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S.1 Methodology Fossil Fuel CO2 emissions (EFOS) 

S.1.1 Cement carbonation 

From the moment it is created, cement begins to absorb CO2 from the atmosphere, a process known as ‘cement 

carbonation’. We estimate this CO2 sink, from 1931 onwards, as the average of two studies in the literature (Cao 

et al., 2020; Guo et al., 2021 extended by Huang et al., 2023). The Global Cement and Concrete Association 

reports a much lower carbonation rate, but this is based on the highly conservative assumption of 0% mortar 

(GCCA, 2021). Modelling cement carbonation requires estimation of a large number of parameters, including 

the different types of cement material in different countries, the lifetime of the structures before demolition, of 

cement waste after demolition, and the volumetric properties of structures, among others (Xi et al., 2016). 

Lifetime is an important parameter because demolition results in the exposure of new surfaces to the 

carbonation process. The main reasons for differences between the two studies appear to be the assumed 

lifetimes of cement structures and the geographic resolution, but the uncertainty bounds of the two studies 

overlap. 

S.1.2 Emissions embodied in goods and services 

CDIAC, UNFCCC, and BP national emission statistics ‘include greenhouse gas emissions and removals taking 

place within national territory and offshore areas over which the country has jurisdiction’ (Rypdal et al., 2006), 

and are called territorial emission inventories. Consumption-based emission inventories allocate emissions to 

products that are consumed within a country and are conceptually calculated as the territorial emissions minus 

the ‘embodied’ territorial emissions to produce exported products plus the emissions in other countries to 

produce imported products (Consumption = Territorial – Exports + Imports). Consumption-based emission 

attribution results (e.g. Davis and Caldeira, 2010) provide additional information to territorial-based emissions 

that can be used to understand emission drivers (Hertwich and Peters, 2009) and quantify emission transfers by 

the trade of products between countries (Peters et al., 2011a). The consumption-based emissions have the same 

global total but reflect the trade-driven movement of emissions across the Earth's surface in response to human 

activities. We estimate consumption-based emissions from 1990-2020 by enumerating the global supply chain 

using a global model of the economic relationships between economic sectors within and between every country 

(Andrew and Peters, 2013; Peters et al., 2011b). Our analysis is based on the economic and trade data from the 

Global Trade and Analysis Project (GTAP; Narayanan et al., 2015), and we make detailed estimates for the 

years 1997 (GTAP version 5), 2001 (GTAP6), and 2004, 2007, 2011, and 2014 (GTAP10.0a), covering 57 

sectors and 141 countries and regions. The detailed results are then extended into an annual time series from 

1990 to the latest year of the Gross Domestic Product (GDP) data (2020 in this budget), using GDP data by 
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expenditure in current exchange rate of US dollars (USD; from the UN National Accounts main Aggregates 

database; UN, 2022) and time series of trade data from GTAP (based on the methodology in Peters et al., 

2011b). We estimate the sector-level CO2 emissions using the GTAP data and methodology, add the flaring and 

cement emissions from our fossil CO2 dataset, and then scale the national totals (excluding bunker fuels) to 

match the emission estimates from the carbon budget. We do not provide a separate uncertainty estimate for the 

consumption-based emissions, but based on model comparisons and sensitivity analysis, they are unlikely to be 

significantly different than for the territorial emission estimates (Peters et al., 2012b). 

S.1.3 Uncertainty assessment for EFOS 

We estimate the uncertainty of the global fossil CO2 emissions at ±5% (scaled down from the published ±10 % 

at ±2σ to the use of ±1σ bounds reported here; Andres et al., 2012). This is consistent with a more detailed 

analysis of uncertainty of ±8.4% at ±2σ (Andres et al., 2014) and at the high-end of the range of ±5-10% at ±2σ 

reported by (Ballantyne et al., 2015). This includes an assessment of uncertainties in the amounts of fuel 

consumed, the carbon and heat contents of fuels, and the combustion efficiency. While we consider a fixed 

uncertainty of ±5% for all years, the uncertainty as a percentage of emissions is growing with time because of 

the larger share of global emissions from emerging economies and developing countries (Marland et al., 2009). 

Generally, emissions from mature economies with good statistical processes have an uncertainty of only a few 

per cent (Marland, 2008), while emissions from strongly developing economies such as China have 

uncertainties of around ±10% (for ±1σ; Gregg et al., 2008; Andres et al., 2014). Uncertainties of emissions are 

likely to be mainly systematic errors related to underlying biases of energy statistics and to the accounting 

method used by each country.  

S.1.4 Growth rate in emissions 

We report the annual growth rate in emissions for adjacent years (in percent per year) by calculating the 

difference between the two years and then normalising to the emissions in the first year: (EFOS(t0+1)-

EFOS(t0))/EFOS(t0)×100%. We apply a leap-year adjustment where relevant to ensure valid interpretations of 

annual growth rates. This affects the growth rate by about 0.3% yr-1 (1/366) and causes calculated growth rates 

to go up approximately 0.3% if the first year is a leap year and down 0.3% if the second year is a leap year. 

The relative growth rate of EFOS over time periods of greater than one year can be rewritten using its logarithm 

equivalent as follows: 
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Here we calculate relative growth rates in emissions for multi-year periods (e.g. a decade) by fitting a linear 

trend to ln(EFOS) in Eq. (S1), reported in percent per year. 

S.1.5 Emissions projection for 2024 

To gain insight on emission trends for 2024, we provide an assessment of global fossil CO2 emissions, EFOS, by 

combining individual assessments of emissions for China, USA, the EU, and India (the four countries/regions 

with the largest emissions), and the rest of the world.  
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The methods are specific to each country or region, as described in detail below. 

China: We use a regression between monthly data for each fossil fuel and cement, and annual data for 

consumption of fossil fuels / production of cement to project full-year growth in fossil fuel consumption and 

cement production. The monthly data for each product consists of the following: 

· Coal: Production data from the National Bureau of Statistics (NBS), plus net imports from the China 

Customs Administration (i.e., gross supply of coal, not including inventory changes), adjusted 

using monthly production data for thermal electricity, crude steel, pig iron, coke and cement from 

NBS. 

·  Oil: Production data from NBS, plus net imports from the China Customs Administration (i.e., gross 

supply of oil, not including inventory changes) 

· Natural gas: Same as for oil 

· Cement: Production data from NBS 

For oil, we use data for production and net imports of refined oil products rather than crude oil. This choice is 

made because refined products are one step closer to actual consumption, and because crude oil can be subject 

to large market-driven and strategic inventory changes that are not captured by available monthly data.  

For each fuel and cement, we make a Bayesian linear regression between year-on-year cumulative growth in 

supply (production for cement) and full-year growth in consumption (production for cement) from annual 

consumption data. In the regression model, the growth rate in annual consumption (production for cement) is 

modelled as a regression parameter multiplied by the cumulative year-on-year growth rate from the monthly 

data through November of each year for past years (through 2023). We use broad Gaussian distributions 

centered around 1 as priors for the ratios between annual and through-November growth rates. We then use the 

posteriors for the growth rates together with cumulative monthly supply/production data through November of 

2024 to produce a posterior predictive distribution for the full-year growth rate for fossil fuel consumption / 

cement production in 2024. 

If the growth in supply/production through August were an unbiased estimate of the full-year growth in 

consumption/production, the posterior distribution for the ratio between the monthly and annual growth rates 

would be centered around 1. However, in practice the ratios are different from 1 (in most cases below 1). This is 

a result of various biasing factors such as uneven evolution in the first and second half of each year, inventory 

changes that are somewhat anti-correlated with production and net imports, differences in statistical coverage, 

and other factors that are not captured in the monthly data. 

For fossil fuels, the mean of the posterior distribution is used as the central estimate for the growth rate in 2024, 

while the edges of a 68% credible interval (analogous to a 1-sigma confidence interval) are used for the upper 

and lower bounds. 

USA: We use emissions estimated by the U.S. Energy Information Administration (EIA) in their Short-Term 

Energy Outlook (STEO) for emissions from fossil fuels to get both YTD and a full year projection (EIA, 2025). 

