
Earth Syst. Sci. Data, 18, 219–229, 2026
https://doi.org/10.5194/essd-18-219-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

Austrian NIR soil spectral library for soil
health assessments

Julia Fohrafellner1, Maximilian Lippl2, Armin Bajraktarevic1, Andreas Baumgarten1, Heide Spiegel1,
Robert Körner1, and Taru Sandén1

1Department for Soil Health and Plant Nutrition, Austrian Agency for Health
and Food Safety (AGES), Vienna, 1220, Austria

2Department for Feed Analysis and Quality Testing, Austrian Agency for Health
and Food Safety (AGES), Vienna, 1220, Austria

Correspondence: Julia Fohrafellner (julia.fohrafellner@ages.at)

Received: 21 July 2025 – Discussion started: 23 September 2025
Revised: 4 December 2025 – Accepted: 4 December 2025 – Published: 8 January 2026

Abstract. The rise in demand for soil data and information calls for quick and cost-effective methodologies
to quantify soil properties. This is particularly important in the realm of restoring soil health in Europe. Near-
infrared (NIR) spectroscopy has demonstrated the ability to predict specific soil properties with high accuracy
whilst being less costly and time-consuming than traditional methods. To fill gaps in national spectroscopic soil
data, we compiled the first Austrian NIR soil spectral library (680–2500 nm) based on legacy samples (n=
2129), covering all environmental zones of Austria. We then employed partial least square regression (PLSR)
modelling to test the usability of the dataset for soil health assessments at its current stage. Our analysis revealed
that the application of the PLSR is not suitable for accurately estimating soil health indicators compared to
routine laboratory analysis. Nevertheless, among the 14 soil properties tested, total nitrogen, CaCO3, soil organic
carbon and clay exhibited moderate predictive accuracy (R2 > 0.7). Most importantly, the dataset containing
sample meta-data (e.g., land use type, environmental zone or zip code), laboratory reference values and NIR
spectra with 1 nm resolution can be used as a foundation for further spectral analysis and modelling. We make
this work openly accessible to actively contribute to closing soil data gaps and promote the expansion of soil
spectral libraries as a basis for soil health assessments (https://doi.org/10.5281/zenodo.15772618, Fohrafellner
et al., 2025).

1 Introduction

In 2021, the European Commission published the renewed
Soil Strategy (European Commission, 2021), in which the
vision for healthy soil ecosystems by 2030 was presented.
Soil health, defined as “the continued capacity of soils to pro-
vide ecological functions for all forms of life, in line with the
Sustainable Development Goals and the Green Deal” (Eu-
ropean Commission et al., 2020), is still an evolving term
and concept. It received heightened attention since the im-
plementation of the EU Mission: A Soil Deal for Europe
(European Commission et al., 2020) and particularly the dis-
cussed Soil Monitoring Law (European Commission, 2023).
Narrowing down the definition of soil health and, most im-

portantly, quantifying it has therefore become a key issue for
soil scientists. Characterizing soil health in the form of multi-
ple indicators and creating a “soil health index” (Lehmann et
al., 2020) suitable to measure and monitor soil health in the
EU (European Commission, 2023; Matson et al., 2024) are
pivotal in achieving healthy soils until 2030. Efforts to de-
fine such an index are multi-fold (Matson et al., 2024; Wade
et al., 2022; Rinot et al., 2019), but generally they agree on
including chemical, physical and biological indicators that
go beyond crop production to encompass soil ecosystem ser-
vices (Shen and Teng, 2023). Properties such as soil organic
carbon (SOC), soil nutrients, pH or cation-exchange capac-
ity (CEC) are frequently included in soil health assessments
(Lehmann et al., 2020). These properties are routinely an-
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alyzed in laboratories with traditional methods but are of-
ten time-consuming and require resources such as expensive
equipment and chemicals. The increasing requirements for
soil health assessments and monitoring posed by the Soil
Monitoring Law are creating a demand for less cost-intensive
alternative methods (Safanelli et al., 2025).

