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Abstract. Despite advances in remote sensing, consistent monitoring of water quality across freshwater-marine
systems remains challenging due to methodological fragmentation. Here, we provide an overview of an
exemplary dataset on water quality characteristics in inland waters, coasts, and the open sea estimated from
optical satellite data (https://doi.org/10.26050/WDCC/AquaINFRA_Sentinel3_v2, Hieronymi et al., 2025).
Specifically, this is Sentinel-3 OLCI (Ocean and Land Colour Instrument) data for the entire North Sea and Baltic
Sea region for the period June to September 2023. The dataset includes daily aggregated observational data with
a spatial resolution of approximately 300 m of reflectance at the top-of-atmosphere and for cloud-free water areas
remote-sensing reflectance, inherent optical properties of the water, and an estimation of the concentrations of
water constituents, e.g. related to the aquatic carbon content. These are the results of the novel A40 atmospheric
correction and the ONNS water algorithm. The dataset serves as a prototype for understanding the processing
chain and interdependencies, but also for developing a high degree of connectivity for answering various
scientific questions; we do not perform an actual validation of the 73 individual parameters in the dataset.
The challenges of a validation covering all water types are illustrated using one parameter, the particulate
organic carbon concentration in water. The aim of this work is to show how fragmentation in water quality
monitoring along the aquatic continuum from lakes, rivers to the sea can be overcome by applying an optical
water type-specific and neural network-based processing scheme for Copernicus satellite data. Emphasis of this
work is on analysing the optical complexity of remote-sensing reflectance in the North Sea, Baltic Sea, coastal,
and inland waters. Results of a new optical water type classification show that almost all (99.7 %) remote-sensing
reflectance spectra delivered by A40O are classifiable and that, based on this data, the region exhibits the full range
of optical diversity of natural water bodies. The dataset can serve as a blueprint for a holistic view of the aquatic
environment and is a step towards an observation-based digital twin component of the complex system.
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1 Introduction

Satellite remote sensing enables a continuous and global
observation of the Earth system and the interactions of its
compartments. Optical remote sensing, which measures the
radiance of reflected sunlight in the ultraviolet to visible
to near-infrared spectrum, allows large-scale observation
of water surfaces, enabling effective assessment of aquatic
ecosystems across the freshwater-sea continuum. With an
image swath width of 1270km and a spatial resolution
nadir of approximately 300 m, the Ocean and Land Colour
Instruments (OLCI) on board two Sentinel-3 satellites
are particularly well suited for global water observation.
The Sentinel-3 constellation operates on a near-polar and
sun-synchronous orbit with images taken close to local
noon. At full resolution, not only large marine areas but
also complex coastlines, broad rivers, and larger inland
waters can be recorded. This enables the observation and
evaluation of various issues, for example on drinking and
bathing water quality, matter fluxes into the sea, the effects of
human activities on the aquatic environment, and warnings
of possible harmful algae blooms. However, different
terminologies and inconsistent measurement practices are
often used in limnology and oceanography. For a holistic
view of the aquatic environment, it is therefore necessary
to provide comprehensible and easily transferable reference
values from satellite data. Moreover, for user-friendly
usability, the data should not only be Findable, Accessible,
Interoperable, and Re-usable (FAIR), they should also be
scientifically documented, contain a thorough metadata
description, and enable easy data handling, e.g. through clear
labelling and definition of limits and uncertainties. Ideally,
the storage-intensive satellite images are also available in a
simple visualisation so that their useability can be checked
easily, as large land-sea surfaces are usually not visible due
to clouds.

Earth observation of large areas with different types
of waters also poses significant challenges for analysing
satellite images. This is mainly due to the optical effect
of the water constituents, which are parameterized by
their inherent optical properties (IOPs). In addition to the
pure water itself, phytoplankton, coloured dissolved organic
matter (CDOM), and suspended non-algae particles (NAP)
contribute to the colour appearance of the water body
(e.g. Bi et al., 2023). Phytoplankton biomass is characterised
by the total concentration of chlorophyll a pigment (Chl
in mgm™). But the various algae species have different
pigment compositions and occur in a wide range of colours
(e.g. Xi et al.,, 2015; Lomas et al, 2024). CDOM is
often a degradation product of phytoplankton and organic
compounds and is discharged from rivers into the sea in
high concentrations but can also be brought into the sea
by precipitation (e.g. Nelson and Siegel, 2013; Juhls et al.,
2019; Kieber et al., 2006). The optical effect of CDOM is an
absorption and darkening of the water. Sediments are kept
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in suspension by water movement in rivers and lakes, or
in shallow waters by currents, tides, and waves. Suspended
particles increase the backscattering of the light in water and
therefore result in relatively bright satellite image pixels. In
addition to the water components mentioned, air bubbles,
pollutants, and inelastic scattering processes can have an
influence on the reflectance, but this is neglected here.

From the perspective of the satellite, however, the total
signal from the water body is small compared to the
atmosphere. And here too, the atmospheric properties and
cloud conditions over inland waters and the ocean can
vary considerably, e.g. due to land-originated dust or soot
aerosols or maritime aerosols (e.g. Hess et al., 1998). The
correction of all atmospheric influences, masking of clouds
and provision of remote-sensing reflectance (R in sr™')
valid for all water types is therefore a crucial step.

There are several methods for atmospheric correc-
tion (AC) and many water algorithms that derive water
constituents from R (e.g. Miiller et al., 2015; Brewin
et al, 2015). The methods are usually optimized for
different water bodies. However, no method offers robust
performance across all water types and special atmospheric
conditions, and the uncertainties and application limits are
often insufficiently characterized; Hieronymi et al. (2023a),
Gonzalez Vilas et al. (2024), and others have documented
this for various atmospheric correction methods for OLCI.
The standard OLCI Level-2 (water full resolution) baseline
atmospheric correction is applied for all water surfaces
but often delivers insufficient data quality for the Baltic
Sea, many coastal, and inland waters, which is indicated,
for example, by “negative” reflectance. In the Copernicus
Marine Service, different algorithms are used for the North
Sea (as part of the North-East Atlantic) and the Baltic Sea
(Brando et al., 2024), although this also includes inconsistent
variables and designations; inland waters are not included
here. Corresponding information for some lakes is provided
in the Copernicus Land Service, but also with their own
designations and completely different data accessibility. For
coastal marine waters, there are additional products with
higher spatial resolution from Sentinel-2 MSI observations,
but also with pixel-based algorithm switching (Brando et al.,
2024). It should be the aim to cover all water areas uniformly
and with adequate accuracy of all products.

Fuzzy logic classification of optical water types (OWT)
quantitatively characterizes aquatic systems through con-
tinuous membership functions, overcoming the limitations
of discrete classification schemes (e.g. Moore et al.,
2001). This approach is particularly valuable for capturing
transitional waters (e.g., river plume or algal bloom fronts),
as also highlighted in studies of coastal and inland systems
(Spyrakos et al., 2018; Atwood et al., 2024), where optical
properties vary non-linearly with constituent concentrations.
However, its effectiveness depends on valid Ry across the
entire spectrum — a requirement often compromised when
a single AC method optimized for specific water type is
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used. Hieronymi et al. (2023a) analysed Rs from five AC
with different OWT classification methods and found that
the OWT algorithms have focused too much either on
marine or limnological applications. This is expressed in
the sometimes very low classifiability of R and the class
assignment of spectral shapes. The study also demonstrated
the significant advantages of an integrated adaptation of
atmospheric correction and OWT classification method,
which also applies to the down-stream water algorithms. The
findings from this study led to the development of a novel,
robust, and comprehensive OWT classification system (Bi
and Hieronymi, 2024).