The STEO also includes a near-term forecast based on an energy forecasting model which is updated monthly 

(we use the January 2025 edition, which still includes some forecasts beyond available observations), and takes 
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into account expected temperatures, household expenditures by fuel type, energy markets, policies, and other 

effects. We combine this with our estimate of emissions from cement production using the monthly U.S. cement 

clinker production data from USGS for January-October 2024, assuming changes in clinker production over the 

first part of the year apply throughout the year. 

India: We use monthly emissions estimates for India updated from Andrew (2020b) through October-December 

2024. These estimates are derived from many official monthly energy and other activity data sources to produce 

direct estimates of national CO2 emissions, without the use of proxies. Emissions from coal are then extended to 

December using a regression relationship based on power generated from coal, coal dispatches by Coal India 

Ltd., the composite PMI, time, and days per month. For the last months of the year without observations, each 

series is extrapolated assuming typical (pre-2019) trends. 

EU: We use a refinement to the methods presented by Andrew (2021), deriving emissions from monthly energy 

data reported by Eurostat. Some data gaps are filled using data from the Joint Organisations Data Initiative 

(JODI, 2025). Sub-annual cement and cement-clinker production data are limited, but data for Germany, Poland 

and Spain, the three largest producers, are available. For fossil fuels this provides estimates through September-

December, varying by fuel. We extend coal emissions through December using a regression model built from 

generation of power from hard coal, power from brown coal, and the number of working days in Germany, the 

biggest coal consumer in the EU. We extend oil emissions by building a regression model between our monthly 

CO2 estimates and oil consumption reported by the EIA for Europe in its Short-Term Energy Outlook (January 

2025 edition), and then using this model with EIA’s monthly forecasts. For natural gas, preliminary 

observations were available through December. 

Rest of the world: We use the close relationship between the growth in GDP and the growth in emissions 

(Raupach et al., 2007) to project emissions for the current year. This is based on a simplified Kaya Identity, 

whereby EFOS (GtC yr-1) is decomposed by the product of GDP (USD yr-1) and the fossil fuel carbon intensity of 

the economy (IFOS; GtC USD-1) as follows: 

𝐸*+, = 𝐺𝐷𝑃	 × 𝐼*+,         (S2) 

Taking a time derivative of Equation (S2) and rearranging gives: 
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where the left-hand term is the relative growth rate of EFOS, and the right-hand terms are the relative growth 

rates of GDP and IFOS, respectively, which can simply be added linearly to give the overall growth rate.  

The IFOS is based on GDP in constant PPP (Purchasing Power Parity) from the International Energy Agency 

(IEA) up to 2017 (IEA/OECD, 2019) and extended using the International Monetary Fund (IMF) growth rates 

through 2024 (IMF, 2024). Interannual variability in IFOS is the largest source of uncertainty in the GDP-based 

emissions projections. We thus use the standard deviation of the annual IFOS for the period 2014-2023 as a 

measure of uncertainty, reflecting a ±1σ as in the rest of the carbon budget. For rest-of-world oil emissions 

growth, we use the global oil demand forecast published by the EIA less our projections for the other four 

regions, and estimate uncertainty as the maximum absolute difference over the period available for such 
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forecasts using the specific monthly edition (e.g. August) compared to the first estimate based on more solid 

data in the following year (April). 

Bunkers: Given the divergence in behaviour of international shipping from countries’ emissions since the 

COVID-19 pandemic, we project international bunkers separately using sub-annual data on international 

aviation from the OECD (Clarke et al., 2022) and international shipping from OECD (Clarke et al., 2023). 

World: The global total is the sum of each of the countries and regions. 

 
S.2 Methodology CO2 emissions from land-use, land-use change and forestry (ELUC) 

The net CO2 flux from land-use, land-use change and forestry (ELUC, called land-use change emissions in the 

rest of the text) includes CO2 fluxes from deforestation, afforestation, logging and forest degradation (including 

harvest activity), shifting cultivation (cycle of cutting forest for agriculture, then abandoning), regrowth of 

forests following wood harvest or abandonment of agriculture, peat burning, and peat drainage. Land-

management activities are only partly included in our land-use change emissions estimates (Table S1). Some 

land-use change and land-management activities cause emissions of CO2 to the atmosphere, while others 

remove CO2 from the atmosphere. ELUC is the net sum of emissions and removals due to all anthropogenic 

activities considered. Our annual estimates for 1960-2022 are provided as the average of results from four 

bookkeeping approaches (Supplement S.2.1 below): the Bookkeeping of Land Use Emissions model (BLUE; 

Hansis et al., 2015), the compact Earth system model OSCAR (Gasser et al., 2020), an estimate from Houghton 

and Castanho (2023; hereafter H&C2023), and the Land-Use Change Emissions model (LUCE; Qin et al., 

2024). Peat emissions are added from external datasets (see Supplement S.2.1 below). BLUE and OSCAR are 

updated with new land-use forcing data covering the time period until 2023. All four data sets are extrapolated 

to provide a projection for 2024 (see Supplement S.2.5 below). In addition, we use results from Dynamic Global 

Vegetation Models (DGVMs; see Supplement S.2.2 and Table 4) to help quantify the uncertainty in ELUC 

(Supplement S.2.4), and thus better characterise the robustness of annual estimates and trends. In this budget, we 

follow the scientific ELUC definition as used by global carbon cycle models, which counts fluxes due to 

environmental changes on managed land towards SLAND, as opposed to the national greenhouse gas inventories 

(NGHGIs) under the UNFCCC, most of which include them in ELUC and thus often report smaller land-use 

emissions (Grassi et al., 2018; Petrescu et al., 2020). Following the methodology of Grassi et al. (2023), we 

provide harmonised estimates of the two approaches further below (see Supplement S.2.3). 

S.2.1 Bookkeeping models 

CO2 emissions and removals from land-use change are calculated by four bookkeeping models. These are based 

on the original bookkeeping approach of Houghton (2003), which keeps track of the carbon stored in vegetation 

and soils before and after a land-use change event (transitions between various natural vegetation types, 

croplands, and pastures). Literature-based response curves describe the decay of vegetation and soil carbon, 

including carbon transfer to product pools of different lifetimes, as well as carbon uptake due to regrowth. In 

addition, the bookkeeping models represent long-term degradation of primary forest as lowered standing 

vegetation and soil carbon stocks in secondary forests and include forest management practices such as wood 

harvests.  
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BLUE, LUCE and H&C2023 exclude the transient response of land ecosystems to changes in climate, 

atmospheric CO2, and other environmental factors, and base the carbon densities of soil and vegetation on 

contemporary data from literature and inventory data. Since carbon densities thus remain fixed over time, the 

additional sink capacity that ecosystems provide in response to CO2 fertilisation and some other environmental 

changes are not captured by these models (Pongratz et al., 2014). OSCAR includes this transient response, and it 

follows a theoretical framework (Gasser and Ciais, 2013) that allows separating bookkeeping land-use 

emissions and the loss of additional sink capacity. Only the former is included here, while the latter is discussed 

in Supplement S.6.4. The bookkeeping models differ in (1) computational units (spatially explicit treatment of 

land-use change at 0.25° resolution for BLUE and LUCE, country-level for H&C2023 and OSCAR), (2) 

processes represented (see Table S1), and (3) carbon densities assigned to vegetation and soils for different 

types of vegetation (literature-based for BLUE and H&C2023, calibrated to DGVMs for OSCAR,  mainly 

literature-based but additionally considering the impact of land cohort age on secondary land carbon stocks for 

LUCE). A notable difference between models exists with respect to the treatment of shifting cultivation: 

H&C2023 assumes that forest loss—derived from the Global Forest Resources Assessment (FRA; FAO, 

2020)—in excess of increases in cropland and pastures—derived from FAOSTAT (FAO, 2021)—represents an 

increase in shifting cultivation. If the excess loss of forests in a year is negative, it is assumed that shifting 

cultivation is returned to forest. Historical areas in shifting cultivation are defined taking into account country-

based estimates of areas in fallow in 1980 (FAO/UNEP, 1981) and expert opinion (from Heinimann et al., 

2017). In contrast, BLUE, OSCAR, and LUCE include subgrid-scale transitions between all vegetation types. 

