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Abstract. Accurate assessment of leaf functional traits is crucial for a diverse range of applications from crop
phenotyping to parameterizing global climate models. Leaf reflectance spectroscopy offers a promising avenue
to advance ecological and agricultural research by complementing traditional, time-consuming gas exchange
measurements. However, the development of robust hyperspectral models for predicting leaf photosynthetic ca-
pacity and associated traits from reflectance data has been hindered by limited data availability across species and
environments. Here we introduce the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired
leaf hyperspectral and gas exchange measurements from diverse ecosystems. The GSTI repository currently en-
compasses over 7500 observations from 397 species and 41 sites gathered from 36 published and unpublished
studies, thereby offering a key resource for developing and validating hyperspectral models of leaf photosyn-
thetic capacity. The GSTI database is developed on GitHub (https://github.com/plantphys/gsti, last access: 4
January 2026) and published to ESS-DIVE https://doi.org/10.15485/2530733, Lamour et al., 2025). It includes
gas exchange data, derived photosynthetic parameters, and key leaf traits often associated with traditional gas
exchange measurements such as leaf mass per area and leaf elemental composition. By providing a standardized
repository for data sharing and analysis, we present a critical step towards creating hyperspectral models for
predicting photosynthetic traits and associated leaf traits for terrestrial plants.

1 Introduction

The structural, chemical, and physiological properties of
plants, commonly known as plant traits or plant functional
traits (Violle et al., 2007), directly impact leaf, root, whole-
plant, and ecosystem functioning as well as their responses to
global and environmental change (Kattge et al., 2020; Reich
et al., 1997). Leaf traits have become increasingly important
for crop phenotyping, selection for breeding, precision agri-
culture, biodiversity conservation and for modeling plant and
ecosystem processes using land surface models (Bjorkman
et al., 2018; Fu et al., 2022; Meacham-Hensold et al., 2020;
Xiong and Flexas, 2018). Of note, photosynthetic traits and
associated traits such as leaf nitrogen content are of particu-
lar value to these efforts (Walker et al., 2014). This is in part
due to their important role in determining leaf-to-global scale
fluxes of carbon, water, and energy, as well as the outsized
impact photosynthetic traits have on key model outputs (Bo-
nan et al., 2011; Ricciuto et al., 2018; Rogers, 2014; Rogers
et al., 2017a). Indeed, uncertainty in photosynthetic traits has
been shown to have a greater impact on future climate projec-
tions by land surface models than the uncertainty associated
with global change (Liu et al., 2024; Stinziano et al., 2018).
Unfortunately, the global coverage of functional traits, es-
pecially physiological traits associated with photosynthesis,
is hampered by logistical constraints that limit their spatial,
temporal, and environmental coverage, as well as the diver-

sity of species covered (Feng and Dietze, 2013; Keenan and
Niinemets, 2016; Schimel et al., 2015).

Photosynthetic traits are traditionally inferred from a bio-
chemical model of photosynthesis (Farquhar et al., 1980; Yin
et al., 2021) calibrated using leaf-level gas exchange tech-
niques (Busch et al., 2024; Long and Bernacchi, 2003). The
key traits governing photosynthesis are the maximum car-
boxylation capacity of the enzyme rubisco (Vcmax), the max-
imum potential rate of electron transport (Jmax), the maxi-
mum capacity for triose phosphate utilization (TPU), and the
rate of mitochondrial respiration in the dark (Rdark), all ex-
pressed at a reference temperature, typically 25 °C. Estima-
tion of Vcmax, Jmax, and TPU is achieved by measuring the
response of net CO2 assimilation (A) to changes in the in-
tercellular CO2 concentration (Ci), commonly known as an
A–Ci curve. Rdark is estimated from the rate of CO2 released
from dark-acclimated leaves. The A–Ci and Rdark protocols
typically take∼ 45 min each to complete (Busch et al., 2024;
Rogers et al., 2017b). Although alternative gas exchange ap-
proaches are faster (De Kauwe et al., 2016; Saathoff and
Welles, 2021; Stinziano et al., 2017; Tejera-Nieves et al.,
2024), these approaches may also require a significant sta-
bilization period prior to measurement (Burnett et al., 2019).

Photosynthetic traits are also inferred from their empiri-
cal relationships with other leaf traits that are easier to mea-
sure, such as leaf mass per area (LMA) or leaf nitrogen
(N), phosphorous (P), or chlorophyll content (Croft et al.,
2017; Domingues et al., 2010; Walker et al., 2014). Although
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these relationships are useful for scaling photosynthetic traits
across broader scales (Rogers et al., 2017a), they are often
site- and species-specific (Feng and Dietze, 2013; Keenan
and Niinemets, 2016; Yan et al., 2021).

The structural, chemical, and physiological properties of
a leaf impact its optical properties (Serbin and Townsend,
2020). Measuring the optical properties of a leaf, i.e., its
reflectance across multiple wavelengths using spectroscopy,
has emerged as a tool for retrieving leaf traits, including pho-
tosynthetic and many other traits, in a non-destructive and
high-throughput manner (Coast et al., 2019; Lamour et al.,
2021; Serbin et al., 2012; Wu et al., 2025, 2019; Yan et al.,
2021). A variety of statistical approaches can be used to re-
trieve leaf trait values from leaf reflectance measurements.
These include simple indices (Gitelson et al., 2003; Rouse et
al., 1974), which relate specific wavelengths to traits of inter-
est, to more sophisticated multivariate techniques like partial
least square regression (PLSR) and deep learning (Burnett
et al., 2021; Furbank et al., 2021; Wold et al., 2001) which
are capable of using information from numerous wavelengths
to predict traits. Such approaches are effective at predict-
ing chemical and structural leaf traits (Kothari et al., 2023;
Serbin et al., 2019), as well as photosynthetic traits (Heck-
mann et al., 2017; Montes et al., 2022; Wu et al., 2025, 2019).
However, a significant bottleneck for the estimation of traits
from spectra is the development of models that can be used
broadly across environments and species where ideally, the
broadest possible combination of structural, chemical, phys-
iological and optical traits can be represented by a single
model. Often, models developed for a given biome, species,
or growth environment perform poorly when used with new
species or in a different environment (Burnett et al., 2021;
Coast et al., 2019; Lamour et al., 2021; Meacham-Hensold et
al., 2019). It is therefore increasingly clear that robust mod-
els require training data that covers the widest possible range
of values for a given trait, and the widest possible diversity
in leaf optical properties that are correlated with that trait.

