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Abstract. Remote sensing-based observations are used to map tree cover extent, estimate canopy height, detect
disturbances, and classify land cover and land use. However, comprehensive global information on forest cover,
capturing both physical characteristics and land use components as defined by the United Nations Food and
Agriculture Organization (FAO), remains limited. Here, we present a harmonized and globally consistent map
of forest presence or absence at 10 m spatial resolution for the year 2020, hereafter referred to as GFC2020. Our
approach combines multiple spatial datasets, primarily derived from Earth observation (EO), to harness their
complementary strengths within a transparent, flexible, and open science framework. GFC2020 maps 4562 mil-
lion hectares (Mha) of forests globally, which is 9.5 % more than the estimate from latest FAO Global Forest
Resources Assessment (FRA) for 2020. GFC2020 forest area does not include 578 Mha of tree cover (11 % of
the global tree cover area) because these areas do not meet the height threshold or occur on agricultural or ur-
ban land. Conversely, around 0.6 % (∼ 25 Mha) of the area classified as forest in GFC2020 is unstocked, due
to forest management practices or natural disturbances such as fire. Based on the reinterpretation of a previ-
ously collected reference set of 21 752 sample units, GFC2020 achieves an overall accuracy of 91 %, with a
commission error of 18 % and an omission error of 8 % for forest. Improvements in EO products, such as better
detection of trees in dry and open landscapes, distinguishing natural from human drivers of forest disturbance,
mapping tree crops at high spatial resolution or identifying agroforestry systems, will contribute to enhancing
future versions of GFC2020. The shift from tree cover to forest cover mapping is not only essential for ecological
and climate-related applications but also provides new opportunities to support policy needs. GFC2020 is one
of many tools to inform the deforestation risk assessments under supply chain oriented regulations such as the
European Union’s Deforestation Regulation (EUDR). Even though this map follows the EUDR’s definition of
forest, it is a non-exclusive, non-mandatory, and not legally binding source. The data availability is as follows:
GFC2020 (Bourgoin et al., 2024a, http://data.europa.eu/89h/e554d6fb-6340-45d5-9309-332337e5bc26) and the
validation dataset (Colditz et al., 2025a, http://data.europa.eu/89h/8fbace34-a2fe-47b9-ad82-3e9226b7a9a6).
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1 Introduction

Forests provide vital ecosystem services, including climate
and water cycle regulation, carbon storage and biodiversity
conservation. They also support the livelihood of over 1.6 bil-
lion people worldwide by providing timber and non-timber
resources (Harris et al., 2021; Pan et al., 2024; Watson et
al., 2018). Beyond their environmental and economic value,
forests hold deep social and cultural significance. They offer
spaces for recreation and spiritual connection and form the
foundation of life, identity, and tradition for indigenous peo-
ple and local communities (González and Kröger, 2020). De-
spite their critical importance, forests continue to face alarm-
ing rates of deforestation and degradation (Sims et al., 2025;
Bourgoin et al., 2024b; Xu et al., 2026), contributing sig-
nificantly to biodiversity loss and accounting for 12 %–20 %
of global greenhouse gas emissions (FAO, 2022a). Agricul-
tural expansion remains the primary driver, with crop culti-
vation and cattle ranching, particularly in tropical regions,
responsible for 86 % of global deforestation (West et al.,
2025). Specifically, the expansion of pastureland, oil palm,
soybeans, rubber, and tree crops such as cocoa and coffee ac-
counts for over half of global deforestation (Pendrill et al.,
2022; Goldman et al., 2020).

In response to recent global pledges to halt deforestation
by 2030 (Gasser et al., 2022), the European Union (EU)
introduced new regulatory measures to reduce its contri-
bution to global deforestation and forest degradation. The
Regulation on deforestation-free products (Regulation (EU)
2023/1115, commonly referred to as EUDR) sets binding
rules for seven key commodities: cattle, cocoa, coffee, oil
palm, rubber, soy, and wood, along with their derived prod-
ucts. For putting them on the EU market or exporting from it,
relevant commodities or products must be deforestation-free,
produced in accordance with the laws of the producing coun-
try and covered by a due diligence statement. Deforestation-
free means that there was no conversion of forest land use
to agriculture and no forest degradation after the cut-off date
(31 December 2020). The due diligence statement requires a
set of information, including the product name, the quantity,
the geographic coordinates of the production area, the sup-
plier, etc. Operators and traders sourcing from both standard
and high-risk countries, as categorized by the EUDR bench-
marking system, must conduct risk assessments and poten-
tially a risk mitigation as part of their due diligence to con-
firm that the products are deforestation-free (EU, 2023 with
amendments EU, 2024, 2025).

For risk assessment, an understanding of the state of the
land use in 2020 is essential. One possibility to support the
EUDR implementation is wall-to-wall spatial mapping of
global forest extent in 2020. Even though forest maps have
no authoritative status, they can support operators in assess-
ing the risk of deforestation after 2020 when declaring land

parcels by geolocation for targeted commodities and derived
products placed on the EU market or exported by Member
States. Beyond the EUDR, maps of forest cover serve as the
foundation for a wide range of ecological and climate-related
applications such as effective forest management, conserva-
tion, climate policy, the assessment of landscape connectiv-
ity, and evaluating ecosystem services (Tiemann and Ring,
2022; Vogt et al., 2024; Hunka et al., 2024).

Recent developments in remote sensing for land cover and
land use mapping have significantly expanded the ability to
monitor and analyze tree cover, tree height and land cover
and land use dynamics (Mercier et al., 2019; Brown et al.,
2022). Notable progress has been made in detecting both in-
dustrial and smallholder tree crop plantations (Clinton et al.,
2024; Descals et al., 2024; Wang et al., 2023), enabling im-
proved differentiation between natural forests and managed
tree crops. Advances in high-resolution imagery, as demon-
strated by Brandt et al. (2023), have enhanced the ability to
map low-density tree cover and trees outside forests, con-
tributing to a more complete understanding of tree presence
across heterogeneous landscapes. Innovations in estimating
canopy height by applying deep learning techniques to high-
resolution optical and radar imagery and spaceborne LiDAR
open new avenues for assessing forest structure and estimat-
ing aboveground biomass with greater accuracy (Pauls et al.,
2024; Lang et al., 2023). Additionally, remote sensing is in-
creasingly used to characterize the drivers of tree cover loss,
with recent work providing spatially explicit information on
pressures such as agriculture, infrastructure expansion, and
fire (Slagter et al., 2023; Shapiro et al., 2023; Masolele et al.,
2024; Sims et al., 2025). Research by Hansen et al. (2013)
and Vancutsem et al. (2021) reconstruct trajectories of global
tree cover changes and tropical moist forest changes, respec-
tively, offering valuable data for monitoring long-term trends
and inform policy makers.

Earth observation systems enable global mapping of tree
cover presence, reflecting the biophysical characteristics of
the land surface. However, ”forest”, as a land use designa-
tion, requires contextual information that goes beyond the
simple application of biophysical thresholds for tree cover,
height, and minimum area. Not every tree constitutes a for-
est and not all forest lands have trees standing at the time
of data acquisition for mapping. Some tree-covered areas do
not meet the minimum crown cover or area thresholds de-
fined for forests, or they may belong to other land uses. Ex-
amples are urban spaces or agricultural plantations such as
full sun tree crop production or crop in agroforestry systems
where trees provide shade for crops underneath. Conversely,
areas classified as forest may temporarily lack tree cover due
to events such as harvesting or wildfires, while awaiting re-
growth through restocking or natural regeneration. Land-use
definitions still consider these areas as forest if, at maturity,
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the trees can reach specified thresholds for area, density, and
height.

To date, only three global-scale forest maps exist that align
with FAO definitions: (i) a hybrid forest map calibrated with
FAO FRA data at 1 km resolution for the year 2000 (Schep-
aschenko et al., 2015), (ii) a forest management map at 100 m
resolution for the year 2015, which categorizes forest land
use according to FAO classification (Lesiv et al., 2022), and
(iii) a natural forest map for the year 2020 at 10 m resolution
produced from Sentinel-2 imagery and deep learning meth-
ods (Neumann et al., 2025). The natural forest map excludes
planted and plantation forests from its forest cover extent.
Currently, there is no global map at 10 m resolution for the
year 2020 that encompasses all components of forest as de-
fined by the FAO.

The primary objective of this paper is to introduce the sec-
ond version of the Global Forest Cover map for the year
2020, known as GFC2020, which provides a spatially ex-
plicit representation of forest presence or absence at 10 m
spatial resolution. More broadly, the paper aims to present
a globally consistent and harmonized methodology for map-
ping forest land use using existing global datasets. Building
on recent and scientifically validated advancements in remote
sensing products, our approach integrates global (or global
in their scope) spatial datasets on tree cover, tree height, and
land use and combines them to systematically exclude treed
areas that do not meet forest criteria under the EUDR for-
est definition. The paper includes a thorough validation of
this new global map, a comparison with FAO Global Forest
Resources Assessment data, a review of limitations, and a
discussion of potential applications in ecological monitoring
and policy implementation.

2 Material and methods

2.1 Forest definition

The forest definition used in the GFC2020 map aligns with
definitions set out in the EUDR (EU, 2023) and by the Food
and Agriculture Organization (FAO, 2018, 2025). A forest is
defined as land spanning more than 0.5 ha, with trees higher
than 5 m and a canopy cover greater than 10 %, or with trees
capable of reaching those thresholds in situ. Land used for ur-
ban or agricultural purposes is excluded from the definition
of “forest”. Agricultural use refers to land used for crop cul-
tivation, including agricultural plantations, set-aside agricul-
tural areas, and land used for livestock rearing. Agricultural
plantations are areas with tree stands in agricultural produc-
tion systems, such as fruit tree plantations, oil palm planta-
tions, rubber, olive orchards, and agroforestry systems where
crops are grown under tree cover. In other words, all planta-
tions of relevant non-wood commodities, such as cocoa, cof-
fee, oil palm, rubber, and soya, are excluded from the forest
definition.

2.2 Approach

To establish a global map of forest land use at 10 m spa-
tial resolution, we conducted a Boolean analysis of a suite
of existing and publicly available datasets of global scope,
including satellite-derived tree cover, height, age, and land
use classification layers (Table A1 in the Appendix). Most
datasets are derived from remote sensing with a spatial reso-
lution varying from 10 to 30 m. Vector datasets with a global
scope are also taken into account. Stratification layers on eco-
logical zones from FAO, drivers of global forest loss, gridded
production data of agricultural tree plantation, and maps on
the potential of agroforestry land use were introduced in the
workflow to further refine the combination of input datasets.

