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Abstract. This study introduces FYAI a global, long-term atmospheric ice water path (IWP) and suspended
ice water path (SIWP) dataset spanning 2010-2024, derived from passive microwave observations (MWHS-I/IT)
onboard China’s Fengyun-3 series satellites. The dataset is generated using a machine learning framework fea-
turing a lightweight multilayer perceptron architecture enhanced with gated residual units. This design robustly
handles the inherent uncertainties in satellite brightness temperatures and the spatial mismatch between passive
microwave footprints and active radar/lidar training data. By establishing rigorous spatiotemporal collocation
with CloudSat 2C-ICE products, FYAI provides two operational product levels adhering to standard Earth obser-
vation data processing definitions: (1) Level-2 (L2) products, offering instantaneous orbital-resolution IWP and
SIWP at a nominal 15 km nadir resolution for 2010-2024; and (2) Level-3 (L3) products, comprising monthly
global gridded composites at 1° x 1° resolution (2010-2024). FYAI bridges the gap between instantaneous pixel-
level precision and broad spatiotemporal coverage, offering a comprehensive, decadal-scale record of global
atmospheric ice content. This dataset, specifically designed to support long-term climate analysis and model val-
idation, is openly available in netCDF4 format for community use (https://doi.org/10.11888/Atmos.tpdc.303143,
Yang et al., 2025)
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1 Introduction

Ice crystals play a pivotal role in cloud and precipitation
processes, thereby significantly modulating the hydrologi-
cal cycle, thermodynamics, and radiative transfer (Gultepe et
al., 2017). Consequently, the reliable quantification of atmo-
spheric ice content is critical for elucidating latent heat dis-
tribution and precipitation mechanisms (Amell et al., 2022).
The primary metric used to describe this ice content is the ice
water path IWP), defined as the vertical integral of the ice
water content (IWC). IWP is composed of both suspended
ice and falling ice (also referred to as precipitation ice), al-
though the criteria distinguishing these components remain
ill-defined (Eliasson et al., 2011; Waliser et al., 2009). How-
ever, current climate models exhibit widespread inconsisten-
cies and pronounced spatial heterogeneity in simulating IWP
(Eriksson et al., 2025; Wang, 2022). Indeed, as highlighted
in the Intergovernmental Panel on Climate Change Sixth As-
sessment Report (IPCC AR6), these cloud and precipitation
processes remain primary sources of uncertainty in climate
modeling and projections (IPCC, 2023). This underscores the
critical need for high-quality observational constraints on at-
mospheric ice (Holl et al., 2014).

From an observational perspective, space-based remote
sensing is the primary means of providing global IWP data,
yet existing products face limitations. Visible and infrared
sensors, such as MODIS and AIRS, have provided valuable
long-term records. However, their measurements are often
constrained by signal saturation in optically thick clouds, and
they are primarily sensitive to upper cloud layers rather than
probing the full depth of deep convective systems (Eliasson
et al., 2011). Conversely, limb sounders like the Microwave
Limb Sounder (MLS), while offering vertical profiles, are
constrained by extremely sparse horizontal sampling, mak-
ing them unsuitable for continuous regional monitoring (Wu
et al., 2006). Active sensors (e.g., CloudSat/CALIPSO) of-
fer high accuracy but represent only a “needle-thin” curtain
of the atmosphere (Delano¢ and Hogan, 2010; Hong and
Liu, 2015). Passive microwave remote sensing bridges these
gaps. On the one hand, microwave radiation can penetrate
thick clouds and interact directly with ice particles via vol-
ume scattering to retrieve bulk ice mass, while polarimet-
ric measurements provide further constraints on ice crystal
shape and orientation. On the other hand, a notable limita-
tion is its coarser horizontal and vertical spatial resolution
compared to active sensors. Nevertheless, it remains the most
effective approach for capturing broad-scale variability. Con-
sequently, passive microwave instruments remain the optimal
solution for retrieving large-scale, long-term, and all-weather
IWP data due to their ability to penetrate dense clouds and in-
teract directly with ice mass (Evans and Stephens, 1995; Wu
et al., 2008, 2024).

Currently, microwave humidity sounders operating be-
low 200 GHz (e.g., AMSU-B, MHS) are standard for ice
detection. However, despite carrying Microwave Humidity
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Sounder (MWHS), the potential of China’s Fengyun-3 (FY-
3) series satellites remains largely untapped in producing
global climate datasets. The FY-3 series offers a unique ad-
vantage unmatched by other operational systems: a complete
three-orbit constellation comprising morning (FY-3A/C/F),
afternoon (FY-3B/D), and the distinct dawn-dusk (FY-3E)
orbit satellites (An et al., 2023; Tan et al., 2019; Wang et
al., 2022). This configuration allows for substantially im-
proved temporal sampling, filling critical gaps in the diurnal
cycle of IWP that are missed by sun-synchronous satellites
restricted to fixed crossing times, particularly with the inclu-
sion of FY-3E observations starting in 2023. By leveraging
this 15-year continuous archive (2010-2024), there is an op-
portunity to construct a coherent, long-term IWP climate data
record that overcomes the spatiotemporal limitations of exist-
ing datasets.

