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Abstract. Although process-based soil erosion models are valuable tools for predicting and managing soil ero-
sion, their limitations arise from constraints in integrating novel data possibilities, uncertainties in parameter-
isation, and the difficulties in integrating different process scales and their transitions. This study presents a
unpresented approach to enhance soil erosion modelling through the utilisation of nested high-resolution spatio-
temporal data obtained through structure from motion (SfM) photogrammetry. This technique permits compre-
hensive observation of soil surface elevation changes during precipitation events, encompassing data acquisition
at diverse scales, from plot to slope to micro-catchment. The study presents a unique dataset (Epple et al., 2026,
https://doi.org/10.25532/OPARA-1038) that integrates high-resolution time-lapse photogrammetry, field mea-
surements, and UAV (uncrewed aerial vehicle) photogrammetric data, collected over nearly four years. This
dataset is intended to enhance the understanding of soil erosion processes and serve as a valuable resource for
model evaluation and calibration. The authors encourage the broader scientific community to utilise and expand
this dataset, which is expected to contribute to the development of more accurate soil erosion models, thereby
improving predictions and management strategies.

1 Introduction

Soil erosion models constitute a valuable resource for stake-
holders, policymakers and scientists in the context of soil
erosion prediction and decision-making (Batista et al., 2019).
From the extensive array of existing models, a variety of
models have been developed for diverse scales and for partic-
ular process mapping inherent to the scale (Jetten and Favis-
Mortlock, 2006). The evaluation of soil erosion models is a
complex process, often constrained by the limitations of data
availability and the inherent uncertainties in measuring ero-
sion and generating model parameters (Batista et al., 2019;
Pandey et al., 2016). The models frequently assume that the
input parameters are stationary and that the data pertaining
to the surface and soil are unchanging (Jetten and Favis-
Mortlock, 2006). Consequently, they encounter difficulties in
integrating updated observations that necessitate the consid-
eration of changing model parameters. Furthermore, limita-
tions are evident with regard to cross-scale process under-

standing and modelling, as well as with respect to the mod-
elled resolution (Epple et al., 2022). A multitude of process-
based soil erosion models have been developed for utilisation
at field and micro-catchment scales. The smallest of these
models use a resolution of 1 m (see, for example, Naranjo
et al., 2021), thereby focusing on the dominant processes at
these scales (Epple et al., 2022). To guarantee the depend-
ability of the data generated by these models, it is essential
to conduct continuous testing and model improvement at all
scales (Batista et al., 2019).

The application of photogrammetric methodologies pro-
vides a novel opportunity for the evaluation and calibration
of process-based soil erosion models. Structure from motion
(SfM) photogrammetry, a method for camera-based surface
measurements, has previously been employed for compre-
hensive monitoring of soil surface alterations during an artifi-
cial rainfall simulation and a natural thunderstorm event (Elt-
ner et al., 2017). It has been demonstrated that this method
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is capable of detecting intra-experimental changes in soil sur-
face topography at the micro-scale, due to the near-automatic
processing involved (Eltner and Sofia, 2020). The potential
for acquiring high-resolution digital elevation models (DEM)
at high temporal frequency is made possible by time-lapse
photogrammetry, as demonstrated by Jiang et al. (2020) for
an artificial slope of 10 m length utilising a DEM acquisi-
tion frequency of five minutes. In the field of natural hazards,
time-lapse photogrammetry has been employed to achieve
cm-accurate estimation of rockfalls at few hourly intervals
(Blanch et al., 2024). Observations for soil erosion measure-
ment so far mostly concentrate on single artificial rainfall
events, with studies employing rainfall simulations in the lab-
oratory (data acquisition frequency every 30 min, Yang et al.,
2021) or in the field (data acquisition before and after the
event, Ehrhardt et al., 2022) and do not take higher frequen-
cies into account.

