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Abstract. Microbial decomposition of soil organic carbon (SOC) is a major source of atmospheric CO; and a
key component of climate—carbon feedbacks. Understanding how SOC mineralization responds to temperature
is essential for improving climate projections. Here, we compiled a global dataset of laboratory incubation ex-
periments measuring SOC mineralization across diverse soils and temperature regimes. The dataset reveals that
84 % of samples originated from surface soils (0-30 cm), and 50 % of incubations lasted fewer than 50 d. Incuba-
tion temperatures ranged from —10 to 60 °C, with temperature intervals used to estimate temperature sensitivity
(Q10) spanning 2—40 °C; notably, 81 % of Q1o estimates were based on intervals exceeding 5 °C. Moreover, in
61 % of cases, the lower incubation temperature for Q¢ estimation differed from the mean annual temperature
at the sampling site by more than 5 °C, indicating a mismatch with in situ conditions. Our analysis highlights
critical gaps in current experimental designs, particularly the underrepresentation of subsoils (> 30cm) and the
use of temperature ranges that deviate from field conditions. We further evaluated the ability of 16 temperature
response functions used in 69 land surface and/or carbon models to capture SOC mineralization patterns. Most
models failed to reproduce empirical temperature response, especially at higher temperatures, albeit multi-term
exponential functions showed relatively better performance. By coupling our dataset with a two-pool carbon
model, we found that external environmental constraints and the intrinsic temperature response (including SOC
decomposability and microbial processes) similarly influence the temperature sensitivity of SOC mineralization
at the global scale, with their relative importance varying across ecosystem types. Our findings underscore the
need for incubation experiments that better represent field conditions — both in depth and temperature range —
and call for improved model parameterizations to enhance SOC feedback projections under future climate sce-
narios. The dataset is archived and publicly available at https://doi.org/10.6084/m9.figshare.25808698 (Zhang
et al., 2025).

1 Introduction et al., 2022) due to the inherent temperature sensitivity of mi-
crobial decomposition (Davidson and Janssens, 2006). Yet,

Soils annually release approximately five times more the magnitude and mechanisms of this feedback remain con-

CO,—C to the atmosphere via microbial mineralization of tentious (Crowther et al., 2016; Soong et al., 2021), posing a

soil organic carbon (SOC) than all anthropogenic fossil fuel critical uncertainty in Earth System Models (ESMs) projec-

emissions combined (Tang et al., 2020). As a key flux in the tions of future climate—carbon dynamics.

global carbon cycle, this soil-derived CO; efflux is projected

to intensify under global warming (Lei et al., 2021; Wang
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The temperature sensitivity of SOC mineralization is com-
monly expressed as Qo — the factor by which the mineral-
ization rate increases for every 10 °C rise in temperature. Q19
is typically calculated following Eq. (1):
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where Ry, and Ry, are the SOC mineralization (often micro-
bial respiration) rates at low temperature (77) and high (7>)
temperatures, respectively. Most ESMs adopt a constant or
temperature-dependent Q19 value (Luo et al., 2016, 2020),
but empirical Q¢ estimates vary widely due to numerous
influencing factors (Haaf et al., 2021; Patel et al., 2022), in-
cluding calculation approaches (Hamdi et al., 2013), envi-
ronmental constraints such as soil pH (Craine et al., 2010)
and clay content (Hartley et al., 2021), climatic conditions
like precipitation (Li et al., 2020), and microbial commu-
nity traits (Wang et al., 2021). These controls can be grouped
into three primary mechanisms: (1) Carbon pool quality: the
chemical composition of SOC influences its thermodynamic
properties and decomposability (Haddix et al., 2011); (2) Mi-
crobial community structure and function: Variations in mi-
crobial traits affect SOC decomposition efficiency and en-
zyme production (Karhu et al., 2014; Xiao et al., 2023); and
(3) Physicochemical protection and accessibility: Soil tex-
ture, aggregation, and mineral interactions modulate the ac-
cessibility of SOC to microbial enzymes (Gershenson et al.,
2009). While these mechanisms are often discussed indepen-
dently, their relative contributions and interactions remain
poorly understood at the global scale (Jones et al., 2003).

Temperature sensitivity is typically assessed via either
field or laboratory incubation experiments. Field studies re-
flect in situ conditions but are confounded by numerous envi-
ronmental variables (e.g., plant inputs, soil moisture variabil-
ity), and it is difficult to separate root and microbial respira-
tion. Moreover, field measurements are challenging to con-
duct continuously, especially in remote ecosystems. Labora-
tory incubations, while simplified and often subject to prepa-
ration artifacts (e.g., sieving, drying, rewetting), offer con-
trolled conditions that isolate specific mechanisms and allow
for systematic comparisons across soils and temperatures
(Zhang et al., 2020). Importantly, although many laboratory
studies have yielded mechanistic insights, they are often lim-
ited in spatial scope or designed to test specific hypotheses.
Yet, taken together, the body of global incubation data rep-
resents an underutilized resource for addressing broad-scale
questions about SOC temperature sensitivity.

Here, we compile and synthesize a global dataset of time-
series measurements of SOC mineralization under controlled
laboratory incubation conditions, encompassing diverse soil
types, climatic zones, and incubation protocols. The dataset
is valuable for characterizing SOC mineralization processes
and their response to temperature in relation to various
soil properties and incubation conditions. To showcase the
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dataset’s utility and scientific potential, we used it in a soil
carbon model as a case study. This analysis demonstrates its
applicability to process-based modeling and its contribution
to understanding soil carbon dynamics. Specially, we evalu-
ate the performance of temperature response functions cur-
rently used in land surface and/or carbon models (hereafter
referred to as carbon models) against observed Q1o values
estimated using Eq. (1), and use a two-pool carbon model
to simulate SOC mineralization and assess the relative influ-
ence of different regulatory mechanisms on temperature sen-
sitivity. By integrating empirical observations with process-
based modeling, our study provides mechanistic insights into
the drivers of SOC temperature sensitivity and informs ef-
forts to improve Earth system model projections under cli-
mate change.