While traditional physical retrieval methods offer inter-
pretability, they rely heavily on complex scattering databases
and microphysical assumptions (e.g., particle shape and size
distribution) that are often difficult to constrain globally
(Letu et al., 2016, 2020). In contrast, machine learning (ML)
has introduced a novel paradigm for remote sensing retrieval.
Its primary novelty lies in its ability to approximate complex
radiative transfer processes through data-driven representa-
tion learning, effectively bypassing the rigid dependence on a
priori microphysical assumptions required by physical inver-
sions. By constructing deep neural network, ML can capture
highly non-linear relationships and extract abstract features
from multi-channel observations that are often impercepti-
ble to traditional methods. Previous efforts, such as SPARE-
ICE (Holl et al., 2014) or geostationary retrievals (Amell et
al., 2022, 2024; Tana et al., 2025), have demonstrated the
efficacy of NN-based approaches. Similarly, recent studies
involving co-authors of this paper have explored ML appli-
cations on IWP retrieval using polar-orbiting FY-3 satellites
(Wang et al., 2022, 2024). However, a dedicated, long-term
IWP dataset derived specifically from the advanced capabil-
ities of the FY-3 constellation — which also incorporates a
distinction between total ice and suspended ice — is currently
absent from the community.

To address these gaps, this study presents “FYAI”
(Fengyun Satellite-Based Dataset for Atmospheric Ice Wa-
ter Path), a novel global dataset generated using a NN-based
framework. By training on 2C-ICE active remote sensing
data and applying it to the MWHS-I/II records from the en-
tire FY-3 family, FYAI provides a seamless 15-year record
(2010-2024) of both Level-2 (L2) and Level-3 (L3) monthly
gridded IWP. A unique feature of FYAI, achieved by integrat-
ing 2B-CLDCLASS product, is its ability to provide a sepa-
rate product specifically for suspended IWP (SIWP), distin-
guishing it from falling ice. This distinction offers additional
observational constraints for climate models. FYAI offers a
unique combination of all-sky capability, dense spatial cover-
age, and the first-ever inclusion of dawn-dusk microwave ob-
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servations, offering new insights into the global atmospheric
ice content.

2 Data

2.1 Input data

The primary passive microwave instruments utilized in this
study are the MWHS-I and MWHS-II, onboard China’s
second-generation polar-orbiting FY-3 series meteorological
satellites. The MWHS-I is carried on the initial batch of
these satellites (FY-3A and FY-3B). The MWHS-II repre-
sents a significant upgrade and was deployed in two suc-
cessive batches: the first batch aboard the second satellite
group (FY-3C, FY-3D), and the second batch aboard the
third group (FY-3E, FY-3F). It expands the channel count
from 5 to 15, adding new oxygen absorption channels near
118.75 GHz and a window channel at 89 GHz (Wang et al.,
2024). Both MWHS-I and MWHS-II operate as cross-track
scanners. The MWHS-I offers a nadir resolution of approx-
imately 15km across all its channels. For the MWHS-II,
all channels also have a nadir resolution of about 15km,
with the exception of the 89 and 118 GHz channels, which
have a coarser nadir resolution of approximately 25 km. De-
tailed channel specifications, instrument parameters, and the
data temporal coverage for each satellite are provided in Ta-
bles S1-S4 in the Supplement.

For input into our retrieval model, we selected not only the
Level-1 (L1) brightness temperature data from these instru-
ments but also a suite of auxiliary geographical and geomet-
ric parameters. These additional features include the Digital
Elevation Model (DEM), solar zenith angle, satellite zenith
angle, land-sea mask etc. A comprehensive list of all input
variables is presented in Table 1.

2.2 Reference data
2.2.1 2C-ICE

The CloudSat and CALIPSO ice cloud property product (2C-
ICE) is developed by synergistically integrating measure-
ments from the CloudSat Cloud Profile Radar (CPR) and
the CALIPSO CALIOP lidar. Specifically, it utilizes CPR
radar reflectivity (from the 2B-GEOPROF dataset) along-
side CALIOP attenuated backscatter at 532nm. By com-
bining the penetration capability of the radar with the high
sensitivity of the lidar to tenuous ice, this joint approach
effectively overcomes the limitations of single-instrument
retrievals, yielding IWC estimates with enhanced accuracy
(Deng et al. 2010). The base CPR data provides vertical pro-
files at a 240 m resolution with a 1.4km x 1.8 km footprint.
In this work, the 2C-ICE product is specifically employed to
be the IWP reference value.
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2.2.2 2B-CLDCLASS

The 2B-CLDCLASS product, based on CloudSat CPR obser-
vations, utilizes a multidimensional approach to categorize
clouds with high precision. The classification framework in-
tegrates key parameters, including hydrometeor dimensions
(vertical/horizontal scales) and the maximum radar reflectiv-
ity factor (Z.), alongside crucial ancillary data such as pre-
cipitation flags and ECMWF temperature profiles, which aid
in phase determination (Sassen and Wang, 2008). While en-
abling robust cloud climatology studies, in this work, the 2B-
CLDCLASS product is specifically employed to distinguish
and extract the SIWP component from the IWP.

2.3 Validation data

To ensure comprehensive evaluation, multiple validation
datasets are utilized alongside 2C-ICE. These include
satellite-derived retrievals from active and passive remote
sensing instruments, as well as independent reanalysis prod-
ucts.

2.3.1 DARDAR (raDAR/IIDAR) IWP

DARDAR (raDAR/IiDAR) is a synergistic ice-cloud retrieval
that combines CloudSat radar and CALIPSO lidar measure-
ments within a variational framework to yield profiles of
extinction coefficient, ice water content and effective ra-
dius (R.) (Delanoé and Hogan, 2008, 2010; Hogan et al.,
2006). The algorithm adopts the “unified” particle-size dis-
tribution of Field et al. (2005) and employs in-situ-derived
mass—and area—dimension relations for non-spherical ice
particles (Brown and Francis, 1995; Li et al., 2012).

