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Abstract. We present an improved medium (250 m) spatial resolution land mask based on augmenting earlier
results of Mikelsons et al. (2021) to reflect recent changes in global water surface coverage. This land mask
update is critical for remote sensing of coastal oceans and inland waters as this is the first step to properly identify
water pixels from land pixels for satellite data processing. We show that clear-sky false color imagery derived
for monthly and yearly time periods can be effectively used to identify changes to the surface water coverage. In
addition, we also use Sentinel-2 satellite imagery to derive more accurate boundaries of new water bodies with
complex geometries. We demonstrate improved coverage from satellite ocean color and inland water property
retrievals with the improved land mask, including a range of new inland water bodies, as well as changes to the
extent of the existing water bodies. We find that majority of inland water surface changes are directly linked to
human activities and list the changes to water surface areas and approximate time periods for these water bodies.
The improved land mask (Mikelsons and Wang, 2025) (https://doi.org/10.17632/9r93m9s7cw.2) can also be used
in the remote sensing of terrestrial, atmospheric, and cryospheric property products.

1 Introduction

The global surface water coverage is continuously changing.
It is difficult to capture all changes as they are occurring, as
some changes are very gradual, but over time quite signifi-
cant. Most existing land mask datasets are static, and this has
been adequate for most general and specialized applications.
However, the use of static datasets necessitates periodic re-
view of the existing land mask data for any recent changes.
Furthermore, periodic review and update of existing land/wa-
ter mask datasets may reveal areas where most significant,
rapid, and numerous changes are taking place, which in itself
is a valuable information. In addition, continuous use of the
existing datasets in wider science, research, and user commu-
nities may uncover any artifacts and imprecisions that may
have been previously overlooked.

One of the most significant and comprehensive efforts
to map the global surface water was the landmark study

by Pekel et al. (2016), which used high resolution satel-
lite imagery and produced several metrics characterizing the
global surface water (GSW), such as seasonality, occurrence,
maximum extent, change, and others. However, this GSW
dataset excluded polar areas, and also contained some oc-
casional artifacts. An updated dataset was released in 2021
(https://global-surface-water.appspot.com/download, last ac-
cess: 15 December 2025) but did not mitigate some short-
comings. Nevertheless, the included metrics provide com-
prehensive statistical description of water surface temporal
variability and ensure broad applicability for this dataset. An-
other land mask dataset derived from high resolution satellite
measurements was created as part of an effort to map the
global forest cover (GFC) (Hansen et al., 2013), yet that too
excluded polar areas, and also included some occasional ar-
tifacts.

Many satellite sensors, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) (Salomonson et al.,

Published by Copernicus Publications.

https://doi.org/10.17632/9r93m9s7cw.2
https://global-surface-water.appspot.com/download


232 K. Mikelsons and M. Wang: Improved land mask for satellite remote sensing of oceans and inland waters

1989) on the Terra and Aqua, the Visible Infrared Imag-
ing Radiometer Suite (VIIRS) (Goldberg et al., 2013) on the
Suomi National Polar-orbiting Partnership (SNPP), NOAA-
20, and NOAA-21, and the Ocean and Land Colour Instru-
ment (OLCI) (Donlon et al., 2012) on the Sentinel-3A (S3A)
and Sentinel-3B (S3B), observe earth in medium spatial res-
olution ( ∼ 0.2–1 km), and the associated environmental re-
search applications require a land mask dataset of a com-
parable spatial resolution. MODIS data were used to de-
rive medium resolution land/water mask data (Carroll et al.,
2009). The subsequent update significantly expanded loca-
tions classified as water to include occasionally and partly
submerged areas (Carroll et al., 2017). The latest update
(Carroll et al., 2024) appears to continue this trend and splits
the MODIS-derived land mask dataset into yearly time se-
ries, but also introduces some new artifacts.

In general, the distinction between land and water surface
depends on applications. This is especially true for coastal
oceans and inland waters, and for higher spatial resolution
data. Various types of surface water have been distinguished
in numerous land cover classification studies (Brown et al.,
2022; Sulla-Menashe et al., 2019; Zhang et al., 2023, 2025)
or within dedicated studies targeting specific water surface
type (Allen and Pavelsky, 2018; Zhang and Gu, 2023), and
include the temporal dynamics (Pickens et al., 2018). Land
mask is especially important for satellite ocean and inland
water color measurements, where it narrows down the ob-
servations to potentially valid retrievals over the water sur-
face, and provides information about potential land adja-
cency effects (Bulgarelli et al., 2017). Within this context,
a binary land/water mask is required to determine if satel-
lite retrievals should be attempted over a specific geographic
location. To address this need, Mikelsons et al. (2021) devel-
oped a global, medium-resolution (250 m) land mask specif-
ically for ocean color and inland water property retrievals.
They also presented a new methodology to combine multi-
ple existing datasets to reduce artifacts and improve overall
accuracy, including the high resolution GSW and GFC data
and MODIS-derived medium resolution land mask data, and
matching the spatial resolution of the latter. We note that,
although the MODIS-derived land mask data are named as
250 m medium spatial resolution data (Carroll et al., 2017),
the actual spatial resolution is closer to 230 m (7.5 arcsec).
We follow the same practice to use 250 m spatial resolution
to describe our derived land mask data (actually in 7.5 arcsec
angular resolution in longitude and latitude).