2 The Data

We compiled a global dataset of laboratory incubation ex-
periments to investigate the temperature sensitivity of SOC
mineralization. Literature searches were conducted using the
Web of Science and the Chinese National Knowledge Infras-
tructure (CNKI). The search terms included:

soil AND (respir* OR ((carbon OR CO; OR
carbon dioxide OR organic matter) AND (flux OR
efflux OR emission OR release OR loss OR min-
eraliz* OR decompos*))) AND (temperature OR
warm* OR cool*) AND incubat*

In addition to dataset queries, we screened all studies cited
in five previous synthesis papers on temperature sensitivity of
SOC mineralization (Fierer et al., 2006; Hamdi et al., 2013;
Ren et al., 2020; Schidel et al., 2020; Wang et al., 2019). To
be included in our dataset, studies had to meet the following
criteria:

1. The incubated soil must be sampled from the mineral
layer;

2. Each experiment must incubate the same soil at two or
more temperatures;

3. All other incubation conditions (e.g., moisture) must be
identical across temperature treatments and maintained
throughout the incubation; and

4. Time-series data of carbon mineralization rates or cu-
mulative carbon mineralization must be reported.

Using these criteria, we identified 191 publications, encom-
passing 721 distinct soils and totaling 21979 data points on
SOC mineralization (Fig. 1).

When available, numerical data were directly extracted
from the publications, and graphical data were digitized us-
ing the WebPlotDigitizer (Burda et al., 2017). SOC miner-
alization rates were standardized to gCO,—Ckg~! SOCd™!
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Figure 1. Geographic distribution of soil samples. (A) soil sample locations; (B) distribution across climate conditions and ecosystems.
Numbers in parentheses show the sample size in the specified ecosystem.

and gC0O,—Ckg~!soild~!. Cumulative mineralization was
also recorded as gCO,—Ckg~! SOC and gCO,—Ckg~! soil,
corresponding to the total mineralized carbon over the dura-
tion of the incubation. We also compiled ancillary informa-
tion when available, including soil properties (e.g., pH, total
nitrogen (TN), carbon-to-nitrogen ratio (C : N), soil bulk den-
sity (BD), and texture), site characteristics (geographic coor-
dinates and ecosystem type), and experimental design (in-
cubation temperature, duration, moisture condition, and pre-
treatment) (Table 1). Based on the recorded geographic coor-
dinates of sampling locations, we extracted 19 climate vari-
ables from WorldClim V2.0 at a spatial resolution of 1 km?>
(Fick and Hijmans, 2017). All complied data are deposited to
https://doi.org/10.6084/m9.figshare.25808698 (Zhang et al.,
2025) and are publicly accessible.

3 Insights from the Dataset

3.1 Spatial coverage

Our dataset captures a broad global distribution of soil in-
cubation experiments, with sampling sites concentrated in
China, Europe, and the United States (Fig. 1A). However,
samples are relatively sparse in Australia, Canada, and Rus-
sia, with almost absent in Africa. This geographic imbalance
is particularly concerning given the importance of tropical
and high-latitude cold regions for global carbon storage and
their heightened vulnerability to climate change. Address-
ing these data gaps is critical for improving the accuracy of
global SOC-climate feedback projections.

The dataset covers major terrestrial ecosystems (Fig. 1B),
including croplands (226 sites), forests (199), and grasslands
(184), but includes relatively few samples from tundra (43),
wetlands (53), and deserts (16). Yet, tundra and wetland
soils are known for their high SOC content and may exhibit
distinct temperature responses due to unique environmental
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conditions (Wang et al., 2022). In tundra ecosystems, SOC
is dominated by particulate organic carbon, which is more
sensitive to warming than mineral-associated organic carbon
(Georgiou et al., 2024). Moreover, freeze-thaw cycles can
disrupt microbial and physical protection mechanisms, alter-
ing SOC turnover (Schuur et al., 2009). Similarly, wetland
soils experience fluctuating redox conditions driven by wa-
ter table changes, potentially leading to nonlinear SOC re-
sponses to warming (Wang et al., 2017). These complexities
reinforce the need for targeted studies in underrepresented
ecosystems.

SOC content in the dataset ranges from 0.04 %-58.85 %,
with a median of 2.48 % (Fig. 2A). Notably, 73 % of samples
contain less than 5% SOC, with higher values mostly oc-
curring in wetland soils. Incubation temperatures range from
—10 to 60 °C, with a median of 17 °C and frequent use of
standard temperatures such as 5, 15, and 25 °C (Fig. 2B).
Q10 values, calculated from paired temperature treatments,
are most derived from 15-25 °C (Fig. 2E), with 10 °C tem-
perature difference (i.e., AT, the difference between 7> and
Ty in Eq. 1) accounting for 34 % of cases (Fig. 2F). However,
only 19 % of experiments used AT < 5°C, a range more re-
flective of projected climate warming (IPCC, 2023).