Moving from plot to micro-catchment scale different soil
erosion processes are prone to each scale and therefor a range
of soil surface change processes are at work, exerting in-
fluence over different temporal intervals and spatial scales.
These processes result in a continuous transformation of the
soil surface. In order to achieve a comprehensive understand-
ing of processes across different scales, we present a new and
integrated nested cross-scale data set. This comprises time-
lapse photogrammetric plot data, recorded at 10–60 s inter-
vals during artificial rainfall simulations, field data captured
on a daily basis, at 0.2 mm intervals during natural rainfall
events and via UAV before and after tillage, and UAV data
acquired at the catchment scale. The field data were collected
over a period of nearly four years. In a recent study, Eltner et
al. (2025) demonstrate the value of such data by evaluating
the RillGrow (Favis-Mortlock, 2025) soil erosion model with
high-resolution observations of rill evolution. Their findings
highlight the ongoing challenge of equifinality for process-
based soil erosion models and emphasise the need for fur-
ther model development and data assimilation. They also un-
derscore the potential of spatio-temporal high-resolution data
for advancing this field of research. Based on high-resolution
DEMs captured at 20 s intervals, Epple et al. (2025) observed
soil settling and compaction processes at the onset of rainfall
simulations. This provides an empirical approach for differ-
entiating between these processes and erosional processes,
thereby enhancing the applicability of photogrammetric data
for soil erosion monitoring. It is our intention to make our
data available to the soil erosion modelling community for
the purposes of evaluation and calibration, as well as further
development of soil erosion models, regarding, e.g., cross
scale process prediction.

The following section presents the data acquisition struc-
tured by the three different scales using SfM photogramme-
try. Subsequently, the data were subjected to a preliminary
processing stage. The raw data, along with the processed
data, are accessible in an open-source format, structured in
accordance with the specifications outlined in Sect. 4.

2 Data acquisition

The data were acquired at three different scales (Table 1): by
UAV-image capture on micro-catchment scale, single slope
scale by event-triggered monitoring posts and on the plot
scale via SfM during rainfall simulation.

Subsequently, the photogrammetric data underwent fur-
ther processing, resulting in the generation of dense three-
dimensional point clouds, which were converted to digital
elevation models (DEMs), point precision maps and M3C2
(multiscale model to model cloud comparison) distance mea-
sures.

The nested data acquisition setup was situated in the hilly
loess landscape in the vicinity of Nossen in the east of
Germany (Fig. 1). The catchment area, which is predomi-
nantly utilised for agricultural purposes and covers an area
of 5.29 ha, drains to the north into the Freiberger Mulde
(see Fig. 1d). The single slope, i.e., field, which is nested
in the micro-catchment area, is oriented north-northeast
(51°03′43′′ N, 13°15′35′′ E) and exhibits a gradient of up to
15 %. At the most detailed scale, the plot scale, synthetic
rainfall simulations were carried out on 3 m2 plots (Fig. 1c,
f) situated on the single slope (Fig. 1b, e). The locations of
the nested setup are visualised in Fig. 2. Further rainfall sim-
ulations were conducted at multiple locations in the east of
Germany, across a range of slopes, soil types, soil manage-
ment practices, soil covers and soil bulk densities (blue flags
in Fig. 3). The time frame, as well as soil and surface con-
ditions for the data acquisition process is illustrated in Fig. 3
and can be found in more detail within the published data set.

2.1 Catchment scale

At the micro-catchment scale, an orthophoto and a
DEM were calculated via UAV-photogrammetry for the
22 July 2020 (Fig. 1d). The image data was acquired us-
ing a DJI Phantom 4 RTK UAV considering a standard pho-
togrammetric flight pattern (85 % and 70 % forward and strip
overlap, respectively). RTK was not enabled and we solely
relied on GCPs, distributed around the catchment and mea-
sured with RTK-GNSS, for georeferencing. Further image
data of the micro-catchment was taken on nine days between
April 2020 and September 2022, these are available in un-
processed form. The observation height was generally set to
a range of 30–50 m, with nadir images resulting in a ground
sampling distance of 2 cm. The data thus provides the basis
for testing soil erosion models at the catchment scale and en-
abling modeller the upscaling of slope scale parametrisation
to the catchment scale. Therefore, the objective is not to cal-
ibrate a model, but rather to serve as a high-resolution model
input and for model testing. Furthermore, while this dataset
is focused on the micro-catchment scale, it also provides a
critical high-resolution benchmark for broader-scale erosion
assessments. At coarser spatial resolutions (relying on aerial-
or satellite-based data), models need to simplify, e.g., surface
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Table 1. Summary of the observation scales, their time/duration of monitoring, their temporal resolution and size.