Since then, many changes to global surface waters have
taken place, many new water bodies have appeared or ex-
panded, while others have shrunk or entirely disappeared.
Occasionally, such changes can be noticed in the daily satel-
lite imagery from polar orbiting wide-swath sensors, such
as MODIS, VIIRS, and OLCI. Nevertheless, distinguishing
land from water surface in daily satellite imagery is compli-
cated due to presence of clouds (King et al., 2013), cloud
shadows (Jiang and Wang, 2013), sun glint (Wang and Bai-

ley, 2001), and occasionally heavy aerosol presence. How-
ever, changes to the water surface typically occur at more
gradual seasonal or yearly time scales. Thus, representative
clear-sky imagery over longer time scales may be more help-
ful in surface type determination. In particular, our earlier
work (Mikelsons and Wang, 2021) introduced one relatively
simple approach to derive clear-sky imagery from the daily
multi-sensor imagery time series. This imagery, derived over
an appropriate time period, eliminates the frequently chang-
ing atmospheric conditions, while retaining representative
surface appearance.

In this work, we show that this clear-sky imagery can be
used to identify the areas of change in global water sur-
face, and in many cases to derive regional updates to the
existing land mask. Thus, we use the previously derived
land mask dataset (Mikelsons et al., 2021) and update it
to incorporate the water surface changes in recent years.
In this effort, we focus on new water bodies, or qualita-
tively significant changes, to update and improve the exist-
ing land mask dataset. While there are also more continu-
ous and gradual changes taking place in dynamic ecosys-
tems (such as meandering river paths, slow changes due to
shifting coastlines, etc.), those have not been the main focus
of this study. Although the main target use of the improved
land mask dataset remains the medium resolution satellite
ocean color and inland water property retrievals, we antici-
pate that, as before, the updated land mask dataset will have
wider range of applications. The spatial resolution of the im-
proved land mask dataset is the same as that of the earlier
dataset at 7.5 arcsec equal angle sampling for both longitudi-
nal and latitudinal directions, resulting in a global dataset of
86400 × 172800 samples.

This work is structured as follows: in Sect. 2, we review
the methodology, including use of false color imagery to de-
rive updated land mask. In Sect. 3, we detail the changes and
updates implemented in the new land/water mask and show
improvements in the corresponding satellite ocean color and
inland water property retrievals. Following the data availabil-
ity statement in Sect. 4, we discuss the results and summarize
the conclusions in Sect. 5.

2 Methodology

One of the most common satellite derived imagery types is
the true color imagery, derived using the spectral bands in
the red, green, and blue (RGB) parts of the visible spectrum.
Satellite-measured top of the atmosphere (TOA) reflectances
at each spectral band are corrected for Rayleigh scattering
effects in the atmosphere (Wang, 2016), reducing the associ-
ated haze, and improving the contrast. In addition to the true
color imagery, a range of other spectral band combinations
are used to highlight various surface and atmospheric fea-
tures. These are commonly referred to as false color imagery.
One frequently used type of false color imageries is ob-
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tained by replacing the green band (typically centered around
550 nm) used for the green color channel in the imagery with
the near-infrared (NIR) band (typically centered at around
865 nm) (Qi et al., 2020). This type of false color imagery is
often used to distinguish surface water from land and vegeta-
tion coverage due to nearly complete water absorption at the
NIR band. It is also used to identify floating algae effectively
(Qi et al., 2020). In this work, we refer to it as simply “the
false color imagery”.

Regardless of the choice for spectral bands used in imag-
ing, the daily satellite imagery is frequently affected by
clouds and dense aerosols, preventing accurate survey of wa-
ter surface extent. Furthermore, not all satellite sensors can
provide complete daily coverage. In any case, it is not prac-
tical to examine all daily satellite imagery for changes in
water surface, unless automated algorithms are used. In this
work, we use the clear-sky imagery derived from daily multi-
sensor imagery over longer time periods to track changes
to the land and water surface. The clear-sky imagery can
be derived for both true and false color band combinations.
For the type of false color imagery discussed here, the de-
rived clear-sky imagery favors the overall darker water areas
over lighter land (Mikelsons and Wang, 2021). Thus, clear-
sky false color imagery is a proxy to maximum water ex-
tent over different time periods. We found that clear-sky true
and false color imageries, which are derived over monthly
and yearly time periods, are especially useful for tracking
seasonal and interannual changes in water surface extent. In
many frequently overcast areas, at least one month of daily
imagery (sometimes more) is needed to derive clear-sky im-
agery. At the same time, monthly imagery can capture most
seasonal changes. In comparison, yearly imagery is much
easier to use, as it provides overview of the largest water ex-
tent throughout the year, but does not capture seasonal vari-
ability. The yearly imagery also can be somewhat biased to-
wards the months with less frequent cloud coverage.