In this paper, we document a dataset of merged Sentinel-3
OLCI Earth observations from the A40-ONNS processing
chain (Hieronymi et al., 2017), which includes the results
of the new OWT classification. The individual processing
steps have not yet been adapted to each other and
fundamental further developments will be implemented
in the future. However, this dataset serves to visualise
the overall system and to further develop the underlying
algorithms, flags, and biogeo-optical relationships. This
enables a systemic harmonization and optimization of the
workflow, a validation of all water products and a more
targeted estimation of the overall system uncertainties.
The presentation of data from the current version of the
algorithm enables feedback from users and aims to increase
the data interoperability and FAIR-ness level; nonetheless,
publication of the code itself is only planned in the medium
term. The aim is to show how fragmentation in water
quality monitoring along the aquatic continuum from lakes,
rivers to the sea can be overcome by applying an optical
water type-specific and neural network-based processing
scheme for Copernicus satellite data (fundamentally similar
to the CERTO project; Atwood et al., 2024). Furthermore,
in this work, some recommendations are realised to better
characterize phytoplankton diversity and aquatic carbon
fluxes in the future (e.g. Bracher et al., 2017; Brewin
et al., 2023). The focus of this work is on the optical
characterization of the waters of the North Sea—Baltic Sea
region.

2 Data and methods

2.1 Geographical region

The spatial coverage of the Earth observation data extends
from longitude —4.48 to 30.3° and latitude 48.98 to 65.9°,
both in 0.004° steps (Fig. 1). This covers the entire Baltic
Sea and North Sea with parts of the Norwegian Sea and
English Channel, even parts of the Irish Sea are included.
The southern extent is defined by the inclusion of the
entire Elbe River catchment. The spatial resolution of
OLCI of approx. 300m per pixel was tried to achieve
for the overarching grid, resulting in an image size of
8695 x 4231 pixels in the coordinate reference system

https://doi.org/10.5194/essd-18-1307-2026

1309

WGS 84 (EPSG:4326). Accordingly, smaller bodies of
inland water and narrow rivers are not covered.

Four regional subdomains are defined for an initial
categorisation of the optical diversity of the water bodies:
North Sea, Baltic Sea, inland waters, and coastal waters;
this is inspired by the domains in the Copernicus services
(Brando et al.,, 2024). In terms of optical properties,
the geographical subdomain “North Sea” is representative
for the Copernicus Marine Service product for the
Atlantic-European North-West Shelf which includes part of
the Skagerrak in the east. In the Copernicus Marine Service,
the Baltic Sea region is defined as an independent product,
which also includes parts of the Skagerrak in the west
at approx. 9°E. Correspondingly, a line at 9°E between
Denmark and Norway is used to geographically separate the
North Sea from the Baltic Sea. The inland waters subdomain
contains all water areas on land that are larger than the
pixel resolution of approx. 300 m, i.e. mainly lakes but also
some broad rivers such as the Elbe estuary. The Copernicus
Land Monitoring Service offers Sentinel-3 OLCI-based lake
water quality products and additionally 100m data from
Sentinel-2 MSI (CLMS S2, 2024; CLMS S3, 2024). In
the optical characterisation of waters, the term “coastal
waters” is often used; to define a subdomain for this, the
12 nautical mile zone of territorial coastal areas is used. In
order to include brackish water areas of lagoons (e.g. the
Curonian Lagoon), coastal lakes (e.g. the Ijsselmeer), and
rivers influenced by the tide (e.g. the Lower Elbe), the
coastal domain is defined as plus-minus 75 pixels along
the coastal baseline (i.e. approx. £22.5km). The seaside
zone roughly corresponds to the area of the high-resolution
ocean colour product from the Copernicus Marine Service
with 100 m resolution from Sentinel-2 MSI (CMEMS BAL,
2025; CMEMS NWS, 2025). The coastal waters therefore
include parts of the other three domains. The images cover
36.8 million pixels in total, thereof are 61 % the fraction
of land, 27 % North Sea, 11 % Baltic Sea, and 1 % inland
waters. Coastal (or territorial) waters cover 13 %.

2.2 Original Copernicus data

The freely available Sentinel-3A and 3B OLCI Level-1
data was obtained from the Copernicus Data Space
Ecosystem (https://dataspace.copernicus.eu, last access:
12 February 2026). All scenes with a contribution to the
region of interest and within the four-month period 1 June
to 30 September 2023 were downloaded and processed.
Among other things, the period covers a dedicated validation
campaign in the Baltic Sea, where all water parameters from
the satellite dataset were determined in situ (Hieronymi et
al., 2023b). Due to the polar orbit of the satellites, there
are more frequent observation opportunities in the north
and increasing gaps in the southern section (Fig. 2). The
contributing images are taken around local noon, for this
region within a time window of about three hours. It can
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Figure 1. Region of interest with definition of subdomains for optical water type analysis. Some areas mentioned in the text have been

marked.

therefore be said that the one-day (1d) aggregated data is
representative for local noon.

2.3 Processing chain

First, a summary of the evolution of the end-to-end satellite
data processing scheme. The proposed algorithm is basically
a further development of the Case-2 water algorithm by
Doerffer and Schiller (2007), which was initially developed
for ENVISAT MERIS and is currently being used for
Sentinel-3 OLCI in the ground segment for coastal waters;
this algorithm is also known as C2RCC (Brockmann et al.,
2016; Miiller et al., 2026). Parallel to the further evolution
of C2RCC, an independent algorithm was branched off,
the OLCI Neural Network Swarm (ONNS) algorithm by
Hieronymi et al. (2017). This aims to generate reliable water
quality parameters seamlessly for all natural waters and also
to provide additional products, e.g. on carbon concentrations
in water. The water algorithm ONNS uses its own OWT
classification with 13 defined classes and specific neural
network algorithms for each class. For some time, the ONNS
water algorithm (with atmospheric correction from C2RCC)
was used in the Copernicus Marine Service to estimate
the chlorophyll concentration in the Baltic Sea (Le Traon
et al., 2021). However, the classifiability of reflectance
from different atmospheric corrections (incl. C2RCC) was
often insufficient (Hieronymi et al., 2023a). For this reason,
an independent new AC was developed by Hieronymi
and colleagues, which was optimized for the performance
spectrum of ONNS and called Atmospheric Correction for
Optical Water Types (A40). This AC method uses neural
networks to approximate fully normalised remote-sensing
reflectance (nadir sun and viewing zenith angles) at 16 bands
from top-of-atmosphere reflectance at 21 OLCI bands. Wind
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influences are corrected to ensure standard assumptions
for water algorithms; the wind speed is fixed at 5ms~ !,
and the effects of whitecaps and air bubbles in the
water are removed. These represent harmonised angles
and environmental conditions designed to ensure global
comparability and maximise the exploitation of satellite
data, including under sun glint conditions. The underlying
principles of this AC method A40O are very similar to those
of C2RCC (Miiller et al., 2026); however, it has not yet
been comprehensively validated or published. Nevertheless,
Hieronymi et al. (2023a) have shown validation results and
according to them, A40 has the following particularly good
performance compared to other accepted AC methods for
OLCIL: (1) a high classifiability of the generated Ry in
different OWT frameworks, i.e. basically plausible spectra
in the entire spectral range (without Ry < 0), (2) general
provision of spectra in all defined classes, (3) a high spatial
homogeneity of the pixel-by-pixel image analysis and thus a
particularly high number of achievable matchups. However,
the comparison with in situ measurement data shows a need
for further improvement; the reflectance spectra are often
underestimated in magnitude (a normalization issue) — this is
work-in-progress. Thus, the processing chain will be further
optimized in terms of data quality, processing speed, data
volume, and products including flags.

