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S1 Data description 
This dataset was generated to improve the calibration and validation of process-based soil 

erosion models by applying high-resolution, multi-scale and time-lapse photogrammetric 

observations. Although soil erosion models are vital for understanding and predicting surface 

processes, they face challenges due to limited spatio-temporal data resolution, assumptions 

of parameter stationarity and model equifinality. To address these limitations, a unique, 

nested, cross-scale dataset was collected using Structure from Motion (SfM) 

photogrammetry at plot, hillslope and catchment scales. The primary objective of the data 

collection was to capture changes to the soil surface during erosional processes at varying 

temporal resolutions and spatial extents in order to support model evaluation and 

development. 

The dataset comprises three main components: 

1) Plot-scale time-lapse data: High-frequency SfM data (Digital Elevation Model (DEM) 

generation at 10–60 second intervals) were captured during artificial rainfall 

simulations. These datasets enable the detailed monitoring of micro-topographic 

surface changes, including rill initiation, soil settling and compaction processes. 

2) Field-scale data: Daily to sub-daily SfM observations (with DEM intervals as fine as 

0.2 mm of rainfall) were recorded under natural rainfall conditions over a nearly four-

year monitoring period. This data is also supplemented by UAV (uncrewed aerial 

vehicle) data. This data represents longer-term erosional dynamics and surface 

evolution under natural climatic conditions. 

3) Catchment scale UAV data: Aerial imagery was captured via UAV platforms and 

processed into digital elevation models and orthophotos using SfM methods. These 

data extend the spatial scale of analysis and enable the linkage between plot-level 

processes and larger-scale sediment transport patterns.  

All data were acquired using calibrated digital cameras and processed through standardised 

SfM workflows, employing open-source and commercial photogrammetric software. Ground 

control points and quality assurance procedures were used to ensure geometric consistency 

and repeatability across datasets. Additional validation was performed using reference 

targets and control DEMs from laser scanning in selected experiments. 

The dataset is organised into individual folders corresponding to different spatial scales and 

time periods. Each folder contains raw imagery, processed DEMs, orthophotos, metadata 

and processing logs. The dataset is made available in an open-access, structured zip archive 

format. Full details of the data processing steps can be found in Grothum et al. (2025) and 

Eltner et al. (2025). A 'List of Files' document is also provided to help you navigate the folder 

structure. 

This comprehensive, high-resolution dataset supports retrospective and real-time analysis of 

erosion processes, and can be used to validate existing and emerging soil erosion models. It 

has already been used in studies evaluating models, with a focus on distinguishing between 

erosional and soil compaction processes (Epple et al., 2025; Epple et al., submitted). The 

data are intended for reuse by the soil erosion and geomorphology research communities, 

and can be incorporated into future model development, data assimilation techniques and 

remote sensing applications. 



S1.1 Sampling method 

Soil samples were collected in the immediate vicinity of the photogrammetric monitoring plots 

in order to characterise the initial properties of the soil and evaluate any changes that 

occurred during the rainfall simulation experiments. Sampling was conducted at three distinct 

time points: before the first run, during the experimental break and after the second run had 

concluded. Undisturbed topsoil cores were taken at each stage using steel cylinders with a 

volume of 100 cm³, resulting in a total of twelve cores: six before the experiment, three 

during the break and three after the final run.  

No International Geo Sample Numbers (IGSNs) were assigned to the samples in this study. 

However, information on the samples can be found in the 'read.me' file in the 

'protocol_fieldwork' folder. The information is sorted by date in this folder and summarised in 

CSV files. 

S1.2 Analytical procedure 

Laboratory: Freiberg (2020-05-05 until 2020-05-22), laboratory of the chair of Physical 

Geography at the Friedrich-Schiller-University Jena, Germany (all later laboratory 

analyses) 

The bulk density and volumetric soil moisture content of each core sample were determined 

by weighing it in the laboratory before and after oven-drying at 105 °C. Due to space 

constraints in the experimental setup, sampling was concentrated in the central region of the 

plot. 