3.2 Incubation temperature

While laboratory incubations allow precise control of envi-
ronmental variables, their ecological relevance depends crit-
ically on the selection of incubation temperatures. SOC min-
eralization often responds nonlinearly to warming (Melillo
et al., 2017), especially in cold ecosystems where small tem-
perature increases can trigger large CO, emissions (Turet-
sky et al., 2020). However, many studies apply large AT
values (> 10°C), which may obscure subtle thresholds, sup-
press key microbial feedbacks, and limit the transferability
of findings to field conditions.
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Table 1. Variables included in the dataset.

Variable Description Units
Publication information
Reference_ID Reference ID -
First_author First author of the publication -
Publication_year  Publication year Year
Sampling_year Sampling year Year
Journal Journal name of the publication -
Title Title of the article -
DOIs Digital object identifier of the publication -
Site information
Latitude Latitude, positive = North, negative = South Decimal
Longitude Longitude, positive = East, negative = West Decimal
MAT Mean annual temperature, extracted from WorldClim 2.1 based on the latitude and °C
longitude of soil sampling sites, the data is the 30 year mean value from 1970-2000
MAP Mean annual precipitation, extracted from WorldClim 2.1 based on the latitude and mm
longitude of soil sampling sites, the data is the 30 year mean value from 1970-2000
Elevation Elevation, extracted from WorldClim 2.1 based on the latitude and longitude of soil m
sampling sites
Eco_type Ecosystem type (grassland, forest, etc.) -
Species The aboveground plant species at the sampling site -
Soil_ID Soil ID -
Profile_ID Profile ID -
Soil_depth The top and bottom depths of the sampled soil (0_10, 0_20, etc.). Some studies only cm
provide the horizon of the soil profile, such as A horizon, B horizon
Soil characteristics
SOC Initial soil organic carbon content %
TN Initial soil total nitrogen content %
C:N Soil carbon:nitrogen ratio -
pH Initial soil pH -
BD Soil bulk density gem ™3
Soil texture Clay, silt, and sand %
Incubation information
Incu_duration Incubation duration Day
Incu_temp Incubation temperature °C
Soil_mass The dry weight of the incubated soil g
C_input Carbon input at the beginning of incubation (biochar, glucose, etc.) -
Input_amount The amount of carbon input at the beginning of the incubation expressed as a %
percentage of the initial soil organic carbon content
Measure_day Measurement day for carbon mineralization Day
FC Soil moisture content is expressed as a percentage of field capacity (e.g., 60 % FC %
indicates 60 % of the maximum field capacity).
Gravity Soil gravity water content %
Pre_incubation Pre-incubation duration Day
Pre_treatment Pre-treatment before the beginning of the incubation (e.g., fresh homogenized, -
air-dried, etc.)
Sieve The sieving size prior to the beginning of the incubation mm
CO;,_method Determination method of mineralized CO5, including gas chromatograph, alkali -
absorption, and infrared gas analysis
Exp_ID Experiment ID. The same ID includes mineralization data of the same soil at -
different incubation temperatures, and other incubation conditions were identical at
different temperatures
n Number of replicates of a incubation -
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Table 1. Continued.

135

Variable Description

Units

Mineralization information

Time-course carbon mineralization rate, which
soil
The standard deviation of Rate_soil

Rate_soil

SD_rate_soil

Rate_SOC Time-course carbon mineralization rate, which
SOC

SD_rate_SOC The standard deviation of Rate_SOC

Cumu_soil Time-course cumulative carbon mineralization

kilogram of soil

SD_cumu_soil The standard deviation of Cumu_soil

was normalized to per kilogram of mg CO,-C kg_1 soild~!
mg CO,—Ckg~! soild~!
was normalized to per kilogram of gCO,-C kg*1 socd-!
gCO,—Ckg~1socd!
, which was normalized to per mg CO,-C kg*1 soil

mgCO,—-Ckg™ Lsoil

Cumu_SOC Time-course cumulative carbon mineralization, which was normalized to per gCO,-C kgf1 SOC
kilogram of SOC
SD_cumu_SOC The standard deviation of Cumu_SOC gCO,-C kg_1 SOC
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Figure 2. Basic characteristics of the incubation dataset. The distribution (frequency or density) of soil organic carbon content (A), incubation
temperature (B), soil sampling depth (C), incubation duration (D), temperature range (77 and 75 in Eq. 1) used for Q¢ estimation (E),
absolute temperature range (|7, — T1|) (F), temperature difference between the low incubation temperature (77 in Eq. 1) and the local mean
annual temperature (MAT) at the sampling site (G), absolute temperature difference (|MAT — 71 |) (H). In panels (E) and (G), the blue circles

represent the low incubation temperature (77 in Eq. 1), the red circles

indicate the high incubation temperature (7, in Eq. 1), and the yellow

circles correspond to the mean annual temperature at the sampling site. Note the log;( scale of the y axis in panels (E) and (G). Most of the

data points in panel (E) fall within the temperature ranges of 15-25, 5

This limitation is compounded by the mismatch between
incubation temperature and field conditions. We compared
the low incubation temperature (i.e., 77 in Eq. 1) used for es-
timation to the local mean annual temperature (MAT) at each
sampling sites (Fig. 2G). In 61 % of the cases, the absolute
difference between 77 and MAT exceeded 5 °C (Fig. 2H),
potentially biasing Q¢ estimates, as temperature sensitivity

https://doi.org/10.5194/essd-18-131-2026

—15, 5-25, 15-35, and 25-35 °C.

is itself temperature-dependent (Alster et al., 2023; Hamdi
et al., 2013; Patel et al., 2022). To enhance ecological va-
lidity, we recommend future studies align incubation tem-
peratures more closely with local MATs, particularly when
estimating Q1.