2.3.2 CCIC IWP

The Chalmers Cloud Ice Climatology (CCIC) is a long-term
climate data record of global total ice water path (TIWP).
It is generated by a deep model using geostationary satellite
infrared window channel observations and provides continu-
ous, all-sky (day and night) TIWP estimates from 1983 to the
present within 70° S—70° N, which has been demonstrated to
agree well with other in-situ and active radar observations
(Amell et al., 2024; Pfreundschuh et al., 2025).

2.3.3 MODIS and VIIRS IWP

This study utilizes operational IWP data derived from
MODIS and VIIRS instruments, obtained through the
CERES SSF1deg product suite.

The ITWP is retrieved via a bispectral algorithm from im-
ager radiances and represents the total column ice mass. The
native high-resolution retrievals are aggregated to CERES
footprints and subsequently averaged onto a 1° global grid.
Daily and monthly means are generated after temporal inter-
polation of instantaneous values (Platnick et al., 2017).
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Table 1. All input variables.

Brightness temperature
data

Auxiliary data

Model for BT (150 GHz (V)),

MWHS BT, (150 GHz (H)),
BT3 (183.31+ 1 GHz),
BT4 (183.31 £3 GHz),
BTs5 (183.31 &7 GHz)

SensorAzimuth, SensorZenith,
SolarAzimuth, SolarZenith,
LandSeaMask, DEM,
Longitude, Latitude

Model for BT (89 GHz),

MWHS-I  BTy; (183.31+ 1 GHz),
BT, (183.31 £ 1.8 GHz),
BT3 (183.31 £ 3 GHz),
BTy4 (183.31 £4.5GHz),
BT)s (183.31+7GHz)

SensorAzimuth, SensorZenith,
SolarAzimuth, SolarZenith,
LandSeaMask, LandCover,
DEM, Longitude, Latitude

2.3.4 ERA5IWP

ERAS is the fifth-generation global atmospheric reanalysis
from the European Centre for Medium-Range Weather Fore-
casts (ECMWEF). It provides globally complete, hourly esti-
mates of atmospheric variables from 1940 onward at a hor-
izontal resolution of 0.25°. The dataset is produced using a
fixed version of the ECMWF’s Integrated Forecasting Sys-
tem (CY41R2) and a 4D-Var assimilation system, which in-
corporates over 200 diverse observation sources to ensure
physical consistency (Hersbach et al., 2020). In this study,
the ERAS variable “Total column cloud ice water” is used as
SIWP, while the sum of “Total column cloud ice water” and
“Total column snow water” represents the total IWP.

3 Methodology

3.1 Preprocessing
Quality control

To ensure data reliability, rigorous quality control was
applied based on the L1 product flags. For MWHS-
I, we selected data points satisfying QA_Scan_Flag =0,
QA_Ch_Flag =0, and QA_Score > 90. For MWHS-I, we re-
quired cal_qc, pixel_qc, and scnlin_gc to all equal 0. Sim-
ilarly, 2C-ICE data were filtered to exclude points where
Data_quality was non-zero.

3.2 Collocations

To train the ML model, passive microwave observations must
be collocated with reference data in space and time. FY-3D
and CloudSat are both satellites in afternoon orbits. FY-3D
crosses the equator at approximately 14:00 LT (local time),
while CloudSat crosses at 13:30LT. Due to CloudSat’s or-
bital drift during operation, the time difference between it
and FY-3D is mostly within 15 min. Consequently, temporal
matching is straightforward, and a 15 min time window was
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selected to ensure a sufficient number of collocations. Fur-
thermore, given that the typical cloud lifetime is on the order
of minutes to hours, this 15 min interval falls within the phys-
ical timescale where cloud features remain relatively stable,
rendering these non-strictly synchronous observations scien-
tifically valuable (Holl et al., 2010).

Spatially, matching is more complex because MWHS-II
has a coarser resolution than 2C-ICE, resulting in multi-
ple 2C-ICE pixels falling within a single MWHS-II field of
view (FOV). Based on previous studies (Holl et al., 2010;
Wang et al., 2022), two criteria were initially adopted to
ensure sufficient representativeness and homogeneity of the
2C-ICE pixels within each MWHS-II FOV: (1) at least nine
2C-ICE pixels must lie within a 7.5 km radius of the MWHS-
II FOV center, and (2) the coefficient of variation (standard
deviation divided by the mean) of these 2C-ICE pixels must
be less than 0.6.

However, two critical limitations regarding this spatial
matching approach must be acknowledged. First, using a
fixed 7.5 km distance threshold is imprecise because MWHS-
IT spatial resolution varies by frequency: approximately
15km at 150/183 GHz, but 25km at 89/118 GHz. Since
channels near 118 GHz are not included in our model in-
put, only the 89 GHz channel differs in resolution from the
others. Although the 89 GHz channel has a coarser resolu-
tion (25km) and is crucial for IWP retrieval (Wang et al.,
2024), we prioritized the matching accuracy for the 183 GHz
channels (15 km), which constitute the majority of the input
features. Therefore, the 7.5 km threshold is a compromise
to ensure the highest fidelity for the sounding channels, de-
spite the partial spatial mismatch at 89 GHz. Second, MWHS
instruments are cross-track scanners, meaning their spatial
resolution degrades as the scan angle increases away from
nadir (Fig. S1 in the Supplement). The stated resolutions of
15/25 km represent the nadir resolution (the theoretical maxi-
mum). This further indicates that using a fixed 7.5 km thresh-
old across the entire swath is not entirely accurate. While
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we plan to introduce a scan-angle-dependent variable thresh-
old in future updates, the fixed 7.5 km threshold was retained
in the current version to maintain algorithmic simplicity and
consistency across the swath matched with the nadir resolu-
tion baseline.