The workflow of the presented end-to-end processing
chain A40-ONNS v0.25 for daily aggregated observations is
illustrated in Fig. 2. It consists of pre-processing (incl. smile
correction and addition of climatological data), atmospheric
correction, classification of optical water types, use of
OWT-specific water algorithms, determination of water
constituents based on IOPs, merging of daily averages,
and storage with metadata. For daily observation, up to
17 individual OLCI Level-1 scenes of the same day with a
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“\” Workflow of satellite data processing Output parameters
g [ 1) Input of OLCI Level-18 data, pre-processing with sensor-specific ]7, [ Flags for land, water, floating algae, bright pixel, suspect pixels; TOA ]
system vicarious calibration, preliminary filtering, conversion of TOA reflectance (Ryo, at 21 bands)
radiance to reflectance, smile correction, gas and pressure correction

(2 Resampling of Level-18 tie-point and dlimatological data J [ wind speed; sea surface temperature and salinity ]

[ 3) Utilization of up to seven neural networks to estimate R,, from Ryos,

» [ Remote-sensing reflectance (R,, at 16 bands) with uncertainty estimate |
determination of the mean value and standard deviation of R, (Level-2)

() Quality control and generation of by-products J— _ Fiags for cloud risk, adjacency effects and sun glint; whitecap fraction )
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(" 9) auality checks and adjustment of flagging ]

([ 20) Add metadata and save product as NetCDF ]

Figure 2. Left: utilisation of all observational data within the region of interest (red frame) from individual OLCI scenes (white frames) from
Sentinel-3A and 3B, which have shifted sun-synchronous orbits. Right: sequence of steps in the end-to-end processor with output parameters.
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Figure 3. Percentage cloud cover of the region over the entire period June—September 2023 (122 d) and thus indirectly clear-sky probability,
which indicates pixel-based observation frequency. The coastlines can be subject to cloud misdetection. Contains modified Copernicus

Sentinel-3 OLCI data [2023].

volume of around 8 GB are processed, in the intermediate
Level-2 step approx. 38 GB are produced, and the resulting
merged Level-3 NetCDF files have a size of around 3 GB. So
far, potential effects of tidal dynamics, particularly relevant
in regions such as the Bristol Channel or the Elbe River
estuary, have not been accounted for in the merging, which
may influence the products (Sent et al., 2025). All cloud-free
contributions are averaged within the superordinate grid.
Due to the time offset between Sentinel-3A and 3B
overflights and cloud motion, slightly more water surfaces
can be seen, especially in the northern part, but this is
irrelevant for the cloud statistics (Fig. 3). It should be noted,
nevertheless, that the water-related products near clouds are
usually subject to greater retrieval uncertainties. The optical
water type classification of Bi and Hieronymi (2024) is
applied to Ry after merging. The final product contains
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selected information from Level-1 top-of-atmosphere, from
climatology, the atmospheric correction, OWT classification,
water products, and flags. Attention was paid to a
concise metadata description, easy handling, and meaningful

flagging.

2.4 Optical water type classification scheme

Water bodies in the study region are optically classified using
the holistic OWT framework of Bi and Hieronymi (2024),
which is summarised in the following. Unlike traditional
approaches that cluster normalized reflectance spectra
directly, this knowledge-driven framework classifies waters
based on three derived optical variables: the apparent visible
wavelength (AVW), the Box—Cox transformed spectral
area (Apc), and the normalized difference index (NDI).
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These three variables project the high-dimensional hyper-
spectral information into a concise three-dimensional optical
space, effectively capturing variations in both spectral shape
and magnitude (Fig. 4a).

Each variable represents a distinct optical characteristic
(Fig. 4b and c). AVW acts as a spectral centroid, indicating
the dominant hue of the water, ranging from short
wavelengths in clear blue waters to longer wavelengths
in turbid or productive waters. Apc, calculated from the
integration of reflectance at red, green, and blue bands,
quantifies the overall brightness or magnitude of the
spectrum, which is primarily driven by particulate scattering.
NDI captures specific spectral shape features around the
green and red peaks, aiding in the discrimination of
phytoplankton-dominated waters from those dominated by
non-algal particles.

The framework defines ten distinct OWTs (Classes 1
to 7) representing the continuum from oligotrophic to
hyper-eutrophic and extremely turbid waters (Fig. 4d). A key
feature of this scheme, addressing the optical complexity of
coastal transitions, is the subdivision of certain classes into
“a” and “b” variants (e.g., 3a/3b). While “a” and “b” variants
share similar spectral shapes (and thus similar AVW),
they differ significantly in magnitude (Apc). “a” typically
represents waters dominated by absorption or moderate
scattering, appearing darker. In contrast, the “b” variants
represent high-scattering conditions with significantly higher
reflectance, such as those caused by coccolithophore blooms
(OWT 3b and 4b) or suspended mineral sediments. OWT 5a
and 5b specifically characterize productive waters with high
phytoplankton biomass, where 5b represents hyper-eutrophic
conditions with distinct vegetation-like spectral features in
the near-infrared. OWT 6 and 7 represent the extremes of
optically complex waters, dominated by high concentrations
of total suspended matter (bright brown) and colored
dissolved organic matter (dark/black), respectively.

The classification is implemented using a fuzzy logic
approach based on the Mahalanobis distance in the three-
dimensional variable space. For each satellite observation,
the OWT algorithm calculates the membership probability
for each type. The final class assignment is determined by the
maximum membership, while the total membership serves
as a quality indicator of how well the observed spectrum fits
within the defined optical universe.

2.5 Additional data

The atmospheric correction A40 uses climatological data to
better resolve influences of sea surface whitecaps and coastal
conditions; these data are also provided. Climatological
reanalysis data of sea surface temperature, SST, and salinity,
SSS, have been adapted to A4O purposes with a global
spatial resolution of 1/12° (approx. 8 km). Monthly mean
temperature and yearly mean salinity were derived from the
Copernicus Marine Service global ocean physics reanalysis
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(Lellouche et al., 2018) related to the period 1993 to 2016.
Since this product contains no data for inland waters and
lakes, monthly mean SST of larger lakes were derived
from ERAS data of the European Centre for Medium-Range
Weather Forecasts (ECMWFE, https://cds.climate.copernicus.
eu/, last access: 12 February 2026; averaged over the
years 1979 to 2020 and re-gridded from 30 km resolution).
Missing values for any other inland waters were filled with
the mean value of all grid cells on the same latitude of each
month. Grid cells without a valid salinity value represent land
or freshwater and were therefore assigned to a value of zero.
Major saline lakes like Dead Sea or Great Salt Lake have
been included manually. In practice, this gives a temperature
between 0 and 36 °C and salinity values of 0 to 40 PSU. A
Laplace filter is applied to the re-gridded SST and SSS during
the satellite image processing to smooth grid boundaries.
When using A40, the data is projected onto the coordinates
of the Level-1 OLCI scenes; in Level-3 processing, all data
is projected onto the same global grid.

3 Presentation and context of the dataset

3.1 Overview of available parameters

An overview of all parameters contained in the data for each
day is listed in the following, the corresponding units are
in brackets, where 1 stands for unitless. Some parameters
refer to the entire region of interest over land and water, such
as top-of-atmosphere reflectance and wind speed. Products
from climatologies and their derivatives, such as whitecap
fraction, refer only to water areas resolved in the 300 m grid,
i.e. for lakes, broad rivers, lagoons, and seas. Water quality
characteristics are only provided for visible, cloud-free
water areas. NaN (not a number) is used as fill values for
corresponding data gaps.
Parameters from the original OLCI Level-1 data:

— L1_land: Level-1 land mask (thus implicitly water
areas) [1]

— L1_Wind_speed: omnidirectional wind speed from
Level-1 [ms™!].

Parameters from the atmospheric correction A40:

— A40_R_toa_400-1020: reflectance at the top-of-
atmosphere at 21 OLCI bands [1]

A40O_Rrs_n_400-1020: normalized remote-sensing re-
flectance at 16 OLCI bands [sr']

A40_SST: monthly average of the sea surface
temperature from climatology [°C]

A40_SSS: annual average of the sea surface salinity
from climatology [1 x 10_3] or [PSU]

https://doi.org/10.5194/essd-18-1307-2026


https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/

M. Hieronymi et al.: Optical complexity of North Sea, Baltic Sea, and adjacent coastal and inland waters 1313

(a) Mean spectra of optical water types

(b) Spectral shape vs. magnitude
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Figure 4. Spectral characteristics and definitions of the optical water types from Bi and Hieronymi (2024). (a) Mean remote-sensing
reflectance spectra for each type. (b, ¢) Distribution of OWT clusters across the three optical classification variables: apparent visible
wavelength, spectral magnitude (Agc), and normalized difference index. (d) Descriptive summary of the ten water types.

— A40O_A_wc: percentage whitecap fraction of water ar-
eas based on wind speed and sea surface temperature [1]
or [%].