In this study, we use a combination of yearly and monthly
clear-sky false color imageries from recent years (2020–
2025) and compare it with the existing land/water mask to
identify areas with significant changes in water coverage.
For comparison, the earlier version of the land mask dataset
(Mikelsons et al., 2021) was derived using a number of data
sources based on satellite data from periods of 2000–2002
(Carroll et al., 2009), 2000–2015 (Carroll et al., 2017), 2000–
2012 (Hansen et al., 2013), and 1984–2016 (Pekel et al.,
2016). Therefore, most of them were somewhat outdated
even at the time when the old land mask dataset was derived.
The last dataset (Pekel et al., 2016) has since been updated
to include changes up till 2021 (https://global-surface-water.
appspot.com/download, last access: 15 December 2025). We
then use the monthly clear-sky false color imagery to esti-
mate the seasonal changes for each new area found. These
imagery comparisons and evaluation were conducted using
the interactive features of the Ocean Color Viewer (OCView)
(Mikelsons and Wang, 2018), allowing to quickly switch be-

tween the land mask and true/false color imagery, and zoom
to a specific region to inspect differences at a finer detail.
We note that OCView provides access to yearly and monthly
global clear-sky true and false color imageries from the be-
ginning of the VIIRS-SNPP mission in 2012. The clear-sky
imagery archives from early years are derived solely from
VIIRS-SNPP daily imagery. For more recent years, other
available VIIRS and OLCI daily global imageries are also
used to improve the accuracy of the clear-sky true color im-
agery.

Similarly, from 2023 onwards, the clear-sky false color
imagery is derived from two VIIRS sensor daily global im-
ageries on the SNPP and NOAA-21 satellites, including VI-
IRS imagery band data (Mikelsons and Wang, 2021), at the
same medium spatial resolution. As such, it can be used to
derive updated land/water mask in places where coastline is
relatively simple and land/water reflectance contrast is high.
In such cases, standard image segmentation procedures im-
plemented in commonly available image editing software
(e.g., ImageMagick, https://imagemagick.org/, last access:
15 December 2025) can be used to help delineate the new
land and water boundaries with sufficient accuracy. However,
many new water bodies have quite complicated coastlines. In
these cases, we opted to use the higher spatial resolution im-
agery from the MultiSpectral Instrument (MSI) aboard the
Sentinel-2A/B/C (Drusch et al., 2012). Following analysis of
the medium resolution clear-sky imagery, we chose a repre-
sentative Sentinel-2 MSI daily imagery scene clear of clouds
and first derived the corresponding high resolution land mask
over the region of interest using the Sentinel-2 derived true
and false color imageries.

In particular, the Sentinel-2 true color imagery was derived
using MSI bands 4 (665 nm), 3 (560 nm), and 2 (490 nm),
for red, green, and blue channels, respectively. In false color
imagery, the MSI green band was replaced by the NIR
band 8 (842 nm). The spatial resolution for all Sentinel-2
MSI band used for imagery is 10 m (Drusch et al., 2012). Se-
lected scenes of high spatial resolution Sentinel-2 true and
false color imageries were passed through image segmen-
tation procedure to produce a high resolution regional land
mask for each area of interest. These high resolution regional
land mask samples were then aggregated into the medium
resolution land mask based on the same criteria as described
in the earlier work (Mikelsons et al., 2021). Specifically, we
imposed the requirement that more than 90 % of high resolu-
tion (10 m) imagery pixels corresponding to the medium res-
olution (250 m) land mask pixel have to be identified as water
in order to have the corresponding medium resolution pixel
to be marked as water. We note that due to this aggregation
process, the accuracy of the high resolution land mask is not
crucial, since each medium resolution pixel covers more than
500 high resolution Sentinel-2 MSI derived imagery pixels.
Instead, it is more important to select a representative high
resolution imagery scene out of temporal time series for de-
riving the medium resolution land mask data.
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3 Results

We employed the OCView web page (Mikelsons and
Wang, 2018) (https://www.star.nesdis.noaa.gov/socd/mecb/
color/ocview/ocview.html, last access: 15 December 2025)
to survey global yearly and monthly clear-sky true and false
color imageries for the most recent years (2022–2024), and
compare it to the existing land mask. We note that the
core functionality of OCView is described in Mikelsons and
Wang (2018), while the process of deriving the clear-sky im-
agery from daily imagery time series is detailed in Mikel-
sons and Wang (2021). In particular, the false color im-
agery is normally highly correlated to land mask, thus any
changes in water surface can be easily identified by compar-
ing these two images. Nearly all of the identified water sur-
face changes are located in either coastal or inland areas and
can be roughly divided into three types: (a) changes to en-
dorheic lakes, (b) newly created inland water reservoirs due
to human constructed river dams, and (c) changes to coastal
areas due to land reclamation or other types of developmental
activities. In the following subsections, we detail each type of
these changes. As a proof of utility to the improved and ex-
panded satellite ocean/water color retrievals with the updated
land mask, we also include results for chlorophyll a (Chl-a)
concentration (Hu et al., 2012; Wang and Son, 2016), and
the light diffuse attenuation coefficient at 490 nm Kd (490)
(Wang et al., 2009).