Here we introduce the Global Spectra-Trait Initiative
(GSTI), a collaborative repository of paired leaf reflectance
and gas exchange measurements from diverse ecosystems.
Unlike existing databases for leaf traits (EcoSIS, 2025;
Kattge et al., 2020), the GSTI is specifically focused on
paired datasets of key leaf traits linked to leaf spectroscopy
taken on the same sample and where that link is preserved
with unique identifiers. Furthermore, the GSTI includes the
raw data that underlies trait estimation, in this case, leaf-level
gas exchange, leaf structural and compositional trait data,
and leaf reflectance spectra data. Furthermore, the GSTI pro-
vides an open workflow to process raw reflectance and gas
exchange data ensuring uniform and reproducible data pro-
cessing and interpretation. The GSTI therefore enables and
maximizes further reuse of the data, facilitates the ongoing
refinement of spectra-trait models as new datasets are in-
corporated, supports comparisons of diverse statistical ap-
proaches, and permits the reinterpretation of stored gas ex-

change data using alternative or new photosynthetic models
(Busch et al., 2018; Johnson and Berry, 2021; Márquez et al.,
2021).

2 Methods

2.1 Data sources

The primary aim of the GSTI is to collate paired leaf re-
flectance and gas exchange data that can be used to estimate
the key photosynthetic traits, namely Vcmax, Jmax, TPU and
Rdark, and associated functional traits. Data from multiple
biomes, species, growth conditions, and plant types, includ-
ing crops and wild species, have been collated into a single,
open database with the aim to capture a wide variety of leaf
traits and their associated optical properties.

The GSTI database primarily focuses on gas exchange
data measured with the conventional steady state A–Ci curve
protocol (Busch et al., 2024), where photosynthesis is mod-
ulated by changing the CO2 concentration at the leaf surface
using pre-defined increments. However, the database also in-
cludes data measured with the simplified “one point” method
(Burnett et al., 2019; De Kauwe et al., 2016), where the pho-
tosynthesis rate is measured at saturating irradiance and am-
bient CO2, as well as A–Ci curves measured with the non-
steady state dynamic assimilation technique (Saathoff and
Welles, 2021; Tejera-Nieves et al., 2024).

Estimation of photosynthetic parameters from A–Ci
curves depends on the choice of the biochemical model of
photosynthesis, its parametrization, and the statistical pro-
cedure of model fitting, all of which are likely to vary be-
tween studies (Rogers et al., 2017a). Therefore, a require-
ment of data contributors was to provide the gas exchange
measurements so that data could be used to estimate photo-
synthetic traits using the same biochemical model, with the
same assumptions and parameters. Each dataset was curated
to ensure that the data were organized, standardized and free
of errors before inclusion in GSTI. Restricting gas exchange
data contributions to the raw gas exchange measurements vs.
simply the fitted parameters (e.g., Vcmax, Jmax, TPU) avoided
issues of mixed fitting approaches and assumptions, which
would have increased uncertainties in the final spectral mod-
els.

The other primary data contributions to the GSTI database
were measurements of leaf reflectance. The reflectance data
were either collected with a leaf clip (i.e., a contact probe
with an articulating backplate) or with an integrating sphere.
Reflectance data spanning the range from 400 to 2500 nm
were preferred but data from reduced wavelength ranges
(e.g., only the visible spectrum through near-infrared) were
also included.

In general, paired measurements of gas exchange and re-
flectance on the same leaves were preferred, to avoid leaf-
to-leaf variation in leaf traits. However, measurements on
similar or “analog” leaves were also accepted in the GSTI
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database, provided gas exchange and reflectance were taken
on a similar leaf of identical age and appearance.

Where available, other leaf traits complementary to gas
exchange data were also added to GSTI. These included
most of the traits correlated with photosynthetic capacity
(Domingues et al., 2010; Walker et al., 2014; Wang et al.,
2022), such as LMA, and leaf N and P content, as well as
leaf water content (LWC).

For all contributed datasets, the materials and methods
used for the study were described following standard sci-
entific requirements and are captured in the GSTI database
metadata. This includes descriptions of the site, plant, proto-
cols, and equipment. Only Open Data (CC BY 4.0, https:
//creativecommons.org/licenses/by/4.0/deed.en, last access:
4 January 2026) from published and unpublished studies
were included in the GSTI database. These are free to use,
reuse, share and adapt without restriction. By limiting the
GSTI database to Open Data only, it is our philosophy that
the GSTI database will also facilitate scientific collaboration,
transparency, and reproducibility, as well as accelerate dis-
covery and understanding in the areas of plant science.

2.2 Repository organisation

2.2.1 Overall organisation

The overall design philosophy of the GSTI database is
to provide an easy, accessible, and interpretable reposi-
tory of paired spectroscopy and leaf functional traits. The
GSTI repository and associated database are available on
GitHub (https://github.com/plantphys/gsti, last access: 4 Jan-
uary 2026). The repository was designed to be flexible
enough to accept data from many studies and support raw
data from a range of instruments in a free format. However,
because the goal of GSTI is to provide a means of synthesiz-
ing and standardizing data into common formats, units, and
metadata, we provide a small but strict set of requirements
for data contributors to make it possible to process and then
curate the raw data into a common format. Each contributed
dataset is stored in an individual folder (Fig. 1) that contains
a description of the protocol for data measurement (required,
free format), a site information table (Table 1, required CSV
file), a dataset information table (Table 1, required CSV file),
the raw gas exchange data (free format), the reflectance data
(free format), and the leaf sample details (free format).