Most soil samples were collected from surface layers:
84 % originate from the 0-30 cm depth (Fig. 2C). However,

Earth Syst. Sci. Data, 18, 131-146, 2026
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subsoils (> 30cm) store more than twice the SOC of top-
soil globally (Jobbagy and Jackson, 2000), and emerging ev-
idence suggests they are not inert, but can respond sensitively
to warming (Hicks Pries et al., 2017, 2023). SOC dynamics
in deeper layers are governed by different stabilization pro-
cesses and environmental controls, including lower oxygen
availability, reduced root inputs, and greater mineral associa-
tion (Jia et al., 2019; Xu et al., 2021). These vertical gradients
shape SOC quality, microbial access, and thus, temperature
sensitivity. Current underrepresentation of deep soils in in-
cubation experiments limits our ability to predict long-term
carbon—climate feedbacks and highlights the need for deeper
sampling in future work.

3.3 Incubation duration

Incubation durations vary widely across studies. While some
experiments extend for several years, 80 % of the incubations
lasted < 113d, and half were < 54d (Fig. 2D). Short-term in-
cubations are efficient and cost-effective, and are well suited
for capturing the dynamics of labile carbon pools that domi-
nate initial CO; release (Schidel et al., 2020). They also min-
imize microbial adaptation and maintain more natural soil
structure. However, they may overlook the slower dynamics
of recalcitrant carbon pools, which contribute substantially to
long-term SOC persistence and climate feedbacks (Schmidt
etal., 2011).

In contrast, long-term incubations are essential for captur-
ing the decomposition of slow-cycling SOC fractions, espe-
cially in the absence of new carbon inputs. As labile car-
bon is depleted, persistent carbon pools increasingly domi-
nate respiration, providing insights into intrinsic SOC stabil-
ity (Schidel et al., 2020). Long-term studies also enable as-
sessment of microbial community shifts and potential feed-
backs under sustained warming (Guan et al., 2022; Melillo
et al., 2017). Yet, they also introduce new complexities, in-
cluding potential changes in soil structure, microbial accli-
mation, and moisture loss, which may confound temperature
effects (Kirschbaum, 2006). We advocate for a combined ap-
proach that integrates both short- and long-term incubations.
This dual strategy can capture early-stage microbial dynam-
ics, as well as long-term decomposition pathways of stable
carbon pools. By leveraging both timescales, researchers can
better disentangle microbial versus physiochemical controls
and derive more robust parameter estimates for Earth system
models.

4 Comparison with Temperature Response
Functions

Earth System Models (ESMs) are key tools for projecting
SOC dynamics under climate change, yet their predictive
accuracy hinges on the reliability of temperature response
functions for SOC mineralization. We examined 69 models,
including those from the Coupled Model Inter-comparison

Earth Syst. Sci. Data, 18, 131-146, 2026

Project Phase 6 (CMIP6) and several widely used carbon
models, and identified 16 distinct temperature response func-
tions (Fig. 3; Tables 2 and S1 in the Supplement). These
functions differ markedly in structure, particularly at tem-
peratures above 20 °C, where predicted mineralization rates
diverge substantially (Fig. 3A). Most functions are empirical
in nature and fall into four broad categories (Table 2):

1. Simple exponential models — assume fixed temperature
sensitivity (e.g., constant Q¢ or classical Arrhenius);

2. Flexible Q19 models — allow Q¢ to vary with tempera-
ture, typically through parameterized functions;

3. Non-linear empirical models — capture physiological
thresholds, saturation effects, or inhibition at high tem-
peratures; and

4. Hybrid/adjusted exponential models — incorporate addi-
tional terms to improve empirical fits (e.g., multi-term
exponential or polynomial-exponential hybrids).

This diversity reflects both the absence of a mechanis-
tic consensus on temperature sensitivity and the trade-offs
between functional realism, parameter interpretability, and
computational efficiency.

Across all model types, a consistent feature is the pre-
diction of lower SOC mineralization rates at lower temper-
atures (Fig. 3A). This conforms with known biological con-
straints — low temperatures suppress microbial activity and
freeze liquid water, thereby restricting substrate diffusion and
microbial access. However, substantial uncertainty persists
regarding mineralization responses at elevated temperatures.
Specifically, the temperature response functions yield three
distinct response patterns:

1. Monotonic increase — mineralization rates rise contin-
uously with temperature (e.g., classic Arrhenius be-
haviour; Fang et al., 2017);

2. Plateau — mineralization rates increase to an asymptote
beyond which additional warming has little effect; and

3. Peak followed by decline — mineralization rates increase
to an optimum and then drop due to thermal inhibition
of enzymes, microbial stress, or substrate exhaustion.

Empirical studies support all three behaviours under differ-
ent contexts, highlighting the need for flexible models that
can accommodate nonlinearities and thresholds in warming
responses (Alster et al., 2023).