The mapping approach consists of three steps. First, we
merge existing global layers that identify tree cover extent
around the year 2020. This step creates a global maximum
extent of tree cover, including mangrove, planted and nat-
ural trees. We expand this extent by including areas with-
out standing trees that potentially correspond to unstocked
forest by incorporating datasets on historical tree cover and
analysing historical tree cover losses driven by natural dis-
turbances or forest management. This consolidation of the
maximum potential extent of forest cover is critical because
areas not identified in this initial mask cannot be classified as
forest cover in subsequent steps.

The second step uses layers that allow to remove tree-
covered areas that do not correspond to the forest definition.
These exclusion layers are related to tree height, prior agri-
cultural land use through indicators of deforestation, pres-
ence of cropland or agroforestry systems, other land use
types and urban areas. This exclusion phase is aimed to min-
imise commission errors (Fig. 1). We developed these two
first steps through an iterative process involving literature
screening of most recent relevant datasets for the year 2020
and feedback from internal (Joint Research Centre – JRC)
and external (EUDR stakeholders) qualitative assessments
(see Bourgoin et al., 2024c; Colditz et al., 2024). In the third
step we correct local errors and apply a minimum mapping
unit (MMU) of 0.5 ha to mimic the EUDR forest definition.

The global classification leverages Google Earth Engine
(GEE, Gorelick et al., 2017), which provides both high-
performance computing for processing global geospatial
datasets and give access to a multi-petabyte, analysis-ready
data catalogue. Input datasets that were initially not present
in the GEE catalogue were ingested in their original resolu-
tion with the EPSG: 4326 projection for the production of
this new global map. Vector datasets were rasterized to the
10 m per pixel resolution.

We assess GFC2020 against independent validation sam-
ples collected at global level. We build on the existing sample
design for the validation dataset of the Copernicus Global
Land Service – Land Cover map at 100 m (CGLS-LC100,
Tsendbazar et al., 2021; Xu et al., 2024) and interpreted each
sample unit according to the forest land use definition.
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Figure 1. Three-step workflow of the global forest cover mapping approach, feedback and accuracy assessment. Key data inputs and outputs
are organized thematically according to the forest definition. The feedback loop is crucial for refining revised versions of the map. “AND”
and “OR” refer to the Boolean expression. “–” refers to a logical “NOT” expression.

The mapping approach is flexible and can be continuously
refined when new global-scope datasets become available as
proven by improvements from version 1 to version 2; the lat-
ter is presented in this study. The feedback and local knowl-
edge from the user community and insights from internal
and external experts is used to refine this global approach.
The workflow can also benefit from continued collabora-
tions with research groups (e.g., World Resources Institute
– WRI, International Institute for Applied Systems Analysis
– IIASA) to identify new global or globally relevant spatial
datasets and potential enhancements. Furthermore, internal
analyses comparing the Global Forest Cover (GFC) product
with open-access regional or national land use datasets (e.g.,
from New Zealand, Côte d’Ivoire, North America, Brazil) al-
lows to identify regions with discrepancies in forest mapping
for potential improvement. These comparisons aim primarily
to inform the refinement of decision rules in the approach,
as non-global datasets (regional or national) cannot be in-

tegrated directly into the core workflow (Verhegghen et al.,
2024; Bourgoin et al., 2025).

2.2.1 Input datasets

This section details the input layers for land cover, land
use, tree cover, and tree height that are used to produce the
GFC2020 map version 2 (Table 1). Most datasets represent
the landscape in circa year 2020, with a few exceptions that
are presented and justified in subsequent sections. Global
spatial datasets on ecological zones, forest cover change
drivers, forest management types or coarse resolution crop-
land distribution are used as stratification layers to refine the
data integration.

2.2.2 Boolean decision rules

Step 1 maps the maximum potential extent of global forest
cover (Fig. 1, Tables 2 and A1). To identify potential ex-
isting/standing forest cover, we integrate three categories of
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Table 1. Input datasets. Detailed information on each input data layer can be found in Table A1 and in dedicated JRC policy reports (Bourgoin
et al., 2024b, 2025).

Steps/Categories Input layers References

St
ep

1:
M

ax
im

um
po

te
nt

ia
le

xt
en

to
ff

or
es

tc
ov

er Potential
existing/
standing
forest cover

Global tree cover circa
2020

ESA WorldCover (2020, 2021), WRI
Tropical Tree Cover (2020), UMD
Global Land Cover (2019)

Zanaga et al. (2021, 2022), Brandt et
al. (2023), Hansen et al. (2022)

Global mangrove cover
circa 2020

ESA WorldCover (2020, 2021), Global
Mangrove Watch (2020)

Zanaga et al. (2021, 2022), Bunting et
al. (2022)

Planted forest database WRI Spatial Database on Planted Trees
– planted forest (v2.1)

Richter et al. (2024)

Potential
unstocked
forest

Drivers of temporary
tree cover loss: natural,
fire and forest
managementb

Drivers of Global Forest Loss, class of
forest management, UMD Global Tree
Cover Loss from fire

Curtis et al. (2018), Tyukavina et al.
(2022)

Historical global tree
cover

UMD Global Tree Cover (2000, 2010) Hansen et al. (2013)

Global tree cover loss
up to 2020

UMD Global Tree Cover Loss
(2001–2020, 2011–2020)

Hansen et al. (2013)

St
ep

2:
E

xc
lu

si
on

of
ar

ea
s

th
at

ar
e

no
tf

or
es

t Tree height Global tree canopy
height circa 2020a

UMD Global Forest Canopy Height
(2019), Global-scale canopy height
(2019–2020), WRI/META Very-High
resolution canopy height (2009–2020)

Potapov et al. (2021), Pauls et al.
(2024), Tolan et al. (2024)

Global Ecological
Zones

FAO Global Ecological Zones on
boreal forest, JRC 2020 Tropical Moist
Forest

FAO Global Ecological Zones;
Vancutsem et al. (2021)

Deforestation Global tree cover
loss/deforestation up to
2020b

UMD Global Tree Cover Loss, JRC
Tropical Moist Forest Deforestation
Year

Hansen et al. (2013), Vancutsem et al.
(2021)

Drivers of
deforestationb

Drivers of Global Forest Loss, classes
of commodity driven deforestation,
shifting agriculture

Curtis et al. (2018)

Natural forest regrowth JRC Tropical Moist Forest Transition
Map, UMD Global Tree Cover Loss
from fire

Vancutsem et al. (2021), Tyukavina et
al. (2022)

Cropland Global cropland extent,
historical and circa
2020

UMD Global Cropland Extension
(2003, 2007, 2011, 2015, 2019), ESA
WorldCereal (2021), ESA WorldCover
(2020, 2021), UMD Global Land
Cover (2019)

Potapov et al. (2022), Van Tricht et al.
(2023), Zanaga et al. (2021, 2022),
Hansen et al. (2022)

Agricultural tree
plantations

JRC Tropical Moist Forest Transition
Map, WRI Spatial Database on Planted
Trees – tree crops (v1.0, v2.1), High
resolution map of rubber, Oil Palm and
Coconut plantation, palm probability
model

Vancutsem et al. (2021), Harris et al.
(2019), Richter et al. (2024), Wang et
al. (2023), Descals et al. (2024, 2021,
2023), Clinton et al. (2024)

Production area of
agricultural tree
plantations

CROPGRIDS, NASA Global Cropland
Extent Product (2015)

Tang et al. (2024), Thenkabail et al.
(2021)
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Table 1. Continued.

Steps/Categories Input layers References

St
ep

2

Agroforestry Potential of
agroforestry land use

IIASA Global Forest Management
(2015)

Lesiv et al. (2022)

Urban and
other land
use

Global built-up circa
2020

UMD Global Land Cover (2019), JRC
Global Human Settlement Layer
(2018), ESA WordCover (2020, 2021)

Hansen et al. (2022), Pesaresi and
Politis (2023), Zanaga et al. (2021,
2022)

Global urban use JRC Global Human Settlement Layer,
Degree of Urbanisation

Schiavina et al. (2023)

Global other cover
circa 2020

UMD Global Land Cover (2019), ESA
WordCover (2020, 2021), JRC Global
Surface Water, IIASA Mining

Hansen et al. (2022), Zanaga et al.
(2021, 2022), Pekel et al. (2016), Maus
et al. (2022)

Note: a Also used for cropland mapping. b Also used for agroforestry mapping.

spatial datasets with equal weight: (i) global tree cover circa
2020 derived from a combination of ESA WorldCover tree
cover for 2020 and 2021, WRI Tropical Tree Cover 2020,
and UMD Global Land Cover and Land Use 2019; (ii) global
mangrove cover circa 2020 based on data from the Global
Mangrove Watch (GMW) 2020 and ESA WorldCover man-
grove layers for 2020 and 2021; and (iii) planted forest ar-
eas from the WRI Spatial Database on Planted Trees (SDPT)
v2.1.

To map potential unstocked forest in 2020, we combine
UMD global tree cover loss data with historical tree cover
– using UMD tree cover from 2000, or from 2010 for ar-
eas where loss occurred after 2011 – alongside two spatial
datasets identifying the drivers of temporary tree cover loss.
If (i) forestry operations are identified as the primary cause of
tree cover loss by the Drivers of Global Forest Loss dataset
and no tree cover is detected in WorldCover 2020 or 2021,
these areas are included as potential unstocked forest result-
ing from clear-cut harvesting; or (ii) if fire is identified as
the primary driver of tree cover loss after 2011 using the
UMD fire-attributed loss dataset and no tree cover is present
in WorldCover 2020 or 2021, these areas are included as po-
tential unstocked forest resulting from fire disturbance.

Step 2 applies five exclusion masks to remove treed areas
that do not qualify as forest from the maximum potential for-
est extent (Fig. 1, Table 2 and A1):

1. Tree height: we exclude areas with top canopy heights
below 5 m using data from UMD Global Forest
Canopy Height (GFCH) and Global-scale canopy height
(GSCH), except where they overlapped with the poten-
tial unstocked forest layer identified in Step 1, planted
forests, or specific ecological zones. Exempted zones
include Boreal Coniferous Forest, Boreal Tundra Wood-
land, Boreal Mountain System, and Polar Regions as de-
fined by FAO, as well as Tropical Moist Forests – cover-
ing undisturbed, degraded, regrowth, and mangrove ar-

eas – according to JRC-Tropical Moist Forest classifi-
cation.

2. Deforestation: we exclude areas where tree cover loss
from UMD (2001–2020) was attributed to a deforesta-
tion driver – specifically commodity-driven deforesta-
tion and shifting agriculture, as defined by Curtis et
al. (2018) – or where deforestation up to 2020 was
mapped by JRC-TMF, including forest conversion to
agricultural plantations (e.g., oil palm, rubber). Excep-
tions were made for areas showing evidence of natural
forest regrowth, such as loss caused by fire (Tyukavina
et al., 2022) or areas within JRC-TMF forest and man-
grove zones with regeneration potential following tem-
porary disturbance, as well as forest regrowth older than
five years.