The GSTI project uses a standardized approach to pro-
cess and fit the raw reflectance and gas exchange data. This
workflow is defined in a series of sequential data process-
ing scripts written in the R programming language (R Core
Team, 2024) and shown graphically in Fig. 1. Each R script
has been designed to carry out a specific portion of the
processing and model fitting workflow and shares a com-
mon design and function naming convention. This struc-
ture allows users to easily track the processing steps, from
raw data to the final processed product. The repository of-

fers several R tools and functions that can help visualize
and check the quality of the data. A primary component
of the processing chain includes the R functions to esti-
mate photosynthetic traits from raw gas exchange measure-
ments (f.fit_ACi or f.fit_One_Point, see Sect. 2.2.2 “Pho-
tosynthetic gas exchange data and processing”) and check
the compliance of a new dataset with the repository re-
quirements (f.Check_data). A dataset creation guide is in-
cluded in the repository (https://github.com/plantphys/gsti/
wiki/Dataset-creation-guide, last access: 4 January 2026).

2.2.2 Photosynthetic gas exchange data and processing

The gas exchange data are processed using three steps
(Fig. 1). In the first step, the raw gas exchange data are im-
ported, compiled, and transformed into a standard format that
follows the naming and metadata convention of (Ely et al.,
2021). This step defines names and harmonizes the units of
the gas exchange variables. In the second step, the data qual-
ity is analyzed and invalid data (abnormal CO2 concentra-
tion, relative humidity, temperature or stomatal conductance
data, and duplicated values) are removed. Due to variations
in gas exchange equipment formats, data storage practices,
and laboratory protocols, R scripts for both the first and sec-
ond steps require customization for each new dataset to cap-
ture and properly handle idiosyncrasies associated with the
data. After passing through the initial GSTI formatting steps,
a curated dataset with a standard format for all datasets is
generated (Table 1).

Finally, the gas exchange parameters are estimated from
the curated gas exchange data files using the model fitting
code (Fig. 1). This code uses the function “f.fit_ACi” to esti-
mate the parameters Vcmax25, Jmax25, TPU25, and their stan-
dard error at a reference temperature of 25 °C by fitting the
Farquhar, von Caemmerer, and Berry (FvCB) model of pho-
tosynthesis to the data (Bernacchi et al., 2001; Farquhar et
al., 1980; Harley et al., 1992; Sharkey, 1985). The FvCB
model assumes that the photosynthesis rate is the minimum
of three potentially limiting rates: (1) the Rubisco-limited as-
similation rate (Ac), which depends on Vcmax25, (2) the elec-
tron transport-limited assimilation rate (Aj ), which depends
on Jmax25, and (3) the triose phosphate utilization (TPU) -
limited assimilation rate (Ap). The transition from Ac to Aj

and Aj to Ap is determined automatically to optimize the
fitting. Depending on the range of CO2 concentrations used
to perform the A–Ci curves and the conditions of measure-
ments, Aj or Ap do not necessarily limit A. The Aj and
Ap limitations are only considered if they improve the fit-
ting according to the AIC criterion. The Vcmax25, Jmax25,
and TPU25 values are discarded when estimated with less
than two points within the Ac, Aj , or Ap-limited regions.
Vcmax25 can also be estimated with the one-point method
(Burnett et al., 2019; De Kauwe et al., 2016) using the
function “f.fit_One_Point”. The FvCB model intrinsically as-
sumes infinite mesophyll conductance; thus, estimated pa-
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Table 1. List of variables included in the GSTI database.

Variables Definitions

Dataset metadata

Authors Dataset authors
Acknowledgment Acknowledgement of funding and help to generate the dataset
Dataset_DOI Dataset Digital Object Identifier
Publication_DOI Digital Object Identifier of the main publication associated with the data
Email Contact email for the dataset

Site

Site_name Site name
Latitude Latitude, decimal; positive= north, negative= south
Longitude Longitude, decimal; positive= east, negative=west
Elevation Elevation, m
Biome_number Biome number, based on Olson et al. (2001) classification. See online documentation: https://github.com/

plantphys/gsti/wiki (last access: 4 January 2026)

Curated photosynthetic data

SampleID Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
SampleID_num Unique numerical identifier of the sample leaf of a dataset
Record Gas exchange observation record number
A Net CO2 exchange per leaf area, µmol m−2 s−1

Ci Intercellular CO2 concentration in air, µmol mol−1

CO2s CO2 concentration in wet air entering chamber, µmol mol−1

CO2r CO2 concentration in wet air inside chamber, µmol mol−1

gsw Stomatal conductance to water vapor per leaf area, mol m−2 s−1

Patm Atmospheric pressure, kPa
Qin In-chamber photosynthetic flux density incident on the leaf in quanta per area, µmol m−2 s−1

RHs Relative humidity of air inside the chamber, % (0–100)
Tleaf Leaf surface temperature, °C

Photosynthetic traits

SampleID_num Unique numerical identifier of the sample leaf of a dataset
Vcmax25 Maximum rate of carboxylation at the reference temperature 25 °C, µmol m−2 s−1

Jmax25 Maximum rate of electron transport per leaf area at the reference temperature 25 °C, µmol m−2 s−1

TPU25 Triose phosphate utilization rate per leaf area at the reference temperature 25 °C, µmol m−2 s−1