To evaluate model performance, we calculated observed
Q10 (Q10_obs) using Eq. (1) from our global incubation
dataset using Eq. (1), and compared them to modelled Q19
values (Q10_mod) derived from each function. Q19 obs Was
computed for each experiment, then aggregated by incuba-
tion temperature (77) to derive the global mean Qg obs at
each temperature. There were then compared to Q10 mod at

https://doi.org/10.5194/essd-18-131-2026
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Figure 3. Performance of soil carbon temperature response functions. Temperature response functions of soil organic carbon mineralization
(A), temperature sensitivity (Q1q) predicted by the temperature response functions (B), and function performance by comparing function
predicted and observed Qg (C). Gray open points in panel (B) represent observed Q1 values at different temperatures, while the black
dashed curve shows the best-fit relationship between Q1o and temperature based on locally weighted polynomial regression. Red points
indicate the mean values under the corresponding temperatures, and error bars represent one standard error of the observations. Panel
(C) compares the observed mean Q1 values at different temperatures with the Qg values predicted by the temperature response functions,
presented for both global average and subsets grouped by ecosystem type. In panel (C), numbers outside the parentheses represent the
coefficient of determination (R2), while numbers inside the parentheses indicate the root mean square error. Grey grids represent cases where
R? could not be calculated due to constant Q10 values defined by the respective temperature response functions.

corresponding temperatures for each model function (Fig. 3B functions ranked second in performance, while Type 2 (flex-
and C). The results indicate that Q19 obs varies widely but ible Q1) functions consistently underperformed (R? <0.2).
exhibits a nonlinear decline with increasing temperature Notably, all functions performed adequately within the 10—
(Fig. 3B), consistent with metabolic theory and enzyme ki- 30°C range — where most Qjo_obs Values clustered around
netics (Gillooly et al., 2001). Among the 16 tested functions, 2 — but were less reliable below 10°C or above 30°C
Type 4 (hybrid/adjusted exponential) functions performed (Fig. 3B), where sample sizes were limited and biological
best, with R? values of > 0.4 and rooted mean square er- responses are less predictable.

rors (RMSE) < 1.2 (Fig. 3C). Type 1 (simple exponential)
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Table 2. Temperature response functions used in 69 carbon models. Q¢ meq Was estimated based on its definition, using the following
equation: Q10 _mod = f(T +10)/f(T). Carbon models simulate carbon cycling process and, in some cases, the associated energy and water
exchanges, while land carbon models are their submodules specifically representing terrestrial carbon cycling processes.

Types  Temperature response functions Land carbon models ~ Carbon models ~ Models References
T-25
1 f(T)y=15"10" CLM5 CLM5 CESM2 Emmons et al.
(2020)
T-30
f(T)= ZIT ISBA-CTRIP ISBA-CTRIP CNRM-ESM2-1 Séférian et al.
(2019)
—25
F(T)y=2"70" JULES-ES-1.0 JULES-ES-1.0 UKESM1-0-LL Good et al. (2019)
—10
F(y=2"70" INM-LND!I INM-LNDI INM-CM5-0 Volodin et al.
(2017)
T-35
f(Ty=1.71"10" CASA-CNP CABLE2.4 + ACCESS-ESM1.5  Ziehn et al. (2019)
CASA-CNP
1.652 r \"19 .
2 f(T)=0.032640.00351 x 7" — (W) LPJ-GUESS LPJ-GUESS EC-Earth3-CC Smith et al. (2014)
F(T) = Lﬂ% RothC RothC RothC Coleman and
) Jenkinson (1996)
21700, T <35
f(r)= CANDY CANDY CANDY Franko et al. (1995)
1.0, T > 35
0.01, -5>T
0.04, —5<T<0
0.04+0.06 xT, 0<T<5
3 f(T)= 0.0740016x (T =5),  5<T =10 AVIM2 BCC-AVIM2 BCC-CSM2-MR Ji and Yu (1999)
0.15+0.03 x (T — 10), 10<T <35
0.95, 35 < T <40
0.95—-0.135 x (T —40), 40<T <47
0, 47 <T
f(T)=10.56+0.465 x arctan(0.097 x (T — 15.7)) CENTURY CENTURY CENTURY Parton et al. (1987)
T-15
()= Qlolo CLASS-CTEM CLASS-CTEM  CanESM5 Swart et al. (2019)
Q10 =1.44+0.56 x tanh(0.075 x (46 — T))
f()=TP2x Ty LM3 GFDL- GFDL-ESM2M Shevliakova et al.
ESM2M (2009)
Ty = 5L, T = exp(0.076 x (1 — T26%))
f(T)=0.68 x exp(0.1 x (T —17.1)) PnET PnET-CN PnET-CN Aber et al. (1997)
4 f(T) = exp (3.36 x (r’ﬁié%s)) K2000 K2000 K2000 Kirschbaum (2000)
_ EX(T—Ty) & o
F(T)=exp ( ERCAER LS I IRE +T20)> SOILCO2 SOILCO2 SOILCO2 Siminek and
Suarez (1993)
R=8314JK ! mol~!
E =55.5kImol !
Thy =20°C
F(T)=exp (308,56 x (Tloz - m» LPJ MRI-LCCM2  MRI-ESM-2.0 Yukimoto et al.
(2019)
Ecosystem-specific performance varied substantially temperatures (Fig. S1), likely due to uniform substrate

(Figs. 3C and S1 in the Supplement). In forest ecosystems,
Type 4 and Type 3 functions performed best, capturing both
the magnitude and temperature dependency of Q10 obs,
while models such as CLASS-CTEM consistently un-
derpredicted sensitivity. Wetland soils also showed good
agreement with most functions (except AVIM?2), although
the small number of observations and narrow tempera-
ture range warrant caution. In croplands and grasslands,
010_obs values remained relatively stable (~ 2) across all
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quality, frequent anthropogenic disturbances (e.g., tillage,
fertilization), and homogenized microbial communities,
which dampen temperature responsiveness. Accordingly,
Type 1 models — emphasizing constant Q1o — performed best
in these systems. However, data scarcity remains a limiting
factor for evaluating model performance in tundra, desert,
and high-latitude cold systems. These ecosystems, while
storing vast amounts of SOC and being highly sensitive to
warming, remain underrepresented in both incubation data
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and model calibration. Their unique dynamics — driven by
freeze—thaw cycles, moisture constraints, and slow microbial
turnover — may necessitate tailored temperature response
formulations not currently embedded in most ESMs.