3. Cropland: we create a global cropland extent by com-
bining historical UMD cropland expansion data (2003–
2019) with 2020 datasets, including WorldCereal tem-
porary crops, ESA WorldCover cropland (2020, 2021),
and UMD Global Land Cover (GLC) cropland 2019.
To map agricultural tree plantations, we compile global
datasets such as WRI SDPT tree crops (v1 and v2.1),
Asian rubber plantations from Wang et al. (2023), and
global industrial and smallholder oil palm and coconut
plantations from Descals et al. (2021, 2023, 2024),
along with palm probability data from Clinton et al.
(2024). We also use crop production area data for cof-
fee, cocoa, and cashew from CROPGRIDS, and coarse
cropland extent from NASA Global Cropland Extent
Product (GCEP), combined with canopy height data
(< 5 m from META/WRI or GSCH), to identify and ex-
clude other tree crop areas. All areas intersecting with
one or more of these exclusion masks are classified as
non-forest.

4. Agroforestry: We intersect data on the potential for
agroforestry land use from the Forest Management Map
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(Lesiv et al., 2022) with Global tree cover loss from
UMD and forest disturbances from JRC-TMF (includ-
ing both temporary and permanent disturbances) in ar-
eas attributed to deforestation drivers (i.e. commodity-
driven deforestation and shifting agriculture) to exclude
shaded crops such as cocoa or coffee, which may other-
wise be misclassified as natural forest.

5. Urban and other land use: we exclude trees intersecting
with global built-up areas circa 2020, using data from
UMD GLC (0 %–100 % built-up), JRC Global Human
Settlement Characteristics (GHS-BUILT-C), and ESA
WorldCover (2020 and 2021). To further refine exclu-
sions, we use the JRC Global Human Settlement Layer
Settlement Model (GHS-SMOD) to remove tree cover
within suburban, peri-urban, and dense urban areas (see
Table A1 for details). We also build a global exclusion
layer for “other land cover” by combining UMD land
cover classes (desert, semi-arid land, dense short veg-
etation, salt pans, sparse wetland vegetation, and ice),
JRC Global Surface Water (permanent, newly perma-
nent, and seasonal-to-permanent water), ESA World-
Cover (2020/2021 water and wetland/bare soil classes),
and mining land use data from IIASA.

Step 3 involves post-processing to correct artifacts and en-
force forest definition standards. We manually correct or re-
place artifacts, such as striping caused by the Landsat-7 scan
line corrector failure, using WorldCover 2021 tree cover data.
Forest pixels overlapping with lava flows are removed using
a mask from the Global Surface Water dataset. To align with
forest definition standards, we apply a minimum mapping
unit (MMU) of 0.5 ha. This MMU also reclassifies small non-
forest gaps (< 0.5 ha) within large forest patches (> 0.5 ha)
as part of a single forested area. We calculate the patch area
using latitude-adjusted pixel sizes (EPSG: 4326) and delin-
eate patches using an eight-neighbour connectivity rule, i.e.
cardinal and intercardinal directions.

2.3 Accuracy assessment

We conducted an accuracy assessment of the GFC2020 map
with an independent validation dataset to evaluate the accu-
racy of the map at the global and continental levels. The val-
idation is done following good practices for accuracy assess-
ment of land cover maps (Strahler et al., 2006) and meets
the requirements of stage 3 validation guidelines of the Land
Product Validation (LPV) subgroup of the Committee on
Earth Observing Satellites (CEOS) (Tyukavina et al., 2025).

2.3.1 Sampling and response design

The accuracy assessment uses the 21 752 sample units from
the validation dataset of the Copernicus Global Land Ser-
vice Land Cover product for the year 2015 (CGLS-LC100)

(Tsendbazar et al., 2020, 2021). The CGLS-LC100 vali-
dation dataset follows the recommendations introduced by
Tsendbazar et al. (2018) for creating a multi-purpose val-
idation dataset for Africa and expands to the global scale.
The statistical approach builds on a global set of 149 con-
tinental strata (Tsendbazar et al., 2018, 2021). Koeppen cli-
mate zones and human population density served as basic
parameters for spatial sample unit distribution per continent.
Tsendbazar et al. (2021) introduced additional strata to in-
crease sampling intensity in rare land cover types, specifi-
cally wetlands, urban areas, water bodies, and shrublands,
as identified in the discrete land cover map from the Coper-
nicus Global Land Service (Buchhorn et al., 2020). Figure
2A shows the geographical distribution of all 21 752 sample
unit locations. The sample units consist of Primary Sample
Units (PSU) of 100× 100 m (blue frame in Fig. 2B) divided
into 100 10× 10 m Secondary Sampling Units (SSU, yellow
mesh in Fig. 2B). We selected the top-left SSU in the centre
of each PSU (red cell in Fig. 2) for validation of the 10 m
GFC2020 map.

Geo-Wiki by IIASA was the main tool for response data
viewing and collection of labels by interpreters (Fig. 2C).
Very high spatial resolution (mostly < 1 m) from ESRI, Bing
and Google are available in Geo-Wiki. In most cases inter-
preters also consulted the high spatial resolution image time
series for sample unit locations in Google Earth Pro to se-
lect response images close to the EUDR cut-off date (31 De-
cember 2020) and checked nearby Google Street View pho-
tographs. In tropical regions some interpreters also used the
JRC IMPACT toolbox (Simonetti et al., 2015) to display data
from Planet scope accessed through Norway’s International
Climate & Forests Initiative (NICFI).

A protocol was developed to interpret and assign labels
for sample units using VHR image sources. The protocol,
detailed in Colditz et al. (2025b), follows a two-level inter-
pretation legend presented in Table A2. First, the sample unit
is labelled either as forest or non-forest. Second, the inter-
preters were asked to report on the forest type or the land use
type for non-forest assignments. In addition, the interpreters
were also asked to report on their confidence (high/low con-
fidence) of the interpretation and mapping issues, if any.

Figure 3 illustrates a variety of sample unit interpreta-
tions using the protocol. The assessment of forest follows
the EUDR and FAO definition (FAO, 2018). A sample unit
is labelled as forest if all the physical thresholds (tree height
> 5 m, density > 10 %, area > 0.5 ha) and land use require-
ments are met. According to the definition, forest also in-
cludes land that is unstocked or where trees for forest land
use are temporarily below the 5 m threshold, for instance fol-
lowing forest harvesting operations or fire (Fig. 3 example A
illustrates a forest in regrowing state).

Even though experts assigned response labels to the cen-
tre 10× 10 m secondary sample unit, the forest definition in-
cludes a few criteria that require the interpretation of a larger
area. For instance, forest must have an area of at least 0.5 ha,
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Figure 2. Sampling and response design: Continental strata and sample location (A). 100× 100 m Primary sample unit (PSU, blue box) with
10× 10 m Secondary Sample Units (yellow mesh) (B). The red cell of 10× 10 m indicates the secondary sample unit for which interpreters
assigned the response label and which is used to assess GFC2020. Geo-Wiki validation interface showing a very high-resolution image and
the secondary sample units (yellow) altogether forming the primary sample unit with the selected secondary sample unit for assessment of
GFC2020 in red (C). Map data © 2024 Google.

thus the mere presence of trees in the centre 10× 10 m SSU
surrounded by grassland does not qualify as forest. Likewise,
a decision of land use, i.e. if the land is predominantly under
forest land use (Fig. 3 example B) or dominated by agricul-
ture or grazing animals (Fig. 3 example C) requires the inter-
pretation of a larger area. This larger area was in most cases
confined to the extent of the PSU with 100× 100 m.

The choice of classes for the second-level interpretation
depends on whether the sample unit has been categorized
as “forest” or “non-forest”. For “forest”, the expert assigned
the forest type, either “Primary or naturally regenerating for-
est” or “Planted or plantation forest”. For “non-forests”, the
expert selected either “no trees or shrubs present” or chose
from a set of classes (see list in Table A2a) that contain trees
which are non-forest and therefore hold potential to be mis-
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Figure 3. Examples of sample units (red cell) class assignment taking into account the primary sample unit (yellow mesh). Reproduced from
Colditz et al. (2025b). Forest, land without standing trees is regrowing, and presence of planted forest in the primary sample unit (A). Forest,
even though the sample unit falls into an area without trees, because the area within the primary sample unit has tall trees with a density well
above 10 % and there are no signs of other land uses than forest (B). Non-forest, where the dominant land use is grazing, even though all
physical criteria of “forest” would be met (C). Non-forest, an agricultural tree plantation (cocoa and rubber) which precludes this land being
labelled “forest” even if the physical criteria are met (D). Non-forest, contains woody vegetation below 5 m (E). Non-forest, the land use
with the largest area in the primary sample unit is forest, but the secondary sample unit for assignment is located outside and the non-forest
parcel is larger than 0.5 ha (F). Map data © 2024 Google.

classified as forest in the map. For instance, Fig. 3 example D
illustrates an agricultural tree plantation (cocoa and rubber),
which cannot be classified as “forest” even if it meets the
physical criteria. Figure 3 example E contains woody vege-
tation below 5 m and is labelled “other wooded land”. There
are complex cases where the major land use within the PSU
is forest, but the SSU (the red cell) is located in a non-forest
land use parcel larger than 0.5 ha, labelled as “trees inside
forest” (Fig. 3 example F).

The interpretation was conducted in two rounds, involving
two independent groups of experts. The World was divided
in 14 regions according to the available expertise by inter-
preters and ensuring an approximate balance of sample units.
In a first phase, 13 experts, mainly from the JRC, interpreted

response images for 21 752 sample units. In a second phase,
a different group of mostly external experts revisited a sub-
set of 4000 sample units. This included all sample units that
were assigned with low confidence in the first interpretation
and a random selection of sample units with high confidence
for quality control. This double-blind interpretation for ap-
proximately 12 % of the total sample units ensured high qual-
ity interpretations for labels with low confidence and allowed
to assess the agreement among interpreters.

2.3.2 Analysis

From the 21 752 sample units, interpreters could not assign
classes to 24 sample units while 62 sample units were not as-
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sociated with a strata class. For the comparison of forest area
estimates with FAO-FRA 2025, we intersected the sample
with the FAO Global Assessment Unit Layer (FAO, 2015),
reducing the sample by an additional 54 sample units. The
final reference set (Colditz et al., 2025a) with 21 612 sample
units was crossed with the GFC2020 map to report the ac-
curacy metrics. We use the formulas from Stehman (2014),
applicable to the case where the stratification does not corre-
spond to the map and to account for unequal inclusion prob-
abilities of sampled units. From this probability confusion
matrix we derived overall accuracy, producer and user accu-
racy and associated omission and commission errors.