Rday25 CO2 release from the leaf in the light at the reference temperature of 25 °C, µmol m−2 s−1

StdError_Vcmax25 Standard error of Vcmax25 estimation, µmol m−2 s−1

StdError_Jmax25 Standard error of Jmax25 estimation, µmol m−2 s−1

StdError_TPU25 Standard error of TPU25 estimation, µmol m−2 s−1

StdError_Rday25 Standard error of Rday25 estimation, µmol m−2 s−1

Tleaf Average leaf surface temperature of the gas exchange measurements, °C
RHs Average relative humidity of air inside the chamber, % (0–100)
Qin Average in-chamber photosynthetic flux density incident on the leaf in quanta per area, µmol m−2 s−1

Patm Average atmospheric pressure, kPa
sigma Standard error of the residuals of the fitted A–Ci curve, µmol m−2 s−1

AIC Akaike information criterion, µmol m−2 s−1

Model Photosynthetic limitations of the photosynthetic rate during the A–Ci curve: Ac, or Ac_Aj, or, Ac_Aj_Ap
Fitting_method Method for estimating Vcmax25: One_point or ACi_curve

Dark respiration

SampleID Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
Rdark CO2 release or O2 consumption by the leaf in the dark at measurement temperature, µmol m−2 s−1

Tleaf_Rdark Leaf surface temperature, °C
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Table 1. Continued.

Variables Definitions

Curated reflectance

SampleID Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
Spectrometer Spectrometer model: SE PSR+ 3500, SVC HR-1024i, SVC XHR-1024i, ASD FieldSpec 3, ASD FieldSpec 4,

ASD FieldSpec 4 Hi-Res, . . .
Probe_type Type of probe used to measure the reflectance: Integrating sphere, Leaf clip, or, Imager
Probe_model Probe model: SVC LC-RP, SVC LC-RP Pro, ASD Leaf Clip, . . .
Spectra_trait_pairing Measurement pairing between gas exchange data and reflectance: Same, Similar, or Plant scale
Wave_XX Reflectance at wavelength XX, % (0–100)

Leaf details

SampleID Unique identifier of the sample leaf of a dataset as defined by the dataset authors in the raw gas exchange data
Dataset_name Dataset name
Site_name Site name
Species Species name
Sun_Shade Leaf exposition in the canopy: Sun, Shade
Phenological_stage Leaf phenological stage: Young, Mature, Old
Photosynthetic_pathway Photosynthetic pathway: C3, C4, C2, CAM
Plant_type Plant type: Wild, Agricultural, Ornamental
Soil Soil type: Natural, Pot, Managed, Hydroponic
LMA Leaf dry mass per unit area of fresh leaf, g m−2

Narea Nitrogen content of leaf per unit area of fresh leaf, g m−2

Nmass Nitrogen content of leaf by dry mass, mg g−1

Parea Phosphorous content of leaf per unit area of fresh leaf, g m−2

Pmass Phosphorous content of leaf by dry mass, mg g−1

LWC Leaf water content, % (0–100)

rameters Vcmax25, Jmax25 and TPU25 represent apparent val-
ues based on intercellular as opposed to chloroplastic CO2
concentration.

2.2.3 Dark respiration gas exchange data and
processing

In addition to fitted gas exchange parameters, the GSTI
database also includes dark-adapted leaf respiration (Rdark).
The leaf Rdark could have been measured on the same leaf
used for estimating photosynthetic capacity, or on indepen-
dent leaves. The raw gas exchange data used for Rdark es-
timation is imported and transformed following (Ely et al.,
2021) (Table 1). Most studies measure Rdark (i.e., negative
A values) as CO2 release. We also chose to report Rdark as a
positive value. Some studies also measure the rate of O2 con-
sumption (Coast et al., 2019). Conversion from O2 uptake to
CO2 release requires an estimate of the respiratory quotient
(a number around 1) that should be detailed in the contributed
dataset protocol. All data were normalized to a reference leaf
temperature of 25 °C using a common approach (Leuning,
2002).

2.2.4 Leaf reflectance data and processing

The leaf reflectance data were imported from the contributed
format and units and processed into a standard format. The
GSTI repository only includes measurements of leaf re-
flectance corrected against a white reference and measured
with a black background. It does not support other measure-
ments such as so-called “transflectance” data, measured with
a white background. GSTI currently uses standardized re-
flectance measurements interpolated to 1 nm wavelength res-
olution, either by the data contributor before supplying the
data or during the GSTI data pre-processing using a simple
linear wavelength interpolation that can be added manually
to the dataset-specific processing code, or using approaches
provided in available R packages, e.g., spectrolab (Meire-
les and Schweiger, 2021). If specific corrections are deemed
necessary based on the instrumentation, they should be ap-
plied before the data are provided. For some examples of
pre-processing for use in spectra-trait models, please refer to
Burnett et al. (2021). Such procedures include calculating re-
flectance from measured irradiance and correcting for sensor
biases across wavelength ranges.
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Figure 1. Repository organization and process flow for each dataset. Each green rectangle represents one type of data. The asterisks represent
the required original data. Each yellow circle represents one process associated with one R code that can be adapted for each dataset.
Functions written in italics must be used to derive photosynthetic parameters (f.fit_ACi or f.fit_One_Point) and check the dataset compliance
with the repository requirements (f.Check_data). The lists within the blue boxes represent the lists of variables that need to be included in
the database (e.g., Site variables) or produced by the R codes (e.g., Photosynthetic trait variables).

