developed dataset.

In order to verify this, Fig. 8 shows the classification ac-
curacies for nine main road classes in the 50 African coun-
tries. For each country and each road class, 100 sampling
points were randomly selected for analysis. As shown, most
classification accuracies for these road classes are close to
or exceed 80%, with some classes – specifically “Motor-
way”, “Trunk” and “Primary” – achieving accuracies above
95 %. These results demonstrate the effectiveness of the road
surface type dataset, which is consistent with the finding in
Fig. 4. However, the classification accuracies for the four
road classes – “Residential”, “Service”, “Track” and “Un-
classified” – are generally lower than those of other road
classes. This is probably because high-class roads are pre-
dominantly paved and can be easily identified; in contrast,
low-class roads may consist of a mix of paved and unpaved
surfaces, making road surface classification more difficult.
Moreover, Fig. 9 plots the relationship between the propor-
tions of “Residential”, “Service”, “Track” and “Unclassified”
roads in 50 African countries and the surface type classifica-
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Figure 6. The Correlation Analysis Results of Road Paved Rate Calculated Based on the African Road surface type dataset with Per Capita
GNI (a) and HDI (b).

Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels.
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Figure 8. The Box Plot to Show the Classification Accuracy for
Each of Main Road Classes For 50 African Countries.

tion accuracies for these countries. This figure shows that the
proportions of both “Residential” and “Service” roads have a
moderate negative correlation (i.e., −0.405 and −0.527, re-
spectively) with the corresponding classification accuracy of
each country. This finding confirms that the proportions of
certain road classes (e.g., “Residential” and “Service”) may
affect the quality of the road surface type dataset. For in-
stance, the higher the proportion of “Residential” roads (e.g.,
78 % for Egypt), the lower the corresponding classification
accuracy (e.g., 77 % for Egypt).

Further, taking a local area in Egypt as an example, com-
bined with Google high-resolution remote sensing imagery
and Google street view, it can be observed that the backbone
of the road network in this region predominantly consists
of paved roads (Fig. 10b), while non-backbone roads (espe-
cially in rural areas) are mostly unpaved (Fig. 10c); urban
areas in Egypt are predominantly paved (Fig. 10d), although
some roads remain unpaved (Fig. 10e). These results indi-
cate that the road surface type classification in this study is
reasonable.

Despite this, misclassifications of road surface types are
inevitable. Taking urban areas in Egypt as an example
(Fig. 11a), Fig. 11b shows a 1 km× 1 km grid area in this
region. Figure 11c displays two road classes within this grid
area: “trunk” and “residential”. From Fig. 11b and c, it is
evident that most “trunk” roads in this area are classified
as paved, while most “residential” roads are classified as
unpaved. However, street view imagery reveals that “resi-
dential” roads include both unpaved (Fig. 11d) and paved
(Fig. 11e) types. Therefore, distinguishing road surface types
in this area based solely on road class is difficult. Addition-
ally, the spatial resolution of the GDP and population data
we obtained (both 1 km) also makes it challenging to finely
differentiate road surface types within this area.

Additionally, open geospatial data inevitably have qual-
ity issues. For instance, although existing studies have found

that the geometric positional accuracy and completeness of
OSM road data in Africa are generally high, gaps in road
data are unavoidable (Zhou et al., 2022); road surface types
and road classes labeled by global volunteers in OSM may
also contain errors (Zhou et al., 2022). The GHSL-BUILT
building height data, derived from medium-resolution remote
sensing imagery (Sentinel-2), also inevitably has estimation
biases for building heights (Pesaresi et al., 2021). LandScan
data may be underestimated in urban-rural transition zones
and overestimated in sparsely populated areas (Calka et al.,
2019). Nevertheless, OSM road data remain the only glob-
ally available open data source that includes road surface
type labels; GHSL and LandScan data are also globally com-
prehensive, freely accessible geospatial data products with
long time series, which is why this study selected these data
for experimental analysis. However, in the future, other data
sources (e.g., CORINE Land Cover, Pontius, 2017; World
Settlement Footprint, Marconcini et al., 2020; and Global
Human Settlement Population Grid, Yin et al., 2021) could
be considered, and their impact on the quality of road sur-
face type dataset could be analyzed.

5.2 Implications and Significance

Compared to traditional statistical data such as those from
IRF, the first-ever road surface type dataset for 50 African
countries and regions developed in this study not only en-
ables the calculation of statistical indicators such as paved
road length and road paved rate for each country and region
but also facilitates detailed analyses of which roads are paved
or unpaved. This provides valuable decision-making support
for improving local transportation infrastructure (e.g., up-
grading unpaved roads to paved ones). Additionally, road
surface types serve as an important data source for assess-
ing SDG 9.1. Therefore, this dataset can also be combined
with population and urban built-up area data to analyze the
proportion of rural populations within 2 km of paved or un-
paved roads in various African countries (Li et al., 2021), to
provide data support for evaluating Africa’s sustainable de-
velopment goals. Last but not least, this dataset can be com-
bined with location data of traffic accidents to analyze the
relationship between road surface types and traffic accidents
(Patrick and Yves, 2022); with traffic carbon emission data
to analyze the relationship between road surface types and
environmental impacts (Ling et al., 2024); or with national
income data to analyze the relationship between road surface
types and socio-economic development (Anyanwu and Erhi-
jakpor, 2009).

Moreover, this study utilized multisource geospatial big
data and deep learning models to develop the African road
surface type dataset. The primary advantage of this method is
that its source data (including OSM, LandScan, GDP, GHSL-
BUILT, and ESRI Land Cover) are not only openly accessi-
ble but also globally covered. Therefore, this method can be
applied to identify road surface types in other countries and
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Figure 9. The Correlation Between the Proportions of Four Road Classes (a) “Residential”, (b) “Service”, (c) “Track” and (d) “Unclassified”
and Corresponding Classification Accuracies For 50 African Countries.

regions worldwide, providing methodological support for the
development of a global road surface type dataset.