2.4 Forest area estimates and comparison with
FAO-FRA

We derived forest area estimates from the final reference set
following the stratified estimation approach from Stehman
(2013, 2014). The approach extrapolates the proportion of
sample units labelled “forest” over the total land area, here
the area of the 149 strata inside the FAO Global Adminis-
trative Unit Layers (GAUL) country limits. This probabilis-
tic calculation allows for variance estimates, reported for the
95 % confidence interval. We then compared the area esti-
mates from the sample-based approach at global and conti-
nental levels with those derived from the GFC2020 map, as
well as global and regional data for the year 2020 reported in
FAO-FRA-2025 (FAO, 2025) and from the FAO FRA-2020
Remote Sensing Survey for the year 2018 which used a sam-
ple of more than 400 000 units (FAO, 2022b). For the pur-
pose of this comparison, the Russian Federation is grouped
with Europe. Forest areas derived from GFC2020 are cal-
culated by summing the surface area of all pixels mapped as
forest in a WGS84-referenced geographic coordinate system;
the geodesic area calculation inherently accounts for latitude-
dependent pixel size. The global forest area from FAO-FRA
builds on national reporting of forest area to year 2020 under
the FRA-2025.

3 Results

3.1 Global distribution of forest extent for year 2020

The Global Forest Cover map for year 2020 (Bourgoin et al.,
2024a) depicts the global forest cover extent following the
forest definition of the EUDR (Sect. 2.1). The global forest
area of the GFC2020 map is distributed amongst the regions
as follows: 20.8 % in the Russian Federation, 20.4 % in South
America, 18.2 % in North and Central America (including
the Caribbean), 16.7 % in Africa, 14.4 % in Asia, 5.1 % in
Europe and 4.5 % in Oceania (Fig. 4A).

Looking at the distribution of forest cover inside the
Global Ecological Zones (GEZ) of the FAO (FAO, 2012, Fig.
A1 in the Appendix) at the global level, 23 % of the total for-
est cover is located in the tropical rainforest, 14 % in the bo-

real coniferous forest, 13 % in the tropical moist forest, 9 %
in the boreal mountain forest, 7 % in the tropical dry forest,
7 % in the temperate continental forest, 5 % in the temper-
ate mountain system and 5 % in the subtropical humid for-
est ecoregions. The rest of the 11 ecoregions contains less
than 17 % of the total forest cover area. Looking at the dis-
tribution of forest cover inside the combination of GEZ and
continents (Fig. 4B), the tropical rainforest in South Amer-
ica presented the highest share of forest cover, followed by
the boreal coniferous forest and boreal mountain system in
Russian Federation and the tropical moist forest and tropical
rainforest in Africa.

Figure 5 illustrates the mapping of forest areas from
GFC2020 across a range of natural and human-made land-
scapes. Structured agricultural areas – such as full-sun cocoa,
soybean, pasture, full-sun coffee, oil palm, and rubber – are
generally well distinguished as non-forest due to their reg-
ular spatial patterns, clearly defined boundaries, large-scale
extent, and the availability of exclusion layers (as described
in Step 2 of Fig. 1), as shown in Fig. 5A through E. Large-
scale managed plantations for wood production are typically
identified as forest areas (Fig. 5F), while trees in dense urban
centres are correctly excluded from the forest extent (Fig.
5G).

Tree-covered areas in natural dry and open tropical forest
landscapes (Fig. 5H) are more difficult to classify accurately.
In such cases, the combination of multiple tree cover inputs
(also outlined in Step 1 of Fig. 1) improves the detection of
forest extent, but occasionally it leads to an overestimation.
For instance, other wooded land – although not classified as
forest by definition – is sometimes incorrectly mapped as for-
est (Fig. 5I). Unstocked forests, including areas affected by
clear-cutting or very young regrowth, may be misclassified
as non-forest when information on forestry activities driving
tree cover loss is not available (Fig. 5J).

Finally, complex land-use systems such as mixed urban
landscapes and shaded coffee plantations (Fig. 5K and L)
can also be misclassified as forest due to their heterogeneous
structure and partial canopy cover, which closely resemble
natural forest in satellite imagery.

3.2 Statistical accuracy assessment

3.2.1 Accuracy assessment at global and continental
levels

Table 2 shows the probability confusion matrix and accura-
cies for the GFC2020 map at global level. The confusion
matrix represents the correspondence of the GFC2020 map
with 21 612 sample units expressed as area proportion. In
addition, Table 2 presents the overall accuracy, the producer
and user accuracies of both forest and non-forest classes with
their 95 % confidence interval, and the associated omission
and commission errors. The GFC2020 map presents an over-
all accuracy of 91.5 %. For the forest class, the map has a
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Figure 4. Global representation of forest cover (green) (A). Grids represent a 20° fishnet and letters refer to the location of specific close-ups
shown in Fig. 5. Proportion of global forest area distributed across continents and ecological zones (B). Global Ecological Zones from FAO
are displayed in Fig. A1.

user accuracy of 82 % (associated commission error of 18 %)
and producer accuracy of 91.8 % (associated omission er-
ror of 8.2 %). Given the large sample size, the variance, ex-
pressed by the 95 % confidence interval (CI 95), is small.
The higher commission error indicates the tendency of the
map for a moderate overestimation of the forest area. There
is 92.8 % overall agreement between the first and second in-
terpretations and a balanced pattern of under- and overes-
timation without significant regional differences (Colditz et
al., 2025b).

The accuracy of the GFC2020 map was also assessed
at the continental level. Table 3 presents the overall accu-
racy, and commission and omission error of the forest class
per continent. All continents have an overall accuracy above
88 %. There are notable differences of the overall accuracy
among continents with lowest accuracies for South Amer-
ica (88.6 %) and Russian Federation (88.7 %) and highest for

Asia (94.9 %). Commission errors for forest are highest in
Africa (24.6 %) and lowest in Asia (12.5 %) and Oceania
(12.6 %). Omission errors range between 2.6 % in Russian
Federation and 25 % in Oceania.

Table A3 presents the overall accuracy and commission
and omission error of GFC2020 for each ecological zone.

In the tropical and subtropical zones, lower accuracies are
found in ecological zones with open and dry forests, often
characterised by low tree height woody vegetation. The tropi-
cal moist forest ecological zone, where agricultural tree plan-
tations are frequent, shows lower accuracies and higher er-
rors than the tropical rain forest ecological zone characterised
by dense, high forest cover. The temperate ecological zones
show accuracies above 90 %, higher than in the boreal belt.
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Figure 5. GFC2020 mapping in the context of various natural and human-made landscapes: full-sun cocoa plantation (6.7° W, 5.6° N)
(A), soybean and pasture structured landscape (47.3° W, 3.3° S) (B), full-sun coffee plantation (108.1° E, 11.5° N) (C), industrial oil palm
plantation (98.6° E, 1.8° N) (D), rubber plantation (100.8° E, 21.9° N) (E), planted forest (0.8° W, 44.6° N) (F), urban trees (73.9° W, 45.2° E)
(G), dry and open tropical forest (32.5° E, 4.2° S) (H), other wooded land (42.7° W, 10.7° S) (I), clear-cut harvesting on the left side and
very young regrowth on the right side (173.4° E, 41.2° S) (J), agroforestry system and mixed urban (113.9° E, 8.3° S) (K), shaded coffee
plantation (85.8° W, 13.3° E) (L). Map data © 2024 Google. Locations of each zoom is shown on Fig. 4.
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Table 2. Confusion matrix (%), overall accuracy (bold) and class accuracies with associated errors for the GFC2020 map at a global scale.
CI – confidence interval.

Proportions [%] (Reference)

Non-forest Forest Total User’s accuracy (CI 95) Commission error (CI 95)

Non-forest 64.0 2.5 66.4 96.3 (0.4) 3.7 (0.4)
Forest 6.0 27.5 33.6 82.0 (1.0) 18.0 (1.0)

Total 70.0 30.0 100.0

Producer’s Accuracy (CI 95) 91.4 (0.5) 91.8 (0.8) 91.5 (0.4)

Omission error (CI 95) 8.6 (0.5) 8.2 (0.8)

Table 3. Overall accuracy and commission and omission errors for the forest class of the GFC2020 map at continental level. CI – confidence
interval.

Overall accuracy [%] (CI) Commission error [%] (CI) Omission error [%] (CI)

Africa 92.1 (1.0) 24.6 (3.1) 9.2 (2.8)
North and Central America 92.6 (1.1) 18.1 (2.6) 7.1 (1.8)
South America 88.6 (1.2) 16.5 (2.0) 6.2 (1.4)
Asia 94.9 (0.7) 12.5 (2.5) 12.2 (2.4)
Europe 89.5 (1.2) 22.5 (2.6) 5.5 (1.6)
Oceania 89.6 (1.4) 12.6 (2.8) 25.0 (3.6)
Russian Federation 88.7 (1.5) 18.1 (2.4) 2.6 (1.1)
Global 91.5 (0.4) 18.0 (1.0) 8.2 (0.8)

3.2.2 Assessment of forest and land use types

This assessment focuses on the labels assigned at the level
of the SSU (second-level assessment in Table A2) to each
sample unit. Figure 6A illustrates the number of correctly
and incorrectly classified sample units in GFC2020 for each
land use type; however, it does not present probabilistic es-
timates of accuracy or area for these categories. Shares of
correctly classified sample units in GFC2020 are highest for
land uses “no trees no shrubs” (98 %) and “trees in urban ar-
eas” (95 %), both being land uses where physical and spectral
characteristics are very distinct from forest. Highest confu-
sions with forest are shown for “trees inside forest” (43 %)
and “other wooded land” (28 %). The confusion regarding
other wooded land stems from uncertainties in the interpreta-
tion by experts and the potential inaccuracies in the mapping
algorithm in deciding whether the physical criteria for forest
classification are satisfied.

Geographically, confusions between forest and non-forest
categorized as “other wooded land” cluster in the Brazilian
Cerrado and Caatinga biomes (Fig. 6B), due to a high uncer-
tainty about the tree height criterion. Other areas with ma-
jor confusion are regions with dry open forests, mainly in
Africa, and the transition from boreal to tundra landscapes
in Canada and Russian Federation. Confusions for trees in-
side forest could be mainly related to geometric uncertainties
between GFC2020 forest mapping and the sample unit loca-
tion and mapping of forest edges in GFC2020, as in many

cases the sample unit was located in a sufficiently large area
(> 0.5 ha) of non-forest, but close to or surrounded by forest
land use. Geographically, this issue concentrates in regions
with complex forest edges such as in Central and Southern
Europe, Eastern Asia and Eastern Australia.

Approximately 20 % and 18 % of the sample units “Trees
for agricultural use” and “Trees outside forest” were mapped
as forest in GFC2020. Given the thematic ambiguity in
both, mapping in GFC2020 and interpretation for the refer-
ence set, this result is satisfactory. Western Africa, especially
Cameroon shows a clustering of misclassification for “Trees
for agricultural use”. Colombia, Eastern and Southern Brazil,
outer-tropical regions in Africa, Mediterranean Europe and
Central Siberia show some clusters of misclassified “Trees
outside forest”.