Ultimately, using FY-3D data from October 2018
to October 2020, we generated a dataset containing
2 667 945 matched points. For the MWHS-I instrument, FY-
3B is also an afternoon satellite with an ascending node local
time of 13:40 LT. We thus used its data from December 2010
to April 2011 and matched them with corresponding 2C-ICE
data following the same criteria applied for MWHS-II. This
process yielded 426 761 matched points. Both the MWHS-I
and MWHS-II datasets were then split into training and test-
ing sets. Subsequently, the training set was further divided,
with 80 % used for model training and the remaining 20 %
reserved for validation.

The calibration process for the SIWP training dataset
followed an approach similar to that used for the ITWP
dataset. Based on the FLAG methodology described by Li
et al. (2012), we isolated the suspended component of the ice
water path. This involved applying strict filtering criteria: all
retrievals identified as surface precipitation were discarded.
Furthermore, to minimize convective influence, we excluded
data points classified as “deep convection” or “cumulus” ac-
cording to the 2B-CLDCLASS product. Similarly, the final
dataset consisted of 2 667 945 matched points for MWHS-II
and 426 761 matched points for MWHS-I.

3.3 Postprocessing

The L2 IWP product maintains a native spatial resolution of
nominal 15km at nadir. To support climatological analysis,
we generate monthly L3 products on a uniform 1°x 1° global
grid. This is achieved by resampling and averaging all avail-
able L2 data points within each grid cell for each calendar
month.

3.4 IWP retrieval algorithm

To retrieve IWP from passive microwave remote sensing ob-
servations, we developed a NN-based model built upon the
framework of quantile regression neural networks (QRNNs).
QRNNSs synergize the non-linear representation learning ca-
pabilities of neural networks with the statistical framework
of quantile regression. Unlike traditional regression mod-
els that estimate only the conditional mean of a response
variable, QRNNs are designed to estimate multiple condi-
tional quantiles of the target distribution simultaneously. This
approach provides a comprehensive probabilistic view of
the prediction, quantifying the aleatoric uncertainty inherent
in the data, which is particularly valuable in remote sens-
ing retrievals where robust uncertainty assessment is cru-
cial. Previous studies have demonstrated QRNNs to be a

https://doi.org/10.5194/essd-18-1287-2026

high-performance and readily deployable model in this field
(Amell et al., 2022; Pfreundschuh et al., 2018; Wang et al.,
2024). Furthermore, to enhance model performance, we im-
plemented a deep residual network architecture combined
with attention mechanisms (He et al., 2016; Vaswani et al.,
2017). This design allows the model to automatically focus
on the most critical feature channels in the input satellite data
while maintaining high training stability. To enable the pre-
diction of this uncertainty range, our model employs the spe-
cialized Quantile Loss, also known as the pinball Loss, in-
stead of the traditional Mean Squared Error (MSE) loss func-
tion. The formula for the Quantile Loss is expressed as fol-
lows:

_ ) ot = Xr <X
Ly G, x) = { (1—-1)|x —x;| otherwise 0
x; =inf{x : F(x) >t} 2
e -
L(x)= N;Ln (X7, %). 3)

Based on the fundamental assumption in deep learning that
the training set, test set, and inference data are independent
and identically distributed (i.i.d.), we calibrated our point es-
timation strategy using the test set statistics. Specifically, the
deterministic point estimate was defined as the quantile as-
sociated with the mode of the optimal quantile distribution,
calculated using 50 bins on the test set. Consequently, the op-
timal quantile was determined to be 47.87 % for the MWHS-I
model and 40 % for the MWHS-II model. Additionally, the
5th and 95th percentiles were employed to define the uncer-
tainty bounds for the IWP estimates. The matched dataset
is partitioned into training and validation subsets. Prior to
model training, the IWP reference values within the training
set are log-transformed. To handle zero values in this trans-
formation, they are replaced with a small positive value of
1 x 1076, Analogous procedures were applied to the STWP
retrieval model. The specific structure of the model is shown
in Fig. 1, and the detailed hyperparameters are listed in Ta-
ble S5.

3.5 Evaluation metrics

The performance of the QRNN model in retrieving IWP is
evaluated via the root mean square error (RMSE) and Pear-
son correlation coefficient (R), which are calculated as fol-
lows:

2
RMSE = ﬁ ()’pred,i - }’ref,i) “)
i=1

lN
i=

=

% (ypred,i - %) (.Vref,i - W)
i=1

R =

&)

OpredOref
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Figure 1. Structural diagram of the QRNN model and flowchart of the retrieval algorithm.