Furthermore, H&C2023 assumes conversion of natural grasslands to pasture, while BLUE, OSCAR, and LUCE 

allocate pasture transitions proportionally to all natural vegetation that exists in a grid-cell. This is one reason 

for generally higher emissions in BLUE and OSCAR. In this GCB, we split CO2 emissions into emissions from 

permanent deforestation and from deforestation for shifting cultivation. Similarly, we separate the forest (re-

)growth estimates into (re-)growth from re-/afforestation and from regrowth associated with shifting cultivation. 

This distinction is insightful with regard to the levers on the reduction of net emissions: as deforestation for 

shifting cultivation is only temporary, the associated CO2 emissions cannot easily be avoided without 

compromising the CO2 removals from regrowth in shifting cultivation cycles. By contrast, permanent 

deforestation is typically not directly related to re-/afforestation. Stopping deforestation for permanent 

agricultural expansion and increasing the forest area provide two independent levers for net emissions reduction. 

Bookkeeping models do not directly capture carbon emissions from the organic layers of drained peat soils nor 

from peat fires. Particularly the latter can create large emissions and interannual variability due to synergies of 

land-use and climate variability in equatorial Southeast Asia, especially during El-Niño events. We add peat fire 

emissions based on the Global Fire Emission Database (GFED4s; van der Werf et al., 2017) to the bookkeeping 

models’ output. Peat fire emissions are calculated by multiplying the mass of dry matter emitted by peat fires 

with the C emission factor for peat fires indicated in the GFED4s database. Emissions from deforestation and 

degradation fires used for extrapolating the H&C2023 data beyond 2020 and to derive the 2023 projection of all 

three models (see below) are calculated analogously. The satellite-derived GFED4s estimates of peat fire 

emissions start in 1997. For the previous years, we follow the approach by Houghton and Nassikas (2017), 

which linearly ramps up from zero emissions in 1980 to 0.04 GtC yr-1 in 1996, reflecting the onset of major 

clearing of peatlands in equatorial Southeast Asia in the 1980s. 
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We further add estimates of peat drainage emissions, combining estimates from three spatially explicit datasets. 

We employ FAO peat drainage emissions 1990–2022 from croplands and grasslands (Conchedda and Tubiello, 

2020; FAO, 2023), peat drainage emissions 1700–2010 from simulations with the DGVM ORCHIDEE-PEAT 

(Qiu et al., 2021), and peat drainage emissions 1701–2023 from simulations with the DGVM LPX-Bern v1.5 

(Lienert and Joos, 2018; Müller and Joos, 2021), the latter applying the updated LUH2-GCB2024 forcing as 

also used by BLUE, OSCAR, LUCE, and the DGVMs. The LPX-Bern simulations started from a transient run 

over the last deglaciation (-20,050 to 1700 AD) following Müller and Joos (2020) and are forced by changes in 

climate, atmospheric CO2, nitrogen deposition/input, and land-use changes. Simulations were done with and 

without prescribing land-use changes since 1700 AD. The difference between the simulations represents 

anthropogenic peat drainage emissions. To account for internal variability, we used the median peat drainage 

emissions from a 20-member ensemble. In LPX-Bern, peat carbon is stored in (i) active peatlands, (ii) former 

peatlands (“natural”), and (iii) former peatlands under anthropogenic use. We average the two CO2 emission 

cases from Müller and Joos (2021), assuming that half the peat carbon is lost immediately to the atmosphere 

after transformation from active to former peatland, while the rest decays slowly, pending on local temperature 

and soil moisture. The LPX-Bern peat drainage emissions show a very high emission peak in Russia in 1959 

followed by very low emissions in 1960. This peak can be attributed to an artefact in the HYDE3.4 dataset, 

which was corrected for Brazil and the Democratic Republic of the Congo in GCB2022 (Friedlingstein et al. 

2022b) but remains for Russia where it strongly impacts the LPX-Bern peat drainage estimates in 1959 and 

1960. To correct for this unrealistic peak, we replace the LPX-Bern peat drainage emissions in Russia in 1959 

and 1960 by the average of the estimates in 1958 and 1961. FAO data are extrapolated to 1850-2023 by keeping 

the post-2020 emissions constant at 2020 levels and by linearly increasing tropical peat drainage emissions 

between 1980 and 1990 starting from 0 GtC yr-1 in 1980 (consistent with H&N2017’s assumption, Houghton 

and Nassikas, 2017), and by keeping pre-1990 emissions from the often old, drained areas of the extra-tropics 

constant at 1990 emission levels. ORCHIDEE-PEAT data are extrapolated to 2011-2023 by replicating the 

average emissions in 2000-2010 (pers. comm. C. Qiu). Further, ORCHIDEE-PEAT only provides peat drainage 

emissions north of 30°N, and thus we fill the regions south of 30°N by the average peat drainage emissions from 

FAO and LPX-Bern. The final peat drainage emissions are calculated as the average of the estimates from the 

three different peat drainage datasets. The net ELUC values indicated in the manuscript are the sum of ELUC 

estimates from bookkeeping models, peat fire emissions, and peat drainage emissions. 

The four bookkeeping estimates used in this study differ with respect to the land-use change data used to drive 

the models. H&C2023 base their estimates directly on the Forest Resource Assessment (FRA) of FAO, which 

provides statistics on forest-area change and management at intervals of five years currently updated until 2020 

(FAO, 2020). The data is based on country reporting to FAO and may include remote-sensing information in 

more recent assessments. Changes in land use other than forests are based on annual, national changes in 

cropland and pasture areas reported by FAO (FAO, 2021). BLUE and LUCE use the harmonised land-use 

change data LUH2-GCB2024 covering the period 850-2023 (an update to the previously released LUH2 v2h 

dataset; Hurtt et al., 2017; Hurtt et al., 2020), which was also used as input to the DGVMs (Supplement S.2.2). 

LUH2-GCB2024 provides land-use change data at 0.25° spatial resolution based on the FAO data (as described 

in Supplement S.2.2) as well as the HYDE3.4 dataset (Klein Goldewijk et al., 2017a, 2017b), considering 

subgrid-scale transitions between primary forest, secondary forest, primary non-forest, secondary non-forest, 
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cropland, pasture, rangeland, and urban land (Hurtt et al., 2020; Chini et al., 2021). LUH2-GCB2024 provides a 

distinction between rangelands and pasture, based on inputs from HYDE. Rangeland establishment in forests is 

assumed to transform forests to grasslands, rangeland establishment in non-forest primary vegetation degrades 

primary to secondary vegetation, and rangeland establishment in non-forest secondary vegetation has no effect 

(e.g., browsing on shrubland) (Ma et al., 2020). This case distinction is implemented in BLUE based on a forest 

mask provided with LUH2-GCB2021. OSCAR was run with both LUH2-GCB2024 and FAO/FRA, where the 

drivers of the latter were linearly extrapolated to 2023 using their 2015-2020 trends. The best-guess OSCAR 

estimate used in our study is a combination of results for LUH2-GCB2024 and FAO/FRA land-use data and a 

large number of perturbed parameter simulations weighted against a constraint (the cumulative SLAND over 

1960-2022 of last year’s GCB). As the record of H&C2023 ends in 2020, we extend it up to 2023 by adding the 

yearly anomalies of the emissions from tropical deforestation and degradation fires from GFED4s between 2020 

and 2022 to the model’s estimate for 2020 (emissions from peat fires and peat drainage are added to all models 

later in the process). 

The annual ELUC from 1850 onwards is calculated as the average of the estimates from BLUE, H&C2023, 

OSCAR, and LUCE. For the cumulative numbers starting in 1750, emission estimates between 1750-1850 are 

added based on the average of four earlier publications (30 ± 20 GtC 1750-1850, rounded to nearest 5; Le Quéré 

et al., 2016). 