Parameters associated with the optical water type classifica-
tion (Bi and Hieronymi, 2024):

OWT_AVW: apparent visible wavelength based on
A40O_Rrs_n between 400 and 800 nm [nm)]

OWT_Area: trapezoidal area at red, green, and
blue (RGB) bands based on A40_Rrs_n [1]

OWT_NDI: normalized difference index at green and
red based on A4O_Rrs_n [1]

OWT_index: optical water type index or class based on
A40_Rrs_n[1]

OWT_U_tot: total membership values in the OWT
framework [1].

Parameters from the ONNS water algorithm (Hieronymi et
al., 2017):

— ONNS_a_g_440: gelbstoff (CDOM) absorption coeffi-
cient at 440 nm (from IOP nets) [m™']
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ONNS_a_p_440: absorption coefficient of phytoplank-
ton particles at 440 nm [m1]

ONNS_a_m_440: absorption coefficient of minerals at
440 nm [m~']

ONNS_a_tot_440: total absorption coefficient at
440nm of CDOM, phytoplankton, minerals, and
water [m~!]

ONNS_b_p_440: scattering coefficient of phytoplank-
ton particles at 440 nm [m~!1]

ONNS_b_m_440: scattering coefficient of minerals at
440nm [m~1]

ONNS_b_tot_440: total scattering coefficient at 440 nm
of phytoplankton, minerals, and water [m~']

ONNS_a_dg_412: absorption coefficient of detritus
plus CDOM at 412nm [m~!]

ONNS_b_bp_510: total back-scattering coefficient of
all particles at 510 nm [m™']

ONNS_FU: Forel-Ule colour index [1]
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— ONNS_K_d _490: diffuse attenuation coefficient of
downwelling irradiance at 490 nm [m~']

— ONNS_K _ u_490: diffuse attenuation coefficient of
upwelling irradiance at 490 nm [m~!].

Parameters for concentrations of water constituents based on
ONNS-derived inherent optical properties:

— IOP_Chl:  chlorophyll
from total particulate
440nm [mg m_3]

concentration  estimated
absorption coefficient at

— IOP_TSM: total suspended matter concentration esti-
mated from total particulate scattering coefficient at
440nm [g m3]

— IOP_POC: total particulate organic carbon (POC)
concentration based on inherent optical properties of
phytoplankton and non-algae particles [gm™3]

— IOP_DOC: concentration of dissolved organic car-
bon (DOC) related to CDOM absorption at 440 nm
(Juhls et al., 2019) [mgm™3].

Available flags from the atmospheric correction and water
algorithm

— A40_flag_cloud: cloud mask from A40 [1]

— A40_flag_cloud_risk: high risk of clouds, which can
strongly influence the quality of the retrieval [1]

— A40_flag_adjacency: pixel near land or clouds with
high risk of retrieval influence, e.g. through sub-pixel
contamination of land, optically shallow water, aquatic
plants or cloud edges [1]

— A40_flag_bright: Level-2 bright mask, that includes
possible clouds and sea ice [1]

— A40_flag_suspect_pixel: Level-2 flag for possibly
implausible AC output [1]

— A40_flag_floating: Level-2 flag for very high biomass
and possibly floating algae [1]

— A40_flag_glint_risk: Level-2 flag for sun glint risk [1]

— ONNS_limited_valid: estimated IOPs and concentra-
tion values are highly uncertain [1].

Additional information on Level-3 data aggregation

— TOA_count: number of pixels from available satellite
images at the top-of-atmosphere [1]

— BOA_count: number of pixels from available cloud-free
images after atmospheric correction at the bottom-of-
atmosphere [1].

Background information on selected parameters is provided
in the following.
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3.2 Whitecap fraction

Information on the whitecap fraction is important, for
example, for estimating the gas exchange at the air-sea
interface, the heat flux, or the formation of marine aerosols.
Despite the relatively small area of coverage, whitecaps
are relevant for atmospheric correction due to their high
reflectivity in contrast to dark water. The surface fraction
covered with whitecaps, Ay, depends on wind speed
and water temperature and is usually much smaller than
5 %. Whitecap fraction is parameterized based on global
microwave satellite observations (with a frequency of
10 GHz; Albert et al., 2016). The estimated Ay, is provided
by the atmospheric correction A40 together with wind
speed from OLCI Level-1 and sea surface temperature from
monthly climatology, SST.

3.3 Concentrations of water constituents

The original ONNS algorithm by Hieronymi et al. (2017)
applied an internal OWT classification and class-specific
neural network (NN) algorithms to derive IOPs, light
field parameters, and concentrations of water constituents
directly. One reason for this was internal checks of system
uncertainties. For a clearer, more flexible and purely
physics-based derivation of the water constituents, the
concentrations are now determined based on the NN-derived
IOPs only. This is essentially the approach already promoted
by Doerffer and Schiller (2007) and used in the OLCI
Level-2 processing for Case-2 waters. To emphasise this,
the concentration labels refer to IOPs and not to ONNS
directly. Moreover, for concentrations of chlorophyll and
total suspended matter, similar IOP-relationships were used
as in Doerffer and Schiller (2007).

The chlorophyll concentration is linked to phytoplankton-
pigment absorption, but due to previous modelling inade-
quacies in the optical component separation, it is estimated
here from total particulate absorption at 440 nm (an interim
approach that will be revised in future):

1.04

Chl = 21(ap(440) + am(440)) (1

The concentration of total suspended matter is estimated
from total particulate scattering coefficient at 440 nm with:

TSM = 1.73 (bp(440) + by (440)). )

The analysis of optical measurement data (Roéttgers et al.,
2023) and concentration of particulate organic carbon, POC,
shows clear dependencies on phytoplankton and mineral
particles or detritus, especially for coastal waters. In addition
to phytoplankton absorption at 440 nm, ONNS also derives
the total backscattering coefficient of all particles at 510 nm.
The concentration of particulate organic carbon is well
represented by the following IOP-relationship:

POC = 5.5bpp(510) + 2.7a,(440). 3)
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Juhls et al. (2019) show that the concentration of dissolved
organic carbon, DOC, can be estimated via the absorption
coefficient of coloured dissolved organic matter at 440 nm
(in the ONNS notation, subscript “g” stands for Gelbstoff
as a synonym for CDOM). Their relationship is also applied
here:

DOC = 10°7% - g4 (440)*%°. )

3.4 Parameters from the optical water type classification

The three optical variables and OWT classification results
are included in the dataset. The spectral magnitude is
described by OWT_Area, the area below the Ry spectrum
at three red, green, and blue (RGB) bands, also referred
to as the zeroth spectral moment. The trapezoidal area is
Box-Cox transformed to yield Agc, which is subsequently
used for the OWT classification. The apparent visible
wavelength, OWT_AVW, describes the weighted average of
the wavelengths between 400 and 800 nm, also described as
the first spectral moment. The normalised difference index
between green and red, OWT_NDI, helps to distinguish
between phytoplankton and detritus-dominated spectra.
During the OWT analysis of the reflectance, weights are
assigned to all defined classes, although typically only three
to six classes contribute significantly. Thus, in addition to the
index for the water class with maximum membership, the
total membership of all contributing classes is also provided
in the dataset (OWT_index and OWT_U_tot). The total
membership serves as an indicator of the quality of the
classifiability; a minimum requirement of 0.0001 is often
used (e.g. Moore et al., 2001; Hieronymi et al., 2017, 2023a).

Figures 5-9 illustrate the available data for 1d
(8 July 2023) of the merged satellite image at the
top-of-atmosphere, after atmospheric correction, as well
as the three optical variables for the OWT classification.
Figure 10 shows the resulting OWT classes with the highest
membership for that day. In most cases, one class dominates
in the OWT analysis and intuitive conclusions can be
drawn about the reflectance spectrum (and corresponding
water constituents or phytoplankton groups). At the
boundaries between dominant water types, there is often
a transition zone with approximately equal contributions
from neighbouring types. For a full exploitation of the
OWT method, the results of the specific water algorithms
are mixed with corresponding weights in a fuzzy-logic
approach.