2.2.5 Leaf sample and site information

Within GSTI, the latitude, longitude, and elevation of sites
where the data were collected need to be specified (Ta-
ble 1). The biome needs to be provided following Olson et al.
(2001)’s list of 14 terrestrial biomes of the world, which we
extended with five managed environments (managed grass-
lands, field crop ecosystems, tree crop ecosystems, green-
house ecosystems, and other managed ecosystems). The leaf
information includes the light environment (sun or shade),
leaf phenological stages (young, mature, old), species iden-
tity, plant type (wild, ornamental, agricultural), and soil type
(natural, pot, managed, hydroponic). Associated leaf proper-
ties can also be added, including LMA, LWC, and the nutri-
ent content of N and P on a per leaf area or mass basis. The
addition of associated leaf properties to the GSTI database is
encouraged but optional.

2.2.6 Dataset data quality checks

Most dataset quality verification is performed by the dataset
authors in the preliminary steps of the data curation. In addi-
tion, the functions f.fit_ACi and f.fit_One_Point perform ba-
sic data quality checks to ensure that the photosynthetic data
do not include abnormal Ci or temperature values. If such

values are found, the functions terminate and return an error.
Finally, the function f.Check_data is used to validate the for-
mat of the curated dataset and verify that all needed files are
complete. It also checks the range of values for most traits
and warns users if they are outside the expected range, pos-
sibly due to unit issues. When this occurs, users are advised
to check the data units and quality, but the function does not
block them from adding the dataset to the database.

The standard error associated with the photosynthetic pa-
rameters (e.g., StdError_Vcmax25, StdError_Jmax25, Ta-
ble 1) as well as the standard error of the residuals of the
A–Ci curve-fitting (sigma, Table 1) can be used to filter the
datasets and only include the most reliable data for build-
ing spectra-trait models. For this purpose, the variable “Spec-
tra_trait_pairing” is also important as it indicates whether or
not the spectra and traits were derived on the same leaves or
distinct but similar leaves. This information can be used for
uncertainty analysis based on different sources of possible
error.

2.3 Overview of the database and illustrative examples

The climate space covered by the GSTI database was eval-
uated using the mean annual temperature and precipitation
of the sites extracted using the Worldclim climate surface
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data (Fick and Hijmans, 2017) at the site positions and in-
terpreted in the Whittaker biome classification (Stefan and
Levin, 2018; Whittaker, 1970).

For illustrative purposes and to show the extent of
the GSTI database, we evaluated the correlations between
Vcmax25 and other gas exchange variables (Jmax25, Rdark25)
as well as leaf biochemical, elemental, and morphological
traits using Pearson correlation tests. We also evaluated the
relationship between Vcmax25 and an estimate of the chloro-
phyll a and b content (Chlindex) derived using spectroscopy.
This estimate was derived using an index proposed by (Gitel-
son et al., 2003), calculated as the ratio of reflectance in the
spectral range of 750 to 800 nm (R750–800) to the reflectance
in the range 695 to 740 nm (R695–740, Eq. 1).

CHLindex =
R750–800

R695–740
− 1 (1)

One use of this GSTI database is to develop broadly appli-
cable models of photosynthetic traits using reflectance data.
Here, we used a partial least-squares regression (PLSR) mod-
eling approach (Wold et al., 2001) to derive photosynthetic
spectra-trait models following a previously described ap-
proach (Burnett et al., 2021). We focused on paired spectra-
trait observations collected from the same leaves with full-
range reflectance. Separate PLSR models were developed
for Vcmax25, Jmax25, TPU25, and Rdark25. The variables were
square root-transformed and the database was divided into
a calibration and a validation dataset by randomly selecting
80 % of observations from each dataset for training and re-
serving the other 20 % for external validation (stratified ran-
dom sampling by source dataset). To train the PLSR models,
1000 random subsets of the training dataset were generated,
each one containing 70 % of the training observations. A
PLSR model was fitted on each random subset and its perfor-
mance was assessed on the remaining 30 % of observations
(internal validation). The number of components to use in our
final PLSR models was selected based on the predicted resid-
ual sum of squares (PRESS). We chose the smallest number
of components that brought the PRESS one standard error
away from the global minimum. The 1000 PLSR models
were then applied to the external validation dataset and we
calculated the mean prediction as well as the confidence in-
terval of the prediction. The R2 and root mean square error
(RMSE) of prediction of the validation dataset were used to
assess each model, as well as the %RMSE calculated as the
ratio of RMSE to the range of variation of the trait of interest
and expressed in percent (0–100).

3 Results

The current release of the GSTI database contains 36 datasets
(Fig. 2) and a total of 7513 observations of paired leaf re-
flectance and gas exchange data. Within the database, there
are 4865 estimates of photosynthetic traits and 5067 esti-
mates of Rdark. 2443 of these data have both photosynthetic

traits and Rdark measured on the same leaf. Of the data
used to estimate photosynthetic properties, 78 % are A–Ci
curves and 22 % are one-point measurements. Among the
A–Ci curves, three datasets were measured using the Dy-
namic Assimilation Technique (309 observations), and the
others were measured using the common steady-state proto-
col. Most datasets were measured with full-range spectrom-
eters (350–2500 nm, Fig. 3), and four were measured with
shorter-range spectrometers (885 observations in total).

The observations were collected from 397 species,
with the majority (293 species) coming from highly di-
verse ecosystems, including tropical and subtropical moist
broadleaf forests (Figs. 2, 4, and 5). While the GSTI database
also includes observations from tundra and temperate mixed
broadleaf forests, it currently lacks data from several criti-
cal biomes, including Mediterranean forests, woodlands and
scrub, other dryland ecosystems, montane grasslands and
shrublands, and coniferous forests (Olson et al., 2001). Anal-
ysis of the climate space covered by the datasets within GSTI
revealed that the sites were mostly concentrated along a di-
agonal axis on the Whittaker plot (Fig. 4), missing the dry
and warm biomes (bottom right corner of the plot) as well as
the temperate wet environments (above the diagonal). A to-
tal of 23 species in the database are crops (Fig. 5), including
wheat, rice, tomato, wine grapes, and tobacco. Although they
belong to only a few species, the agricultural data represent
50 % of the total observations in the database.