Here, ypred and yrer represent the model predictions and ref- True positives (TP) correspond to cases where both MWHS-
erence values, respectively, whereas opreq and oper are the I/IT and CloudSat detect a low-IWP regime, whereas true
standard deviations. negatives (TN) occur when neither of them identifies such

For low IWP values regime detection, performance is eval- aregime. False positives (FP) arise when MWHS-I/II detects
uated via a confusion matrix M, with metrics including FAR a low-IWP regime that CloudSat does not confirm, and false
and CSI, defined as: negatives (FN) occur when CloudSat identifies a low-IWP

regime that MWHS-I/II fails to detect.
M= TP FP ©)
“\FN TN /- FAR = FP/(TP + FP) @)
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CSI = TP/(TP + FN + FP) (8)

4 Data records

We generated L2 (15 km resolution) and monthly L3 (1° x 1°
grid) IWP and SIWP products using MWHS data from the
FY-3 series (2010-2024). L2 files follow the naming con-
vention “FY3X_MWHSX_GBAL_L2...”, while L3 files are
named “FY3X_L3_Gridded...”. Notably, L3 products for
FY-3E/F further distinguish between ascending and descend-
ing orbits. Table 2 details variable specifications, and Fig. 2
visualizes the internal data structure.

Figure 3 shows the monthly count of FY-3 L1 data in-
puts to the model. Due to operational anomalies, hardware
upgrades, and other mission-related factors, data availabil-
ity dropped below 50 % in certain months. The 50 % data-
availability criterion is not meant as a benchmark for climate-
grade accuracy; whether it suffices depends on the study’s
objectives and the natural variability of the target region
(Bertrand et al., 2024; Kotarba et al., 2021). Nevertheless, we
recommend that users exercise caution when utilizing data
from months where availability falls below 50 %.

5 IWP retrieval performance

It is important to acknowledge that since the QRNN model
was trained and tested based on the 2C-ICE dataset, it in-
evitably inherits the systematic biases of the 2C-ICE product.
Previous studies have indicated that assumptions regarding
the lidar ratio, particle size distribution (PSD), and particle
shape in the 2C-ICE retrieval algorithm introduce systematic
uncertainties. Comparisons with in-situ observations suggest
an uncertainty of approximately 30 % in 2C-ICE retrieved
IWC (Deng et al., 2010, 2013).

Figure 4 illustrates the comparison of IWP retrieval perfor-
mance between the two satellite sensors. In terms of quan-
titative regression metrics, the model performance on FY-
3D is significantly superior to that on FY-3B. Specifically,
the scatter plot for FY-3D (Fig. 4a) shows a high consis-
tency between predicted and reference values, with a corre-
lation coefficient (R) of 0.833 and a RMSE of 450.78 gm 2.
In contrast, the scatter distribution for FY-3B (Fig. 4d) is
more dispersed, yielding a lower R of 0.620 and a larger
RMSE (871.40 g m~2). This disparity highlights the substan-
tial contribution of the rich channel information provided by
MWHS-II to the quantitative retrieval of IWP.

Regarding statistical distribution, we analyzed both the
Quantile—Quantile (Q—Q) plots (Fig. 4b and e) and the Prob-
ability Density Functions (PDFs, Fig. 5) based on an inde-
pendent test dataset. As shown in the PDF analysis, the re-
trieved IWP distribution exhibits remarkable agreement with
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the reference distribution across nearly six orders of magni-
tude (ranging from 102 to 10* gm~2). This confirms that
the model successfully reproduces the climatological statis-
tics without suffering from significant mean-reversion. Both
the PDFs and Q-Q plots indicate that the model robustly
captures the data distribution characteristics. Critically, given
the global mean IWP of approximately 100 gm™2 (Xu et al.,
2022), the model maintains robust performance across pre-
dominant atmospheric conditions. However, deviations are
observed in the extremely low-value region in the Q-Q plots.
This is likely attributable to the inherent physical limita-
tions of passive microwave remote sensing, which is sensi-
tive to large scatterers (e.g., snowflakes) but lacks sensitivity
to small ice crystals.

To further investigate model performance in the low-IWP
value range, we performed a binary classification assessment
on the test set using a threshold of 0.5 gm™2. The results
(Fig. 4c and f) reveal distinct characteristics for the two sen-
sors. Although FY-3D achieves higher quantitative retrieval
accuracy, its confusion matrix (Fig. 4c) indicates a relatively
high False Alarm Ratio (FAR=0.76) and a lower Critical
Success Index (CSI=0.23). This is primarily due to a large
number of background pixels (low values) being misclassi-
fied as exceeding the threshold (FP =257 474). Conversely,
while FY-3B (Fig. 4f) has lower regression accuracy, it ex-
hibits a better balance in classification metrics, with a lower
FAR (0.51) and a relatively higher CSI (0.48). While this dif-
ference may be partially influenced by the varying sample
sizes in the test sets, it suggests that the FY-3D model, while
accurate in estimating IWP magnitude, tends to be over-
sensitive at the boundary between weak signals and back-
ground noise.

The performance analysis for SIWP yields similar con-
clusions to those for IWP and is detailed in the Supplement
(Sect. S2, Fig. S2).

6 Product validation

6.1 Typhoon events

Figure 6 presents the FYAI L2 IWP retrievals, alongside IWP
estimates from the 2C-ICE product, the CCIC dataset, and
ERAS reanalysis data, capturing the case of Tropical Cy-
clone CILIDA over the South Indian Ocean on 24 Decem-
ber 2018. The retrievals from both MWHS-I and MWHS-II
effectively capture the spatial distribution of high-IWP re-
gions within the cyclone’s convective core, a feature that is
also accurately characterized by the CCIC product. In con-
trast, while the ERAS reanalysis dataset broadly reproduces
the macroscopic structure of these high-IWP regions, it ex-
hibits significantly lower spatial detail compared to the satel-
lite retrieval products.

To further evaluate performance against the CCIC product
and the narrow-swath 2C-ICE observations, we performed
spatiotemporal collocation and generated scatter plots for
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Table 2. Data variables in FYAI L2 and L3 products.