The application of soil visible (vis) and near infrared
(NIR) spectroscopy to predict soil properties, particularly
chemical ones, using statistical and machine learning meth-
ods has increased rapidly in recent decades (Viscarra Rossel
et al., 2011; Gholizadeh et al., 2013; Stenberg et al., 2010).
Spectroscopy was shown to generate fairly to very accu-
rate estimates of e.g., total carbon (Ma et al., 2023), SOC
(Guerrero et al., 2016) and its fractions (Jaconi et al.,
2019b), as well as soil texture, specifically clay (Jaconi et
al., 2019a), and carbonates (Tavakoli et al., 2023). This ap-
proach also bears great potential for soil fertility assessments
of total nitrogen (Park et al., 2024) along with total and
critical available phosphorus (Recena et al., 2019). Com-
pared to traditional laboratory analyses, spectroscopy has
many advantages because it is fast, simple, cost-effective, re-
producible, repeatable, non-destructive and environmentally
friendly (Viscarra Rossel et al., 2006; Nocita et al., 2015;
Soriano-Disla et al., 2013). To improve predictions and fill
data gaps, large reference training data sets, so-called soil
spectral libraries (SSL), are being built and often made freely
available. These extend from local, regional to national and
even global scale (FAO, 2022), thereby helping to describe
soils and their health whilst improving soil data availability
(Cornu et al., 2023). Nevertheless, large areas without avail-
able data in the global coverage of NIR SSL remain, calling
for active participation to fill these gaps (Viscarra Rossel et
al., 2016; Safanelli et al., 2025). This is necessary because
the predictive capacity of models relies on the number and
diversity of soil samples and conditions represented in the
spectra. Concurrently, new methods for coordinating exist-
ing SSL are being developed, enabling interoperability be-
tween labs, data harmonization, engagement of communities
and model development (Safanelli et al., 2025; Peng et al.,
2025).

The application of NIR spectroscopy for Austrian soils is
limited so far. Beyond sample analysis within the LUCAS in-
ventory (Fernandez Ugalde et al., 2022), Ludwig et al. (2023)
tested the suitability of vis-NIR and MIR (mid infrared) spec-
troscopy for forest soils whilst comparing different mod-
elling approaches. Moreover, the suitability of vis-NIR for
measuring soil carbon contents and the effects of agricul-
tural management methods was analyzed by Bieber (2023)
on a regional scale. To date, no national SSL for Austria
is openly available. By using available legacy soil samples,
including their results from chemical and physical analysis,
we wanted to fill this gap and analyzed them via NIR spec-
troscopy. Therefore, the objectives of this study were (i) to
provide a first dataset on Austrian NIR soil spectra and ref-
erence laboratory analysis for several soil health properties,

covering all Austrian environmental zones and (ii) to apply
partial least square regression (PLSR) for model calibration
and validation and test the model’s applicability for national
soil health assessments.

2 Soil sample selection

The selection of soil samples for the Austrian NIR soil spec-
tral library was based on a wide distribution of soils with dif-
ferent properties to strengthen the dataset usability and pre-
dictive power of applied models. The dataset includes legacy
soil samples (analyzed and stored in the AGES archive) from
several long-term field experiments, different project cam-
paigns and from farmers’ land. Moreover, samples from the
so-called AGES “soil box” (AGES soil box, 2025), which
are sent in by private persons, were included. The soil box
allows individuals to have their soils analyzed for common
properties such as pH, SOC and phosphorus. These samples
are special because they stem from a wide range of land uses
including grassland, arable land, forests, orchards, hedges or
lawn, but also compost or garden soils. This particularly pro-
motes the diversity of included soils and enhances the ge-
ographical distribution and coverage throughout Austria. All
included samples were collected between 2016 and 2023 and
soil sampling depth ranged between 0 cm down to a maxi-
mum of 110 cm (mean: 24.5 cm). This yielded a total of 2129
samples which were considered for the soil spectral library.
Most samples represent the Pannonian zone (n= 1059), fol-
lowed by the Continental (n= 778), Alpine South (n= 286)
and Mediterranean Mountains (n= 5) zones (Fig. 1). For one
sample, the location and environmental zone are unknown
(Sample_number 743), hence it is not included in Fig. 1.