3.3 Forest area estimates and comparison with
FAO-FRA

3.3.1 Area estimates at global and continental levels

Table 4 shows global forest areas estimates (confined to
land in the FAO GAUL dataset) from (i) the GFC2020 map,
(ii) the reference set for validation of GFC2020, (iii) FAO
FRA-2025 national reporting for 2020 (FAO, 2025) and (iv)
FAO FRA-2020 Remote Sensing Survey for year 2018 (FAO,
2022b). There is a near match between the global forest
area estimate from FAO-FRA-2025 national reporting and
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Figure 6. Number of correctly and incorrectly classified sample units in GFC2020 for each land use type (expressed in % of each land use
type) (A). Sample unit location for land use type incorrectly classified in GFC2020 (B).

the reference set. The area estimate from the GFC2020 map
is 9.5 % more than national reported data to the FAO-FRA-
2025, which corresponds to the previous finding of higher
commission errors than omission errors in the map. Area
estimates from the FAO-FRA-2020 Remote Sensing survey
are moderately smaller than nationally reported figures in the
FAO-FRA-2025.

From the same data sources we estimated forest areas per
region (as defined from FAO GAUL dataset). The area esti-
mated from the reference set has a difference of less than 5 %
compared to the FAO-FRA 2025 national reporting and is
lower than the area obtained from the GFC2020 map, except
for Oceania (Fig. 7). The forest area in the GFC2020 map is
between 6 % and 14 % higher than the FAO-FRA 2025 na-
tional reporting. The forest area in the GFC2020 is between
15 % to 25 % higher than in the reference set, except in Ocea-
nia, where it is 17 % lower and in Asia where it is only 1 %
higher. The findings per continent correspond to the pattern

of higher commission than omission errors, except for Asia
(equal shares) and Oceania (higher omission). In Africa, the
higher forest area estimates in GFC2020 may be partly ex-
plained by underreporting in the FAO-FRA data, as noted
by Bastin et al. (2017). Area estimates from the FAO-FRA-
2020 Remote Sensing survey generally align well with FAO-
FRA 2025 national reporting and the reference set, except for
Oceania.

Additional information on comparisons between
GFC2020 and regional or national land cover products
across Europe, Côte d’Ivoire, Brazil, and North America,
which show spatial agreement in forest cover ranging from
66 % to 87 %, is provided in Bourgoin et al. (2025).

3.3.2 Country level estimates

Figure 8 presents a global comparison of the proportion
of forest area by country, with FAO–FRA-2025 national
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Table 4. Global Forest area from (i) GFC2020 map, (ii) the reference set for validation of GFC2020, (iii) FAO FRA-2025 national reporting
for 2020 and (iv) FAO FRA-2020 Remote Sensing Survey for year 2018. The forest area for GFC2020 is confined to land in the GAUL
dataset. The reference set takes into account the strata by Tsendbazar et al. (2018) and the GAUL outline. CI 95. . . 95 % confidence interval.
SU. . . Sample Unit.

GFC2020 map Reference set for validation
of GFC2020 (21 750 SUs)

FAO FRA-2025
national reporting

for year 2020

FAO FRA-2020
Remote Sensing
Survey for 2018

(400 000 SUs)

Forest area [Mha] (CI 95) 4562 4021 (±83) 4165 3968 (±20)

Difference [%] to FAO FRA-2025
national reporting for 2020

9.5 −3.5 n/a −4.7

n/a – not applicable.

Figure 7. Forest areas in Mha for each continent from the GFC2020 map, the reference set for validation of GFC2020, FAO-FRA-2025
national reporting for year 2020, and FAO-FRA-2020 Remote Sensing Survey for year 2018. The error bars for the reference data indicate
the 95 % confidence interval.

reporting for 2020 on the x-axis and the GFC2020 map
within FAO-GAUL country boundaries on the y-axis. The
proportions are derived using each dataset’s reported for-
est area and the corresponding FAO-STAT land area. We
show a strong overall agreement between the two datasets
(R-Squared≈ 0.85, Mean Absolute Difference= 8.5 %, and
Mean Relative Difference= 0.2 %). Several countries show
close alignment, including Zambia, Guyana, China, France,
Malaysia, Australia, United States of America or Gabon,
where forest area proportions are nearly identical. GFC2020
tends to underestimate forest cover in countries such as Tan-

zania, Lao PDR, Senegal, and Botswana, potentially due to
unaccounted secondary forests or sparse tree cover not cap-
tured by remote sensing. In contrast, slight overestimations
are observed in Indonesia, Brazil, New Zealand, Canada,
and Kenya, possibly reflecting the inclusion of trees un-
der agricultural use or confusions with grassland or other
wooded land. Strong overestimation is observed in countries
with high share of open forests like South Sudan or Cen-
tral African Republic. This might also be the case in Ivory
Coast and Cameroon where the national definition of for-
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est reflected in FAO-FRA national reporting is based on tree
cover density of minimum 30 %.

4 Discussion

4.1 Beyond Tree Cover: Progress and Persistent
Challenges in Mapping Forest

4.1.1 Contribution of Global Spatial Datasets to
GFC2020

The GFC2020 workflow employs 35 input datasets, where
each dataset plays a distinct role. Information from input lay-
ers can sometimes overlap due to similarity in topic (e.g. his-
torical deforestation versus crop presence) and use of com-
mon sources of Earth Observation data. Figure 9 illustrates
the absolute and relative contributions of each input dataset
at every step of the methodology, as outlined in Fig. 1. The
relative contribution quantifies each dataset’s inclusion (step
1) or exclusion (step 2) area based on its position in the pro-
cessing chain. In contrast, the absolute contribution quanti-
fies the impact of each dataset – considered independently
and irrespective of processing order – on either the maximum
potential extent of forest cover or the total area of tree cover
excluded from GFC2020.

ESA WorldCover 2020 initially provides the majority of
tree cover to Step 1 (4282.46 Mha). The subsequent inclu-
sion of ESA WorldCover 2021, WRI Tropical Tree Cover,
UMD GLC, and Global Mangrove Watch expands this ex-
tent to 5088.18 Mha. This expansion highlights, for instance,
WRI Tropical Tree Cover’s unique ability to capture trees
that other global products miss. Individually, ESA World-
Cover 2021 contributes with the largest proportion (86.7 %)
to Step 1. WRI SDPT for Planted Trees and UMD Tree Cover
2010 contribute primarily to the 32.31 Mha extent of poten-
tial unstocked forest. Within Step 1’s maximum potential ex-
tent of forest cover, WRI SDPT Planted Trees alone consti-
tutes 4.9 %.

A total of 577.97 Mha of tree cover are classified as non-
forest in Step 2 of GFC2020, driven by the exclusion masks
of canopy heights (83 Mha), deforestation (173.6 Mha), crop-
land (184.23 Mha), agroforestry (2.45 Mha) and other land
and urban use (134.69 Mha). Among the datasets used for
these exclusion masks, the combination of canopy height
products, UMD GFC loss, JRC TMF and UMD Cropland
Extension have the highest absolute contribution (more than
13 % of tree cover that are not forest are masked out if
used alone) which may partially be explained by their global
wall-to-wall coverage. Datasets mapping specific agricul-
tural commodities (e.g. rubber from Wang et al. (2023) or
the combination of all palm datasets) or harmonized collec-
tion of regional tree crops data (e.g. WRI SDPT) have a low
absolute and relative contribution to Step 2 but are nonethe-
less critical to locally improve the map in areas not captured
by global wall-to-wall products.

4.1.2 Challenges and main limitations

Mapping errors in the GFC2020 dataset are attributable to
a confluence of complex and interconnected challenges that
span input data availability, technological limitations, and the
inherent complexities of land cover and land use classifica-
tion.

The lack of available and consistent global data on agri-
cultural tree plantations complicates the separation between
natural forests from tree crops. Although global datasets for
oil palm plantations are becoming more prevalent (Descals
et al., 2024), data on other significant tree crops such as
rubber, coffee, and cocoa remain limited to regional or na-
tional scales (Bourgoin et al., 2020; Kalischek et al., 2023;
Wang et al., 2023). This is primarily due to technical lim-
itations in remote sensing, such as the difficulty of detect-
ing under-canopy activities, and accurately mapping older
or small-scale land uses. For instance, the intricate spatial
heterogeneity of cocoa farming landscapes, characterized by
dense vegetation, varied land cover, diverse farming prac-
tices, and multiple growth stages, often exceeds the capabil-
ities of current mapping techniques (Masolele et al., 2024).
Moreover, complex land-use systems, like agroforestry, pose
a considerable challenge for accurate mapping. Crops like
cocoa and coffee are frequently grown under the shade of
a taller tree canopy, creating spectral signatures that can be
easily confused with degraded forest when observed using
optical satellite imagery (Renier et al., 2023), particularly
when the tree cover exceeds 50 % (Escobar-López et al.,
2024). While attempts have been made to address this is-
sue by analysing the removal of individual trees over time
in conjunction with forest management type data, the global
extent of agroforestry systems is still significantly underes-
timated, highlighting the complexity of distinguishing these
integrated land-use practices (Lesiv et al., 2022).

The inclusion of areas under shifting cultivation and con-
sideration for temporarily unutilized agricultural land also
contributes to mapping inaccuracies. The forest class in
GFC2020 can inadvertently include land undergoing cycli-
cal agricultural use or set-aside agricultural areas with young
tree regrowth. In tropical regions, the Joint Research Cen-
tre’s Tropical Moist Forest maps identify shifting cultivation
based on the frequency of temporary tree cover loss and the
time of forest regrowth following disturbances (Vancutsem
et al., 2021). To mitigate confusion, areas of tropical moist
forest regrowth younger than five years were excluded from
the GFC2020 forest class. However, a global time threshold
for fallow land outside the humid tropics is absent due to a
lack of comprehensive global datasets on forest regrowth.

The mapping of temporarily unstocked forests, where tree
cover is currently absent but expected to return, presents a
challenge. The absence of trees can be due to recent natu-
ral disturbances such as fires or storms, diseases, or clear-cut
harvesting practices. Distinguishing these areas from perma-
nently non-forested land requires incorporating temporal in-
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Figure 8. Country-level comparison of proportion of forest area between FAO-FRA-2025 national reporting for 2020 and the GFC2020
map. Figures A2 and A3 show this comparison for each continent, including both country-level forest area and forest proportion. R2, MAD
and MRD metrics refer to the R-squared, Mean Absolute Difference (in %) and Mean Relative Difference (in %) respectively. Dashed
line represents the 1 : 1 line and the blue solid line indicates the linear regression. Only countries with a minimum of 100 000 ha of forest
according to FAO-FRA and a minimum of 1000 ha of forest according to GFC2020 are displayed.

formation and understanding disturbance regimes. GFC2020
integrates various datasets related to planted forests, tree
cover in previous years, and forest loss drivers associated
with fire and forestry. Future improvements are anticipated
with the availability of higher resolution data on forest loss
drivers (Sims et al., 2025). However, recent disturbance
events (close to 2020), such as those linked to fire or logging,
present inherent ambiguity. Satellite imagery alone may not
clearly indicate whether the forest will regenerate naturally
or by human assistance or if the land will be converted to an-
other use (e.g., agricultural use). Therefore, it is crucial to in-
tegrate historical time series on disturbances and drivers not
only from before 2020 but also from after 2020 to understand
the fate of disturbed forests.