4 Assessment of the optical complexity of the water
bodies

This section demonstrates the application potential of the
optical water type classification data through a representative
analysis of summer 2023 patterns in the North Sea and Baltic
Sea region, showcasing how the dataset can elucidate water
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mass dynamics and ecological transitions. Figure 11 shows
a map of the water classes with maximum memberships
that occur most frequently in the four-month period. This
demonstrates a fundamental distinction between North Sea
and Baltic Sea, which also justifies the regional split of
the products in the Copernicus Marine Service (Brando
et al., 2024). Coastal and inland waters vary more in
colour and are often dominated by optical effects from
high concentrations of sediments, CDOM, or phytoplankton.
This wide range of concentrations may also exceed the
validity range of applied satellite algorithms. Hieronymi et
al. (2023a) compared five atmospheric correction methods
for OLCI and showed that, especially in the transition from
coastal to clearer North Sea waters, the resulting Ry can be
fundamentally different. Here, the comparative uncertainties
in the shape and magnitude of R are particularly high, but
also difficult to quantify. Comparison with in situ data show
a tendency for A4O to assess the water as clearer and bluer,
i.e. to switch earlier than the other methods to maximum
membership in OWT 1 during the transition to the open
sea. Consequently, this means that absorption and scattering
of water constituents are underestimated, and therefore the
predicted concentrations are underestimated too. However,
Hieronymi et al. (2023a) also documented some significant
problems with the plausibility and classifiability of the
results from the other atmospheric correction methods,
e.g. to large-scale overcorrection with (incorrect) Ry <
0 or significant excess of Ry especially in blue bands.
This requires further studies and comparisons with in situ
measurements.

In general, however, the regional distributions show
features that are reasonable from an oceanographic-
limnological point of view. Figure 10 shows areas in the
central North Sea with OWT 3b, a class that is intended
to represent bright-turquoise blooms of coccolithophores,
which contain high amounts of particulate inorganic carbon
(calcite particles). Such bright pixels are sometimes flagged
as clouds in other algorithms; in any case, such cases
are critical regarding the assumptions for chlorophyll
estimation, but OWT-specific assumptions can help here.
But the coccolithophore bloom (OWT 3b) in Fig. 10 is
only a temporary event with a phenologically changing
colour appearance like shown for example in Cazzaniga et
al. (2021); blue water (OWT 1) is the actual background in
that region during summertime (Fig. 11). Another feature
is visible in the North Sea area at the Dogger Bank with
OWT 2, where the water can be less than 20 m deep, which
on the one hand can lead to hydrodynamic resuspension of
sediments through waves, and on the other hand it is possible
that influences of the shallow bottom can be seen. This shows
a fundamental problem of ocean colour, namely that optically
shallow waters cannot yet be reliably flagged without water
depth information, which can lead to misinterpretations of
biomass and other parameters. The problem of shallow water
and visible seafloor is particularly recognisable near the
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Figure 5. RGB image created from reflectance top-of-atmosphere for 1d (8 July 2023). It illustrates the starting point for the atmospheric
correction including clouds, water-land areas, and observation angle effects at the original image margins. TOA information is also used for
orientation over land and in case of cloud issues. Contains modified Copernicus Sentinel-3 OLCI data [2023].
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Figure 6. Corresponding to Fig. 5, the result of the atmospheric correction: normalized remote-sensing reflectance at one wavelength (the
green band at 560nm) and labelling of land, clouds and cloud risk. Original image boundaries with increased “air mass” are no longer
recognisable, only at cloud discontinuities. Contains modified Copernicus Sentinel-3 OLCI data [2023].

island Lesg in the Kattegat, where the OWT variability
is very high — in fact, this should be flagged, because
underlying assumptions (of optically deep conditions) for
the water algorithms are invalid. But even apart from such
artefacts, the map shows that all defined OWTs occur, and the
region thus well represents the optical variability of natural
water bodies. But again, it is possible that A40O estimates
something too “blue spectra” in relatively clear shelf sea
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water — however, there are also significant contributions from
OWTs 2 and 3a.

Also of interest is a map showing the number of
different classes with maximum membership over the entire
period (Fig. 12). Typical water algorithms and atmospheric
corrections may be out-of-scope for different OWTs, which
is not the case for A40 and ONNS. Areas with many
different OWTs indicate high dynamics of sediments or
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Figure 7. Corresponding to Fig. 6, derived apparent visible wavelength with reference to the spectral range 400 to 800 nm for OWT
classification. Contains modified Copernicus Sentinel-3 OLCI data [2023].
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Figure 8. Corresponding to Fig. 6, derived spectral area below Ry at 443, 560, and 665 nm. This map shows the raw trapezoidal area, which
is Box—Cox transformed into Agc for the actual OWT classification as presented in Fig. 4b. Contains modified Copernicus Sentinel-3 OLCI

data [2023].

algal blooms with possible eutrophication issues. Examples
of water bodies with high optical variability with up to
six different dominant classes are some Estonian lakes,
including the large Lake Peipus. Ansper-Toomsalu et
al. (2024) compared satellite products with in situ data
from these waters, including the A40O-ONNS processing
described here. Their results show a need for improvements
but are not yet conclusive. Ideally, the comparisons should
be made in the context of the prevailing OWT, which
can help the further development of the algorithm and
formulation of uncertainties. In principle, there can also be
differences in the reflectance shape and the allocation of
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the OWT due to clouds, subvisible clouds, cloud shadows,
but also due to subpixel contamination by coastal vegetation
such as reeds, which is then interpreted as high biomass
class. Nevertheless, there are also areas that are optically
dominated by only one class over the entire period, such as
the tide-influenced muddy and very bright Bristol Channel
with dominating OWT 6. For ground-truthing and definition
of system vicarious calibration (SVC) gains, low optical
variability over time is more important than water clarity
alone. While SVC is traditionally performed in clear waters,
stable optically complex waters are essential for validating
algorithms and ground-truthing across the full spectral

Earth Syst. Sci. Data, 18, 1307-1329, 2026
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Figure 9. Corresponding to Fig. 6, derived normalized difference index for OWT classification. Contains modified Copernicus Sentinel-3

OLCI data [2023].
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Figure 10. Corresponding to Fig. 6, resulting water types with maximum membership. Seven spectral Rys shapes are distinguished in
the OWT framework; the subdivision into “a” and “b” shows differences in magnitude. Contains modified Copernicus Sentinel-3 OLCI

data [2023].

range. OWT technology provides the opportunity to apply
SVC on a per-water-type and per-product basis. Analysing
the recurring patchiness of water classes can support the
selection of representative sites for water quality monitoring
and satellite validation (Lehmann et al., 2021).

The occurrence of water classes and their classifiability
for the entire region and period is shown in Fig. 13. This
is a form of visualisation as already used in Hieronymi
et al. (2023a) and Bi and Hieronymi (2024) (and their
supplement), and in comparison with their results, Fig. 13
shows that R, from A40O can be well-classified with this
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OWT framework (99.68 % of the cases lead to a minimum
total membership of 0.0001) and that all classes are filled.
This is a significant benefit of A40, but also of the OWT
framework, and demonstrates the fitness for purpose of both
methods for satellite monitoring of the land-sea aquatic
continuum.

Using the regional subdivisions shown in Fig. 1,
which are aligned with the domains in the Copernicus
services, the optical properties of the water areas can
be further specified. Table 1 shows the distribution of
occurring water classes with maximum memberships and
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Figure 11. Most common water types with maximum membership within June—September 2023. Contains modified Copernicus Sentinel-3

OLCI data [2023].
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Figure 12. Number of different water types with maximum membership within June-September 2023, i.e. the ecologically and
hydrodynamically caused changes in water colour during the summer months. Contains modified Copernicus Sentinel-3 OLCI data [2023].

the overall level of classifiability in the subdomains. The
very few non-classifiable cases, where the sum of the class
memberships does not exceed the threshold value of 0.0001,
are mostly associated with clouds, e.g. in 0.53 % of cases for
the North Sea where the overall cloud cover is also higher
(Fig. 3).

In the North Sea region (which here includes other parts
of the European North-West Shelf Sea), the oceanic water
types 1 to 3a dominate (with a total of 96.2 %). The bloom
of coccolithophores visible in Fig. 10 is characterised by
OWT 2, 3a, and 3b. The transitional waters to the southern
coasts are more strongly influenced by CDOM input and
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sediment resuspension (OWT 4a and 4b). Thus, the spatial
distribution of the classes also reflects the bathymetry of the
North Sea.