The distributions of the main traits included in the
database are shown in Fig. 6. For Vcmax25, 95 % of the val-
ues range from 3.6 to 186 µmol m−2 s−1, with an average
of 67 µmol m−2 s−1 (Fig. 6a), while 95 % of Rdark25 are in
the range of 0.2 to 2.7 µmol m−2 s−1, with an average of
1.1 µmol m−2 s−1 (Fig. 6d). LMA was measured for 4553
observations and nitrogen content (Narea) for 3576 obser-
vations (Figs. 6e and f). LWC (Fig. 6h) and leaf P content
(Parea, Fig. 6g) were measured less frequently, with 1849
and 785 observations, respectively. For LMA values, 95 %
fall within the range of 20 to 173 g m−2 (Fig. 6e), while for
Narea values, 95 % fall within the range of 0.5 to 3.3 g m−2

(Fig. 6f).
Figure 7 illustrates the bivariate relationships between

Vcmax25 and the other key variables including Jmax25, TPU25,
Rdark25, LMA, Narea, and Chlindex, providing an overview of
the scope and statistical properties of the current database. A
strong correlation was observed between TPU25 and Vcmax25
(r = 0.85, Fig. 7f) and between Jmax25 and Vcmax25 (r =
0.94, Fig. 7d) with a Jmax25:Vcmax25 ratio averaging 1.75.
While Vcmax25 exhibited significant correlations with all
other traits, the strength of these relationships was weak
(|r|<0.25), except for Narea, which demonstrated a moder-
ate strength (|r| = 0.56, Fig. 7b).

A key goal of the GSTI project is to evaluate and test spec-
tral models of leaf photosynthetic capacity and functional
traits across a wide range of user-contributed datasets, span-
ning a wide range of ecosystems, species, growth conditions,
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Figure 2. Location of the datasets included in the database. Datasets represented with a circle were measured in a managed environment
(greenhouse, growth chamber, field, etc.) whereas datasets represented with a triangle were measured in natural ecosystems. The map repre-
sents the 14 terrestrial biomes listed in Olson et al. (2001), updated by Dinerstein et al. (2017).

Figure 3. Distribution of the reflectance of the database by decile.
Only the full-range spectra were included (400–2500 nm).

and geographical locations. Therefore, in Fig. 8, we show an
example of four spectra-trait models fitted between measured
spectra and physiological traits including Vcmax25, Jmax25,
TPU25, and Rdark25 using a PLSR approach. The perfor-
mance of the spectra-trait models, evaluated on the 20 % of
observations from each dataset that were not used to train the
models, was very strong, showing a R2 of 0.76 for Vcmax25,
0.78 for Jmax25, 0.80 for TPU25 and 0.75 for Rdark25. The
RMSE values of the models were always below 10 % of the
range of variation of the traits (%RMSE, Fig. 8).

4 Discussion

The goal of the Global Spectra Trait Initiative is to enable a
dramatic increase in the ability of the plant science commu-
nity to estimate leaf traits using spectra-trait models devel-
oped with the richest possible datasets, in an open environ-
ment where all the data and tools to do so are freely avail-
able. The GSTI repository is focused on the preservation of
paired leaf gas exchange and leaf reflectance data to facilitate
the development and iterative improvement of spectra-trait
models. It is designed to be collaborative, open access, and
FAIR (findable, accessible, interoperable, and reproducible;
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Figure 4. Mean annual rainfall and mean annual temperature for
the 20 natural sites included in the GSTI database plotted within the
climatic boundaries of Whittaker’s biomes.

Wilkinson et al., 2016) following CC-BY 4.0 license proto-
cols. A key feature of the GSTI repository is the preservation
of the raw data and the provision of open workflows to pro-
cess reflectance and gas exchange data, thereby ensuring uni-
form, reproducible data analysis and interpretation. The use
of raw data also enables users to easily apply new techniques
or alternative assumptions to their analysis and preserves the
value of the repository for future unanticipated uses.

4.1 Data coverage

This initial GSTI version comprises 36 individual curated
datasets, measured across 41 sites, spanning more than 390
species in arctic, temperate, subtropical, and tropical ecosys-
tems. Given its breadth, this pooled dataset significantly ex-
pands upon previous photosynthetic and other spectra-trait
modeling studies (Lamour et al., 2021; Serbin et al., 2012;
Wu et al., 2025, 2019; Yan et al., 2021) and covers a wide
range of climatological regions (Fig. 4). We hope that the
expanding data coverage will ultimately enable the develop-
ment of robust globally applicable models.

The spatial distribution of the current GSTI database is
uneven. The majority of the datasets were measured on the
American continent (Fig. 2), while Asia, Europe, and Aus-
tralia have relatively limited data representation. African
datasets are completely absent. Furthermore, of the 14 nat-
ural ecosystems categorized by Olson et al. (2001), only four
are represented in the GSTI repository. These unrepresented
biomes play key ecological roles and are likely to have dis-
tinct leaf spectral properties and associated traits, the ab-

sence of which likely limits the generalizability of spectra-
trait models. The coverage of the four represented biomes
is also incomplete and likely misses important functional
groups and species. For example, few data cover needle-leaf
coniferous plants (32 observations), none of which include
full range reflectance spectra. Other plant groups, such as
ferns, are also missing. Additionally, the database is biased
towards a few dominant agricultural species, especially for
Rdark observations. These data limitations likely stem from
several factors, including the high cost of spectrometers and
gas exchange instruments. Additionally, challenges arise for
certain plant types with very tiny or narrow leaves due to lim-
itations of commercially available instruments designed for
standard leaf sizes. Nevertheless, this underscores the need to
acquire observations spanning a broader spectrum of species
diversity for increasing the leaf spectral and functional di-
versity as well as the development and testing of universally
applicable photosynthetic spectra-trait models.