5.3 Limitations and future work

1. This study adopted the method proposed by Zhou et
al. (2025b) to develop the African road surface type
dataset. This method designs 16 proxy indicators across
three dimensions (Road network, Socio-economic, and
Geographical Environment) from five types of open
geospatial data to infer road surface types. In the fu-
ture, additional data sources, such as terrain data, could
be incorporated, as unpaved roads are likely common in
mountainous areas due to high construction costs. Thus,
additional proxy indicators (e.g. elevation and slope)
may be considered to determine whether they can en-
hance the classification accuracy of the data product.

2. Road surface types are not limited to just paved and un-
paved roads; they can also be further subdivided into
categories such as asphalt, concrete, and dirt roads.
However, we found that most paved roads in Africa
are asphalt, and most unpaved roads are dirt; therefore,
this study only considered the “paved” and “unpaved”
categories. Nevertheless, in the future, by supplement-
ing field-measured data, it may be possible to explore

whether this method can be used to develop dataset that
include more detailed road surface type classifications.

3. The African road surface type dataset developed in this
study is limited to a single year, approximately 2020.
This is because the source data were all obtained from
2020 or nearby years (i.e., 2018 or 2019). Although
existing studies have reported that GDP and building
height data change little within a period of 1–2 years
(African Development Bank Group, 2020; Ali et al.,
2025), inconsistencies in the years may still affect the
quality of our dataset. Therefore, it is worthwhile to in-
vestigate whether the quality of the road surface type
dataset could be improved by using source data obtained
from the same year.

4. Although most open geospatial big data (such as OSM,
GDP, and population data) include information from
different years, which could potentially be used to de-
velop road surface type dataset for multiple years, vali-
dation data are difficult to obtain. Specifically, it is chal-
lenging to interpret roads and their surface types us-
ing open-source medium- to low-resolution satellite im-
agery (e.g., Landsat or Sentinel-2). Although Google
satellite imagery offers higher resolution, the update
years of Google imagery for different areas within a
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Figure 10. An Example of Road Surface Type Dataset in Egypt (source: © Google Maps 2025, https://www.google.com/maps/, last access:
2 July 2025).

country may not be consistent, making it difficult to
analyze changes in road surface types. Nonetheless, in
the future, this method could be attempted to develop
road surface type dataset for different years, and ac-
curacy could be validated using long-time-series high-
resolution remote sensing imagery; further, spatiotem-
poral changes in road surface types at a large scale could
be analyzed.

6 Data availability

The First Road Surface Dataset for 50 African countries
and reigns is distributed under the CC BY 4.0 License. The
data can be downloaded from the data repository Figshare
at https://doi.org/10.6084/m9.figshare.29424107 (Liu and
Zhou, 2025).

7 Conclusion

This study developed the first dataset containing road sur-
face types for every road in 50 African countries and regions,
based on multi-source geospatial data and deep learning

model. The accuracy of this dataset was evaluated through
visual interpretation using high-resolution Google satellite
imagery and Google street view, while its effectiveness was
indirectly analyzed by comparing it with IRF statistical data
and socio-economic indicators such as HDI and GNI per
capita. Finally, the spatial distribution patterns of road sur-
face types across these 50 African countries and regions were
analyzed using the developed dataset. The main findings are
as follows:

1. The accuracy of the road surface type dataset for 50
African countries and regions ranges from 77 % to
96 %, with F1 scores between 0.76 and 0.96, validating
the effectiveness of the developed dataset.

2. In terms of total road length, paved road length, and
road paved rate, the correlation coefficients between cal-
culations based on our dataset and the IRF statistical
data demonstrate a strong correlation, ranging from 0.69
to 0.94. Regarding socio-economic indicators (GNI per
capita and HDI), the calculations based on our dataset
also exhibit high correlation with the relevant statistical
data, ranging from 0.80 to 0.83, indirectly verifying the
effectiveness of our dataset.
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Figure 11. An Example of Explaining the Data Quality of the African Road Surface Type Dataset (source: © Google Maps 2025, https:
//www.google.com/maps/, last access: 2 July 2025).

3. From a spatial perspective, the road paved rate in Africa
is generally low. The average road paved rate across
the 50 African countries and regions is only 17.4 %,
exhibiting a spatial pattern of “higher in the north and
south, lower in the central region”. Specifically, the av-
erage road paved rate in North Africa is approximately
three times that of Sub-Saharan Africa (excluding South
Africa).

The dataset developed in this study includes the surface
type of every road in Africa, providing valuable support for
decision-making aimed at improving the region’s road infras-
tructure. Additionally, this dataset can be combined with data
on population and urban built-up areas to assess Africa’s Sus-
tainable Development Goals (e.g., SDG 9.1). Furthermore, it
can be integrated with other datasets – such as those on traf-
fic accidents, carbon emissions, and national income – to an-
alyze the impact of road surface types on road safety, energy
consumption, ecological environment, and socio-economic
development.

Appendix A

This figure shows the selected proxy indicators for 50
African countries. For each country, each value in the grid
represents the mean SHAP of the corresponding proxy indi-
cator (e.g., road class). Darker colors indicate higher contri-
butions to the classification results. Empty values mean that
the corresponding proxy indicator was not used for model
training, because it has a high correlation (> 0.7) with at least
one other proxy indicator but its mean SHAP is lower.
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Figure A1. The Selected Proxy Indicators For 50 African Countries.
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