The Baltic Sea is optically dominated by CDOM absorp-
tion effects and OWT 4a (81.3 %). The Skagerrak-Kattegat
region is the transition to clear waters and marine salinity. As
mentioned, there are some cases of optically shallow water
with a visible sea floor for which OWT classes can serve as a
mask, because the usual model assumptions for estimation
of water constituents do not apply. OWT 5a and 5b also
occur in the Baltic Sea. These classes represent green
eutrophic to hypereutrophic waters with significantly higher

Earth Syst. Sci. Data, 18, 1307-1329, 2026



1320

M. Hieronymi et al.: Optical complexity of North Sea, Baltic Sea, and adjacent coastal and inland waters

Percentage of classifiable pixels [ % ]

401 54

100

80

60

40

20

Distributions of total memberships [ % ]

16.9 0.54 348 0.33 1.31

0.24 0.13 0.33 99.68

B High

[ Medium

[ Low

[ Below threshold

1 2 32 3b 4a 4b ba

5b 6 7 All

OWT with maximum membership

Figure 13. Distribution of optical water types with maximum membership and category of their total memberships in high (> 0.8),
medium (0.3-0.8), low (0.0001-0.3), and below threshold (0-0.0001) for the entire region and period. The bar on the right gives the overall
distribution. The figure corresponds to the illustrations in Hieronymi et al. (2023a) and Bi and Hieronymi (2024).

Table 1. Percentage distribution of occurring water classes in regional subdomains and overall classification level.

OWT 1 2 3a 3b 4a  4b Sa 5b 6 7 All
North Sea 66.0 9.0 212 0.9 23 029 007 003 0.14 0 9947
Baltic Sea 36 036 11.1 0.03 813 0.33 22 032 0.1 0.64 99.98
Inland waters 0 0 1.16 0 619 174 242 6.0 0.55 4.4 100
Coastal waters ~ 18.1 31 203 0.3 544 072 214 033 029 047 99.86
Total 40.1 54 169 054 348 033 131 024 0.13 033 99.68

phytoplankton biomass and bimodal reflectance shape. In
the Baltic Sea, this is mostly associated with cyanobacteria
blooms. The occurrence of these water classes can therefore
be used directly as an indicator for cyanobacterial blooms.
OWT 7 stands for dark brown waters with a very high CDOM
concentration and low reflection in the entire visible range.
This class of water is found in the Baltic Sea particularly near
river outflows in the Gulf of Finland and the Gulf of Bothnia.

Inland waters are generally more characterised by CDOM
absorption and its reflectance attenuation in the blue (e.g.,
Nelson and Siegel, 2013; Kutser et al., 2016; Spyrakos et al.,
2018). Accordingly, oceanic water classes are not listed as
predominant in this region. However, this could be the case
in other regions of the world, e.g. in very clear oligotrophic
lakes. Most inland waters fall into classes 4a, 5a, and 7, all
of which have relatively high CDOM effects. Over 30 % of
the water bodies also have high concentrations of algae (5a
and 5b), therefore the OWTSs are also characteristic for the
trophic state of inland waters. OWT 6 stands for extremely
scattering (NAP-dominated) turbid waters; they occur in
some river estuaries like the tide-influenced Lower Elbe or
Severn that flows into the Bristol Channel.
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The category of coastal waters consists of parts of the other
three subdomains and is optically the most diverse. Coastal
waters range from oligotrophic ocean to hyper-eutrophic
algal blooms and from bright-scattering to dark-absorbing.
This means that the use of the term “coastal” for ocean
colour algorithms is in fact somewhat misleading. The OLCI
Level-2 coastal algorithm (or more precisely for optically
complex waters), i.e. C2RCC, is optimised for moderately
scattering or absorbing waters (Hieronymi et al., 2023a).

5 Other features of the dataset

The dataset also contains several parameters that are
useful for oceanographic-limnological, atmospheric, and
biogeochemical process studies. Examples are outlined in the
following.

5.1 Clouds

From global MODIS cloud observations, it is estimated
that the fraction of clouds over worldwide land surfaces is
about 55 %, with a distinctive seasonal cycle, whereas cloud
cover over the oceans is around 72 %, with reduced seasonal
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variability (King et al., 2013). In our region of interest,
summer tends to have fewer clouds than winter (e.g. Schrum
et al., 2003), and our summer-dataset exhibits an overall
lower cloud fraction compared to global climatology. The
cloud cover averaged over the North Sea, Baltic Sea, and
land areas (including inland waters) shows a relatively large
daily variability and is significantly higher for the North
Sea (41 %) than for the Baltic Sea and land areas in the
region (both approx. 27 %) (Fig. 3). At the British Isles and
north of them, cloud cover was on average often > 60 %.
The coastlines, and here in particular bright sandy beaches,
are often misinterpreted as clouds (or cloud risk), which
can be used for better flagging in the future. The cloud
cover has an impact on the observable areas and possible
matchups with satellites. Cloud cover also has an influence
on the available solar radiation for photosynthesis of
phytoplankton and is therefore crucial for estimating primary
production. For example, neglecting photoacclimation of
phytoplankton under clouds likely leads to a significant
underestimation of growth rate and therefore of primary
production (Begouen Demeaux et al., 2025). The available
reflectances at top-of-atmosphere can be used to determine
cloud shapes and brightness for cloud statistics, but also
for better cloud-flagging and cloud-shadow detection in
the future. Cloud motions and different correction methods
also create problems when merging ocean colour data from
different satellite missions for long time series (van Oostende
et al., 2022).

5.2 Wind

The wind speed, i.e. the omnidirectional horizontal wind
vector at 10 m altitude, is transferred from the OLCI Level-1
data and is available for all land-sea areas. Above water,
wind influences the roughness of the water surface and wave
development, the size of the direct sun glint area, the fraction
of whitecaps at the surface due to wave breaking, the initial
diffuseness of the underwater light field, but also the mixing
of the upper water layer (e.g. Hieronymi and Macke, 2012;
Hieronymi, 2016). This means that wind has an influence
on the performance of the atmospheric correction, which
is usually designed for moderate wind speeds, which is
satisfied on average for the North Sea and Baltic Sea at
6.3 and 5.5ms~! respectively. However, there were also
large-scale storm events during the observation period, e.g. at
the beginning of August, which brought large amounts of
precipitation to Scandinavia. Strong wind events also lead to
surface-accumulated algae being mixed into the depths.

5.3 Carbon in the upper water column

Brewin et al. (2023) provide an overview of methods for
obtaining ocean carbon from space, but also priorities,
challenges, gaps, and opportunities for satellite estimates.
Their review targets on both inorganic and organic pools
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of carbon in the ocean, in both dissolved and particulate
form, as well as major fluxes of carbon between reservoirs
(e.g. primary production) and at interfaces (e.g. air-sea and
land-ocean). Extreme events, “blue carbon”, and carbon
budgeting were also key topics discussed. Current algorithms
include those that are: based on empirical band-ratio or
band-differences in remote-sensing reflectance wavelengths;
IOP-based; IOP and chlorophyll based; based on estimates of
diffuse attenuation (Kq4); and based on relationship between
diffuse attenuation and IOPs. Our dataset contains most
needed parameters required for the use of the various
algorithms. Some information can be estimated from the
local course of the sun and large-scale cloudiness, like the
diurnal photosynthetically available radiation (PAR) that is
essential for estimating primary production. Optical water
types have the potential to support improved characterization
of aquatic carbon. OWT 3b for example, which is especially
defined for strongly backscattering coccolithophore blooms,
serves as a direct hint for particulate inorganic carbon (PIC).
The IOPs and reflectances provided allow quantification of
PIC concentrations (e.g. Balch and Mitchel, 2023). The flag
for floating algae is an indicator that recognizes scum at the
surface or floating macroalgae such as Sargassum, which are
part of the “blue carbon”. There are therefore extensive links
in the dataset for estimating aquatic carbon.