3.1 Changes to endorheic lakes

In most cases, the endorheic basins have relatively simple
boundaries due to water filling in relatively flat plains. In
these cases, we find that deriving the land mask from the false
color imagery at medium resolution is appropriate. While
the spatial boundaries may not be as complex, the tempo-
ral changes can be quite frequent, often following a seasonal
cycle, but also stretching over multi-year time scales. Due to
ever changing nature of these water bodies, care is needed to
select a representative sample for deriving the land mask.

As an example of expanded size of endorheic lakes, we
show the Toshka Lakes in Egypt (Abd Ellah, 2021) (Fig. 1).
These lakes are result of management in Nile’s waters dur-
ing recent flood events and have significantly expanded in
surface area over recent years. Since these lakes have no reg-
ular inflow and outflow, they are expected to shrink unless in-
creased precipitation in the Nile River upstream watersheds
continues in the following years.

On the opposite side with shrinking size, also largely due
to human activities, an example is the Aral Sea (Fig. S1
in Supplement), which has fragmented into several smaller
lakes. The vanishing surface area, including causes and con-
sequences for ecosystem changes and human activities have
been subject to many studies (Shi and Wang, 2015; Wang et
al., 2020). Here, we merely record the most up to date rela-
tively stable extent of remnants of the lake as seen in clear-

sky false color imagery for years 2024–2025. This represents
a substantial decrease of the surface area, even compared to
already diminished extent shown in the old land mask.

Other cases of endorheic lakes with changes in size and
extent incorporated in the updated land mask are included in
Sect. S1 in the Supplement. All changes are summarized in
Table 1. The “old” and “updated” areas listed in Table 1 refer
to the areas derived from the land mask data in the earlier
work (Mikelsons et al., 2021) and the current/updated ver-
sion, respectively. Both of these represent estimated areas for
medium (250 m) resolution satellite sensor based ocean/wa-
ter color retrievals and may differ from the actual area ob-
tained using the high resolution measurements. Most of the
endorheic lakes in East Africa (primarily in Ethiopia and
Tanzania) have seen increase of surface area due to increased
rainfall in recent years (Byrne et al., 2024). Likewise, Lake
Hulun in China has seen an expansion in recent years (Gao et
al., 2024). Lastly, Lake Colhué Huapi in Argentina has dis-
appeared for all but few weeks in the months of April and
May, and has been removed in the updated water mask map.

In the context of the inland water property retrievals, it
should be noted that many of the endorheic lakes tend to be
very shallow and can have a high bottom reflectance. Fur-
thermore, many are hypersaline (e.g., Aral Sea), and may
have severely altered pH levels (e.g., Lake Natron), poten-
tially complicating the efforts to retrieve water properties.

3.2 New river dam impounded water reservoirs

Another major source of changes to water surface are hu-
man built dams and river filled reservoirs of water as part
of hydropower and water management projects. These ac-
tions severely alter existing ecosystems and also create new
habitats. Satellites provide essential measurements for under-
standing of changing environmental conditions, such as algae
blooms in relatively static waters, sediment dynamics, etc.
One of the largest recent hydro power projects is the Grand
Ethiopian Renaissance Dam (GERD) (Wheeler et al., 2016,
2020) (see Fig. 2), which was absent in the old land mask.
Nearby downstream Roseires dam reservoir, located across
the border in Sudan, has also expanded, as compared to the
extent in the old land mask, though its size still varies with
seasons.

We found that most of the recently created large river dams
and corresponding water reservoirs are in Africa and Asia.
All new river dam water reservoirs included in the updated
water mask dataset is listed in Table 2 (for Africa and South
America) and Table 3 (Asia and East Europe). The river dams
are listed by name, approximate geographic coordinates, the
river on which each dam is constructed and that supplies
water to its reservoir, the estimated new surface area, and
the estimated date when the current surface extent area was
reached, based on monthly clear-sky false-color imagery. We
note again that the area estimate is based on suitability for
medium resolution satellite inland water property retrievals,

Earth Syst. Sci. Data, 18, 231–244, 2026 https://doi.org/10.5194/essd-18-231-2026

https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html
https://www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html