We provide a split of net ELUC into component fluxes to better identify reasons for divergence between 

bookkeeping estimates and to give more insight into the drivers of net ELUC. This split distinguishes between 

emissions from deforestation (including due to shifting cultivation), removals from forest (re-)growth (including 

regrowth in shifting cultivation cycles), fluxes from wood harvest and other forest management (i.e., emissions 

in forests from slash decay and emissions from product decay following wood harvesting, removals from 

regrowth after wood harvesting, and fire suppression), emissions from peat drainage and peat fires, and 

emissions and removals associated with all other land-use transitions. Additionally, we split deforestation 

emissions into emissions from permanent deforestation and emissions from deforestation in shifting cultivation 

cycles, and we split removals from forest (re-)growth into forest (re-)growth due to re-/afforestation and forest 

regrowth in shifting cultivation cycles. This split helps to identify the emission reductions that would be 

achievable by halting permanent deforestation, and the removals that are caused by permanently increasing the 

forest cover through re/afforestation. Forest (re-)growth due to re-/afforestation is calculated using a slightly 

updated method compared to GCB2023, now following the method used to calculate CDR due to 

re/afforestation in the 2nd State of CDR Report (Pongratz et al., 2024). ELUC data are provided as global sums, 

as spatially explicit estimates at 0.25° spatial resolution (i.e., the native LUH2 resolution), and for 199 countries 

(based on the list of UNFCCC parties). Spatially explicit ELUC estimates for BLUE and LUCE are directly 

available at 0.25°. For OSCAR and H&C2023, the country-level estimates were scaled to 0.25° based on the 

patterns of gross emissions and gross removals in BLUE (see Schwingshackl et al. 2022 for more details about 

the methodology). The gridded net ELUC estimates of BLUE, LUCE, OSCAR, and H&C2023 are averaged, and 

the gridded estimates of peat drainage emissions (average of FAO, LPX-Bern, and ORCHIDEE-PEAT) and of 

peat fire emissions (from GFED4s) are added. Country-level estimates for the gridded datasets (BLUE, LUCE, 

LPX-Bern, ORCHIDEE-PEAT, GFED4s) are calculated based on a country map from Eurostat (Eurostat, 
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2024), which was remapped to 0.25°. In case multiple countries are present in a 0.25° grid cell, the ELUC 

estimates are allocated proportional to each country’s land fraction in that grid cell. 

 

S.2.2 Dynamic Global Vegetation Models (DGVMs) 

Land-use change CO2 emissions are also estimated by an ensemble of 20 DGVMs. The DGVMs account for 

deforestation and regrowth, the most important components of ELUC, but they do not represent all processes 

resulting directly from human activities on land (Table S1). All DGVMs represent processes of vegetation 

growth and mortality, as well as decomposition of dead organic matter associated with natural cycles, and 

include the vegetation and soil carbon response to increasing atmospheric CO2 concentration, to climate 

variability and to climate change. Most models explicitly simulate the coupling of carbon and nitrogen cycles 

and account for atmospheric N deposition and N fertilisers (Table S1). The DGVMs are independent from the 

other budget terms except for their use of atmospheric CO2 concentration to calculate the fertilisation effect of 

CO2 on plant photosynthesis.  

All DGVMs use the LUH2-GCB2024 dataset as input, which includes the HYDE cropland/grazing land dataset 

(Klein Goldewijk et al., 2017a, 2017b), and some additional information on land-use transitions, land-use 

management activities and wood harvest. This includes annual, quarter-degree (regridded from 5 minute 

resolution), fractional data on cropland and pasture from HYDE3.4.  

DGVMs that do not simulate subgrid-scale transitions (i.e., those estimating net land-use emissions; see Table 

S1) used the HYDE information on agricultural area change. For all countries, with the exception of Brazil, the 

Democratic Republic of the Congo, Indonesia, and China these data are based on the available annual FAO 

statistics of change in agricultural land area available from 1961 up to and including 2017. The FAO 

retrospectively revised their reporting for the Democratic Republic of the Congo, which was newly available 

until 2020 as reported in GCB2022. In addition to FAO country-level statistics, the HYDE3.4 cropland/grazing 

land dataset is constrained spatially based on multi-year satellite land cover maps from ESA CCI LC (see 

below). The extension of HYDE beyond the years that were directly informed by data was done as part of the 

LUH2 methodology this year and was a simple extension of the previous 5-year trend. The actual years for this 

extension varied by country since some countries were based on FAO data (2021), some used the China data 

(2019), and some used MapBiomas data (Brazil and Indonesia, 2022). This methodology is not appropriate for 

countries that have experienced recent rapid changes in the rate of land-use change, e.g. Brazil which has 

experienced a recent upturn in deforestation. For Brazil and Indonesia we replace FAO state-level data for 

cropland and grazing land in HYDE by those from the satellite-based land cover dataset MapBiomas (collection 

7) for 1985-2022 (Brazil) (Souza et al. 2020) and 2000-2022 (Indonesia). ESA-CCI is used to spatially 

disaggregate as described below. The pre-1985 period is scaled with the per capita numbers from 1985 from 

MapBiomas, so this transition is smooth.  

HYDE uses satellite imagery from ESA-CCI from 1992-2018 for more detailed yearly allocation of cropland 

and grazing land, with the ESA area data scaled to match the FAO annual totals at country-level. The original 

300 metre spatial resolution data from ESA was aggregated to a 5 arc minute resolution according to the 

classification scheme as described in Klein Goldewijk et al. (2017a).  
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DGVMs that simulate subgrid-scale transitions (i.e., those estimating gross land-use emissions; see Table S1) 

use more detailed land use transition and wood harvest information from the LUH2-GCB2024 data set. LUH2-

GCB2024 is an update of the comprehensive harmonised land-use data set (Hurtt et al., 2020), that includes 

fractional data on primary and secondary forest vegetation, as well as all underlying transitions between land-

use states (850-2023; Hurtt et al., 2011, 2017, 2020; Chini et al., 2021; Table S1). This data set consists of 0.25° 

fractional areas of land-use states and all transitions between those states, including a new wood harvest 

reconstruction, new representation of shifting cultivation, crop rotations, management information including 

irrigation and fertiliser application. The land-use states include five different crop types in addition to splitting 

grazing land into managed pasture and rangeland. Wood harvest patterns are constrained with Landsat-based 

tree cover loss data (Hansen et al. 2013). Updates of LUH2-GCB2024 over last year’s version (LUH2-

GCB2023) are using the most recent HYDE release. HYDE4.3 is based on new FAO inputs for years 1961-

2021, new MapBiomas inputs for Brazil (for years 1985-2022) and Indonesia (for years 2000-2022) and new 

cropland data for China from Yu et al. 2022 (for years 1900-2019). 
We use updated FAO wood harvest data for all dataset years from 1961 to 2022, and linearly extended to the 

year 2023. The HYDE3.4 population data is also used to extend the wood harvest time series back in time. 

Other wood harvest inputs (for years prior to 1961) remain the same in LUH2. These updates in the land-use 

forcing are shown in Figure S7 in comparison to LUH2-GCB2022 and LUH2-GCB2023. DGVMs implement 

land-use change in different ways (e.g. an increased cropland fraction in a grid cell can either be at the expense 

of grassland, shrubs, or forest, the latter resulting in deforestation; land cover fractions of the non-agricultural 

land differ between models). Similarly, model-specific assumptions are applied to convert deforested biomass or 

deforested area, and other forest product pools into carbon, and different choices are made regarding the 

allocation of rangelands as natural vegetation or pastures. 

The difference between two DGVMs simulations (see Supplement S.4.1 below), one forced with historical 

changes in land-use and a second one with time-invariant pre-industrial land cover and pre-industrial wood 

harvest rates, allows quantification of the dynamic evolution of vegetation biomass and soil carbon pools in 

response to land-use change in each model (ELUC). Using the difference between these two DGVM simulations 

to diagnose ELUC means the DGVM estimate includes the loss of additional sink capacity (around 0.4 ± 0.3 GtC 

yr-1; see Section 2.10 and Supplement S.6.4), while the bookkeeping model estimate does not. 

As a criterion for inclusion in this carbon budget, we only retain models that simulate a positive ELUC during the 

1990s, as assessed in the IPCC AR4 (Denman et al., 2007) and AR5 (Ciais et al., 2013). All DGVMs met this 

criterion. 