We pursue the physics-based approach of determining the
inherent optical properties of individual water constituents
from aquatic reflectance. The optical effect of biogeochem-
ical stocks can be reliably estimated using IOP-constituent
relationships. The establishment of such relationships
increases the traceability of individual processing steps. The
concentration products in the dataset are based exclusively
on the estimated IOPs and do not yet include any system
vicarious calibration for the overall processing, which is
an option for optimising validation results (e.g. O’Kane et
al., 2024). In addition to the estimation of widely used
concentrations of chlorophyll and total suspended matter,
we also provide concentrations of dissolved and particulate
organic carbon (DOC and POC). However, a matchup-based
and OWT-specific validation of the products is still ongoing.

There is only very little measured and uncertainty-
characterized validation data available for the same region
and time. As an illustrative example, we discuss the
challenges associated with satellite data validation using a
single case study with POC. From a validation campaign
with RV Alkor (AL597) in July 2023 in the Baltic Sea POC
measurements are available with concentrations varying
between 0.25to 1 g m~—3 (N = 48). The related determination
errors were generally low (1 %—5 %), but in few cases up to
20 % (Hieronymi et al., 2023b; Novak and Rottgers, 2026).
Based on both measured and satellite-derived reflectance,
the waters during all these measurements were assigned to
just one optical water type, namely OWT 4a. Nevertheless,
there are considerable small-scale spatial variations, often
caused by the occurrence of large cyanobacteria colonies.
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Standard matchup criteria require a narrow time window
and spatial homogeneity, but cloud cover also limits
the amount of available comparison data. To estimate
retrieval performance, we use all measurement points and
corresponding satellite observations for the entire month of
July 2023 (monthly average in Fig. 14). Figure 15 shows a
comparison of POC values from satellite observations with
median of values from 3 x 3 pixels using a homogeneity
criterion and cloud-free conditions within 5 x 5 pixels. The
error bars for satellite-derived POC represent the minima and
maxima of the mean values for the month and indicate that
the values can vary by an order of magnitude, which is often
related to unrecognized cloud artefacts (typically resulting
in higher POC concentrations). This shows that rigorous
system-wide flagging needs to be improved. However,
Pearson’s correlation coefficient shows a strong positive
relationship (r =0.76). The absolute root-mean-square
error (RMSE) is 0.25, the mean absolute error (MAE) is 0.23,
and the median absolute relative difference (MARD) (like
in Smith et al., 2018) is 45%. Linear regression yields
a slope of 0.6 and an intercept close to zero; POC is
therefore rather underestimated with considerable variability.
However, we argue that explicit uncertainty characterization
is also the dimension of high-quality Earth observation data.
This rough comparison (for one water type) is similar to
the other OC products in the dataset and shows that there
is still substantial need for improvement of the end-to-end
processor. However, it also shows the opportunities for
OWT-specific adaptation of IOP-concentration relationships
and application of system vicarious calibration.

Our POC measurements in the North Sea region usually
show values of 0.05 to 0.5 gm™3; in the turbid parts of the
German Bight and in the Elbe estuary, POC values up to
15 gm™3 have been measured (Réttgers et al., 2023; Novak
and Rottgers, 2026). These are the magnitudes of POC
concentrations that are mirrored in the dataset and shown
in the monthly average in Fig. 14. Existing POC algorithms
are often optimised for lower concentration ranges of oceans,
e.g. Stramski et al. (2008), but there are also others that target
higher coastal concentrations such as Loisel et al. (2023).
Ultimately, their performance also depends on accurate
atmospheric correction. The aim of our efforts with A40 and
OWT-specific IOP-concentration relationships is to cover
the entire span of concentrations over several orders of
magnitude.

6 Uncertainties of the dataset

The complete satellite image processing chain of atmo-
spheric correction, OWT results, IOP algorithm, IOP-
constituent relationships, and day-aggregated data is still
work in progress and requires better harmonisation of
the components. Individual parts, such as the atmospheric
correction (A40) and the water algorithm (ONNS), provide
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each an estimate of the uncertainties for the derived outputs
— but these sub-results are not provided in the present
dataset. These original uncertainty estimates are sometimes
misleading because they do not take into account the
other components, especially the coupling of atmospheric
correction and water retrieval, but also not the higher-level
flagging and actual comparisons with in situ measurements.

The spatial visualisation of the data gives indications of
occasional imperfections, e.g. regarding flagging of clouds,
nearby land, shallow water, sun glint, and tidal flats,
but also viewing geometry effects from the atmospheric
correction, which are sometimes mirrored in water products.
Parameters such as CDOM absorption coefficient (and
the corresponding directly derived DOC concentration) are
particularly sensitive to smallest errors of the atmospheric
correction due to the ambiguities of the system and the
absolute signal dominance of Rayleigh light scattering in the
atmosphere. Very high concentrations of CDOM are usually
found in small inland waters and are discharged into the sea
via rivers, which can lead to additional risks in monitoring
due to relatively coarse spatial resolution and land-adjacency
effects (e.g. El Kassar et al., 2023).

The provision of a masking recommendation or invalid-
pixel expression for the end-to-end processing scheme
is the subject of ongoing research. For example, results
from areas with high sun glint are merged in the daily
means; the results appear plausible, but they would be
flagged in other AC methods (e.g. Hieronymi et al., 2023a).
We primarily recommend enabling the “cloud risk™ filter
and paying attention to spatial inhomogeneities related to
undetected clouds, and, if necessary, excluding such areas
from comparative analyses and subsequent data processing
as well.

The ambitions of the overall algorithm are very
challenging, especially since a biogeo-optical system is
to be described in an all-water type-comprehensive and
open-connectable way, but all parameters basically vary
over several orders of magnitude in their value ranges.
Mission requirements for uncertainties are often defined
in a simplified manner in the context of Case-1 and
Case-2 waters, but requirements are not specified for all
variables, e.g. IOPs (e.g. IOCCG, 2019). A more concrete
OWT-specific guideline could help here; however, this
also includes extreme waters that can exhibit very high
uncertainties.

The underlying algorithm setup has not yet been
sufficiently validated for each water type; some variables
and preliminary elements were addressed in Hieronymi et
al. (2023a) and Ansper-Toomsalu et al. (2024). On the one
hand, there are many parameters that are useful for the
spectral system description and serve as links for various
empirical algorithms; on the other hand, some parameters are
rarely measured and are not available for all defined water
types. In fact, the current efforts of FAIR data preparation are
aimed at finding suitable validation data and contextualising

https://doi.org/10.5194/essd-18-1307-2026



M. Hieronymi et al.: Optical complexity of North Sea, Baltic Sea, and adjacent coastal and inland waters

1323

Latitude [°]

[] Land

Average for
July 2023

Concentration of
- Particulate Organic

-3 0 3 6 9 12 15
Longitude [°]

. . Carbon
e POC [gm?]
100
=d : i
Sl : - 10
1
0.1
1 1 1 1 1 001
18 21 24 27 30

Figure 14. July-monthly-averaged IOP-based estimate of the concentration of particulate organic carbon in the upper water column. Contains

modified Copernicus Sentinel-3 OLCI data [2023].
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Figure 15. Comparison of particulate organic carbon measured in
situ from water in the Baltic Sea against satellite estimates from
the same month (July 2023, like Fig. 14). The horizontal error bars
of the in situ POC concentrations represent the standard errors from
the determination. Vertical lines show the variation in median values
in 3 x 3 pixels of the satellite images over the entire month. The
1: 1 line is represented by a dashed line.

the satellite products. The user-oriented, traceable, and
simple categorization of uncertainties is a focus of ongoing
research.