3 Dataset creation and description

Information about the soil samples included in the dataset
was extracted from the AGES internal database “LISA”.
Missing data regarding zip codes and land-use type was
gathered by contacting responsible persons within and out-
side of AGES. MS Excel© (version 2410) and the statis-
tical programming language R within the RStudio inter-
face (version 2024.04.0) were used for data processing. The
dataset contains 1846 columns, of which columns 1 to 11
provide information on the soil sample, columns 12 to 25
contain chemical and physical reference analysis results, and
columns 26 to 1846 contain the measured absorbance from
680 to 2500 nm for every nm. Column “Sample_number” as-
signs each sample a number, starting from one, and column
“Sampling_year” shows the year of soil sampling. In col-
umn “Experiment_number” the samples were grouped into
experiments which indicate that samples were collected on
the same site. When several samples were sent in together
but originated from different sites (e.g., many sites sampled
within one research project), this was indicated by an un-
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Figure 1. The environmental zones in Austria according to Metzger et al. (2018, 2005) with sampling locations of the NIR spectral library
(n= 2128) sampled between 2016 and 2023. Circle size indicates the number of soil samples per municipality.

derscore (e.g., 9_1, 9_2). Column “Sample_source” provides
information on the source of the soil sample, e.g. whether
it was taken from a long-term experiment (LTE), part of a
research project sampling campaign, or submitted by a pri-
vate person or advisor for analysis. The columns “Zip_code”
and “Municipality_code” indicate the location of the sam-
pling site, which in some cases needed to be approximated
due to limited location information. For the majority of sam-
ples, coordinates were not available, as they were either sent
by private individuals and farming advisers, or were taken
by other research facilities than AGES. Therefore, only zip
and municipality codes are provided in our dataset. The en-
vironmental zone (Metzger et al., 2005; Metzger, 2018) of
the sampling location is shown in column “Environmen-
tal_zone”. Sampling depths (sampling_depth_from and sam-
pling_depth_to) are reported in columns 8 and 9, respec-
tively, and land use types in column 10. Most samples were
taken from arable land (n= 1485), followed by vegetable
plots (n= 202) and lawn (n= 174). Other land use types
(orchards, forests, grassland, hedges, ornamental plants and
vineyards) were sampled less than 100 times. For 73 sam-
ples the land use type was unknown. Lastly, column 11 indi-
cates whether samples were sent in for analysis with a “soil
box”. As these samples are taken and submitted by private
individuals, the land use type defined by those individuals
might not always be accurate. Finally, such samples may con-
tain artificial substrate, high amounts of compost or fertil-
izers. Regarding the chemical and physical reference anal-
ysis and NIR spectroscopy, the methodologies and results
are described in detail in the following sections. The dataset
is available at https://zenodo.org/ (last access: 19 Decem-
ber 2025) in the form of an excel file, which is accompa-

nied by document metadata and a legend (Fohrafellner et al.,
2025).

4 Analysis of soil

4.1 Chemical and physical reference analysis

Chemical and physical soil properties were analyzed in the
AGES soil laboratory for all soil samples (Table 1). The
samples were air-dried at maximum 40 °C for at least 2 d
and sieved through a 2 mm stainless steel sieve (ÖNORM L
1053:2012-04-15). Soil organic carbon (SOC) and total car-
bon (TC) were analyzed by dry combustion in a LECO Tru-
Mac CN (LECO Corp., St. Joseph, MI, United States) at 650
and 1250 °C, respectively (ÖNORM L 1080:2013-03-15).
The labile carbon was determined according to Tatzber et al.
(2015). The carbonate content (CaCO3) was measured gas-
volumetrically according to the “Scheibler method” (CO2
evolution; ÖNORM L 1084:2016-07-01). Total N (TN) was
determined via elemental analysis using a LECO Trumac CN
at 1250 °C (ÖNORM EN 16168:2012-10-01). Plant avail-
able phosphorus (hereafter referred to as “Phosphorus”)
was determined by calcium-acetate-lactate (CAL) extraction
(ÖNORM L 1087:2012-12-01). Soil pH was measured elec-
trochemically (pH/mV Pocket Meter pH 340i, WTW, Weil-
heim, Germany) in 0.01 M CaCl2 at a soil-to-solution ra-
tio of 1 : 5 (ÖNORM EN 15933:2012-10-01) and in cal-
cium acetate (VDLUFA, 1991) to compare the suitability
of NIRS to predict the results of these methods. The cation
exchange capacity (CEC) was determined by extracting the
effective exchangeable cations Ca++, K+, Mg++, Na+ and
Al+++, Fe+++, Mn++ and H+ in barium chloride solution
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(ÖNORM L 1086-1:2014-03-15). Texture was determined
according to ÖNORM L 1061-2:2002-02-01, and clay was
further analyzed by density in soil suspension (ÖNORM EN
ISO 17892-4).