scale micro-catchment slope plot

time single flights 3.5 years up to 3 h
temporal resolution yearly daily, every 0.2 mm rainfall, before and after tillage 10–20 s
size (length×width) 5.29 ha 60× 12 m 3× 1 m

Figure 1. Location of the nested experimental setup in Saxony, Germany (map on the left). The upper row presents a schematic display, while
the lower row shows images of the actual setup. From left to right: (a) and (d) illustrate the micro-catchment scale, where SfM (structure
from motion) is recorded by UAV (uncrewed aerial vehicle; d=UAV-orthophoto). Panels (b) and (e) present the single slope scale where
three monitoring stations were installed, taken daily and event-triggered images for 3D model generation. Nested within the slope scale, (c)
and (f) show the plot scale conducting artificial rainfall simulations combined with time-lapse SfM (c is adapted from Schindewolf, 2012).

connectivity features (such as roughness) or overlook small-
scale erosion features like rills. This high-resolution GSD al-
lows for the validation of sub-grid parameterizations in re-
gional models, bridging the gap between localized physical
processes and large-scale sediment yield estimations (Pana-
gos et al., 2015; Borrelli et al., 2021).

2.2 Single slope scale

The single slope (see Table 1 for dimensions and Grothum
et al., 2025 for more detail), was situated within the micro-
catchment area and maintained in a clear state, with vegeta-
tion removed by means of cultivating downslope at a depth of
10 cm at three-to-six-week intervals. It was monitored over a
period of almost 3.5 years (July 2020 to April 2024) by a
total of 15 cameras mounted on three monitoring stations.
Five event-triggered and synchronised RGB cameras were
installed on each monitoring device, fixed on a traverse in 4 m
height), along with an Arduino-based control station con-
nected to a rain gauge, taking pictures every 0.2 mm of rain-
fall (controlled by a tipping bucket). Furthermore, the cam-
eras were triggered at 10:00 a.m. CET daily (controlled by an
RTC – real time clock). The areas observed by the monitor-
ing stations, which were 4 m wide and 7.5 m long (marked in
yellow in Fig. 4a, d), were situated within the central portion

of the field, which was cultivated in three parallel lines along
the slope. The area was delineated by ground control points
(GCPs) on the left and right sides. The number of individ-
ual cameras and their positions are illustrated in Fig. 4a up
until July 2022 and modified for the period after July 2022
in Fig. 4d. The modification, initiated due to storm damage,
involved the rotation of two monitoring posts and their repo-
sitioning to face downwards, thereby facilitating the capture
of the bottom of the slope more effectively and reducing
the amount of rain droplets blown onto the camera lenses.
A comprehensive description of this structure can be found
by Grothum et al. (2025). In addition to the spatio-temporal
high-resolution, event-triggered data acquisition at three po-
sitions (upper, middle, and lower slope) (Fig. 4), UAV-SfM
data were collected over the entire slope before and after both
rainfall events and tillage.

2.3 Plot scale

Six rainfall simulations were performed at the plot scale; en-
compassing the lower, middle and upper regions of the mon-
itored slope in July and September 2021 (Fig. 3). Further-
more, a total of 13 additional rainfall simulations were car-
ried out at sites in Saxony and Thuringia between May and
October 2020 (Table 2).
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Figure 2. Image of the nested experimental setup with locations and dates of the artificial rainfall simulations. Image in the lower left corner
shows the positioning of the rainfall simulation next to the middle monitoring post on the slope setup.

Figure 3. Timeline of the data collection over almost four years. The nested setup includes the micro-catchment area (depicted in grey),
the single slope (shown in green) and the plot with six rainfall simulations (RS) (illustrated in red). The remaining 13 RS (blue boxes)
were carried out at different sites. The soil, rain and agricultural conditions, sampled and observed in the field and in the laboratory, are
summarised in the dashed boxes. The magnitude of the observed scales is highlighted in each row. The following abbreviations are used:
UAV= uncrewed aerial vehicle, SfM= structure from motion.