K. Mikelsons and M. Wang: Improved land mask for satellite remote sensing of oceans and inland waters 235

Figure 1. The extent of Toshka Lakes, Egypt, in the old land mask (a) and the updated land mask (b), along with the corresponding daily
Chl-a retrievals (c, d) from VIIRS-NOAA-21 on 25 March 2025, and the true color imagery (e). The multi-sensor yearly clear-sky false color
imagery (f) obtained from VIIRS SNPP and NOAA-21 daily false color imageries over 2024 shows nearly identical water surface coverage
as the daily true color imagery (e).
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Figure 2. The changes in the extent of the Roseires Dam and GERD reservoirs from the old and updated land masks for (a) the old land
mask with Roseires Dam reservoir in top left part, (b) the updated land mask with expanded Roseires Dam reservoir in top left and more
recent GERD in the lower right, (c) VIIRS-NOAA-21-derived Kd (490) using the old land mask, and (d) the same Kd (490) image using the
new land mask. Panel (e) is the corresponding VIIRS-NOAA-21 daily true color imagery and panel (f) is the multi-sensor yearly clear-sky
false color imagery derived from VIIRS-SNPP and VIIRS-NOAA-21 daily false color imageries in 2024, showing nearly identical water
surface coverage as the daily true color imagery (e).
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Table 1. List of changes to endorheic lake basins in the updated land mask.

Name and country Coordinates Old area Updated area Figure
(km2) (km2)

Aral Sea, Uzbekistan/Kazakhstan ∼ 45° N, 60° E 8643 5010 S1
Toshka Lakes, Egypt 23.1° N, 30.9° E 71 2734 1
Lake Abbe, Ethiopia/Djibouti 11.15° N, 41.75° E 150 414 S2
Lake Abijatta, Ethiopia 7.6° N, 38.6° E 62 160 S3
Lake Eyasi, Tanzania 3.6° S, 35.1° E 71 860 S4
Lake Manyara, Tanzania 3.6° S, 35.8° E 94 575 S4
Lake Natron, Tanzania 2.4° S, 36.0° E 429 828 –
Lake Sulunga, Tanzania 6.1° S, 35.2° E 144 854 S5
Hulun Lake, China 49.0° N, 117.5° E 1990 2153 S6
Lake Colhué Huapi, Argentina 45.5° S, 68.7° W 253 0 –

Table 2. List of new and changed river dam reservoirs in Africa and South America.

Name and country Coordinates Estimated River Recent Figure
new area changes

(km2)

Grand Ethiopian Renaissance Dam, Ethiopia 11.21° N, 35.09° E 1298 Blue Nile Dec 2024 2
Roseires Dam, Sudan 11.80° N, 34.39° E 332 Blue Nile Nov 2024 2
Genale Dawa III Power Station, Ethiopia 5.61° N, 39.69° E 76 Ganale Doria Dec 2019 S7
Mtera Dam, Tanzania 7.14° S, 35.98° E 577 Great Ruaha Mar 2024 S5
Julius Nyerere HPS, Tanzania 7.80° S, 37.83° E 681 Rufiji Mar 2024 S8
Calueque Dam, Angola 17.27° S, 14.55° E 78 Cunene Jan 2024 S9
Laúca Dam, Angola 9.74° S, 15.13° E 168 Cuanza May 2018 S10
Lom Pangar Dam, Cameroon 5.38° N, 13.5° E 182 Lom Nov 2016 S11
Kashimbila Dam, Nigeria 6.87° N, 9.76° E 36 Katsina Ala Nov 2017 S12
Zungeru Dam, Nigeria 9.90° N, 6.30° E 334 Kaduna Dec 2021 S13
Unnamed Dam, Burkina Faso 13.36° N, 2.05° W 19 White Volta Oct 2017 S14
Samendéni Dam, Burkina Faso 11.38° N, 4.58° W 86 Black Volta Oct 2018 S15
Souapiti Dam, Guinea 10.42° N, 13.25° W 91 Konkouré Dec 2021 S16
Colíder Dam, Brazil 10.98° S, 55.77° W 116 Teles Pires Apr 2018 S17
Sinop Dam, Brazil 11.27° S, 55.45° W 142 Teles Pires May 2019 S17

and thus will differ from the actual area measurements based
on high spatial resolution imagery. In fact, in most cases the
estimated surface areas for medium resolution satellite inland
water property retrievals are smaller, sometimes significantly
so. This is especially true for river dam water reservoirs,
as these new water bodies tend to have complex, irregular
shapes, which cannot be exactly represented in medium spa-
tial resolution. Coarsening high resolution data to medium
resolution data requires discarding many pixels with partial
water coverage due to land contamination effects, which can
severely degrade satellite water property retrievals.

We also estimate the old water surface area derived from
the old water mask dataset. However, for most of newly cre-
ated water bodies, the surface area in the old land mask data
is either zero, or very small (< 10 %), as compared to the up-
dated one. Only two of the water reservoirs listed in Table 2
are older and recently expanded to larger surface area. The
Roseires Dam reservoir in Sudan has seen recent expansion

(though with substantial seasonal variability) from 226 km2

in the old land mask to 332 km2 in the updated land mask,
representing almost 50 % increase. The reservoir created by
Mtera Dam in Tanzania, though over 40 years since its com-
pletion, also has expanded in recent years and this change is
reflected in the updated water mask as an increase of surface
area from 254 to 577 km2. We also found two recent river
dam reservoirs in South America, both on Teles Pires River
in Brazil (also listed in Table 2). We did not find significant
changes to water surface extent of any type in the Central and
North America.