Taken together, our results highlight that: (1) no single
temperature response function captures Q1o obs Vvariability
across all ecosystems and temperature ranges; (2) simple and
hybrid exponential functions show relatively robust perfor-
mance, particularly in cropland, grassland, and forest soils;
(3) high-latitude, subsoil, and high-temperature responses re-
main poorly constrained due to data limitations; (4) expand-
ing observational datasets across diverse ecosystems — es-
pecially in extreme environments — is essential for improv-
ing the realism and generalizability of temperature response
functions in ESMs. Ultimately, our comparison provides a
benchmark for refining temperature sensitivity formulations
in soil carbon models, emphasizing the need for ecosystem-
specific calibration and incorporation of nonlinear temper-
ature effects to reduce uncertainty in future carbon—climate
feedback projections.

5 Combining the Data with Carbon Models

The extensive spatial and environmental coverage of our
global SOC mineralization dataset offer a unique opportunity
to explore the mechanisms regulating the temperature sensi-
tivity of microbial decomposition. To fully harness this po-
tential, mechanistically-informed modelling approaches are
essential. Here, we integrate the dataset with commonly used
pool-based carbon models to test the relative contributions of
different regulatory mechanisms. SOC mineralization is con-
trolled by both intrinsic and extrinsic factors. Intrinsic fac-
tors include the chemical decomposability of SOC pools and
the thermal traits of microbial communities — collectively
referred to as the inherent temperature response (Davidson
and Janssens, 2006). These control the baseline temperature
dependence of microbial activity and carbon use efficiency.
In contrast, extrinsic factors — such as mineral associations,
aggregate occlusion, moisture limitation, and oxygen avail-
ability — operate as external environmental constraints, re-
stricting microbial access to otherwise decomposable organic
matter (Dungait et al., 2012). Separating these two mecha-
nisms is critical, as they operate on different scales and are
likely to respond differently to climate change. We propose a
modelling framework in which SOC temperature sensitivity
is divided into these two components, allowing us to quantify
their relative contributions (Fig. 4).

5.1 A two-pool model of SOC mineralization

To represent SOC heterogeneity and its decomposition dy-
namics, we adopt a two-pool first-order model, distinguish-
ing between fast- and slow-cycling carbon pools. The min-
eralization rate R, (gCO, —Ckg~' SOCd~!) at time 7 is ex-
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pressed following Eq. (2):
Ry = ki x fix Coxe K> 4 kg x (1— fr) x Coxe K> (2)

where k¢ and kg are the decomposition rate constants d=hH
for the fast and slow pools, respectively; f; is the initial frac-
tion of the fast pool in initial total SOC (Cy); t is time in days.
Temperature sensitivity is introduced via a Q1o formulation
following Eq. (3):

T—Tret

kr = ket X Qlom ) (3)

where k7 is the decomposition rate of a carbon pool at incu-
bation temperature T (°C); ke is the decomposition rate of
the pool at a defined reference temperature (7ief); Q1o is the
temperature sensitivity factor.

5.2 Simulation experiments

We conducted three simulation experiments to assess how
well different regulatory mechanisms explain the observed
temperature sensitivity of SOC mineralization. In all exper-
iments, model parameters were optimized by minimizing
RMSE between observed and modeled SOC mineralization
rates using the DEoptim package in R4.0.3. Prior parameter
ranges were set to 0.1-0.7 for k¢, 0-0.01 for ks, and 0-0.2
for f, following Schédel et al. (2013). A detailed descrip-
tion about the optimization procedure can be found in Zhang
et al. (2024).

— EXP. 1: Best-fit model (full optimization). In this base-
line simulation, all model parameters — k¢, kg, and f; —
were freely optimized for each temperature treatment
within each incubation trial. The optimized parame-
ters therefore capture the combined effects of intrin-
sic substrate-microbe interactions and extrinsic environ-
mental constraints. However, within a given trial, the
same fr value was shared across different incubation
temperatures to ensure consistent carbon pool partition-
ing as the same soil was incubated. This “full optimiza-
tion” represents the best-case model performance and
serves as the baseline for comparison.

— EXP. 2: Inherent temperature response. To isolate the
intrinsic component of temperature sensitivity, we fixed
the decomposition rates k¢ and kg and pool size (f) to
those optimized at the lowest incubation temperature in
EXP. 1. A single optimized Q1o value was then used
to scale decomposition rates across higher temperatures
using Eq. (3) within each trial. The response of a spe-
cific SOC pool to temperature depends on its chemi-
cal decomposability and the thermal traits of the asso-
ciated microbial community. Forcing the temperature
sensitivities to be the same (i.e., a single Q1¢) across
carbon pools effectively eliminates these distinct re-
sponses, thereby isolating the effect of microbial and
substrate-related intrinsic temperature response.
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Figure 4. The data-model integration framework to distinguish the importance of intrinsic temperature responses and extrinsic environ-
mental constraints. The framework illustrates the data-model fusion process employed to verify the regulatory mechanisms underlying the
temperature sensitivity of soil organic carbon mineralization. M1, intrinsic temperature response, associated with the chemical decompos-
ability of SOC pools and the thermal traits of microbial communities; M2, extrinsic environmental constraints, referring to factors such as
mineral associations, aggregate occlusion, moisture limitation, and oxygen availability that restrict microbial access to otherwise decompos-
able organic matter. k¢ 1 and kg 1T represent the decomposition rates (A1) of the fast ( f¢) and slow ( fs) carbon pools, respectively at the
lowest incubation temperature within the same trial. Q¢ fast and Q¢ sjow are the temperature sensitivity of fast and slow carbon pools,
respectively. Tj, and Tq denote the higher and lower incubation temperature, respectively. In EXP. 1, k¢ and ks at the lowest temperature of
each trial were optimized and then were scaled to other temperatures using Q10 _fast and Q1¢_slow» Which were also optimized. The pool size
(f) and decomposition rates (k¢ and k) at the lowest temperature from EXP. 1 were applied in EXP. 2 and 3.