 

S.2.3 Translation between NGHGIs and ELUC 

Land-use emissions estimates from bookkeeping models and from national GHG Inventories (NGHGIs) show a 

large gap (see Figure 8 and Table S10). This gap is due to different approaches for calculating “anthropogenic” 

CO2 fluxes related to land-use change and land management (Grassi et al. 2018). Land sinks due to 

environmental change on managed lands are treated as non-anthropogenic in the global carbon budget, while 

they are generally considered as anthropogenic in NGHGIs (“indirect anthropogenic fluxes”; Eggleston et al., 

2006). Building on previous studies (Grassi et al. 2021), we implement an approach that adds the DGVM 
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estimates of CO2 fluxes due to environmental change from managed forest areas (part of SLAND) to the ELUC 

estimate from bookkeeping models. This sum is expected to be conceptually more comparable to NGHGI 

estimates than ELUC. 

ELUC data are taken from bookkeeping models, in line with the global carbon budget approach. To determine 

SLAND in managed forest, the following steps were taken: Spatially gridded data of “natural” forest NBP (SLAND 

i.e., including carbon fluxes due to environmental change and excluding land use change fluxes) were obtained 

from DGVMs using S2 runs from the TRENDY v13 dataset. Results were first masked with a forest map that is 

based on tree cover data from Hansen et al. (2013). To perform the conversion “tree” cover to “forest” cover, we 

exclude gridcells with less than 20% tree cover and isolated pixels with maximum connectivity less than 0.5 ha 

following the FAO definition of forest. Forest NBP is then further masked with a map of “intact” forest for the 

year 2013, i.e. forest areas characterised by no remotely detected signs of human activity (Potapov et al. 2017). 

This way, we obtained SLAND in “intact” and “non-intact” forest areas, which previous studies (Grassi et al. 

2021) indicated to be a good proxy, respectively, for “unmanaged” and “managed” forest areas in the NGHGI. 

Note that only a subset of models had forest NBP at grid cell level. For the other DGVMs, when a grid cell had 

forest, all the NBP in that grid cell was allocated to forest. Since S2 simulations use pre-industrial forest cover 

masks that are at least 20% larger than today’s forest (Hurtt et al. 2020), we corrected this NBP by a ratio 

between observed (based on Hansen et al. 2013) and prescribed (from DGVMs) forest cover. This ratio is 

calculated for each individual DGVM that provides information on prescribed forest cover, and a common ratio 

(median ratio of this subset of models) is used. The details of the method used are explained in a GitHub 

repository (Alkama, 2022). 

LULUCF data from NGHGIs are from Grassi et al. (2023), updated up to August 2024. While Annex I countries 

report a complete time series 1990-2021, gap-filling was applied for Non-Annex I countries through linear 

interpolation between two points and/or through extrapolation backward (till 2000) and forward (till 2021) using 

the single closest available data. For all countries, the estimates of the years 2022 and 2023 are assumed to be 

equal to those of 2021. The managed forest area, used to filter SLAND data from DGVMs to derive the natural 

land sink in managed forests, accounts for temporal dynamics from 2000 to 2023. This data includes all CO2 

fluxes from land considered managed, which in principle encompasses all land uses (forest land, cropland, 

grassland, wetlands, settlements, and other land), changes among them, emissions from organic soils (i.e., from 

peat drainage) and from fires. In practice, although almost all Annex I countries report all land uses, many non-

Annex I countries report only on deforestation and forest land, and only few countries report on other land uses. 

In most cases, NGHGIs include most of the natural response to recent environmental change because they use 

direct observations (e.g., national forest inventories) that do not allow separating direct and indirect 

anthropogenic effects (Eggleston et al., 2006). 

Last, we also used the gridded data of net land flux from 14 atmospheric inversion systems (Table S4) to get an 

additional estimate of land-use fluxes in managed land. We applied a correction for riverine transport (see 

Supplement S.5.1.) and multiplied the resulting values with the fraction of managed land in each grid cell for 

each inversion. For this purpose, we used masks of managed land from Grassi et al. (2023) available for the 

years 1994, 2002, 2010, and 2016. We linearly interpolated the masks in time and replicated the 2016 mask in 

the years 2017-2023. Subsequently, we applied another correction for lateral transport due to international wood 
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and crop trade (data from Deng et al. 2024). The obtained values are summed globally and compared to the 

NGHGI estimates and the translated ELUC estimates. 

Figure 8 and Table S10 shows the resulting translation of global carbon cycle models' land flux definitions to 

that of the NGHGI (discussed in Section 3.2.2). For comparison we also show LULUCF estimates from 

FAOSTAT (FAO, 2024), which include emissions from net forest conversion and fluxes on forest land 

(Tubiello et al., 2021) as well as CO2 emissions from peat drainage and peat fires. Forest land stock change data 

for 2021-2023 are carried forward from the 2020 estimates. The FAO data shows global emissions of 0.30 GtC 

yr-1 averaged over 2014-2023, in contrast to the removals of -0.76 GtC yr-1 estimated by the gap-filled NGHGI 

data. Most of this difference is attributable to different scopes: a focus on carbon fluxes for the NGHGI and a 

focus on land-use area and biomass estimates for FAO. In particular, the NGHGI data includes a larger forest 

sink for non-Annex 1 countries resulting from a more complete coverage of non-biomass carbon pools and non-

forest land uses. NGHGI and FAO data also differ in terms of underlying data on forest land (Grassi et al., 

2022). 

 

S.2.4 Uncertainty assessment for ELUC 

Differences between the bookkeeping models and DGVMs originate from three main sources: different 

methodologies, which among others lead to inclusion of the loss of additional sink capacity in DGVMs (see 

Supplement S.6.4), different underlying land-use/land cover datasets, and different processes represented (Table 

S1). We examine both the results from DGVMs and from the bookkeeping method and use the resulting 

variations to characterise the uncertainty in ELUC. 

Despite the existing differences, the ELUC estimate from the DGVM multi-model mean is consistent with the 

average of the emissions from the bookkeeping models (Table 5). However, there are large differences among 

individual DGVMs (standard deviation at 0.6 GtC yr-1; Table 5), between the bookkeeping estimates (standard 

deviation at 0.3 GtC yr-1 for cumulative emissions in 1850-2022), and between the H&C2023 model and its 

previous model version H&N2017 (average difference 1850-2015 of 0.2 GtC yr-1; see Table 1 in Houghton and 

Castanho, 2023). A factorial analysis of differences between BLUE and H&N2017 (the precursor of H&C2023) 

attributed them particularly to differences in carbon densities between primary and secondary vegetation (Bastos 

et al., 2021). Earlier studies additionally showed the relevance of the different land-use forcing as applied (in 

updated versions) also in the current study (Gasser et al., 2020). Ganzenmüller et al. (2022) showed that ELUC 

estimates with BLUE are substantially smaller when the model is driven by a new high-resolution land-use 

dataset (HILDA+). They identified shifting cultivation and the way it is implemented in LUH2 as a main reason 

for this divergence. They further showed that a higher spatial resolution reduces the estimates of both gross 

emissions and gross removals because successive transitions are not adequately represented at coarser 

resolution, which has the effect that—despite capturing the same extent of transition areas—overall less area 

remains pristine at the coarser compared to the higher resolution. 

The uncertainty in ELUC of ±0.7 GtC yr-1 reflects our best value judgement that there is at least 68% chance 

(±1σ) that the true land-use change emissions lie within the given range, for the range of processes considered 

here. Prior to the year 1959, the uncertainty in ELUC is taken from the standard deviation of the DGVMs. We 
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assign low confidence to the annual estimates of ELUC because of the inconsistencies among estimates and 

because of the difficulties to quantify some of the processes with DGVMs.  

 

S.2.5 Land-use emissions projection for 2024 

We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE based on their ELUC 

estimates for 2023 and on the interannual variability of peat fires and tropical deforestation and degradation fires 

as estimated using active fire data (MCD14ML; Giglio et al., 2016). The latter scales almost linearly with GFED 

emissions estimates over large areas (van der Werf et al., 2017), and thus allows for tracking fire emissions in 

deforestation and tropical peat zones in near-real time. Peat drainage is assumed to be unaltered, as it has low 

interannual variability. We project the 2024 land-use emissions for BLUE, H&C2023, OSCAR, and LUCE 

based on their ELUC estimates for 2023 and add the change in carbon emissions from peat fires and tropical 

deforestation and degradation fires (2024 emissions relative to 2023 emissions) from GFED4s. The GFED4s 

estimates for 2024 are as of December 31 2024. 