Y. Yang et al.: FYAI: a Fengyun satellite-based dataset for atmospheric ice water path

Variable name Dimensions Type Description
L2 IWP (scanline, pixel) float32 Ice Water Path
product
SIWP (scanline, pixel) float32 Suspended Ice Water Path
IWP_uncertainty_upper (scanline, pixel) float32 95th quantile value of Ice Water Path
IWP_uncertainty_lower (scanline, pixel) float32 5th quantile value of Ice Water Path
SIWP_uncertainty_upper (scanline, pixel) float32 95th quantile value of Suspended Ice Water
Path
SIWP_uncertainty_lower (scanline, pixel) float32 5th quantile value of Suspended Ice Water Path
lon (scanline, pixel) float32 Longitude
lat (scanline, pixel) float32 Latitude
time (scanline) datetime64  The UTC time of scanline
L3 IWP_Annual_Mean (year, lat, lon) float32 Annual Mean Ice Water Path from L2
product observations
IWP_Annual_Uncertainty (year, lat, lon) float32 Uncertainty (Standard Error of the Mean,
SEM) of Annual Ice Water Path
IWP_Total_Annual_Count (year, lat, lon) float64 Total number of valid L2 Ice Water Path
observations
SIWP_Annual_Mean (year, lat, lon) float32 Annual Mean Suspended Ice Water Path from
L2 observations
SIWP_Annual_Uncertainty (year, lat, lon) float32 Uncertainty (SEM) of Annual Suspended Ice
Water Path
SIWP_Total_Annual_Count  (year, lat, lon) float64 Total number of valid L2 Suspended Ice Water
Path observations
IWP_Monthly_Mean (year, month, lat, lon)  float32 Monthly Mean Ice Water Path
IWP_Monthly_Uncertainty (year, month, lat, lon) float32 Uncertainty (SEM) of Monthly Ice Water Path
IWP_Monthly_Count (year, month, lat, lon) float64 Number of valid L2 Ice Water Path
observations per month
SIWP_Monthly_Mean (month, lat, lon) float32 Monthly Mean Suspended Ice Water Path
SIWP_Monthly_Uncertainty ~ (month, lat, lon) float32 Uncertainty (SEM) of Monthly Suspended Ice
Water Path
SIWP_Monthly_Count (year, month, lat, lon) float64 Number of valid L2 Suspended Ice Water Path
observations per month
lon (lon,) float32 Longitude
lat (lat,) float32 Latitude
month (month,) int32 Month of year
year (year) Int32 year
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Figure 2. Schematic of the data file structure: (a) L2 data file structure; (b) L3 data file structure.

» VVWMVVVVVWWW
< 300
c
o
=
£
(0]
2 Threshold: 200 granules/month
S 200 -
c
©
=
(U]
100
—o— FY-3A  —e— FY-3D = FY-3F Asc
—— FY-3B —o— FY-3E Asc —eo— FY-3F Des
—— FY-3C —eo= FY-3E Des
0
2010 2011 2012 2013 2014 2015 2016

2017

VNVWV

2018
Year

2019 2020 2021 2022 2023 2024

Figure 3. MWHS-I and MWHS-II L1 data availability onboard the FY-3 series satellites.

quantitative analysis. As illustrated in the scatter plots, the
retrievals from MWHS-II demonstrate a higher degree of
agreement with both the CCIC and 2C-ICE benchmarks
compared to MWHS-I. This indicates a substantial improve-
ment in retrieval capability and performance for the second-
generation instrument relative to its predecessor.

https://doi.org/10.5194/essd-18-1287-2026

6.2 Gilobal gridded product comparison and zonal mean
comparison

Figure 7 presents the multiyear average spatial distribution
of the IWP, whereas Fig. 8 shows the zonal mean distribution
of the IWP. All the IWP products were resampled to a spatial
resolution of (1° x 1°). All the IWP products exhibit funda-
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Figure 4. Performance metrics of the QRNN model on the IWP test dataset. (a) scatter plot of mode-retrieved IWP values versus reference
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Figure 5. PDFs of IWP for the training dataset, testing dataset, and model retrievals. (a) FY-3D (MWHS-II model); (b) FY-3B (MWHS-I
model). The histograms are calculated using logarithmically spaced bins to capture the wide dynamic range.

mentally consistent spatial patterns. Notably, FYAI demon- estimation in the equatorial region. In contrast, the MWHS-
strates closer alignment with active sensor products than pas- I retrievals align more closely with active observations at
sive ones. However, it is important to point out that compared these latitudes. Meanwhile, both MWHS-I and MWHS-II ex-
to the 2C-ICE and DARDAR active remote sensing base- hibit a notable underestimation in the mid-to-high latitudes

lines, the IWP retrieved from MWHS-II shows a slight over- of the Southern Hemisphere. Although the time series do not
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Figure 6. Comparison of FYAI L2 IWPs from MWHS-I and MWHS-II retrieval, CCIC, 2C-ICE and ERAS in a case study of tropical cyclone.
UTC time is used. (a—e) Spatial distributions of IWP from MWHS-I, MWHS-II, CCIC, ERAS5, and 2C-ICE, respectively. (f—i) Scatter plots
of FYAI versus reference datasets: (f) MWHS-I vs. 2C-ICE, (g) MWHS-II vs. 2C-ICE, (h) MWHS-I vs. CCIC, and (i) MWHS-II vs. CCIC.
The solid red line in (¢) marks the collocation sampling track between CCIC and FYAI, along which data points are extracted to produce (h)
and (i).
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Figure 7. Global average spatial distributions of the IWP compared with those of other satellite products and reanalysis products.
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Figure 8. Zonal mean IWP compared with other satellite products and the ERAS reanalysis.
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Figure 9. Analogous to Fig. 7 but for SIWP.