Globally, the largest number of new river dam water reser-
voirs were found in Asia, listed in Table 3. As one of exam-
ples for relatively recent water bodies with a fairly complex
shape, we highlight reservoir impounded by the Lower Se
San Dam 2 in Cambodia in Fig. 3 (Sithirith, 2021). Here,
and in similar cases, we used representative high resolution
Sentinel-2 MSI imagery to derive the medium resolution land
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Table 3. List of new and changed river dam reservoirs in Asia and East Europe.

Name and country Coordinates Estimated River Recent Figure
new area changes

(km2)

Nizhne-Bureyskaya Dam, Russia 49.79° N, 129.98° E 123 Bureya May 2019 S18
Baihetan Dam, China 27.22° N, 102.90° E 135 Jinsha Sep 2021 S19
Wendegen Reservoir, China 46.9° N, 121.94° E 75 Chuoer Aug 2024 S20
Geshan Dam, China 47.36° N, 127.49° E 27 Nuomin Sep 2022 S21
Pubugou Dam, China 29.21° N, 102.83° E 58 Dadu before 2012 S22
Chushuidian Dam, China 32.25° N, 113.96° E 24 Huaihe Sep 2020 S23
Ban Pook Dam, Laos 16.36° N, 106.24° E 21 – Oct 2019 S24
Nam Theun 1 HPP, Laos 18.36° N, 104.15° E 34 Nam Kading Oct 2022 S25
Nam Ngiap 1 Dam, Laos 18.65° N, 103.52° E 34 Nam Ngiap Jan 2020 S26
Nam Khong 1 Dam, Laos 14.55° N, 106.74° E 14 Nam Khong Nov 2021 S27
Nam Khong 2 Dam, Laos 14.50° N, 106.86° E 2 Nam Khong Nov 2022 S27
Nam Khong 3 Dam, Laos 14.57° N, 106.92° E 12 Nam Khong Nov 2022 S27
Xe Namnoy Dam, Laos 15.03° N, 106.6° E 17 Xe Namnoy Nov 2020 S27
Lower Se San 2 Dam, Cambodia 13.55° N, 106.26° E 177 Tonlé San Oct 2018 3
Prakaet Dam, Thailand 13.09° N, 101.82° E 5 Prakaet Nov 2018 S28
Hang Maeo Dam, Thailand 13.07° N, 101.97° E 9 Hang Maeo Nov 2023 S28
Jatigede Dam, Indonesia 6.86° S, 108.10° E 28 Manuk Jun 2016 S29
Myittha Dam, Myanmar 21.99° N, 94.04° E 14 Myittha Oct 2016 S30
Hiramandalam Dam, India 18.67° N, 83.93° E 8 Minor stream Nov 2018 S31
Kundaliya Dam, India 23.92° N, 76.31° E 23 Kali Sindh Sep 2018 S32
Mohanpura Dam, India 23.96° N, 76.78° E 35 Newaj Sep 2018 S32
Lower Indra Dam, India 20.39° N, 82.67° E 21 Indra Sep 2018 S33
Machagora Dam, India 22.12° N, 79.16° E 22 Pench Oct 2016 S34
Mallana Sagar Dam, India 17.96° N, 78.74° E 25 Minor stream Dec 2021 S35
Mid Manair Dam, India 18.39° N, 78.96° E 46 Manair Nov 2019 S35
Sriram Sagar Dam, India 18.96° N, 78.34° E 176 Godavari before 2012 S36
Moragahakanda Dam, Sri Lanka 7.70° N, 80.77° E 18 Amban Ganga Jan 2018 S37
Kalu Ganga Dam, Sri Lanka 7.56° N, 80.83° E 5 Kalu Ganga Jan 2020 S37
Yan Oya Dam, Sri Lanka 8.74° N, 80.88° E 34 Yan Oya Feb 2019 S38
Ilısu Dam, Turkey 37.53° N, 41.85° E 72 Tigris May 2020 S39
Alpaslan-2 Dam, Turkey 39.04° N, 41.52° E 43 Murat May 2021 S40
Kakhovka Dam, Ukraine 46.78° N, 33.37° E 69 Dnipro Jul 2023 S41

mask. Nevertheless, all of the new water bodies were first
identified in the medium resolution clear-sky false color im-
agery.

Again, as seen in the results for Africa, for most of the new
river reservoir-based water bodies, the area in the old water
mask is relatively small (< 10 %), as compared to the area es-
timated from the updated land mask dataset. The only signifi-
cant exception is the reservoir bounded by Sriram Sagar Dam
in India, which was completed in 1977. While this reservoir
has existed for decades, we estimate that it has increased in
size from 91 km2 in the old land mask to 176 km2 in the
updated dataset. Table 3 also lists the only river fed water
body of decreased size – the collapse of reservoir on Dnipro
river as a result of destruction of Kakhovka Dam in Ukraine
(Vyshnevskyi and Shevchuk, 2024), which had the estimated
water surface area of 2017 km2 in the old water mask and
now is reduced to just 69 km2 in the updated one.