 

S.3 Methodology Ocean CO2 sink SOCEAN 

S.3.1 Observation-based estimates 

We primarily use the observational constraints assessed by IPCC of a mean ocean CO2 sink of 2.2 ± 0.7 GtC yr-1 

for the 1990s (90% confidence interval; Ciais et al., 2013) to verify that the GOBMs provide a realistic 

assessment of SOCEAN. This is based on indirect observations with seven different methodologies and their 

uncertainties, and further using three of these methods that are deemed most reliable for the assessment of this 

quantity (Denman et al., 2007; Ciais et al., 2013). The observation-based estimates use the ocean/land CO2 sink 

partitioning from observed atmospheric CO2 and O2/N2 concentration trends (Manning and Keeling, 2006; 

Keeling and Manning, 2014), an oceanic inversion method constrained by ocean biogeochemistry data 

(Mikaloff Fletcher et al., 2006), and a method based on penetration time scale for chlorofluorocarbons (McNeil 

et al., 2003). The IPCC estimate of 2.2 GtC yr-1 for the 1990s is consistent with a range of methods 

(Wanninkhof et al., 2013). We refrain from using the IPCC estimates for the 2000s (2.3 ± 0.7 GtC yr-1), and the 

period 2002-2011 (2.4 ± 0.7 GtC yr-1, Ciais et al., 2013) as these are based on trends derived mainly from 

models and one data-product (Ciais et al., 2013). Additional constraints summarised in AR6 (Canadell et al., 

2021) are the interior ocean anthropogenic carbon change (Gruber et al., 2019) and ocean sink estimate from 

atmospheric CO2 and O2/N2 (Tohjima et al., 2019) which are used for model evaluation and discussion, 

respectively. 

We also use nine estimates of the ocean CO2 sink and its variability based on surface ocean fCO2 maps obtained 

by the interpolation of surface ocean fCO2 measurements. Seven of the methods cover a period from 1990 

onwards due to severe restriction in data availability prior to 1990 (Figure 11), whereas two span the period 

from 1957 and 1959 onwards. These estimates differ in many respects: they use different maps of surface fCO2, 

different atmospheric CO2 concentrations, wind products and different gas-exchange formulations as specified 

in Table S3. We refer to them as fCO2-products. The measurements underlying the surface fCO2 maps are from 

the Surface Ocean CO2 Atlas version 2024 (SOCAT v2024; Bakker et al., 2024), which is an update of version 
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3 (Bakker et al., 2016) and the subsequent annual updates used in previous versions of the global carbon budget.  

SOCAT v2024 has an additional 3.0 million fCO2 measurements with an estimated accuracy of better than 5 

µatm relative to v2023. Of these, 2 million are from 2023 in a total of 210 data sets (Table S7), while the largest 

addition from earlier years is from 2022 with 64 data sets new to SOCAT. For the 2023 data, there are a total of 

178 data sets with measurements in the Northern hemisphere, while there are only 52 with data from the 

Southern hemisphere. For the Southern Ocean, there are only 11 data sets from 2023 in the subpolar zone and 

further south (defined as south of 45°S), and only one from Austral winter (June-August).  The coverage of 

SOCAT observations in 2023 is only about 50% of that in 2016 (Fig. 11), with large reductions in sampling in 

both the Northern (from 391 to 178 data sets) as well as Southern hemisphere (from 109 to 52 data sets). This 

reduction cannot be explained only in terms of lags in data submission. The quality control criteria used for 

SOCATv2024 are described in Lauvset et al. (2018). 

. Each of the data-based estimates uses a different method to map the SOCAT v2024 data to the global ocean. 

The methods include a data-driven diagnostic method combined with a multi linear regression approach to 

extend back to 1957 (Rödenbeck et al., 2022; referred to here as Jena-MLS), four neural network models 

(Landschützer et al., 2014; referred to as VLIZ-SOMFFN; Chau et al., 2022; Copernicus Marine Environment 

Monitoring Service, referred to here as CMEMS-LSCE-FFNN; Zeng et al., 2022; referred to as NIES-ML3; 

Gregor et al. 2019, referred to as CSIR-ML6), one cluster regression approach (Gregor et al., 2024; referred to 

as OceanSODA-ETHZv2), a multi-linear regression method (Iida et al., 2021; referred to as JMA-MLR), and one 

method that relates the fCO2 misfit between GOBMs and SOCAT to environmental predictors using the extreme 

gradient boosting method extending back to 1959 (Gloege et al., 2022).. The ensemble mean of the fCO2-based 

flux estimates is calculated from these eight mapping methods. Further, we show the flux estimate of the UExP-

FNN-U method (Watson et al., 2020; Ford et al., accepted) who also use a neural network model to map  fCO2 

data to the globe, but resulting in a substantially larger ocean sink estimate, owing to a number of adjustments 

they applied to the surface ocean fCO2 data. Concretely, these authors adjusted the SOCAT fCO2 downward to 

account for differences in temperature between the depth of the ship intake and the relevant depth right near the 

surface, and included a further adjustment to account for the cool surface skin temperature effect. In 

Friedlingstein et al. 2023, the UExP-FNN-U product correction was applied illustrating that this temperature 

adjustment leads to an upward correction of the ocean carbon sink, up to 0.9 GtC yr-1, that, if correct, should be 

applied to all fCO2-based flux estimates. This year, the updated UExP-FFN-U method applies a smaller 

adjustment as proposed by Dong et al. (2022), who illustrate a smaller correction effect of 0.6 GtC yr-1. The 

impact of the cool skin effect on air-sea CO2 flux is based on established understanding of temperature gradients 

(as discussed by Goddijn-Murphy et al., 2015 and Woolf et al., 2016), and laboratory observations (Jähne and 

Haussecker, 1998; Jähne, 2019), but in situ field observational evidence is lacking (Dong et al., 2022).  The 

UExP-FNN-U method is thus, similar to the UExP-FNN-U flux estimate in previous editions, not included in the 

ensemble mean of the fCO2-based flux estimates. This choice will be re-evaluated in upcoming budgets based 

on further lines of evidence.  

Typically, fCO2-products do not cover the entire ocean due to missing coastal oceans and sea ice cover. The 

CO2 flux from each fCO2-based product is already at or above 99% coverage (either due to complete coverage 

or a posteriori filling) of the ice-free ocean surface area in several products this year (UExP-FNN-U, JMA-MLR, 

VLIZ-SOMFFN, Jena-MLS, OceanSODA-ETHZv2). The products that remained below 99% coverage of the ice-
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free ocean (CMEMS-LSCE-FFNN, NIES-ML3, UExP-FNN-U, CSIR-ML6 ) were scaled by the following 

procedure: 

Since v2022 of the GCB we now scale fluxes globally and regionally (North, Tropics, South) to match the ice-

free area (using the HadISST sea surface temperature and sea ice cover; Rayner et al., 2003): 

𝐹𝐶𝑂1
2345678&3# =

9(%&'())
+),'-.

9!/"0
+),'-. ⋅ 𝐹𝐶𝑂1

234:;'       (S4) 

In Eq. (S4), A represents area, (1 – ice) represents the ice-free ocean, AFCO2region represents the coverage of the 

fCO2-product for a region, and FCO2region is the integrated flux for a region. 

We further use results from two diagnostic ocean models, Khatiwala et al. (2013) and DeVries (2014), to 

estimate the anthropogenic carbon accumulated in the ocean prior to 1959. The two approaches assume constant 

ocean circulation and biological fluxes, with SOCEAN estimated as a response in the change in atmospheric CO2 

concentration calibrated to observations. The uncertainty in cumulative uptake of ±20 GtC (converted to ±1σ) is 

taken directly from the IPCC’s review of the literature (Rhein et al., 2013), or about ±30% for the annual values 

(Khatiwala et al., 2009). 

 

S.3.2 Global Ocean Biogeochemistry Models (GOBMs) 

The ocean CO2 sink for 1959-2023 is estimated using ten GOBMs (Table S2). The GOBMs represent the 

physical, chemical, and biological processes that influence the surface ocean concentration of CO2 and thus the 

air-sea CO2 flux. The GOBMs are forced by meteorological reanalysis and atmospheric CO2 concentration data 

available for the entire time period. They mostly differ in the source of the atmospheric forcing data 

(meteorological reanalysis), spin up strategies, and in their horizontal and vertical resolutions (Table S2). All 

GOBMs except one (CESM-ETHZ) do not include the effects of anthropogenic changes in nutrient supply 

(Duce et al., 2008). They also do not include the perturbation associated with changes in riverine organic carbon 

(see Section 2.10 and Supplement S.6.3).  