overlap, we selected the 2007-2010 period for active instru-
ment comparison because of CloudSat’s superior data com-
pleteness before 2011. This selection is necessitated by data
constraints but remains scientifically justified, as both spa-
tial patterns and total magnitudes show minimal variation in
IWP sequences. Additionally, passive optical/infrared instru-
ments (MODIS, VIIRS) and the ERAS reanalysis result in
significant underestimations of IWP values at low-to-mid lat-
itudes, whereas the MODIS and VIIRS retrieval products re-
sult in substantial overestimations in polar regions. For the
SIWP, the multiyear average spatial distribution and zonal
mean are shown in Figs. 9 and 10; the overall distribution
closely resembles that of IWP, but the values are lower in
magnitude. Notably, the SIWP derived from FYAI MWHS-
IT shows a closer agreement with 2C-ICE.

6.3 Long-term analysis of gridded products

Figure 11 presents the time series of global total atmospheric
ice mass derived from our gridded retrieval products for the
period of 2011-2024. For comparison, the orange and blue-
green lines represent IWP data from 2C-ICE and DARDAR
(another IWP product based on active remote sensing instru-
ments; Delanoé and Hogan, 2008), respectively. Due to bat-
tery anomalies with CloudSat after 2011, which resulted in

https://doi.org/10.5194/essd-18-1287-2026

the loss of nighttime data, the time series for both 2C-ICE
and DARDAR are restricted to the 2007-2010 period.

In terms of magnitude, our retrieval products align closely
with 2C-ICE and DARDAR. In contrast, estimates from pas-
sive optical/infrared instruments (MODIS and VIIRS) and
ERAS reanalysis are significantly lower than the active radar-
based baselines. Note that all mass calculations are area-
weighted by latitude.

However, the time series reveals that the FYAI product
exhibits larger interannual variability compared to the 2C-
ICE baseline. This variability is not uniform over time; it is
most pronounced during the FY-3B era. While variability de-
creases in the later period, the fluctuations in the early record
likely reflect sensitivity differences inherent to the first-
generation instrument. The mean global total atmospheric
ice mass from our products for 2011-2024 is 57.62+2.32 Gt
(calculated as the mean & 1 SD (standard deviation) based on
a t-distribution; this also applies to the SIWP discussed be-
low), which is consistent with our previous estimation using
the DARDAR product (Xu et al., 2022).

Regarding SIWP, retrievals from both MWHS-I and
MWHS-II align closely with ERAS and exhibit strong con-
sistency with the 2007-2010 2C-ICE baseline (Fig. 12). The
estimated global suspended ice mass for the 2011-2024 pe-
riod is 10.78 £0.99 Gt.

Earth Syst. Sci. Data, 18, 1287-1305, 2026
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Figure 10. Analogous to Fig. 8 but for SIWP.
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Figure 11. Native time series of the monthly global average of total atmospheric ice content and comparison with other satellite products,
along with the ERAS reanalysis. All calculations of total atmospheric ice consider latitude area weighting.
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Figure 12. Analogous to Fig. 11. but for SIWP.

7 Uncertainty analysis

Although the uncertainty in IWC from 2C-ICE is approxi-
mately 30 %, it remains one of the most reliable remote sens-
ing IWP retrieval datasets currently available. As the FYAI
dataset is generated using 2C-ICE as reference data for train-
ing ML models, it inevitably inherits uncertainty from 2C-
ICE. This section outlines the uncertainty characterization
for both FYAI L2 and L3 products.

7.1 L2 product uncertainty

The QRNN model employed in FYAI outputs an approxi-
mation of the quantile function (i.e., the inverse cumulative
distribution function, or inverse CDF) of the conditional dis-
tribution. Consequently, the model implicitly models a con-
ditional probability distribution, allowing for the retrieval of
specific percentiles of the estimated variable. We have se-
lected the 5th and 95th percentiles of the predicted distribu-
tion to represent the lower and upper bounds of uncertainty,
respectively.

7.2 L3 product uncertainty

The uncertainty of the FYAI L3 product is calculated in two
distinct stages. The first stage defines the uncertainty when
aggregating L2 instantaneous observations into L3 monthly
mean products, using the SEM as the metric. Based on the
5th/95th percentile bounds derived from the L2 products,
and assuming errors follow a normal distribution, the vari-
ance for individual pixels is first estimated. Then, following

https://doi.org/10.5194/essd-18-1287-2026
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the law of propagation of uncertainty (assuming independent
errors among pixels within a grid cell), the variance of the
grid mean is calculated (as the sum of individual variances
divided by the square of the total number of observations
falling within that grid). Finally, the square root of this vari-
ance is taken to obtain the monthly SEM.

The second stage addresses the uncertainty when aggre-
gating L3 monthly means into L3 annual means. To avoid
underestimating the final uncertainty, a conservative estima-
tion strategy is adopted: assuming highly correlated errors
between months (e.g., potential systematic errors), the annual
mean uncertainty is defined simply as the arithmetic mean of
the uncertainties of the 12 months in that year.