— EXP. 3: External environmental constraints. In this ex-
periment, kf and ks were again fixed at the values from
the lowest incubation temperature, and f values were
taken from EXP. 1. Instead of optimizing Q¢ for each
trial, globally averaged Qi¢ values (derived from the
empirical dataset) were uniformly applied across all
soils to scale decomposition rates at higher tempera-
tures. This approach standardizes the inherent temper-
ature sensitivity of SOC decomposition, such that de-
viation between modeled and observed SOC mineral-
ization rates primarily reflect site-specific external con-
straints on microbial access to SOC.

Comparing the model performance among EXP. 1-3 al-
lows us to quantify the relative explanatory power of intrinsic
and extrinsic regulatory mechanisms. Specifically, reductions
in model performance when moving from EXP. 1 to EXP. 2
and from EXP. 2 to EXP. 3 correspond to the contribution
of intrinsic and extrinsic effects, respectively. To evaluate the
contribution of each mechanism to model performance, we
calculated their relative importance following Eqs. (4)—(8)
(Gromping, 2007):

I = Rixp | — Rixp, (inherent response) , 4)

L= R%XR 5= R%XR 3 (external constraints) , (5)
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p= 1 Rl - 6)
L+1 :
I 2
Php=—"—xR s 7
2 L +1 EXP. 1 (N
Unexplained = 1 — R%XP_ 1 (8)

where 17 and I, represent the importance of inherent tem-
perature response and external environmental constraints, re-
spectively; P; and P, denote the relative importance of two
mechanisms, respectively; Unexplained indicate the unex-
plained portion of total variation. We applied bootstrap re-
sampling (n = 5000) to estimate the mean and 95 % confi-
dence interval (CI) for the relative importance of each mech-
anism across all incubation trials. For pairwise comparisons
among ecosystems and soil depths, the mean difference was
calculated for each bootstrap resample, and the 95 % CI of
the difference was derived from the bootstrap distribution. A
difference was considered statistically significant if the 95 %
CI of the bootstrap samples did not include zero (Efron and
Tibshirani, 1994).

5.3 Simulation results

The modeling experiments revealed distinct contributions of
intrinsic and extrinsic mechanisms to the temperature sensi-
tivity of SOC mineralization. The model explained, on av-
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erage, 80 %, 71 %, and 61 % of the variance in SOC miner-
alization for EXP. 1-EXP. 3, respectively (Fig. SA). RMSE
increased accordingly across the three experiments (Fig. S2).
Relative to EXP. 1, model performance in EXP. 2 showed a
decline ranging from +0.1 % to —62.6 % with an average of
—11.1%. Relative to EXP. 2, model performance in EXP. 3
exhibited changes from 4-18.3 % to —99.9 % with an average
of —15.4 % (Fig. 5B). Overall, intrinsic temperature response
and extrinsic environmental constraints contributed compa-
rably at the global scale, with intrinsic response accounting
for 41 % with a 95 % confidence interval (CI) of 38 %43 %
and environmental constraints contributing 39 % (95 % CI:
37 %42 %) to the total variance (Fig. 5C). However, sub-
stantial variation emerged across ecosystems. In croplands,
intrinsic temperature response was dominant, contributing
50% (95 % CI: 45 %-54 %), whereas environmental con-
straints accounted for a smaller share (33 % with the 95 %
CI of 28 %-37 %). In contrast, wetlands exhibited the op-
posite pattern, with environmental constraints contributing
52% (95 % CI: 44 %—61 %) and intrinsic temperature re-
sponse contributing only 30 % (95 % CI: 22 %-38 %).

These contrasting patterns reflect ecosystem-specific con-
trols on the temperature sensitivity of SOC mineralization. In
croplands, frequent soil disturbances such as tillage, fertiliza-
tion, and residue management likely enhance substrate avail-
ability and microbial activity, thereby amplifying the role
of intrinsic biological and chemical processes (Chen et al.,
2019). In wetlands, by contrast, saturated conditions impose
strong oxygen limitations and redox constraints on microbial
activity, making abiotic environmental factors the primary
regulator of SOC turnover (Chen et al., 2018). These find-
ings underscore the importance of incorporating ecosystem-
specific mechanisms into ESMs — particularly in systems
shaped by hydrological regimes or intensive management —
is critical for improving projections of soil carbon—climate
feedbacks under global warming.

There were no significant differences of the relative impor-
tance of the two regulatory mechanisms across soil depths
(Fig. 5D). However, it should be noted that subsoil layers
was underrepresented, particularly for layers between 0.5 m
(Fig. 2C). Together, our results highlight the importance
of integrating both intrinsic and extrinsic mechanisms into
understanding temperature response functions. These case
study results underscore the potential of the dataset for fa-
cilitating model-data integration, exploring the mechanisms
underlying SOC dynamics in response to climate change, and
refining model representations under future warming.