Delineating forest from non-forest using binary classifi-
cation inherently presents challenges in open woodlands or
areas with low tree height, leading inevitably to mapping in-
accuracies. Accurately mapping canopy height and tree cover
percentage via remote sensing remains complex, particularly
near the 5 m threshold where models often underestimate tree
height, potentially leading to forest omission if applied di-
rectly (Tolan et al., 2024; Moudrý et al., 2024).

Feedback and regional analyses have led to adjustments
in the integration of lower tree cover density areas in the
tropics in GFC2020, increasing forest area in some dry trop-
ical ecoregions. However, including these lower density ar-
eas posed challenges for other aspects of the methodology.
For instance, the integration of datasets like Global Pas-
ture Watch (Parente et al., 2024) requires careful considera-
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Figure 9. Sankey diagram, following the processing flowchart of Fig. 1, quantifying the relative contribution of input datasets to the con-
struction of the maximum potential forest extent and to the exclusion of areas that do not meet the forest definition (expressed in Mha and
represented by the thickness of each flow). Inclusions and exclusions depend on the sequential order in which datasets are applied in the
processing chain, shown from top to bottom in the diagram. Percentages indicate the absolute contribution of each dataset for inclusion or
exclusion. Note that Step 3 (post-processing) is not represented in this diagram and not all flows are shown to simplify the visualization of
the diagram. Full dataset names and abbreviations are provided in Table A1.

tion, because it classifies some of these areas as semi-natural
grasslands. Even though canopy height products offer po-
tential, their current sub-meter accuracy limitations necessi-
tate careful integration with auxiliary datasets to accurately
identify low canopy forests in specific regions. Also, this ap-
proach only takes into account the state of forest whereas the
forest definition includes the prospect that trees may reach
the height of 5 m at maturity. The convergence of multiple
global canopy height products in low-height areas offers a
promising avenue for future improvements.

Finally, urban use presents a unique challenge. GFC2020
integrates a dataset on urbanization degree to better identify
urban centres and exclude these trees from the forest clas-
sification. Although this update improved accuracy in dense
urban areas, it did not fully resolve the issue in dispersed or
low-density urban environments due to the coarse resolution
of the urbanization data. Enhancing the spatial resolution of
urban land use datasets beyond just built-up areas is crucial
for further improving the accuracy of forest mapping in com-
plex urban landscapes.

4.2 Future work

4.2.1 Research direction

The rapidly evolving field of remote sensing, particularly its
applications in forest land use mapping, offers promising ad-

vancements for future GFC2020 versions. This section de-
tails specific, non-exhaustive research areas, corresponding
to those in Fig. 1, where anticipated product developments
are projected to substantially enhance GFC2020’s accuracy.

First, the upcoming Copernicus Global Land Cover and
Tropical Forest Mapping and Monitoring service (LCFM)
could improve global tree cover mapping. Building on the
ESA WorldCover product, LCFM will produce a global land
cover map at 10 m spatial resolution with a tree cover class
and a tree cover density layer for the tropics at the same
resolution. In the future, LCFM will generate frequent, sub-
annual land surface categorizations for rapid mapping.

Second, canopy height mapping, a key component of for-
est physical characteristics, is undergoing a revolution in
terms of accuracy across multiple forest landscapes and spa-
tial resolution (finer than 1 m) and the availability of input
data for calibrating and validating models (Tolan et al., 2024;
Dubayah et al., 2020).

Third, we anticipate significant progress in characterizing
cropland, pastureland and agroforestry extent through com-
prehensive, wall-to-wall mapping of agricultural tree plan-
tations and grassland use. This will be driven by initiatives
like the Forest Data Partnership (Clinton et al., 2024) to de-
velop state-of-the-art machine learning algorithms or Global
Pasture Watch (Parente et al., 2024). These datasets, lever-
aging big data and multisource remote sensing, will generate
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global probability maps for key crops such as rubber, cof-
fee, cocoa, and oil palm (Clinton et al., 2024). Complemen-
tary to this, the WRI SDPT product will continue to expand
its consistent global harmonization of planted trees, includ-
ing both vector and raster data for agricultural tree planta-
tions and agroforestry systems at national and regional lev-
els (Richter et al., 2024). Currently, the GFC2020 workflow
relies on indirect methods such as CROPGRIDS, a coarse-
resolution gridded dataset on agricultural tree crop produc-
tion, to exclude tree crops from forest areas. This map-
ping approach may be supplemented or replaced if global,
wall-to-wall remote sensing approaches for directly map-
ping tree crops prove more effective. The integration of next-
generation commodity layers show promise in mitigating po-
tential overestimation within agricultural tree plantations and
cultivated pastures in the GFC2020 product (Fig. 10). How-
ever, their effectiveness in reducing commission errors for
soybean is more limited, with only a 0.32 % overlap with
forest in GFC2020, which is likely due to the spatially ac-
curate exclusion of ground crops from the GFC2020 dataset.
For tree crops, the overlap between GFC2020-classified for-
est and cocoa, oil palm, and rubber plantations is notably
high, with 6 %, 7 %, and 31 %, respectively at the 90 % prob-
ability threshold. This overlap further increases at the 70 %
probability threshold, strongly suggesting a significant po-
tential reduction in commission errors. Furthermore, com-
parisons with Global Pasture Watch (Parente et al., 2024)
reveal substantial potential commission errors in GFC2020
regarding pasturelands, particularly in terms of area (e.g.,
48.38 Mha for cultivated pasture and 269.59 Mha for semi-
natural pasture). This underscores the inherent challenge of
accurately distinguishing between pasturelands and forests,
especially in complex mosaic landscapes characterized by
open and low-density tree cover, where differentiating for-
est, pastureland, shrubland, and other wooded land is not
trivial (Verhegghen et al., 2022). We acknowledge the po-
tential value of the Global Pasture Watch data and plan to
assess it further for possible inclusion in subsequent releases
of GFC2020. Finally, the revised 1 km-resolution map of for-
est drivers (Sims et al., 2025) and the upcoming update of the
Forest Management Map provide more thematically detailed
and granular information on the main causes of global forest
loss and forest practices for 2020, compared to the stratifi-
cation maps currently used in GFC2020 (Curtis et al., 2018;
Lesiv et al., 2022). This is particularly useful for attributing
both permanent land-use change (e.g. agroforestry, shifting
cultivation, permanent agriculture) and temporary alterations
in forest structure (e.g., those following fire, forest manage-
ment through logging or clear cuts, or natural causes) that
do not involve land-use change, to historical time series on
forest disturbances (Reiche et al., 2021; Vancutsem et al.,
2021; Hansen et al., 2013). We estimate that incorporating
historical tree cover loss associated with permanent agricul-
ture, hard commodities, settlements/infrastructure, and shift-
ing cultivation could reduce potential commission errors in

GFC2020 by an additional 38.51 Mha. This represents a 7 %
increase in the tree-covered area excluded as non-forest com-
pared with the 578 Mha already removed during Step 2 of the
workflow (Figs. 9 and 10). Shifting cultivation accounts for
the highest percentage of this overlap: 41.63 % of total tree
cover loss from small- and medium-scale agriculture is clas-
sified as forest in GFC2020.

Conversely, incorporating tree cover loss associated with
temporary disturbance drivers; such as forest management,
wildfires, and other natural events; could reduce potential
omission errors in GFC2020 by an estimated 50.4 Mha. This
would represent a more than 200 % increase in the area clas-
sified as unstocked forest compared to current GFC2020
estimates. The primary driver of this potential increase is
the exclusion of areas affected by natural disturbances (e.g.,
storms, flooding, landslides, drought, windthrow, and insect
outbreaks), of which 33.61 % are currently classified as non-
forest in GFC2020. These figures remain hypothetical, be-
cause the inclusion of such areas would still need to meet the
additional criteria outlined in the EUDR forest definition and
by the GFC2020 workflow.

4.2.2 Forest types mapping to address EUDR definition
of forest degradation

Forest/non-forest maps can assist in assessing deforestation
risks for agricultural commodities under the EUDR but fall
short in addressing the EUDR’s definition of forest degrada-
tion. The EUDR also sets out that wood and derived products
need to be harvested from the forest without inducing forest
degradation after 31 December 2020. More specifically the
EUDR definition of “forest degradation” relates to structural
changes in the forest cover, taking the form of the conversion
of primary forests or naturally regenerated forests into plan-
tation forest or into other wooded land, or of primary forest
into planted forest. Given those conversions, the EUDR re-
quires to distinguish only three main forest types for the ini-
tial forest type status in year 2020: primary forests, naturally
regenerating forests, and planted forests (which, by definition
of the FAO (2018), include plantation forests). However, ef-
forts to map these forest types globally, particularly the char-
acterization of (1) primary forests, (2) naturally regenerating
forests, (3) planted forests and plantation forests within the
GFC2020 forest extent, are hindered by the limited availabil-
ity of appropriate global datasets. In particular, mapping pri-
mary forests presents a significant challenge due to the lack
of consensus on spatial indicators and methodologies. Pri-
mary forests are defined as “naturally regenerated forest of
native tree species, where there are no clearly visible indica-
tions of human activities and the ecological processes are not
significantly disturbed”, which encompasses issues of human
disturbances and ecological processes.

We are planning to use the GFC2020 extent and to in-
tegrate other global datasets including global spatial layers
of forest landscape integrity, intactness, protected areas, dis-
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Figure 10. Evaluation of the maximum potential reduction in GFC2020 commission (red bars) and omission (blue bars) errors through the
integration of supplementary datasets on commodities and drivers of forest loss. This figure uses independent regional and global datasets
not included in its original workflow that could be added in subsequent versions of GFC2020. Potential commission error is shown as: (1)
the percentage of commodity areas misclassified as forest in GFC2020 relative to the total area of each commodity (absolute values in Mha
are displayed above bars); and (2) the percentage of 2001–2020 tree cover loss from deforestation drivers misclassified as forest in GFC2020
relative to the global area of 2001–2020 tree cover loss for each respective driver. Potential omission error is calculated as the percentage of
2001–2020 tree cover loss from non-deforestation drivers misclassified as non-forest in GFC2020 relative to the global area of 2001–2020
tree cover loss for each respective driver. Data sources of the regional/global datasets: soybean extent in South America for year 2020 (Song
et al., 2021), probability estimates (≥ 70 and ≥ 90 % threshold) of cocoa (Côte d’Ivoire, Ghana), oil palm (global) and rubber (Thailand,
Indonesia, Vietnam, Malaysia, Philippines, Hainan Island, Côte d’Ivoire, Ghana) extents for year 2020 (Clinton et al., 2024). Dominant class
maps of grasslands (cultivated and natural/semi-natural) of year 2020 (Parente et al., 2024). Global tree cover loss from 2001–2020 (Hansen
et al., 2013) assigned to each driver (Sims et al., 2025).

turbances, canopy heights, management types, and land use
to create a consolidated version of the Global Forest Types
(GFT) map. The GFT map will require a multistep approach,
similar to that used for GFC2020, including user feedback,
incorporation of updated global datasets and a validation ap-
proach.