More information on each individual plot can be found
in an overview table as part of the data publication this ar-
ticle accompanies. GCPs were installed around each plot,
driven at least 10 cm into the ground, in order to enable geo-
referencing and ensure stability during the experiment. The
rainfall simulator used is described in detail in Schindewolf
and Schmidt (2012). The precipitation is dispersed onto the
ground from three rain hoods with oscillating nozzles at an
elevation of 2 m. The velocity, distribution and size of the
raindrops produced by the VeeJet 80/100 nozzles are compa-
rable to those of a heavy rainfall event (Kainz et al., 1992).
At the base of the plot, which was enclosed by metal sheets
and had a length of 3 m and a width of 1 m, a sediment col-
lector was used to facilitate the collection and measurement
of runoff and sediment concentration (see also Table 3). At
the outset of the rainfall simulation, the intensity of the pre-

cipitation was gauged by enclosing the plot with a protective
sheet and measuring the total discharge. Thereafter, the in-
filtration experiment started (Fig. 5, A in timeline). Once a
steady state of infiltration had been reached, the apparatus
designed to simulate slope lengths exceeding 3 m was ac-
tivated. The runoff experiment (Fig. 5, B in timeline) was
conducted for a further 10 to 14 min. Subsequently, the wa-
ter supply feeding surface runoff and rainfall was terminated
for approximately one hour, after which the repetition was
carried out. An individual camera setup on posts at heights
of 1.5 to 3 m, comprising eight to eleven synchronised dig-
ital single-lens reflex (SLR) cameras (schematic in Fig. 5),
captured images to generate DEMs at 10, 20 and 60 s in-
tervals (A – runoff experiment, B – infiltration experiment,
and break, referring to the camera symbols in the timeline in
Fig. 5). Exceptions are the rainfall simulations carried out in
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Figure 4. Monitoring setup on the slope scale with three monitoring stations, each equipped with five RGB cameras (b). The schematic
representation in (a) and (d) includes the camera designations and positions of the GCPs (ground control points). Panel (a) presents the
setup employed until July 2022. Subsequently a slight modification was implemented as shown in (d). The height of the posts was chosen to
facilitate the mechanical removal of vegetation (c) while minimising potential restrictions.

September and October 2020. These were performed with a
minor alteration, the first infiltration experiment was directly
followed by a break before the second infiltration experiment
took place, followed by a runoff experiment (corresponding
to Fig. 5, the timeline for these simulations can be described
as A-break-A-B). As an addition to the camera monitoring
system, a camera was utilised for all-round SfM data cap-
ture during the break and before and after the experiment.
This was done in order to generate 3D models with Agisoft
Metashape (v.1.8.3) images acquired from the most suitable
perspectives, with the aim of avoiding data gaps due to oc-
clusions as much as possible. This offers a more complete
model with a higher point density compared to the synchro-
nised camera setup resulting in a valuable data set for model
input.

Soil samples were collected in the immediate vicin-
ity of the plot at three distinct time points: prior to the
experiment/before 1st run A (six core samples), during the
experimental break (three core samples) and after the end of
the experiment/after 2nd run B (three core samples). The core
samples were weighed in the laboratory both before and after
drying, thus providing data on the bulk density and soil mois-
ture content of the topsoil. The restricted spatial distribution
and limited number of samples were a consequence of the
lack of available space. Particle size distribution data were
obtained using ultrasonic dispersion and Köhn sieve sedi-
mentation techniques, applied to a subset of soil samples.
The total organic carbon (TOC) was analysed using an el-
emental analyser coupled with isotope ratio mass spectrom-

etry (EA-IRMS). The extent of surface vegetation and stones
was estimated as a percentage, and the slope was measured.
Figure 3 presents a summary of the data pertaining to soil,
surface, rainfall and tillage conditions within the blue dashed
box.

3 Data processing and results

Figure 6 shows the complete data processing workflow. Prior
to data collection, all cameras used in terrestrial applica-
tions at the single slope and plots were pre-calibrated using
a temporary calibration field (e.g., Eltner and James, 2022).
The coordinates of the markers were determined with a mm-
precision using a folding rule. The objective of the camera
calibration was to ensure the precise modelling of the ray
path from the object point through the camera’s projection
centre to the image sensor.