However, it is critical to acknowledge that the “intrinsic
temperature response” in our modelling framework encom-
passes both SOC chemical decomposability and microbial
metabolic activity, as these processes are inherently inter-
twined in carbon turnover (Conant et al., 2011). For example,
an increase in the decomposition rate constant (k) with tem-
perature could reflect enhanced microbial enzyme kinetics,
but may also be driven by temperature-induced changes in
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Figure 5. The relative importance of intrinsic temperature re-
sponses and external environmental constraints. Panels (A) and
(B) show the determination coefficients (R2) and the correspond-
ing percentage changes in RZ, respectively, for the three simulation
experiments. Panels (C) and (D) represent relative importance of
the two mechanisms categorized by ecosystem type and soil depth,
respectively. (B) the percentage change in R? of EXP. 2 relative
to EXP. 1, and the percentage change in R? of EXP. 3 relative to
EXP. 2. Error bars in panels (C) and (D) represent the 95 % con-
fidence intervals based on 5000 bootstrap resamples of the origi-
nal relative importance. EXP. 1 represents the best-fit model and
serves as the baseline for comparison, EXP. 2 aims to assess the
relative importance of the intrinsic temperature response, and EXP.
3 aims to assess the relative importance of external environmental
constraints. Different letters in panels (A), (C), and (D) indicate sig-
nificant difference (p < 0.05).
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substrate availability via increased diffusion or depolymer-
ization of complex carbon compounds (Conant et al., 2011).
Similarly, shifts in the fraction of fast-cycling carbon ( fr)
may not solely indicate a change in carbon pool composition,
but also microbial substrate preferences or physiological ad-
justments that alter carbon allocation between biomass pro-
duction and respiration (Zheng et al., 2025). These caveats
underscore the need for more detailed, trait-explicit models
that separately track microbial physiology, substrate quality,
and abiotic accessibility (Zhang et al., 2024).

6 Data availability

The data that support the findings of this study are available
in Figshare at: https://doi.org/10.6084/m9.figshare.25808698
(Zhang et al., 2025).

7 Conclusions and Future Vision

SOC dynamics are central to predicting terrestrial carbon—
climate feedbacks, yet remain a major source of uncertainty
in ESMs. By synthesizing a comprehensive global dataset of
SOC mineralization under controlled incubation conditions,
this study provides a robust framework to evaluate the tem-
perature sensitivity of SOC decomposition and the mech-
anisms that govern it. Our findings highlight that external
environmental constraints — such as physicochemical pro-
tection and substrate accessibility — and intrinsic SOC de-
composability play similarly important roles in shaping tem-
perature responses, but their relative influence is ecosystem-
dependent. Moreover, we demonstrate that widely used tem-
perature response functions in carbon models often fail to
capture observed patterns, particularly under temperature ex-
tremes or in specific ecosystems.

Based on our analyses, we propose following priorities for
advancing SOC-climate research:

1. Expand spatial and vertical coverage of soil sampling.
Despite the growing number of incubation studies, cur-
rent datasets remain heavily biased toward surface soils,
mid-latitude systems, and short-term incubations. Par-
ticularly underrepresented are data from extreme envi-
ronments (e.g., tundra, wetlands, deserts), subsoil lay-
ers, and high or low incubation temperatures — all
of which are crucial for understanding carbon—climate
feedbacks in vulnerable or carbon-dense regions. Ad-
dressing these gaps through targeted sampling cam-
paigns and standardized data collection would enhance
model calibration, validation, and transferability across
scales.

2. Align incubation design with ecologically relevant

temperature scenarios. Laboratory incubation condi-
tions — although valuable for isolating mechanisms —
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may fail to replicate the complexity of natural sys-
tems. Field conditions introduce fluctuating moisture
regimes, plant-microbe interactions, freeze-thaw cycles,
and other dynamic processes that strongly mediate SOC
responses. We advocate for hybrid approaches that com-
bine laboratory incubation data with in situ measure-
ments (e.g., eddy covariance fluxes, carbon isotope trac-
ing) and long-term warming experiments to ground-
truth model behaviour and improve ecological rele-
vance.

3. Integrate mechanistic constraints into models. Most
SOC temperature response functions currently used in
carbon models are based on simplified relationships that
fail to incorporate critical regulatory mechanisms. Our
findings clearly demonstrate that these simplified func-
tions often underperform when applied to real-world
data, particularly across diverse ecosystems and temper-
ature regimes. Embedding mechanistic constraints, such
as mineral protection, oxygen limitation, and depth-
specific carbon turnover, into temperature response for-
mulations (Bradford et al., 2016) could substantially im-
prove the fidelity of SOC projections under future cli-
mate scenarios.

4. Advance spatial scaling. Most carbon models still apply
uniform temperature response functions across broad
geographic regions, neglecting site-specific variability
in soil properties, mineralogy, hydrology, and micro-
bial ecology. Our findings argue for a more spatially
explicit representation of SOC temperature responses.
Advances in machine learning, data assimilation, and
remote sensing provide promising tools for spatial up-
scaling of temperature response parameters, enabling
site-specific calibration of carbon models. Integrating
knowledge-guided machine learning with mechanistic
soil biogeochemistry models (Liu et al., 2024) would
significantly enhance predictive accuracy and reduce
uncertainty in regional and global carbon—climate feed-
back estimates.

Together, these priorities call for a more mechanistic, depth-
aware, and spatially explicit framework for investigating
SOC mineralization. By coupling empirical datasets with
process-based modelling and machine learning, the soil car-
bon research community can significantly reduce uncertainty
in carbon—climate feedbacks and improve projections of
SOC stability in a warming world.
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