Tthe GSTI repository is currently limited to gas exchange
data for leaves of the C3 photosynthetic pathway, the most
prevalent photosynthetic pathway among plants. C4 plants,
predominantly grasses, comprise less than 5 % of known
plant species (Sage, 2016), but they contribute to nearly a
fifth of global photosynthesis (Luo et al., 2024). In addi-
tion, C4 crops like maize, millet, sorghum, and sugarcane
account for nearly a quarter of the harvested area worldwide
(Luo et al., 2024). Currently, spectra-trait studies for predict-
ing C4 photosynthetic traits are primarily focused on maize
(Heckmann et al., 2017; Wang et al., 2021; Yendrek et al.,
2017). The crassulacean acid metabolism (CAM) pathway
is another photosynthetic pathway used by around 6 % of
higher plants (Winter, 2019). To our knowledge, photosyn-
thetic spectra-trait data have never been measured on such
species, in part because measuring photosynthesis traits on
these plants is also a challenge. The GSTI repository can
therefore be expanded to accommodate other photosynthetic
pathways in future updates. See Sect. 7 for how to contribute
to future versions of the GSTI. We hope that highlighting the
data gaps above will spur new data collection, improve the
global coverage of the GSTI, and enhance its comprehen-
siveness.

4.2 Photosynthesis and dark respiration models

A single photosynthesis model (i.e., the same equations, ki-
netic constants and temperature response functions, and a
standardized parameter estimation procedure) is used for all
datasets within the GSTI database. This imposes a constraint
on the datasets that can be added to GSTI; i.e., the raw gas
exchange data must be supplied, not just the estimated pho-
tosynthetic parameters. Although this may limit the number
of observations and datasets added to the GSTI repository, it
avoids introducing biases between datasets that could arise
from differences in parameterization of the photosynthesis
model and the parameter estimation procedure. This stan-
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Figure 5. Number of observations and species per biome. The list of biomes derives from Olson et al., (2001) list of 14 terrestrial biomes
that we completed with 5 managed environment classes (managed grasslands, field crop ecosystems, tree crop ecosystems, greenhouse
ecosystems, and other managed ecosystems).

dardization is beneficial for preserving the relationships be-
tween parameters, in particular between Vcmax25 and Jmax25
(Fig. 7d), that depend upon the constants used in the photo-
synthesis model (Rogers et al., 2017a; Walker et al., 2014).
Our approach to standardization within the GSTI database
may also help reduce noise in trait-spectra relationships.

We acknowledge that other photosynthesis equations and
parameterisations could be used. Fundamental processes of
the C3 photosynthesis reactions are an active research area,
and there are alternative formulations to the original model
(Farquhar et al., 1980; Kumarathunge et al., 2019; Silva-
Pérez et al., 2017; Yin et al., 2021). For example, other mod-
els consider a finite mesophyll conductance (Flexas et al.,
2008), the cuticular pathway for gas transport between the
leaf and the atmosphere (Lamour et al., 2022; Márquez et
al., 2021), or a more mechanistic representation of electron
transport rate (Johnson and Berry, 2021). Since the raw gas
exchange data are saved in the GSTI database using a stan-
dard format (Ely et al., 2021), it is possible to reanalyze the
data using other photosynthesis models. In fact, it is recom-
mended to use the same set of equations and parameters for
estimating photosynthetic traits and simulating photosynthe-
sis, i.e., avoid mixing and matching equations (Rogers et al.,
2017a). For instance, using an apparent Vcmax25 in a pho-
tosynthesis model with finite mesophyll conductance would

introduce errors. This consideration is also true when using
traits estimated from spectral trait models. We recommend
retraining the spectral trait model using the same photosyn-
thesis model framework for both trait estimation and photo-
synthesis simulation. In addition, we have used a universal
set of parameters to fit the gas exchange data. Better gas ex-
change fits may be obtained when species-specific (Sargent
et al., 2024; Silva-Pérez et al., 2017) or environment-specific
parameters (Kumarathunge et al., 2019) are used, although
it has yet to be demonstrated if this improves spectra-trait
predictions.

Respiration, like photosynthesis, is a key physiological
process that underpins plant growth and influences the global
carbon budget and crop yields. However, unlike photosyn-
thesis, which can be modeled using the FvCB photosynthe-
sis equations (Farquhar et al., 1980), there is no comparable
mechanistic model for respiration (Bruhn et al., 2022; Fan et
al., 2024). This is partly due to our limited understanding of
the complex metabolic processes underlying respiration and
the difficulty in estimating the complex networks of respi-
ratory fluxes. In current crop growth and land surface mod-
els, leaf dark respiration is considered a temperature sensitive
constant. These models use a range of temperature depen-
dence functions (Huntingford et al., 2017; Niu et al., 2024).
In the GSTI database, Rdark and the leaf temperature during

Earth Syst. Sci. Data, 18, 245–265, 2026 https://doi.org/10.5194/essd-18-245-2026



J. Lamour et al.: The Global Spectra-Trait Initiative 257

Figure 6. Frequency distributions of observations for the main leaf traits. (a) Maximum carboxylation rate at 25 °C (Vcmax25). (b) Maximum
potential electron transport rate at 25 °C (Jmax25). (c) Triose phosphate utilization rate at 25 °C (TPU25). (d) Dark-adapted leaf respiration
rate at 25 °C (Rdark25). (e) Leaf dry mass per unit area of fresh leaf (LMA). (f) Nitrogen content per surface area (Narea). (g) Phosphorus
content per surface area (Parea). (h) Leaf water content (LWC).

measurement are stored, facilitating the reuse of the data with
alternative temperature response functions and parameteriza-
tion.