Further samples collected next to the plot were analysed for particle size distribution using 

the ultrasonic dispersion and sedimentation method according to the Köhn sieve-pipette 

technique, and total organic carbon (TOC) content was measured using an elemental 

analyser coupled with isotope ratio mass spectrometry (EA-IRMS). In addition to soil 

sampling, field observations were conducted to record surface conditions. These included 

visual estimates of surface vegetation and stone cover expressed as a percentage and 

manual slope measurements using a clinometer.  

S1.3 Data processing 

The analytical data underlying this dataset were derived from terrestrial and UAV-based 

photogrammetric image sequences, which were processed through a standardised, quality-

controlled workflow. The goal was to generate spatially and temporally precise 3D surface 

models suitable for soil erosion process monitoring and model evaluation. The methods, 

transformations and analytical steps applied during data processing are outlined below: 

Camera calibration and synchronization 

Prior to image acquisition, all cameras employed for terrestrial applications at plot and slope 

scales underwent pre-calibration using a temporary calibration field (Grothum et al., 2025). 

The coordinates of the markers on the calibration field were measured with millimetre 

precision using a folding rule, ensuring accurate modelling of the internal camera geometry 

and, in particular, the ray path from object points to the image sensor. 

Camera triggering during data collection was synchronised via a wired connection to ensure 

simultaneous image capture. However, for longer-term field-scale data collection over four 

years, clock drifts and occasional trigger failures necessitated the development of an 

automatic image time-matching algorithm (Grothum et al., 2025). 

Georeferencing and ground control 



To georeference the models in a real-world coordinate system, ground control points (GCPs) 

were deployed across the plot, slope and micro-catchment setups. Their 3D coordinates 

were measured with millimetre-level accuracy using a Leica TCRM 1102 total station. During 

rainfall simulation experiments, the GCPs were also measured using a folding rule. GCP 

identification in images was automated using: 

 Template matching with normalised cross-correlation for plot-scale data 

 Deep learning-based bounding box detection was used for field-scale data (Blanch et 

al., 2025). 

 Ellipse-fitting was used to refine GCPs at the slope to sub-pixel accuracy (Grothum et 

al., 2025). 

Photogrammetric reconstruction and adjustment 

Images were processed in Agisoft Metashape v1.8.3 using a bundle adjustment that 

estimated: 

 External camera parameters (positions and orientations); 

 Internal camera parameters (focal length and principal point only), based on pre-

calibrated values (the distortion parameters were taken from the temporary calibration 

and set as fixed). 

Tie points identified through image matching were analysed for positional precision (James 

et al., 2017) and the minimum number of tie points. If the accuracy or quantity thresholds 

were not met, the input parameters (i.e., tie point accuracy and the minimum number of 

image matches) were iteratively adjusted. 

A multi-view stereo (MVS) algorithm was then applied to reconstruct dense point clouds from 

the adjusted image sets. These dense point clouds were cleaned through filtering procedures 

to remove outliers and non-soil elements, such as vegetation (Grothum et al., 2023). 

Change detection and uncertainty estimation 

Uncertainty in 3D measurements was explicitly accounted for by interpolating the precision of 

tie points to the dense point cloud. This enabled the derivation of spatially variable levels of 

detection (LOD), which are essential for meaningful change detection. Surface change was 

quantified by comparing each time series point cloud with the initial point cloud using the 

M3C2 (multiscale model to model cloud comparison) method (Lague et al., 2013). This 

allowed robust, statistically constrained detection of topographic change at high spatial and 

temporal resolutions. 

Comprehensive descriptions of the data processing methods, parameter selection and 

filtering steps can be found in the works of Epple et al. (2025a) and Grothum et al. (2025). 