4.3 Mapping forest use for supporting the assessment
of deforestation risk under the EUDR

In the context of the EUDR, the GFC2020 map, like any ex-
isting global, regional, or national map, is a non-mandatory,
non-exclusive, and not legally binding source of information.
The colocation of geolocation data (points or polygons) with
forest areas identified in GFC2020, or any other map, does

not automatically indicate non-compliance with the EUDR
(Simonetti et al., 2025). Such plots must undergo further as-
sessment to determine the actual risk of deforestation. In ad-
dition to being deforestation-free, commodities and relevant
products also need to meet the legal criteria of the EUDR.
Similarly, the presence of geolocation data within areas clas-
sified as non-forest in GFC2020 or any other map does not
guarantee compliance with the EUDR’s deforestation-free
requirement.

The GFC2020 dataset is intended to support operators and
traders as one of several tools for deforestation risk assess-
ment during the due diligence process. Specifically, it can
help in the preliminary identification of plots where more
detailed or locally relevant data should be gathered for a ro-
bust risk evaluation. Given this intended use, the overesti-
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mation of forest area in GFC2020 may result in additional
assessments by operators. False positives, i.e. areas that are
wrongly mapped as forest in GFC2020, will likely be identi-
fied as non-forest during subsequent assessments using more
detailed or locally relevant data. In contrast, false negatives,
i.e. forest areas that are omitted in GFC2020, could be a ma-
jor concern for operators as deforestation risk areas may be
missed. It has to be noted that the overestimation of forest by
GFC2020 varies by regions and commodities, in particular
with significant overestimation in regions with agroforestry
systems like coffee and cocoa. Therefore, we strongly en-
courage operators to complement GFC2020 with national or
regional forest cover datasets that align with the relevant defi-
nitions set out in Article 2 of the EUDR, particularly datasets
that offer high spatial resolution and known accuracy. Al-
ternatively, ground samples, geotagged photographs or non-
spatial data could be used by operators to support or en-
rich the risk assessment (van Noordwijk et al., 2025). Sev-
eral studies have demonstrated the value of multi-criteria or
“convergence of evidence” approaches in this context (Ver-
hegghen et al., 2024; D’Annunzio et al., 2024). Importantly,
no map can ensure 100 % accuracy at the plot level unless
it has been specifically developed for small areas under local
conditions. The EUDR does not designate or recommend any
particular spatial dataset as a reference source. The respon-
sibility lies with operators and traders to select the most ap-
propriate information to support the deforestation risk assess-
ment. There is no obligation to use GFC2020, and it holds no
privileged status over other available datasets.

5 Code and data availability

GFC2020 version 2 corresponds to the model ver-
sion presented in this publication and is avail-
able for download as 10× 10° GeoTIFFs at
0.000083× 0.000083° resolution at http://data.europa.
eu/89h/e554d6fb-6340-45d5-9309-332337e5bc26
(Bourgoin et al., 2024a). The same version of the
dataset is also available on Google Earth Engine at
https://developers.google.com/earth-engine/datasets/
catalog/JRC_GFC2020_V2 (last access: 4 February
2026). The validation dataset is available at http://data.
europa.eu/89h/8fbace34-a2fe-47b9-ad82-3e9226b7a9a6
(Colditz et al., 2025a). Note that more recent ver-
sions of GFC2020 may be available from https:
//forobs.jrc.ec.europa.eu/GFC/ (last access: 4 February
2026). The source code of GFC2020 is available at
https://doi.org/10.6084/m9.figshare.29315528.v1 (Bourgoin,
2025).

6 Conclusions

The 2020 Global Forest Cover map (GFC2020) provides a
high-resolution (10 m) global view of forest and non-forest
areas, aligned with the forest definitions used under the EU
Deforestation Regulation (EUDR). Developed using a wide
range of global open-access inputs provided by the remote
sensing community, the methodology excludes trees in urban
and mining areas, wetlands, shifting cultivation zones, and
agricultural tree plantations by integrating global datasets
on canopy height, cropland extent, and specific commodity
crops. The map achieves high overall accuracy (91 %), with
commission errors (18 %) exceeding omission errors (8 %).
Accuracy varies by region, with dry, open forests and hetero-
geneous landscapes more prone to misclassification. Com-
mon confusions include small forest patches, other wooded
land, and shaded tree crop systems.
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Appendix A

Table A1. Description of the datasets used as input layers in GFC2020 (version 2 – v2), including details of any pre-processing steps applied
to certain datasets.

Dataset name and
abbreviation

Description Step in
workflow

Resolution Scope Year Reference

FAO Global Ecological
Zones – FAO GEZ

Global Ecological Zones from FAO.
We used the zones of Tropical rain
forest, tropical moist forest, tropical
dry forest and tropical mountain
system as stratification

Step 2 Various
scales

Global 2010 FAO Global
Ecological
Zones

UMD Drivers of global
forest loss – UMD
Drivers

Drivers of forest cover loss. We used
the areas of commodity-driven
deforestation and shifting agriculture to
stratify tree cover loss driven by
deforestation. In GFC2020 v2, we used
the forestry operation class to stratify
tree cover loss driven by forest harvest
in combination with historical tree
cover datasets.

Step 1 and
2

10 km Global 2001–2021 Curtis et al.
(2018)

ESA World Cover –
ESA WC 2020 and
2021

Tree cover (class 10) and mangroves
(class 95) were used in step 1. In
GFC2020 v2, water (class 80), built-up
(class 50), cropland (class 40),
bare/sparse vegetation (class 60), snow
(class 70) and herbaceous wetland
(class 90) were used in step 2.

Step 1 and
2

10 m Global 2020
(v100),
2021
(v200)

Zanaga et al.
(2022, 2021)

WRI Tropical Tree
Cover – WRI TTC

Tree cover inside and outside forests
across the Tropics. In GFC2020 v2, we
used a threshold of 50 % instead of
80 % in GFC2020 v1.

Step 1 10 m Tropics 2020 Brandt et al.
(2023)

UMD Tree cover 2000,
2010 – UMD TC 2000,
2010

Pixel estimates of tree canopy cover
derived from cloud-free annual
growing season composites of Landsat
data. We selected a minimal threshold
of 10 %.

Step 1 30 m Global 2000 and
2010

Hansen et al.
(2013)

UMD Global Forest
Canopy Height – UMD
GFCH

Gridded map of canopy heights from
GEDI and Landsat. In GFC2020 v2, it
includes an extrapolation of the model
for the boreal regions.

Step 2 30 m Global 2019 Potapov et al.
(2021)

Global-scale canopy
height – GSCH

Global-scale canopy height estimation
from Sentinel 1 and 2, GEDI and the
Shuttle Radar Topography Mission.

Step 2 10 m Global 2019–2020 Pauls et al.
(2024)

Very high resolution
canopy height –
META/WRI

Canopy height estimation from
very-high resolution RGB images.

Step 2 1 m Global 2009–2020 Tolan et al.
(2024)
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Table A1. Continued.

Dataset name and
abbreviation

Description Step in
workflow

Resolution Scope Year Reference

UMD Global land
cover and land use –
UMD GLC tree cover,
cropland, other land
cover, built-up

Global land cover and land use from
UMD. Classes of tree cover (classes
53–91 for terra firma, classes 171–211
for wetland) were used to build the
potential maximum forest extent of
forest (step 1). Classes 252 (cropland),
0-37, 120–157, 251 (other land cover)
and 240–249 (built-up) were used in
step 2. Classes 51–52 (3 and 4 m open
trees) were no longer used as an “other
land cover” excluding mask in step 2.

Step 1 and
2

30 m Global 2019 Hansen et al.
(2022)

Global Mangrove
Watch – GMW

Mangrove extent from Global
Mangrove Watch, version 3.0.

Step 1 and
2

25 m
(0.8 arcsec)

Global 2020 Bunting et al.
(2022)

JRC Tropical Moist
Forest – JRC TMF

Transition map and annual change
datasets of forest cover change in the
humid tropics from EC JRC.
Undisturbed, mangroves and degraded
forest (classes 1–2 from Annual
Change) along with old regrowth (≥ 5
years old) of year 2020 have priority
over masking layers of CH GEDI
(< 5 m), GFC loss or other land cover
from UMD-GLC. Deforested land
including permanent conversion to
agricultural plantations and deforested
mangroves (classes 3–4 from Annual
Change), and young forest regrowth
(< 5 years old) are used as masking
layers over the Tropical rain forest
ecological zone. In GFC2020 v2, other
land cover classification was used for
its potential to map agricultural
commodities established before the
monitoring period of TMF changes in
early 1990s (areas excluded from the
initial tropical moist forest extent).

Step 2 30 m Tropics 1990–2020 Vancutsem et
al. (2021),
updated to
version 2023

UMD Global Forest
Cover loss – UMD
GFC loss

Global forest cover loss from UMD
GLAD. All tree cover loss from
2001–2020 over commodity-driven
deforestation and shifting agriculture
(Drivers of forest cover loss) areas and
not overlaying with forest cover loss
from fire or with Forest cover from
JRC-TMF were considered as masking
layer in step 2. In GFC2020 v2, areas
with tree cover loss combined with
UMD Tree Cover 2000 (loss year after
2001) or 2010 (loss year after 2011)
identified by UMD Drivers of Forest
Loss as forestry operations were
considered potential unstocked forest
from clear-cut harvesting when WC
2020 and 2021 showed no tree cover
(step 1).

Step 1 and
2

30 m Global 2001–2020 Hansen et al.
(2013)

https://doi.org/10.5194/essd-18-1331-2026 Earth Syst. Sci. Data, 18, 1331–1365, 2026



1354 C. Bourgoin et al.: GFC2020

Table A1. Continued.