3.3 Changes to coastal regions

Another type of human induced changes to global surface
waters is due to land reclamation, and changes to land and
water surface cover in coastal regions. Such changes are typ-
ically very gradual and can be readily identified in satellite
daily imagery or clear-sky imagery derived over a longer
time period. Figure 4 shows such changes near the coast-
line of the United Arab Emirates (UAE), with the updated
land mask (Fig. 4b) closely resembling the true and false
color imagery (Fig. 4c and d, respectively). The updated land
mask (Fig. 4b) adds offshore Crescent Island and newly re-
claimed lands near the UAE coastline (Subraelu et al., 2022),
absent in the old land mask (Fig. 4a). Other recorded areas
of land reclamation projects (see Table 4) include establish-
ment of new polders in Markermeer, the Netherlands, and a
port expansion in Singapore. However, the largest total area
of changes between the old and updated land masks were
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Figure 3. The land mask changes in lower Mekong River basin in Cambodia for (a) the old land mask showing Mekong River and its
tributaries in the northern part of Cambodia, (b) updated land mask with the reservoir created by Lower Se San Dam 2 (right side), and
VIIRS-NOAA-21-derived daily Kd (490) with (c) the old and (d) the updated land mask, respectively. Panel (e) shows the corresponding
yearly clear-sky false color imagery and panel (f) shows the detailed view of the impounded basin in the daily false color imagery derived
from Sentinel-2A MSI scene, captured on 9 January 2025.
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Figure 4. Changes between the old and updated land masks due to land reclamation projects near the UAE coastline of (a) old land mask
before changes, (b) the updated land mask showing the Crescent Island (top center right) and large scale land reclamation near coast,
(c) VIIRS-SNPP true color imagery on 13 May 2025, and (d) monthly clear-sky imagery derived from daily VIIRS-SNPP and VIIRS-
NOAA-21 false color imageries in May 2025.

seen in Egypt, partly due to expansion of the Suez Canal, but
mostly due to changes in the nearby Nile wetlands, also re-
lated to human activities. This includes both areas previously
seen as water in the old land mask and identified as land in
the updated one, and vice versa.

3.4 Fixing artifacts in the earlier land mask dataset

Lastly, we have fixed a couple of artifacts found in the earlier
version of the water mask dataset. One of these was found
in the Arctic near East Greenland (Fig. 5). Since not all
data sources in our earlier study covered the polar regions,
fewer data sources were used, and the results were more
prone to errors. In particular, two of the MODIS-derived
data sources, MOD44Wv5 land mask (Carroll et al., 2009)
and MOD44Wv6 land mask (Carroll et al., 2017), had an
outsized weight, and that caused their artifacts to propagate
into the derived water mask data. In this updated version,

we have corrected this artifact by using the OpenStreetMap
(https://openstreetmap.org, last access: 15 December 2025)
data, which we also find as consistent with recent yearly
clear-sky true and false color imageries.

We also fixed another artifact and improved the land mask
dataset to include recent changes in the Amazon River Delta
region. Here, deriving accurate land mask dataset is chal-
lenging due to a number of factors. Frequently cloudy skies
limit the number of usable satellite observations in the re-
gion, and relatively high tidal amplitudes cause rapid diur-
nal changes in large tidal areas. In addition, high sediment
loads in waters elevate the reflectance in the NIR part of
spectrum and make it more difficult to distinguish the sed-
iment rich waters from the adjacent wetlands in the false
color imagery. These factors were the likely causes of the
artifacts in the sources used to derive the old land mask
dataset. The GFC dataset, in particular, misclassified large
areas of shallow sediment rich waters north of the Amazon
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Table 4. List of changes to coastal areas.

Name and country Coordinates Estimated Type of changes Figure
area of

changes
(km2)

Port Said and Suez Canal, Egypt 31.2° N, 32.2° E 453 Artificial lake and waterway development S44
Marker Wadden, Netherlands 52.59° N, 5.38° E 8 Land reclamation S43
Trintelzand, Netherlands 52.65° N, 5.38° E 6 Land reclamation S43
Strandeiland, Netherlands 52.36° N, 5.02° E 7 Land reclamation S43
Tuas, Singapore 1.23° N, 103.63° E 22 Land reclamation S42
Crescent Island, UAE 25.31° N, 54.65° E 1 Land reclamation 4
UAE coastline 24.75° N, 54.56° E 52 Land reclamation 4

Figure 5. Area of East Greenland showing artifacts in MOD44Wv5 (a) and MOD44Wv6 (b) land masks (credit: NASA, https://www.
earthdata.nasa.gov/data/catalog/lpcloud-mod44w-006, last access: 15 December 2025) used as sources for producing the old land mask (c)
and propagating artifacts to it. In contrast, OSM data (map data from OpenStreetMap, https://www.openstreetmap.org/copyright, last access:
15 December 2025) in panel (d) are much more consistent with the yearly multi-sensor clear-sky true color imagery (f) obtained from the
daily VIIRS and OLCI sensor imagery in 2024 and were used as data source to produce the updated land mask (e) over this area.