Four sets of simulations were performed with each of the GOBMs. Simulation A applied historical changes in 

climate and atmospheric CO2 concentration. Simulation B is a control simulation with constant atmospheric 

forcing (normal year or repeated year forcing) and constant pre-industrial atmospheric CO2 concentration. 

Simulation C is forced with historical changes in atmospheric CO2 concentration, but repeated year or normal 

year atmospheric climate forcing. Simulation D is forced by historical changes in climate and constant pre-

industrial atmospheric CO2 concentration.  

The atmospheric CO2 forcing file was updated in GCB2024 to ensure consistency with the atmospheric CO2 

growth rate reported in the GCB. Since January 1980, we use the CO2 global growth rate reported by 

NOAA/GML (Lan et al., 2024). In the period March 1958-December 1979, we use bias-adjusted values of the 

global growth rate based on measurements of atmospheric CO2 made by the Scripps Institution of 

Oceanography at the Mauna Loa Observatory, Hawaii (Keeling et al., 1976; full period of coverage 1758-2024). 

Bias adjustment of the Scripps data was performed in three sequential stages as follows: 

● First, to correct for differences in the mean atmospheric concentration of CO2 at Mauna Loa versus the 

globally averaged value, a constant of -0.231 ppm was added to all Scripps data to improve alignment 

of the “CO2[trend]” values from the Scripps data with the “CO2[trend]” values from the global NOAA 
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data. The value of -0.231 ppm is the mean offset of “CO2[trend]” at Mauna Loa from the global 

“CO2[trend]” value during 1980-2000.  

● Second, to correct for differences in the seasonality of atmospheric CO2 concentrations at Mauna Loa 

versus globally, we shifted monthly anomalies between CO2 concentration data and “trend” values 

backward in time by one month in the Scripps data. This specifically corrects for the fact that 

peaks/troughs in the climatology of "CO2[monthly_observation] - CO2[trend]” at Mauna Loa occur 1 

month earlier than peaks/troughs in the climatology of "CO2[monthly_observation] - CO2[trend]” in the 

global data from NOAA. A one-month shift to the Scripps data was found to optimally align the 

climatologies of "CO2[monthly_observation] - CO2[trend]” in the Scripps and global data.  

● Third, to correct for the greater amplitude of seasonal anomalies at Mauna Loa from Scripps than the 

global data from NOAA, we apply a monthly multiplier that dampens the magnitude of monthly 

anomalies from “trend” values in the Scripps data. The monthly multiplier reduces values of 

"CO2[monthly_observation] - CO2[trend]” in the Scripps data to more closely match values of 

"CO2[monthly_observation] - CO2[trend]” in the NOAA global data.  

  

For the period Jan 1750 to February 1958, we use bias-adjusted values of the global growth rate based on 

measurements of atmospheric CO2 from air trapped in ice at Law Dome (Joos and Spahni, 2008; full period of 

coverage 1750-2004). Bias adjustments were made to improve alignment with the post-1980 time series of data 

from Scripps and NOAA, and were performed in two sequential stages as follows: 

● First, a constant of 0.973 was added to all data from Law Dome to improve alignment with the Scripps 

data (which had already been bias-corrected as described above). The constant of 0.973 is the mean 

offset of CO2 annual values (annual mean in the case of the Scripps data) in the period 1958-1979.  

● Second, the climatology of "CO2[monthly_observation] - CO2[trend]” from the period 1958-2000 was 

superimposed on the data from Law Dome (note that the 1958-2000 data includes both Scripps and 

NOAA data, combined as described above). To achieve this, a spline interpolation was fitted to 

downscale annual observations from CO2 concentration from Law Dome to monthly values of 

“CO2[trend]” and the climatological seasonality of "CO2[monthly_observation] - CO2[trend]” from 

1958-2000) was then added to the interpolated values of “CO2[trend]”.  

 

To derive SOCEAN from the model simulations, we subtracted the slope of a linear fit to the annual time series of 

the control simulation B from the annual time series of simulation A. Assuming that drift and bias are the same 

in simulations A and B, we thereby correct for any model drift. Further, this difference also removes the natural 

steady state flux (assumed to be 0 GtC yr-1 globally without rivers), which is often a major source of biases. 

Note, however, that Gürses et al. (2023) questioned the assumption of comparable bias and drift in simulations 

A and B as they compared two versions of FESOM-REcoM, and found a very similar air-sea CO2 flux in 

simulation A despite a different bias as derived from simulation B. This approach works for all model set-ups, 

including IPSL, where simulation B was forced with variable historical climate changes (looping over a 10-year 

forcing). This approach assures that the interannual variability is not removed from IPSL simulation A. 

The absolute correction for bias and drift per model in the 1990s varied between <0.01 GtC yr-1 and 0.31 GtC 

yr-1, with five models having positive biases, four having negative biases and one model having essentially no 
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bias (NorESM). The MPI model uses riverine input and therefore simulates outgassing in simulation B. By 

subtracting a linear fit of simulation B, also the ocean carbon sink of the MPI model follows the definition of 

SOCEAN. This correction increases the model mean ocean carbon sink by 0.07 GtC yr-1 in the 1990s. The ocean 

models cover 99% to 101% of the total ocean area, so that area-scaling is not necessary. 

 

S.3.3 GOBM evaluation  

The ocean CO2 sink for all GOBMs and the ensemble mean falls within 90% confidence of the observed range, 

or 1.5 to 2.9 GtC yr-1 for the 1990s (Ciais et al., 2013) before and after applying adjustments. The GOBMs and 

fCO2-products have been further evaluated using the fugacity of sea surface CO2 (fCO2) from the SOCAT v2024 

database (Bakker et al., 2016, 2024). We focused this evaluation on the root mean squared error (RMSE) 

between observed and modelled fCO2 and on a measure of the amplitude of the interannual variability of the 

flux (modified after Rödenbeck et al., 2015). The RMSE is calculated from detrended, annually and regionally 

averaged time series of fCO2 calculated from GOBMs and fCO2-products subsampled to SOCAT sampling 

points to measure the misfit between large-scale signals (Hauck et al., 2020). To this end, we apply the 

following steps: (i) subsample data points for where there are observations (GOBMs/fCO2-products as well as 

SOCAT), (ii) average spatially, (iii) calculate annual mean, (iv) detrend both time-series (GOBMs/fCO2-

products as well as SOCAT), (v) calculate RMSE. We use a mask based on the minimum area coverage of the 

fCO2-products. This ensures a fair comparison over equal areas. The amplitude of the SOCEAN interannual 

variability (A-IAV) is calculated as the temporal standard deviation of the detrended annual CO2 flux time series 

after area-scaling (Rödenbeck et al., 2015, Hauck et al., 2020). These metrics are chosen because RMSE is the 

most direct measure of data-model mismatch and the A-IAV is a direct measure of the variability of SOCEAN on 

interannual timescales. We apply these metrics globally and by latitude bands. Results are shown in Figure S2 

and discussed in Section 3.6.5.  

 

In addition to the interior ocean anthropogenic carbon accumulation (Section 3.6.5) and SOCAT fCO2, we 

evaluate the models with process-based metrics that were previously related to ocean carbon uptake. These are 

the Atlantic Meridional Overturning Circulation (Goris et al., 2018, Terhaar et al., 2022, Terhaar et al., in 

review), the Southern Ocean sea surface salinity (Terhaar et al., 2021, 2022, 2024, Hauck et al., 2023b), the 

Southern Ocean stratification index (Bourgeois et al., 2022) and the surface ocean Revelle factor (Terhaar et al., 

2022, 2024). 

  

We follow the methodology of previous studies wherever possible, particularly the RECCAP model evaluation 

chapter (Terhaar et al.,2024). The Atlantic Meridional Overturning Circulation from the GOBMs is here defined 

as the maximum of the Atlantic meridional overturning streamfunction at 26°N. This is compared to data from 

the RAPID array at 26°N (Moat et al., 2024). An uncertainty of 0.9 Sv was reported in McCarthy et al. (2015). 