All cameras were synchronised during data capture using
a wired connection between the cameras, thereby enabling
simultaneous triggering. At the plot scale image matching
went well during the experiments lasting between 30 to
120 min. Due to the occurrence of clock drifts and trigger
failures in the cameras over the four-year measurement pe-
riod at the field scale, an automatic time-matching approach
was developed (Grothum et al., 2025). In order to orient the
image measurements and the resulting 3D models in a scaled
reference frame, GCPs were utilised at the plot, slope and
micro-catchment setups. A Leica TCRM 1102 total station,
which can measure points with mm accuracy, was applied
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Table 2. Coordinates of the different rainfall simulations in
Thuringia and Saxony, Germany.

Date (yyyy-mm-dd) Site

2020-05-05 51°11′31′′ N, 13°17′37′′ E
2020-05-06 51°11′31′′ N, 13°17′37′′ E
2020-05-08 51°11′31′′ N, 13°17′37′′ E
2020-05-12 51°03′25′′ N, 13°15′39′′ E
2020-05-13 51°03′25′′ N, 13°15′39′′ E
2020-05-14 51°03′25′′ N, 13°15′39′′ E
2020-05-16 51°03′44′′ N, 13°15′38′′ E
2020-05-18 51°03′44′′ N, 13°15′38′′ E
2020-05-19 51°03′44′′ N, 13°15′38′′ E
2020-05-20 51°03′44′′ N, 13°15′38′′ E
2020-05-22 51°03′44′′ N, 13°15′38′′ E
2020-09-07 51°03′21′′ N, 11°19′26′′ E
2020-09-08 51°03′21′′ N, 11°19′26′′ E
2020-09-09 51°11′48′′ N, 13°09′28′′ E
2020-09-14 51°03′56′′ N, 11°20′55′′ E
2020-09-15 51°03′56′′ N, 11°20′55′′ E
2020-09-22 51°05′56′′ N, 11°21′35′′ E
2020-09-23 51°05′56′′ N, 11°21′35′′ E
2020-10-06 51°04′52′′ N, 11°21′35′′ E
2020-10-07 51°04′52′′ N, 11°21′35′′ E
2020-10-08 51°04′52′′ N, 11°21′35′′ E
2021-07-19 51°03′42′′ N, 13°15′35′′ E
2021-07-20 51°03′43′′ N, 13°15′35′′ E
2021-07-21 51°03′43′′ N, 13°15′36′′ E
2021-09-20 51°03′42′′ N, 13°15′35′′ E
2021-09-21 51°03′43′′ N, 13°15′35′′ E
2021-09-22 51°03′43′′ N, 13°15′36′′ E

to map the GCP coordinates at the single slope and micro-
catchment. During the rainfall simulation, the GCPs were ei-
ther measured by the same total station or using a tape mea-
sure between the GCPs in combination with photogrammet-
ric adjustment (as done in Eltner et al., 2017) to get mm-
accurate coordinates. The GCPs were automatically mapped
in the images using a template matching approach based on
normalized cross-correlation at the plots. At the field scale,
a deep learning-based approach for bounding box detection
was used, which demonstrated greater robustness throughout
the year (Blanch et al., 2025). At the field scale, the coordi-
nates of the GCPs were refined to sub-pixel accuracy through
the application of ellipse-fitting (Grothum et al., 2025). A
more detailed description of the technical procedure can be
found in Grothum et al. (2025).

The external (camera poses, i.e., orientations and posi-
tions) and internal (only focal length and principle point)
camera geometry were estimated within a bundle adjustment
(using Agisoft Metashape) considering the pre-calibrated
camera parameters, the GCPs and the tie points found via
image matching. Furthermore, the precision of the tie points
was estimated by the M3C2-PM (multiscale model to model
cloud comparison with precision maps) method (James et al.,

Figure 5. Schematic representation of an artificial rainfall simu-
lation, as adapted from Schindewolf (2012) and monitored by a
synchronised time-lapse camera system. The blue boxes at the top
show the timeline of a rainfall simulation (1st run and 2nd run/rep-
etition). Each run consists of an infiltration experiment (A) and a
runoff experiment (B), separated by one-hour interval of no rain-
fall. The cameras indicate the frequency of the SfM (structure from
motion) image taking, between every 10–60 s.