S2 File description 

S2.1 File inventory  

The dataset is organized hierarchically by spatial scale into three main folders: 

- I_catchment 

- II_slope 

- III_plot 

Each of these scale-specific folders is subdivided into: 

- 0_raw: containing raw input data as acquired in the field 



- 1_processed: containing outputs from data processing workflows (e.g., dense point 

clouds, change detection) 

 

Catchment scale (folder: I_catchment) 

- I_catchment_0_raw contains: 

 UAV_images: UAV imagery sorted by flight date folder (yyyy-mm-dd) 

 GCPs: Ground control point data 

- I_catchment_1_processed contains: 

 UAV_dense: Dense point clouds from UAV imagery in .ply and .e57 formats 

 

Slope scale (folder: II_slope) 

- Subdivided by slope position: lower_slope, middle_slope, upper_slope,  

 SLR subdivided by months (yyyy-mm) and further by camera number 

 Dense point, ptPrecision subdivided by months (named yyyy-mm) 

 Fieldwork subdivided by days (yyyy-mm-dd) 

- M3C2 organised according to the reference date (no more subdivision)  

- UAV-images subdivided by date (yyyy-mm-dd) 

- II_slope_0_raw contains: 

 GCPs: Coordinates and positions of ground control points 

 Protocol_fieldwork: Field metadata (e.g., bulk density, soil moisture, soil cover, 

rainfall intensity, organic carbon, grain size distribution, discharge timeline) 

 SLR: Raw image data by slope position and camera ID 

 UAV_images: UAV imagery sorted by flight date 

 Weather: Time series from the on-site weather station (2020-09-04 to 2022-

10-05) 

- II_slope_1_processed contains:  

 Camera_calibration 

 SfM_timelapse: Dense point clouds and precision maps (filtered/unfiltered), 

M3C2 (named by reference date and time yyyy-mm-ddThh-mm-ss and 

compare dataset yyyy-mm-ddThh-mm-ss); sorted by slope position and date, 

including also summary log- and ptPrecision-file 

 

Plot scale (folder: III_plot) 

- Subdivided by date of rainfall simulation 

- III_plot_0_raw contains: 

 GCPs: Coordinates and positions of ground control points 

 Protocol_fieldwork: Field metadata (e.g., bulk density, soil moisture, soil cover, 

rainfall intensity, organic carbon, grain size distribution, tillage, crop type and 

stage, discharge and sediment time series [min]) 

 SLR: Raw camera data from DSLR cameras 

- III_plot_1_processed contains: 

 Camera_calibration: Internal camera parameters and calibration information 

(format TBD; typically JSON/XML or CSV) 

 SfM_timelapse: Dense point clouds and precision maps (filtered/unfiltered), 

sorted by experiment date; includes .txt files for M3C2 change detection 

outputs (referenced to first time step), including also each a summary log- and 

ptPrecision-file 



 

Each major folder includes a read.me file to guide users through the data content and 

structure. 

S2.2 File naming convention 

Naming by date is always structured yyyy-mm-dd, by date and time in some occasions a 

time information is also added, these are organized yyyy-mm-ddThh-mm-ss (proc = 

processed). 

Table S1: File naming convention of the data set. 

scale data type naming  

catchment>raw raw flight images numbered consecutively .jpg 

 GCP information ‘coordinates_catchment’, 

‘positionsGCPs’ 

.txt, .png 

catchment > proc dense point cloud by date  .e57 

slope>raw GCP information by date .txt, .png 

 laboratory/field 

information 

information included .csv 

 raw camera data numbered consecutively .jpg 

 raw flight images numbered consecutively .jpg 

 weather observation period .csv 

slope>proc calibration information  by number of camera .xml 

 dense point cloud by date + time .ply 

 log files numbered and date + time .txt 

 point precision numbered and date + time .txt 

 M3C2 date + time compared to 

reference day + time 

.txt 

 dense point clouds (UAV) by date .ply 

 RMSE information numbered consecutively .txt 

plot>raw GCP information by date .txt, .jpg 

 laboratory/field 

information 

information included .csv 

 raw camera data numbered consecutively .jpg 

plot>proc calibration information by name of camera .xml 

 dense point clouds numbered consecutively .ply 

 RMSE information numbered consecutively .txt 

 M3C2 named by min. to reference 

min. 

.txt 

 point precision numbered consecutively .txt 
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