8 Code and data availability

The datasets generated in this study are available for
download at https://doi.org/10.11888/Atmos.tpdc.303143
and  https://cstr.cn/18406.11.Atmos.tpdc.303143, and
should be cited as Yang et al. (2025). Additionally,
the code and model weights have been deposited at
https://doi.org/10.5281/zenodo.18479174  (Yang, 2026).
Regarding the public source data used in this work, the
FY-3 MWHS-I/II Level-1 observations are accessible via
the National Satellite Meteorological Center (NSMC) data
portal; the CloudSat-CALIPSO products (2C-ICE and
2B-CLDCLASS) can be obtained from the CloudSat Data
Processing Center (DPC); the ERAS reanalysis data are
available via the Copernicus Climate Change Service (C3S)
Climate Data Store under the dataset “ERAS hourly data on
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Table 3. Summary of FYAI dataset components requiring cautionary usage or having specific limitations.

Satellite/sensor Time Product Note

name level

FY-3A (MWHS-I)  2010-2013 L3 Use with caution for long-term time series analysis.
FY-3B (MWHS-I)  2017-2019 L3 Use with caution for long-term time series analysis.

FY-3C (MWHS-II) 31 May-31Jul 2015 L2,L3

FY-3C operational service has been suspended since 31 May 2015 due to

technical reasons.

single levels from 1940 to present”; and the CCIC product
is hosted on the Amazon Web Services (AWS) Open Data
Registry (Amell et al., 2024).

9 Conclusion and usage notes

A global IWP and SIWP dataset spanning 2010-2024 was
produced using a ML framework derived from passive-
microwave observations (MWHS-I/II) onboard the FY-3
satellite series. Three distinct product levels were generated:
(1) L2 IWP and SIWP preserving native sensor resolution
(15km at nadir); and (2) L3 monthly gridded global com-
posites (1° x 1°) for individual sensors.

Prioritizing global representativeness and long-term ho-
mogeneity over instantaneous pixel-level precision was a
deliberate strategy in this study. While our passive mi-
crowave retrievals provide the wide-swath coverage essen-
tial for decadal climate analysis, they may not match the in-
stantaneous accuracy of active sensors. We acknowledge a
fundamental sensitivity gap: while 2C-ICE synergizes lidar
and radar to capture the full spectrum of ice clouds, MWHS
channels rely primarily on volume scattering from larger par-
ticles. Consequently, a detection “blind zone” exists for ten-
uous cirrus, leading to expected discrepancies in the low-
IWP regime. Despite this frequency mismatch, 2C-ICE re-
mains the optimal global benchmark for vertical structure.
Our ML framework bridges this gap by capturing robust sta-
tistical mappings where sufficient scattering signals exist. Al-
though the network effectively filters label noise — even under
the spatial mismatch between the coarse MWHS footprint
(~ 15km) and the narrow 2C-ICE track — it must be noted
that reported error metrics likely underestimate uncertainty
in highly heterogeneous scenes.

Specific limitations regarding variable definition and in-
strument stability must be acknowledged. First, the partition
of SIWP from total IWP represents an exploratory effort.
Since no single instrument currently distinguishes suspended
from falling ice reliably, this separation serves primarily to
facilitate model-observation comparisons. Second, regarding
temporal stability, specific subsets of the FYAI dataset re-
quire cautionary usage (summarized in Table 3). The larger
interannual variability observed in the FY-3B era reflects a
necessary trade-off: lacking the 89 GHz channels available
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on MWHS-II, we incorporated the 150 GHz channel to en-
sure sensitivity to ice clouds (Wang et al., 2022). Unlike
the opaque 183 GHz band, this window channel is suscepti-
ble to surface emissivity variations, introducing background
noise into the time series — a stability issue largely resolved
in the post-2014 MWHS-II era. Additionally, L3 products
derived from FY-3B show anomalous positive deviations
during 2017-2019, attributed to potential instrument aging.
Conversely, FY-3A products (2010-2013) exhibit a slight
underestimation. While FY-3A and FY-3B form a valuable
morning-afternoon constellation, users should be aware of
these calibration nuances when conducting long-term trend
analyses. We are actively working to address these issues in
future updates through physics-based constraints and close
collaboration with instrument specialists.

Based on this methodology, we generated comprehensive
retrieval products spanning FY-3A through FY-3F. A distinc-
tive advancement of this dataset is its global applicability
over both land and ocean — surpassing the ocean-only lim-
itation of many existing passive microwave products.

Looking ahead, we will explore advanced data fusion ar-
chitectures to address current limitations. Our future work
will prioritize three key directions: (1) synergetic retrievals
combining passive microwave with optical/infrared observa-
tions, utilizing cloud-top information to compensate for the
microwave spectrum’s insensitivity to cirrus clouds; (2) joint
retrieval frameworks that simultaneously assimilate mul-
tispectral observations within a unified radiative transfer
model; and (3) Physics-Tnformed Neural Networks (PINNs)
that incorporate cloud microphysical constraints to enhance
the accuracy of vertical stratification.

In particular, the deployment of next-generation obser-
vation missions, such as EarthCARE and DQ-1, will pro-
vide superior reference benchmarks. Integrating these high-
fidelity datasets will allow us to mitigate label noise and fur-
ther refine retrieval accuracy. Furthermore, recognizing the
rapid advancements in terahertz remote sensing instrumenta-
tion (Li et al., 2023), we plan to leverage terahertz technology
to achieve higher-precision retrievals of IWP and SIWP. Col-
lectively, these enhancements will significantly bolster the
product’s utility for monitoring rapidly evolving meteorolog-
ical phenomena and validating climate model cloud parame-
terizations.
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