The models for calibration and validation (Sect. 5 “Spec-
troscopic modelling”) for each soil property were tested with
the full range of SOC values, but also with subsets contain-
ing only samples with SOC values below 7 %, as this is the
upper limit for most agricultural mineral soils in Austria. The
modelling results revealed that using only the latter subsets
generated better estimates the properties SOC, SOC/clay ra-
tio and TC. We therefore provide the summary statistics for
these properties using all samples or only samples with less
than 7 % SOC (Table 1).

4.2 Spectral measurement and preprocessing

The legacy soil samples from the AGES soil archive were
prepared as for previous reference analysis and measured
with the SpectraStar™ XL near-infrared spectrometer from
Unity Scientific (Brookfield, CT, USA) (Fig. 2) between the
range 680 to 2500 nm. This instrument was equipped with 2
detectors and provided a spectral resolution of 1.0 nm, with
the sensor switch being between 1340 and 1341 nm. A matte-
surface gold-plated metal reflector was used as an internal
reference. The sample cup (8.5 cm diameter) was filled up to
about one third with a soil sample and covered with the re-
flective lid, which was pressed slightly onto the sample. Each
sample was scanned 24 times, and a mean was calculated.
The same soil sample was then transferred to a new sample
cup and the scanning was repeated. A mean was calculated
from these two repetitions. The standard used was White
Sand (Lucky Bay, Australia), which enables harmonizing re-
sults from different near-infrared spectrometers used within
the ProbeField project.

The accompanying UCal™ Chemometric Software (Unity
Scientific, Brookfield, CT, USA) was used to pre-process
the spectra. The reflectance (R) spectra were converted to
absorbance (A) spectra by A= log10(1/R) (Fig. 3). Scatter
correction was achieved by standard normal variate (SNV)
transformation and detrending (Barnes et al., 1989). The first
forward derivative was applied to remove baseline shifts and
to increase the resolution of superposed peaks (Duckworth,
2004).

5 Spectroscopic modelling

The Kennard–Stone algorithm (Kennard and Stone, 1969)
of the “prospectr” package (version 0.2.7) (Stevens and
Ramirez-Lopez, 2024) in R Studio (version 2024.04.0) was
used for calibration and validation set sampling, as it al-
lows to create sets that have a flat distribution over the spec-
tral space (Stevens and Ramirez-Lopez, 2025). The dataset
was split into 80 % calibration and 20 % validation samples.
To avoid pseudo-independence of spectra, grouped samples

Figure 2. SpectraStar™ XL near-infrared spectrometer from Unity
Scientific loaded with a soil sample.

from the same sites were either assigned to the calibration
or validation set via the algorithm. Simultaneously, a uni-
form distribution of samples was ensured by applying the
Mahalanobis distance, which first performs a PCA on the in-
put data and computes the Euclidean distance (Stevens and
Ramirez-Lopez, 2024). As these settings generated a very
small validation set for clay in suspension (n= 7), a sepa-
rate split using only samples with data of this soil property
was conducted. Here, the Euclidean distance, which selects
points which are the farthest apart from its closest neighbor
(Stevens and Ramirez-Lopez, 2024), was used because the
Mahalanobis distance requires more samples than individual
spectra for point distance computation. The UCal™ Chemo-
metric Software (Unity Scientific, Brookfield, CT, USA) was
then used to apply the partial least square regression (PLSR)
for model calibration and validation. A maximum of 15 fac-
tors were set, and outlier detection and removal were per-
formed by calculating the Mahalanobis distance, which was
set to a maximum global distance of 13 and 3 for the cal-
ibration and validation sets, respectively. The spectra were
trimmed to the range of 780–2400 nm and sensor switches
between 1330–1350 nm were removed. After model calibra-
tion, predictions were generated based on the validation set
for each soil property. Models were tested for all samples
or for subsets, i.e., SOC values below 7 %, as described in
Sect. 4.1. This was done as the modelling results revealed
that using subsets with SOC < 7 % generated better esti-
mates of the properties SOC, SOC/clay ratio and TC, as it
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Table 1. Summary statistics of the measured soil properties of the Austrian NIR soil spectral library for all samples and for the subset of
samples with SOC below 7 %. SOC is soil organic carbon, TC is total carbon, TN is total nitrogen, and CEC is the cation exchange capacity.