2017). The adjustment was performed in an iterative manner,
changing input parameters, such as number of required im-
age point matches, if the overall accuracy was not sufficient.
After image alignment and adjustment, a multi-view stereo
(MVS) matching process was used to calculate the dense
point clouds. Subsequently, the dense point clouds were sub-
jected to filtering in order to remove any outliers and vegeta-
tion that may have been present (Grothum et al., 2023).

The point precisions of tie points were interpolated to the
dense point cloud, thus enabling the subsequent derivation of
a spatially distributed level of detection during change detec-
tion, i.e., point cloud differencing with the M3C2 approach
(Lague et al., 2013). Each time series point cloud was com-
pared with the initial point cloud in the series. A more de-
tailed account of the whole data processing can be found in
Grothum et al. (2025).

Figure 7 presents the evaluation of data collected dur-
ing the rainfall simulation 21 July 2021. The soil had been
freshly cultivated just two days prior, resulting in a loose and
unconsolidated topsoil. As a result, a pronounced elevation
decrease was observed at the beginning of the event (Fig.
7a), reflecting a combination of erosional and predominantly
non-erosional processes such as compaction and consolida-
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Figure 6. Image processing workflow adapted after Epple et al. (2025) (GCP= ground control point, M3C2 PM=Multiscale Model to
Model Cloud Comparison with Precision Maps, BB detection= bounding box detection).

Figure 7. Rainfall simulation results on 21 July 2021 on the plot scale. (a) Timeline of the accumulated spatial averaged elevation change
measured via SfM (structure from motion) and the measured discharge at the plot’s outlet covering the whole simulation time. (b) DoD
(digital elevation model of difference) subtracting the dense clouds captured before and after the rainfall simulation presenting the spatially
distributed elevation change. (c) Image of the rainfall simulation plot, shortly after the start.

tion. Epple et al. (2025), consider ten rainfall simulations of
this dataset and provide on that base a detailed discussion of
these initial elevation changes under varying soil conditions.
In this context they introduce an empirical method to dis-
tinguish non-erosional from erosional processes. The DEM
of Difference (DoD) illustrates widespread surface lower-
ing across the plot, with localized elevation losses exceeding

5 cm. These pronounced changes are attributed primarily to
aggregate breakdown and other highly localized processes.

Figure 8 shows exemplary results on the slope scale, vi-
sualising the changes in elevation during a 28 d observa-
tion period on the middle slope position in July and August
2021. Strongest elevation decreases were measured right af-
ter tillage on 23 July and as a result of heavy rainfall on 3
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Figure 8. Results of a 28 d observation time at the middle slope position in July and August 2021. At the top: image of the camera 12,
taken on 19 August 2021 at 10:00 a.m. At the bottom: timeline for the period 22 July 2021 (right after tillage) until 19 August 2021 (day
before tillage), with the average M3C2 elevation change, the temperature and the daily rainfall. To the right: DoD (digital elevation model of
difference) subtracting the days 22 July and 19 August 2021, with the schematic illustration of the middle slope monitoring post (bottom),
cameras facing upslope. The RoI (region of interest) is marked by the dotted black/white box.

August (Fig. 8, timeline). The DoD illustrates strongest ele-
vation decreases along the tillage lines, the predominant flow
paths, which lead to rill erosion. Elevation increases (blue
patterns in the DoD) are a result of vegetation growth, as can
be seen in the image at the top.

In addition to the information on single rainfall simula-
tions and a month of rainfall events, the data offer informa-
tion on a yearly scale. Figure 9 presents 12 months of el-
evation change in 2020–2021 recorded at the middle slope
position. With no tillage and therefore no reset from Novem-
bre 2020 until April 2021, information about the seasonal
development during the winter months can be derived. Small
rainfall events, snow coverage and snow melting lead to an
average decrease of 3 cm during these months. As already
presented in Fig. 7 the data show high potential for consoli-
dation and compaction on the site right after tillage. At this
time, already small rainfall events can lead to comparable
high elevation decreases (e.g., October 2020).