7 Outlook

An obvious and important goal is the appropriate validation
of the parameters of the dataset and the processing

https://doi.org/10.5194/essd-18-1307-2026

chain in general, especially those related to water quality.
Methodologically, five groups with specific requirements are
distinguished here: remote-sensing reflectance (16 values),
diffuse attenuation of irradiance (two), colour index (one),
inherent optical properties (nine), and concentrations of wa-
ter constituents (four). In addition, there are meteorological
(wind, solar irradiation, and cloud cover) and limnological-
oceanographic (water temperature and salinity) parameters
in the dataset that have not been verified. We are convinced
that it would be beneficial to carry out the validation in the
context of optical water type classification; the approach by
Bi and Hieronymi (2024), which distinguishes ten classes,
is ideal for this. Alternatively, other OWT frameworks can
serve as a basis (e.g. Moore et al., 2001, 2014; Vantrepotte et
al., 2012; Mélin and Vantrepotte, 2015; Jackson et al., 2017,
Spyrakos et al., 2018; Bi et al., 2021; Atwood et al., 2024).
However, some of these frameworks differentiate a large
number of optical classes (e.g., up to 17). While scientifically
rigorous, such high granularity can be challenging for
operational validation, where a more consolidated set
of classes is advantageous to ensure sufficient matchup
density for robust statistical assessment of each water type.
Ideally, one can utilise matchups in which all parameters
were measured simultaneously, e.g. as on the dedicated
research cruise in the Baltic Sea in July 2023 (Hieronymi
et al.,, 2023b) — but this also only covers one water
class. We aim to utilise new data handling technologies,
such as the AquaINFRA Data Discovery and Access
System (https://aquainfra.eu/, last access: 12 February 2026),
which allows researchers to seamlessly find and retrieve
datasets from heterogeneous sources, e.g. from stationary
or moving measurement platforms, from long time series
or targeted experiments. Overall, further harmonization
of standard names is required, for example according to
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CF conventions, in a manner that is scientifically appropriate
for both oceanographic and limnological contexts. In
perspective, this dataset and the underlying algorithms are
an opportunity for the exploitation of remote sensing in
order to answer limnological-oceanographic questions and
expand monitoring capabilities. This could, for example,
be a contribution to observation-based carbon budgeting
(e.g. Friedlingstein et al., 2023; Brewin et al., 2023),
whereby coastal DOC and POC are already provided and
there are many links for estimating PIC concentration and
primary production in water. As has been shown, the
optical water types are particularly useful as indicators for
phytoplankton groups, and there is potential to better assess
the phytoplankton function in the ecosystem, contextualising
long-term observations, or to warn of harmful algal bloom
(e.g. Bracher et al., 2017; Kordubel et al., 2024; Devreker et
al., 2025).

8 Data availability, visualisation, and context

8.1 Data availability

The dataset consists of 122d-aggregated single
NetCDF files totalling 365.16 GB. It can be freely
obtained from the World Data Center for Climate at
https://doi.org/10.26050/WDCC/AquaINFRA _Sentinel3_v2
(Hieronymi et al., 2025). Identical Sentinel-3 OLCI-based
datasets with the same parameters have been produced for
testing purposes for other regions of the world and will be
made available soon at the same database: (1) the Mackenzie
River region with the Beaufort Sea and Arctic Ocean, (2) the
Black Sea with the Sea of Marmara and part of the Aegean
Sea, and (3) the central North Atlantic.

8.2 Data visualisation

The NetCDF data can be opened and visualised in the
Sentinel Application Toolbox SNAP or in QGIS, for
example. In addition, there is a visualisation of the content
using cloud-optimised GeoTIFFs, which was provided by
the EU AqualNFRA project partner Finnish Geospatial
Research Institute at the National Land Survey of Finland.
This can be used to quickly check the actual availability of
cloud-free water quality parameters of the Sentinel-3 OLCI
ONNS dataset in two projected coordinate systems, namely

— Pseudo Mercator: https://vm4072 kaj.pouta.csc.fi/ddas/
oapic/collections/sentinel-3-OLCI-ONNS3857  (last
access: 12 February 2026) and

- LAEA: https://vm4072.kaj.pouta.csc.fi/ddas/oapic/
collections/sentinel-3-OLCI-ONNS3035 (last access:
12 February 2026).
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8.3 Corresponding Sentinel-3 OLCI data and additional
resources

Several data resources are available where partly the same
Sentinel-3 OLCI input data are interpreted (processed) in
a different way or where data from other satellite missions
are visualised. The Copernicus Data Space Ecosystem
Browser serves as a central hub for accessing, exploring
and utilising Earth observation data such as from Sentinel-3
OLCI, where the standard Level-2 water products as well as
many synergetic products can be viewed (https://dataspace.
copernicus.eu/browser/, last access: 12 February 2026).
The Copernicus Marine Service provides physical and
biogeochemical reference information on the state of
the oceans, partly in a regionally optimised manner for
Sentinel-3 OLCI with specific products for the North
Sea, Baltic Sea, and coastal waters — but also in the
context of other European seas (https://marine.copernicus.
eu/, last access: 12 February 2026). The Copernicus Land
Monitoring Service provides information on land cover and
land use, the water quality of lakes, and the water level
of lakes and rivers in the hydrographic network worldwide
and in Europe (https://land.copernicus.eu/en, last access:
12 February 2026). The US-American National Oceanic and
Atmospheric Administration (NOAA, NESDIS, Center for
Satellite Applications and Research) hosts a valuable ocean
colour viewer that puts Sentinel-3 OLCI data in context
with other global ocean colour missions, most notably from
the Visible Infrared Imaging Radiometer Suite (VIIRS) on
two satellites (https://www.star.nesdis.noaa.gov/socd/mecb/
color/index.php, last access: 12 February 2026). The Finnish
Environment Institute (Syke) operates the Tarkka service
with a map viewer for satellite images of the Baltic
Sea region and parts of the North Sea, which combines
Sentinel-3 OLCI images with even higher spatial resolution
Sentinel-2 MSI and Landsat images (https://tarkka.syke.fi,
last access: 12 February 2026). Sentinel-3 OLCI data are
also integrated into global long-term time series, e.g. as part
of the ESA Ocean Colour — Climate Change Initiative with
observations since 1997 (https://www.oceancolour.org/, last
access: 12 February 2026), where spatiotemporal changes
of water constituents in the oceans can be monitored
(e.g. van Oostende et al., 2023).

8.4 Code availability

The source code and associated parameters for the OWT
framework (Bi and Hieronymi, 2024) are available on
GitHub (https://doi.org/10.5281/zenodo.18645698, Bi et al.,
2026). This allows the question of the optical complexity
of the region to be reproduced using other atmospheric
correction methods or data from other satellite missions.
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9 Conclusions

We provided a Sentinel-3 OLCI satellite image-based dataset
that includes water quality properties in lakes, rivers, coasts,
as well as the entire North Sea and Baltic Sea. We applied
a novel data processing scheme with the aim of seamless
and consistent data quality in the transition between the
optically diverse waters. The analysis of the optical water
types shows clear differences between the water bodies,
which, in addition to seasonal phytoplankton phenology, are
governed by CDOM absorption or hydrodynamic sediment
suspension. CDOM is mainly discharged into the sea via
the freshwater of inland waters and diluted in the sea;
the salinity of water is therefore a good indicator for
optical nuancing and shows, for example, a clear difference
between the Northwest European shelf and the Baltic Sea.
Optical water type classification helps to specify water
constituents more precisely and serves as a direct hint for
some phytoplankton groups. With this dataset, we present
for the first time our approach for IOP-based estimation
of particulate and dissolved organic matter. Currently, we
only provide a quantitative grading of the water quality
parameters, which vary over several orders of magnitude —
a detailed and OWT-specific validation of the 73 individual
parameters must follow. Overall, however, the dataset offers
many starting points for deriving further parameters and
user-oriented information from the remote sensing data
in the future. The question of the optical complexity of
the region could in principle also be clarified using other
satellite data (e.g. from MODIS, VIIRS, PACE, multi-sensor
merged data or data from various Copernicus services) or
widely distributed in situ reflectance measurements, if they
cover the full natural range. The applied OWT method
by Bi and Hieronymi (2024) is flexible, accommodates
various types of input data, and captures the full range
of natural optical variability. This study demonstrates that
the atmospheric correction A40 for Sentinel-3 OLCI is
fundamentally fit for purpose and reliably outputs all defined
water types. Comparable large-scale spatial patterns of
spectral features in the region were documented by Mélin
and Vantrepotte (2015) based on SeaWiFS satellite data (with
lower spatial, temporal, and spectral resolution).
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