Property n Min Max Median Mean SD Skewness

All samples

SOC (%) 2112 0.02 44.8 1.96 2.76 3.20 6.45
SOC/clay ratio 534 0.0009 1.59 0.103 0.199 0.241 2.37
TC (%) 92 1 39.1 4.90 6.54 6.23 2.79
Labile carbon (mgkg−1) 567 47 1516 558 600 194 1.57
CaCO3 (%) 327 0.01 81.9 9.7 13.3 12.6 1.90
TN (%) 1036 0.029 2.42 0.192 0.253 0.206 3.95
Phosphorus (mgkg−1) 1643 1 1624 78 113 137 4.20
pH (CaCl2) 1917 3.18 7.93 7.26 6.92 0.848 −1.58
pH (Acetate) 304 5.59 7.42 6.48 6.53 0.391 0.29
CEC (cmolckg−1) 641 2.88 85.4 21.0 20.9 8.75 2.33
Sand (%) 562 5.6 92.5 32.2 36.2 18.7 0.59
Silt (%) 562 5 75.7 47.1 45.7 14.3 −0.37
Clay (%) 534 1.5 47.1 17.3 18 9.05 0.50
Clay in suspension (%) 381 10 40 20 21.4 5.19 0.77

SOC < 7 %

SOC (%) 1997 0.02 6.94 1.91 2.20 1.17 1.60
SOC/clay ratio 518 0.0009 1.25 0.0978 0.182 0.214 2.37
TC (%) 71 1 8.82 3.93 3.92 1.68 0.229

Figure 3. Raw near-infrared soil spectra excluding standards (n= 2129) with mean spectrum (dark line).

is the upper limit for most agricultural mineral soils in Aus-
tria. Statistical measures used to determine the performance
of the model were the standard error of prediction (SEP) and
the coefficient of determination (R2) from linear regression
as well as the ratio of performance to inter-quartile distance
(RPIQ) (Bellon-Maurel et al., 2010).

6 Model performance

NIR estimates of the 14 soil health indicators (Table 2
and Fig. 4) revealed that PLSR explained total nitrogen
contents (TN) best (R2

= 0.9, SEP= 0.05), followed by
CaCO3 (R2

= 0.89, SEP= 3.95), soil organic carbon (SOC)
(R2
= 0.82, SEP= 0.45) and clay (R2

= 0.74, SEP= 4.35).
Nonetheless, the standard error of prediction was large for
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these properties. This is a common issue in larger-scale spec-
tral libraries because they can comprise a wide range of
soils with high mineralogical variability (Nocita et al., 2015;
Stenberg et al., 2010), as it is the case for Austria. Regard-
ing SOC, the regression shows that up to concentrations
of 4 %, the model predicted SOC well, but with increasing
concentrations it underestimated NIR predictions due to the
limited number of samples. Such limited numbers of sam-
ples for “extreme” values impacted the predictive quality
of several other soil parameters, particularly phosphorus or
sand content. Although SOC and clay results were sufficient,
the SOC-to-clay ratio was not well estimated by the model
(R2
= 0.49, SEP= 0.08); only narrow ratios showed good

prediction by NIR spectroscopy. For total carbon (TC), only
a small sample size for validation (n= 30) was available,
which nevertheless revealed potential for accurate predic-
tion by NIR (R2

= 0.68, SEP= 1.02). Labile C had few low
and high reference values, which impacted the prediction on
NIR negatively (R2

= 0.54, SEP= 83.79). When comparing
the results for soil pH, pH in acetate achieved better esti-
mates than pH in CaCl2 (R2

= 0.67, SEP= 0.2 and R2
=

0.61, SEP= 0.61, respectively). Phosphorus values above
200 mgkg−1 were underestimated by NIR, yielding overall
poor model results (R2

= 0.2, SEP= 82.84). Clay analyzed
in suspension had a moderate coefficient of determination
(R2
= 0.58, SEP= 2.71). Other soil properties, i.e., cation

exchange capacity (CEC), sand and silt, achieved R2 below
0.5.