Figure 10 presents the information, available on the micro-
catchment scale. Both the slope as well as ten of the plot po-
sitions are nested within this blue area. This dataset as well as
the UAV-images of eight further flights during the monitor-
ing period are an important part of this nested experimental
setup. It serves on the one hand as model input for soil ero-
sion modelling at the micro-catchment scale and provides on
the other hand a data base for upscaling approaches, offer-

ing processed-based soil erosion modelling, the opportunity
to test the plot-calibrated and slope-validated information on
the next scale.

4 Structure of the data archive

The dataset is structured according to the three scales: plot,
slope and micro-catchment (Fig. 11). Each observation scale
is divided into two datasets: a raw and a processed one. The
raw dataset comprises the unprocessed images (from the ter-
restrial used SLR and the UAV cameras), 3D coordinates of
the GCPs (i.e., in object space) and empirical field data (rain-
fall simulation results, soil data, meteorological data, etc.).
The processed data set includes the camera calibration pro-
tocols, the reconstructed dense point clouds, the orthophotos,
the point precision maps and the M3C2 distances per point.
Please find a detailed overview of the data in the data de-
scription accompanying the data.

5 Data quality

An overview of the accuracies can be found in Table 3. The
point precision files (ptPrecision) in the “time_lapse” fold-
ers within the dataset offer mm-precisions on every connec-
tion point in every 3D-model on both plot and slope scale,
averaged by the “average median error”. Information on the
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Figure 9. Timeline presenting the averaged M3C2 elevation change development over the year June 2020 until June 2021 measured by the
middle slope monitoring post (dotted vertical lines indicate tillage and therefore an elevation reset).

Figure 10. DEM (digital elevation model) of the micro-catchment
scale (22 July 2020), with the micro-catchment marked in blue, vi-
sualised with an analytic hillshade in the back.

Table 3. Average accuracy metrics of the plot and slope data, ex-
cluding strong outliers. CP and GCP refer to check point and ground
control point respectively, SD stands for standard deviation.

plot slope

average median error [mm] 2.7 5.0
average SD error [mm] 2.8 4.9
median CP error [mm] 2.5 6.1
SD error CP [mm] 4.3 10.8
median GCP error [mm] 1.8 1.2
SD error GCP [mm] 2.5 1.7

RMSE (root mean square error) at the GCPs and CPs for ev-
ery 3D-model are included as log-files in the “time_lapse”
folder.

6 Data availability

The described data set can be found by the following DOI:
https://doi.org/10.25532/OPARA-1038 (Epple et al., 2026).

7 Code availability

The code for photogrammetric time-lapse data process-
ing has been published by Grothum et al. (2025,
https://doi.org/10.5194/soil-11-1007-2025).
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Figure 11. Dataset structured by the observation scales and further subdivided into raw and processed data. (gcp= ground control point,
slr= single lens reflex, uav= uncrewed aerial vehicle, sfm= structure from motion, ptPrecision= point precision map; lowercases used as
in the data archive).

8 Recommendations and conclusions

We introduce a novel nested dataset designed for the detec-
tion and analysis of soil surface changes, which we make
available to the broader scientific community. This dataset
provides high-resolution spatio-temporal data on geomor-
phological processes, including erosion triggered by heavy
rainfall and seasonal elevation changes. It spans a range of
spatial scales, from 3 m2 to 5 ha, and includes variable data
acquisition frequencies, offering a distinctive resource for
in-depth examination of soil dynamics. To ensure maximal
transparency, we provide both the raw data required to con-
struct DEMs and pre-processed dense point clouds for fur-
ther use. While the current dataset is based on a loess site
in eastern Germany with a limited slope range and moderate
rainfall events, we encourage researchers to expand its scope.
This can be achieved by integrating camera systems during
rainfall simulations and collecting high-resolution spatial and
temporal data during natural rainfall events. For this purpose,
both software and hardware are made openly accessible and
adaptable to other locations and conditions. Such contribu-
tions will enable to address existing challenges in soil erosion
modelling by providing new observations for model evalua-
tion and calibration. Furthermore, this unique dataset offers
a first-of-its-kind opportunity to train artificial intelligence
(AI) models and compare their performance with conven-
tional process-based soil erosion models. We anticipate that
this dataset will significantly enhance the understanding of
soil erosion processes and contribute to the development of
more accurate and robust predictive models.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-18-1275-2026-supplement.
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