River Delta as land, and GSW data were also somewhat af-
fected. The artifacts from these sources propagated to the
old land mask dataset (Fig. S45a) and have been corrected
in the new land mask data (Fig. S45b). Furthermore, we also
identified many natural changes to water surface extent in the
Amazon River Delta region, including changes to river paths
and shifting coastlines, and incorporated them in the new
land mask dataset. Since we could not find a single recent
cloud free Sentinel-2 MSI scene, we opted to use a number of

(around 50) recent (2024–2025) Sentinel-2 MSI scenes over
this region to derive clear-sky true and false color imageries
in high spatial resolution. This false color imagery was then
used to derive an updated medium resolution land mask us-
ing the same methodology as described above. The resultant
land mask roughly represents the extent of land at a medium
tidal water height.
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4 Data availability

Both the earlier and the updated land/water mask data
are publicly available (Mikelsons and Wang, 2025,
https://doi.org/10.17632/9r93m9s7cw.2). Interactive visual-
ization of the updated land mask data is also available
on the OCView website (https://www.star.nesdis.noaa.gov/
socd/mecb/color/ocview/ocview.html, last access: 15 De-
cember 2025), along with the monthly global clear-sky true
and false color imagery used in this study.

5 Discussion and conclusions

We have derived an updated global medium (250 m) reso-
lution land mask, incorporating the changes to the global
water surface over the past decade. In particular, we have
also shown that clear-sky imagery derived from multi-sensor
daily imagery time series can be a valuable resource to eval-
uate the accuracy of the existing land mask datasets, and to
identify recent changes in the global water surface.

We find that most common water surface changes are due
to human activities, such as newly constructed river dams,
or land reclamation projects in coastal regions. Changes to
the endorheic lakes found in arid regions also can be due
to human water use, but in most cases, these are driven by
interannual changes to the upstream rainfall amounts.

While the target application for this updated land mask
dataset is medium resolution satellite ocean/water color mea-
surements, we expect it to be useful in other types of remote
sensing applications. In fact, we argue that new water bodies
often display the most rapid environmental changes, and are
of particular interest to the research community, including
remote sensing of terrestrial, atmospheric, and cryospheric
properties. We also note that for satellite sensors with long
mission lifespans (currently VIIRS-SNPP, MODIS-Aqua,
and at some point, OLCI-Sentinel-3A), different land mask
datasets are required to accurately represent the various time
periods of the mission.

While this study presents a static binary global land mask
dataset, it is clear that, in the regions where water coverage
follows a clear seasonal cycle, satellite ocean/water color re-
trievals would benefit from a seasonally resolved land mask
dataset. However, this will require much more efforts with
detailed validations. Likewise, inclusion of water fractional
coverage data in land mask dataset may also be beneficial
for many applications, such as more accurate evaluation of
coastal adjacency effects in future satellite water color re-
trieval algorithms.

Overall, periodic updates to the global land mask data are
essential to maintain accuracy. In fact, we can gauge the tem-
poral frequency of changes to global water surface by look-
ing at the estimated time of the most recent changes (as well
as quantitative variations to the water surface area) listed
in Tables 2 and 3. From these data, we suggest that, at a
global scale, about 3–5 year update cycle may be adequate

for medium resolution land mask datasets used in satellite
ocean/water color studies. Local, regional, and high spatial
resolution land mask datasets likely require more frequent
updates. Ultimately, the update frequency is also affected by
practical considerations, such as available research time and
resources.

In documenting the latest significant regional changes to
the global land mask dataset, we also acknowledge that in-
cremental updates such as those detailed in this study may
be time consuming and potentially prone to some form of hu-
man bias. In contrast, automated methods have been widely
used for mapping global water and land cover extents and re-
quire less human involvement. We surmise that the process
of extracting the land mask from the clear-sky imagery em-
ployed in this work may also be automated, using an existing
or a custom-tailored approach. Nevertheless, as seen in this
and our earlier work, automated approaches can also lead to
artifacts. Thus, careful validation is always necessary, espe-
cially for global studies covering a wide range of land sur-
face types and water optical properties. In fact, having sur-
veyed and evaluated a number of data sources derived by a
variety of mostly automated approaches, we would like to
stress the importance of data validation by a human expert.
In this task, we found that interactive visualization platforms
(such as OCView) are immensely useful, including the ca-
pability to inspect imagery at different spatial resolutions,
and to quickly switch and compare different data sources
and products, all while maintaining the geographical context.
Use of automated methods is likely the only viable option
for working with and deriving of global high spatial resolu-
tion land mask datasets due to large data volumes, and the
use of interactive multi-resolution imagery in validation can
be especially useful. The Sentinel-2 MSI satellite series is
seen as one of the leading high resolution environmental data
sources with good spatial and spectral resolutions, and data
are publicly available. Use of commercially sourced satellite
data imagery may help to increase the observation frequency,
but may be cost prohibitive for global applications.
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