We also calculated ratio of performance to inter-quartile
distance (RPIQ) for all 14 soil health indicators. The pro-
posed threshold for satisfactory model performance of a
RPIQ of > 1.89 (Ludwig et al., 2019) was used. Based on
this metric, CaCO3 (RPIQ= 5.06) performed best, followed
by TC (RPIQ= 3.33), clay (RPIQ= 2.52), clay in sus-
pension (RPIQ= 2.21), pH in CaCl2 (RPIQ= 2.20), SOC
(RPIQ= 2.09) and TN (RPIQ= 1.95). The other proper-
ties achieved RPIQs below 1.89. As previously described
by Ludwig et al. (2019), it should be acknowledged that
the threshold of 1.89 is predicated on the work by Chang
et al. (2001), whose values were not based on theory or ex-
periment, and that model performance must be evaluated ac-
cording to the specific context. When assessing the suitabil-
ity of NIR as a substitute for routine laboratory measure-
ments, particular attention should be given to the SEP, since
even high R2 or RPIQ values cannot compensate for a large
SEP that indicates limited precision. Accordingly, we con-
centrated our assessment on R2 and SEP as key indicators of
model performance.

7 Usability of the Austrian NIR soil spectral library
and recommendations

The results of data validation show that applying partial least
square regression to the Austrian NIR soil spectral library

yields estimates of TN, CaCO3, SOC and clay contents with
moderate, and other properties with low accuracy. Although
several properties were predicted with an R2 > 0.7, standard
errors of prediction were generally high. Considering the ap-
plicability for routine soil health analyses and monitoring,
the predictive quality is currently insufficient compared to
standard laboratory analyses. Nevertheless, in cases where
funding is limited or rough estimates are sufficient, the tested
models could be of benefit. Other user-cases might include
the validation of citizen science data or the estimation of soil
texture, as laboratory analysis is a tedious process. Increas-
ing the sample number, particularly in the Alpine South, and
including samples with “extreme” values, could improve the
predictions and reduce standard errors. Grouping by environ-
mental zones or according to the parent material are further
options to assess for model improvement. Testing the per-
formance of other models, particularly more advanced ma-
chine learning algorithms such as random forest, cubist, ar-
tificial neural networks or support vector regression (Vis-
carra Rossel et al., 2016; Minasny et al., 2024; Minasny and
McBratney, 2008), could further enhance the useability of
the Austrian NIR soil spectral library. Lastly, we encour-
age merging with other SSLs, for example by using trans-
fer functions (e.g., calibration transfer, Feudale et al., 2002,
harmonization functions, Francos et al., 2023) or spiking for
adaptation of models to the characteristics of the target sites
(Guerrero et al., 2016) and using them for developing lo-
calized calibration sets for specified contexts and pedologic
domains (Viscarra Rossel et al., 2022). A weakness of our
dataset is the missing coordinates, which, due to inclusion of
soil samples taken by private individuals, farming advisors,
and external research organizations, were not available.

8 Data availability

The dataset described in this manuscript can be accessed
at https://doi.org/10.5281/zenodo.15772618 (Fohrafellner et
al., 2025).

9 Conclusions

We present a first Austrian near-infrared (NIR) soil spectral
library with over 2100 legacy samples and test the perfor-
mance of the partial least square regression (PLSR) to pre-
dict 14 chemical and physical soil health indicators. Several
properties, i.e., total nitrogen, soil organic carbon, CaCO3
and clay were estimated with moderate accuracy, whereas
the potential for predicting other indicators varied. We con-
clude that applying the PLSR to the Austrian NIR soil spec-
tral library is currently not suitable for precisely estimating
soil properties compared to routine laboratory analysis, but
that the library presents a valuable foundation for future soil
health assessments. Enlarging the spectral library would no
doubt improve the predictions, specifically by including ex-
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Figure 4. Validation of the observed (y) versus predicted (ŷ) soil properties of the soil spectral library. SOC is soil organic carbon, TC is
total carbon, TN is total nitrogen, CEC is the cation exchange capacity and SEP is the standard error of prediction. Blue line is the fitted line,
while the red dashed line shows a regression of 1.

treme values outside of common ranges and by including
data from the Alpine South. Moreover, testing novel mod-
els using machine learning algorithms to train and validate
the spectral library, for example, could improve predictions
of soil health indicators. We therefore encourage the use of
this open dataset and of merging the spectra with other ex-
isting or forthcoming libraries. This effort is an important
step forward in supporting the expansion of soil spectral li-
braries globally, facilitating the amplification of NIR analysis
as a fast and simple method to assess, monitor and map soil
health.
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