4.3 Spectra-trait models

We have developed spectra-trait models for three photosyn-
thetic traits (Vcmax25, Jmax25, TPU25) and Rdark25 as illus-
trative examples. These models were obtained using paired
full-range spectral and trait observations on the same leaves.
The predictive accuracy of these models aligns with previous
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Figure 7. Scatter plot between the photosynthetic capacity (Vcmax25) and other leaf traits included in the GSTI database. (a) Leaf mass per
surface area (LMA). (b) Nitrogen content on an area basis (Narea). (c) Chlorophyll index derived from the reflectance data using Gitelson et
al. (2003) index. (d) Maximum potential electron transport rate at 25 °C (Jmax25). (e) Dark-adapted leaf respiration rate at 25 °C (Rdark25).
(f) Triose phosphate utilization rate at 25 °C (TPU25). The blue lines are linear regression fits.

studies (Barnes et al., 2017; Coast et al., 2019; Meacham-
Hensold et al., 2019; Silva-Perez et al., 2018) despite incor-
porating a larger dataset spanning a wider range of species
and environmental conditions and using datasets obtained
with a range of instrumentation. This demonstrates the po-

tential for such models to be applied broadly, across diverse
ecosystems and instruments. However, to optimize model
performance for specific ecological contexts, the training
dataset could be tailored to particular biomes or species. The
training dataset used here exhibits an overrepresentation of
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Figure 8. Observed photosynthetic properties obtained from gas exchange measurements vs reflectance-based partial least square regression
prediction. (a) Maximum carboxylation rate of Rubisco (Vcmax25). (b) Maximum potential rate of electron transport (Jmax25). (c) Triose
phosphate utilization rate (TPU25). (d) Dark-adapted leaf dark respiration (Rdark25). The partial least square regressions were trained using
80 % of the data from each dataset and validated with the remaining 20 % of observations (points) following the best practice guide and
protocol from Burnett et al. (2021). The validation points are shown with ±95 % confidence interval error bars. RMSE=Root Mean Square
Error (µmol m−2 s−1), %RMSE is the root mean square error divided by the range of variation of the trait of interest in percent (0–100), and
N comp is the number of components used in the partial least square regression.

certain species, especially agricultural ones, potentially bi-
asing the model towards cultivated species and reducing its
accuracy for other species.

A wide variety of statistical methods have been used to
study the relationships between leaf spectra and traits. These
include PLSR, least absolute shrinkage and selection oper-
ator (LASSO), support vector machines (SVM), and deep
learning (Burnett et al., 2021; Fu et al., 2019, 2022; Furbank
et al., 2021; Ji et al., 2024; Vasseur et al., 2022). These ap-
proaches consider the specific features of reflectance spectra,
i.e., a high dimensionality (hundreds of wavelengths) and a
strong autocorrelation of the reflectance at each wavelength.
They differ on how to reduce the signal dimension and on
the form of the relationship between the signal and the trait
of interest (linear or non-linear). The GSTI database offers a
breadth of data to compare and evaluate these different ap-
proaches.

An improved understanding of the mechanisms explaining
the correlation between leaf reflectance spectra and photo-
synthetic performance is key to understanding the range of
applications and the limitations of such models. Several hy-
potheses have been proposed to explain the relationship be-
tween leaf optical properties and photosynthetic traits such
as Vcmax25. The reflectance spectra are probably not strongly
influenced by the quantity and activation state of rubisco that
biologically determines Vcmax25, but more likely by a con-
stellation of biochemical and structural leaf properties as-
sociated with photosynthetic performance that jointly shape
the spectral signature associated with carboxylation capac-
ity (Chadwick and Asner, 2016; Wu et al., 2019; Yan et
al., 2021). The correlations between leaf reflectance spectra
and nitrogen (Meacham-Hensold et al., 2019) or chlorophyll
(Croft et al., 2017) content have been identified as important
signals, although many other leaf structural and biochemi-
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cal components are likely to play a role. Indeed, spectra-
trait models often outperform trait-trait empirical relation-
ships (Wu et al., 2025; Yan et al., 2021), even when mul-
tiple leaf traits are used for prediction. Since rubisco plays
a role in carbon assimilation across all three photosynthetic
pathways (C3, C4, and CAM), including these pathways in
future analysis could be informative because the biochemi-
cal limitations on assimilation, leaf anatomy and elemental
composition are different and will provide new axis of plant
trait variation.

5 Conclusions

The Global Spectra-Trait Initiative (GSTI) is a collaborative
and open-access database designed to facilitate the develop-
ment and improvement of spectra-trait models for estimating
leaf traits, focusing on photosynthetic capacity. The initial
release of GSTI includes data from over 390 species and 41
sites, encompassing more than 7500 observations and cover-
ing a wide range of environmental conditions and plant func-
tional types. It dramatically increases the data available for
the plant science community. Furthermore, the standardized
approach used in GSTI ensures uniform and reproducible
data processing and interpretation, maximizing the reuse of
data and facilitating ongoing refinement of spectra-trait mod-
els as new datasets are incorporated. Future developments of
the GSTI will focus on expanding data coverage, incorporat-
ing data from under-represented biomes and plant functional
types.

6 Code and data availability

The GSTI data and code are available in the public GitHub
repository at https://github.com/plantphys/gsti (last access: 4
January 2026), and published versions of GSTI are released
to ESS-DIVE (https://doi.org/10.15485/2530733, Lamour et
al., 2025).

7 How to contribute to future versions of the GSTI

We encourage the community to contribute new datasets to
expand the scope and utility of the GSTI project. To ensure
consistency and maintain data quality, contributions should
adhere to the standards and guidelines outlined in this paper.
Detailed instructions for contributing datasets, including for-
matting specifications and submission procedures, are avail-
able in the project’s GitHub repository: https://github.com/
plantphys/gsti (last access: 4 January 2026).
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