Dataset name and
abbreviation

Description Step in
workflow

Resolution Scope Year Reference

UMD Global Forest
Cover loss from fire –
UMD GFC – fire

Global forest cover loss from fire from
UMD GLAD was originally used in
step 2 in combination with the
GFC-loss dataset to prevent the
exclusion of burned forests that have
the capacity to regrow. In GFC2020 v2,
areas with tree cover loss from fire
combined with UMD Tree Cover 2010
(loss year after 2011) were considered
potential unstocked forest from fire
disturbance when WC 2020 and 2021
showed no tree cover (step 1).

Step 1 and
2

30 m Global 2001–2020 Tyukavina et
al. (2022)

JRC Global Human
Settlement Layer –
JRC GHSL

Global human settlement JRC,
Built-Up Characteristics. All values
(1–25) were considered as masking
layer.

Step 2 10 m Global 2018 Pesaresi and
Politis (2023)

JRC Global Human
Settlement Layer
Degree of Urbanisation
– JRC GHS SMOD

Degree of Urbanisation stage I
methodology recommended by UN
Statistical Commission. We used the
suburban or peri-urban (21),
semi-dense urban cluster (22), dense
urban cluster (23) and urban centre
(30) as input classes and created a
negative buffer of 1250 m to mitigate
patchy effects.

Step 2 1 km Global 2020 Schiavina et al.
(2023)

Global mining land use
– IIASA Mining

Visual interpretation and delineation of
large-scale, artisanal and small-scale
mining sites using Sentinel-2 imagery.
The polygons extent was used in
combination with any tree cover loss
from UMD GFC loss.

Step 2 Scale not
specified

Global 2019 Maus et al.
(2022)

JRC Global Surface
Water – JRC GSW

Classes of permanent water, new
permanent water and seasonal to
permanent water (1,2 and 7) were used
as masking layer only when not
overlapping with mangrove area from
JRC-TMF (classes 12, 61–64 from
Transition map) or GMW. Mask of
volcanic areas (lava flows) used to
mask tree cover.

Step 2 and
3

30 m Global 1990–2020 Pekel et al.
(2016)

UMD Global Cropland
Extension – UMD
Cropland

Overlapping extent of cropland
mapped in 2003, 2007, 2011, 2015 and
2019 from GLAD UMD.

Step 2 30 m Global 2003–2019 Potapov et al.
(2022)

NASA Global
Cropland-Extent
Product – GCEP
Cropland

Cropland extent from a combination of
Landsat, and elevation derived data.

Step 2 30 m Global 2015 Thenkabail et
al. (2021)

ESA World Cereal ESA World cereal for cereal crop
mapping: temporary crops extent was
used as masking layer.

Step 2 10 m Global 2021 Van Tricht et
al. (2023)
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Table A1. Continued.

Dataset name and
abbreviation

Description Step in
workflow

Resolution Scope Year Reference

Oil palm plantation –
Descals et al. Oil palm
plantation

Industrial and smallholder map of
closed-canopy oil palm plantations not
overlapping with mangrove area from
JRC-TMF or GMW.

Step 2 10 m Global 2019 Descals et al.
(2021)

Coconut plantation –
Descals et al. Coconut
plantation

Closed-canopy coconut palm.
Plantation not overlapping with
mangrove area from JRC-TMF or
GMW.

Step 2 10 m Global 2020 Descals et al.
(2023)

Global mapping of oil
palm planting year –
Descals et al. Oil palm
year

Year of establishment of industrial and
small-holder oil palm plantation using
a combination of Sentinel-1 and
Landsat images. The planting year
layer was used and years from 1990 to
2020 were selected as exclusion mask.

Step 2 10 m Global 1990–2020 Descals et al.
(2024)

Palm Probability model
2024 – Clinton et al.
Palm probability

Probability estimates of palm
occurrence (version “20240312”). We
selected a threshold higher or equal to
70 % and manually removed noise
(commission errors).

Step 2 10 m Global 2020 Clinton et al.
(2024)

High-resolution map of
rubber – Wang et al.
Rubber

Estimation of rubber plantation using
Sentinel-2 imagery within the tree
cover extent from ESA WC 2021.

Step 2 10 m Southeast
Asia

2021 Wang et al.
(2023)

WRI Spatial Database
of Planted Trees v1 –
WRI SDPT v1.0

Spatial Database of Planted Trees
(version 1.0) differentiating plantation
forests from tree crops (stands of
perennial tree crops, such as rubber, oil
palm, coffee, coconut, cocoa, and
orchards) compiled by WRI. Tree
crops was used as a masking layer.

Step 2 Various
scales

Global Varies Harris et al.
(2019)

WRI Spatial Database
of Planted Trees 2.1 –
WRI SDPT Planted
trees and Tree crops
v2.1

Spatial Database of Planted Trees
(version 2.1). The attribute
“simpleType” was used to create a
planted forests and a tree crop dataset.
Planted forests were used in step 1
while tree crops were used in step 2 as
a masking layer.

Step 1 and
2

Various
scales

Global Varies Richter et al.
(2024), change
log report for
version 2.1

IIASA Global Forest
Management

IIASA Forest management map. Only
the agroforestry class was used as
masking layer when intersecting with
forest cover from JRC-TMF and GFC
loss.

Step 2 100 m Global 2015 Lesiv et al.
(2022)
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Table A1. Continued.

Dataset name and
abbreviation

Description Step in
workflow

Resolution Scope Year Reference

CROPGRIDS Stratification of potential coffee, cocoa
and cashew area from the global
geo-referenced dataset of crop area
based on a harmonization of national
statistics and gridded data. For coffee,
we used a minimum threshold of
200 ha of crop area when combined
with other land cover from JRC-TMF
and META/WRI or GSCH height
maps. We lowered the threshold to 60
and 70 ha when combined with GCEP
and GSCH or GCEP and META/WRI
respectively. For cocoa, we used a
minimum threshold of 300 ha when
combined with other land cover from
JRC-TMF and GSCH height map. We
lowered the threshold to 50 ha when
combined with GCEP and GSCH or
GCEP and META/WRI. For cashew,
we used a minimum threshold of
300 ha when combined with other land
cover from JRC-TMF and GSCH
height map. We lowered the threshold
to 50 ha when combined with GCEP
and GSCH and to 150 ha when
combined with GCEP and
META/WRI.

Step 2 0.05°
(∼ 5.6 km
at the
equator)

Global 2020 Tang et al.
(2024)
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Table A2. Response design: Legend for the interpretation of the 10× 10 m sample units. (A) The first level refers to the binary forest/non-
forest classification of the sample unit and the second level to the land use type. (B) The confidence of the interpreter and possible issues
encountered.

(A) First-level: forest/non-forest

Forest Non-Forest

Second-level: forest type or land use type

Forest types Land use types
1. Primary or naturally regenerating forest 1. No trees or shrubs present
2. Planted or plantation forest 2. Other wooded land: land use must not be agricultural or urban and PSU is a combined

cover of shrubs, bushes and trees above 10 %.
3. Trees for agricultural use: all agricultural production systems with woody vegetation
that fulfils the physical forest characteristics, e.g. fruit tree plantation or oil palms, but
also treed landscapes with agricultural production systems underneath, such as cocoa
and coffee
4. Trees in urban areas: parks in urban agglomerations, vegetated areas with trees such
as golf courses or other recreational installations that are clearly not forest land use
5. Trees outside forests: PSU is predominantly non-forest but the SSU show the
presence of trees (e.g. that received the label is located in non-forest)
6. Trees inside forests: PSU is predominantly forest but the SSU that received the label
is located in non-forest land use that has an area of at least 0.5 ha

(B) Confidence and mapping issues classes

Confidence Mapping issues

1. High confidence 1. No issues
2. Low confidence 2. Cloud cover

3. No response data
4. Low resolution
5. Forest to be regrown
6. Multiple land uses
7. Open treed land uses
8. Other issues
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Table A3. Overall accuracy and commission and omission errors for forest in GFC2020 by global ecological zones. All statistics are based
on the probability error matrix. Numbers in parenthesis show the 95 % confidence interval. Sample sizes for forest were too small for
commission and omission errors in desert and polar biomes, noted in italics and with n/a (not applicable).

Overall accuracy [%] Commission error [%] Omission error [%]

Tropical rain forest 90.6 (1.3) 7.2 (1.4) 6.3 (1.3)
Tropical moist forest 83.4 (2.1) 27.8 (3.7) 7.7 (2.4)
Tropical dry forest 81.6 (2.6) 32.9 (5.0) 14.9 (4.2)
Tropical shrubland 93.0 (1.5) 31.6 (8.6) 29.8 (8.2)
Tropical desert 99.1 (1.2) n/a n/a
Tropical mountain systems 90.3 (2.5) 18.8 (5.0) 5.2 (3.3)
Subtropical humid forest 91.3 (2.3) 12.5 (4.1) 6.2 (2.9)
Subtropical dry forest 86.0 (3.1) 33.4 (7.4) 10.5 (5.5)
Subtropical steppe 94.2 (1.6) 17.9 (7.4) 28.6 (9.0)
Subtropical desert 94.7 (1.3) n/a n/a
Subtropical mountain systems 95.3 (1.6) 13.9 (5.2) 4.4 (3.1)
Temperate oceanic forest 90.8 (2.4) 21.6 (6.0) 6.5 (3.2)
Temperate continental forest 91.5 (1.7) 12.8 (2.9) 6.4 (2.4)
Temperate steppe 96.3 (1.5) 23.9 (13.4) 31.3 (13.9)
Temperate desert 100.0 (0.0) n/a n/a
Temperate mountains systems 94.8 (1.6) 12.1 (3.9) 2.9 (2.3)
Boreal coniferous forest 85.7 (2.4) 17.0 (2.9) 2.0 (1.1)
Boreal tundra woodland 82.1 (4.1) 32.5 (7.7) 12.9 (6.5)
Boreal mountain systems 84.9 (2.7) 20.3 (3.7) 3.2 (1.8)
Polar 98.6 (0.8) n/a n/a

Figure A1. FAO Global Ecological Zones.
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Figure A2. Country-level comparison of forest area between the GFC2020 and FAO FRA 2025 database for 2020. R2, MAD and MRD
metrics refer to the R-squared, Mean Absolute Difference (in 1000 ha) and Mean Relative Difference (in 1000 ha) respectively. Dashed line
represents the 1 : 1 line. The solid blue line represents the fitted linear regression model. Only countries with a minimum of 100 000 ha of
forest according to FAO-FRA and a minimum of 1000 ha of forest according to GFC2020 are displayed.
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Figure A3. Country-level comparison of proportion of forest area between the GFC2020 and FAO FRA 2025 database for 2020. R2, MAD
and MRD metrics refer to the R-squared, Mean Absolute Difference (in %) and Mean Relative Difference (in %) respectively. Dashed line
represents the 1 : 1 line. The solid blue line represents the fitted linear regression model. Only countries with a minimum of 100 000 ha of
forest according to FAO-FRA and a minimum of 1000 ha of forest according to GFC2020 are displayed.
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