We use the years 2005-2022, which are all complete calendar years available from the RAPID data set, and 

report the temporal standard deviation over that period.  

The Southern Ocean sea surface salinity is reported for the subpolar seasonally stratified biome (SPSS) and for 

the area covering both the SPSS and subtropical seasonally stratified (STSS) biomes. Biome definitions are 
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taken from Fay and McKinley (2014, as provided for the RECCAP2 project). The sea surface salinity was first 

used as an emergent constraint for the Southern Ocean CO2 uptake with Earth System Models (Terhaar et al. 

2021, 2022) using the interfrontal salinity between the polar and subtropical fronts with dynamic fronts. As the 

GOBMs are forced with reanalysis data, the fronts do not vary as much as in the ESMs, and thus the use of fixed 

biomes is justified (Hauck et al., 2023b, Terhaar et al., 2024). We use the time period 2005-2022 for consistency 

with the AMOC metric. The observational sea surface salinity values are calculated from the EN4 data set 

(Good et al., 2013; using the objective analyses – Gouretski and Reseghetti (2010) XBT corrections and 

Gouretski and Cheng (2020) MBT corrections) with the aid of the Fay and McKinley (2014) mask. 

  

The Southern Ocean stratification index is a simplified version of the metric used in Bourgeois et al. (2022). It is 

defined as the difference between in situ density at the surface and at 1000 m depth in the latitudinal band of 

30°S to 55°S. Each model provider calculated this metric based on their native model mesh. We use again the 

period of 2005-2022 for consistency with the AMOC metric. The same metric was calculated from the EN4 data 

set mentioned above (Good et al., 2013). 

  

Finally, the global surface ocean Revelle factor is reported. Monthly 1°x1° gridded fields were provided by the 

modelling groups, based on standard carbonate chemistry routines (e.g., mocsy, Orr & Epitalon, 2015; 

PyCO2SYS, Humphreys et al., 2022a,b). The observational metrics come from two sources, firstly the gridded 

GLODAP data set v2.2016 (Lauvset et al., 2016), which is a climatology centered around the year 2002. For 

comparison with GLODAP, the models were subsampled to GLODAP data coverage and to a comparable time 

window also centred around 2002 (1997-2007). Secondly, the OceanSODA_v2024 data set (Gregor and Gruber, 

2020, updated) was used, which has all input data available to calculate the surface ocean Revelle factor. 

OceanSODA covers a slightly smaller surface area (~96 % of GLODAP) but provides data until 2021. The 

period 2005-2021 was used due to data availability and the models were subsampled to the same spatial and 

temporal coverage. 

  

For this release, only the comparison of the metrics between GOBMs and observational data sets is presented, 

whereas it is foreseen to translate this comparison into a quantitative benchmarking comparable to the iLAMB 

benchmarking for the DGVMs and the corresponding iOMB framework (Ogunro et al., 2018). In a next step, 

model weighting can be applied based on the benchmarking (e.g., Brunner et al., 2020). 

 

S3.4 fCO2-product trend benchmarking 

 

In addition to the air-sea CO2 flux estimates, fCO2-product providers reconstructed the sea surface fCO2 of a set 

of 4 GOBM´s, namely CESM-ETHZ, FESOM2.1REcoM, MRI-ESM2 and IPSL, that were submitted to the 

GCB2023 (Friedlingstein et al. 2023) following the approach of Hauck et al. (2023). A total of 6 fCO2-products 

conducted the benchmark test (VLIZ-SOMFFN, NIES-ML3, Jena-MLS, CSIR-ML6, OceanSODA-ETHZv2 and 

JMA-MLR).  The GOBM´s serve as known truth and are subsampled according to the real-world observation 

tracks. The fCO2-products then reconstruct the true model field, based on the subsampled information provided. 

We then compare trends for the period 2001-2021, i.e. the period where we see the divergence between fCO2-
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products and models, removing the final year to avoid the tail effect. The trends of the individual fCO2-products 

from the GCB24 were then plotted against the mean of the trend reconstruction bias (evaluated against the 

known truth GOBM trends) of the 4 GOBM. This is shown in Figure S3. The figure illustrates the tendency that 

fCO2-products with negative biases in the fCO2 reconstruction show the strongest air-sea CO2 flux trends and 

vice versa for the fCO2 products with positive biases. Overall, the ensemble of 6 fCO2 methods shows a 

tendency to underestimate the fCO2 trend from the GOBMs (with a mean bias across 6 fCO2-products and 4 

model reconstructions of 0.25 µatm/decade) and thus an inferred tendency to overestimate the air-sea CO2 flux 

trend (mean across 6  fCO2-products of 0.50±0.13 PgC yr-1 decade-1), however, due to compensating negative 

and positive  fCO2 biases, the ensemble mean trend bias is smaller than suggested from previous studies 

focusing on one or two  fCO2-products only (see e.g. Gloege et al. 2021, Hauck et al. 2023). The inferred global 

trend of 0.43±0.13 PgC yr-1 decade-1 that intercepts with the 0 bias line closely corresponds to a recent estimate 

by Mayot et al. 2024 of 0.42±0.06 PgC yr-1 decade-1 (period 2000-2022) in the mean, although with a 

substantially larger uncertainty and different time period. The evidence basis, thus, remains low due to the small 

sample size of fCO2-products (n=6) and reconstructed GOBMs (n=4), thus a more detailed analysis is required 

to better constrain fCO2-product trends. 

S3.4 Uncertainty assessment for SOCEAN 

We quantify the 1-σ uncertainty around the mean ocean sink of anthropogenic CO2 by assessing random and 

systematic uncertainties for the GOBMs and fCO2-products. The random uncertainties are taken from the 

ensemble standard deviation (0.3 GtC yr-1 for GOBMs, 0.3 GtC yr-1 for fCO2-products). We derive the GOBMs 

systematic uncertainty by the deviation of the DIC inventory change 1994-2007 from the Gruber et al. (2019) 

estimate (0.4 GtC yr-1) and suggest these are related to physical transport (mixing, advection) into the ocean 

interior. For the fCO2-products, we consider systematic uncertainties stemming from uncertainty in fCO2 

observations (0.2 GtC yr-1 , Takahashi et al., 2009; Wanninkhof et al., 2013), gas-transfer velocity (0.2 GtC yr-1 , 

Ho et al., 2011; Wanninkhof et al., 2013; Roobaert et al., 2018), wind product (0.1 GtC yr-1, Fay et al., 2021), 

river flux adjustment (0.3 GtC yr-1, Regnier et al., 2022, formally 2-σ uncertainty), and fCO2 mapping (0.2 GtC 

yr-1, Landschützer et al., 2014). Combining these uncertainties as their squared sums, we assign an uncertainty 

of ± 0.5 GtC yr-1 to the GOBMs ensemble mean and an uncertainty of ± 0.6 GtC yr-1 to the fCO2-product 

ensemble mean, which is smaller than a recent estimate by Ford et al. (2024), who estimate an uncertainty of 

±0.7 GtC yr-1 based on propagating different sources of uncertainty in fCO2-products. Here, the uncertainties 

are propagated as σ(SOCEAN) = (1/22 * 0.52 + 1/22 * 0.62)1/2 GtC yr-1 and result in an ± 0.4 GtC yr-1 uncertainty 

around the best estimate of SOCEAN.  

 

We examine the consistency between the variability of the GOBMs and the fCO2-products to assess confidence 

in SOCEAN. The interannual variability of the ocean fluxes (quantified as A-IAV, the standard deviation after 

detrending, Figure S2) of the eight fCO2-products plus the UExP-FNN-U product (Watson et al., 2020; Ford et 

al., accepted) for 1990-2023, ranges from 0.08 to 0.37 GtC yr-1 with the lower estimates by the three ensemble 

methods (NIES-ML3, CMEMS-LSCE-FFNN, OS-ETHZ-GRaCER). The inter-annual variability in the GOBMs 

ranges between 0.10 and 0.20 GtC yr-1, hence there is overlap with the A-IAV estimates of the fCO2-products. 
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Individual estimates (both GOBMs and fCO2products) generally produce a higher ocean CO2 sink during strong 

El Niño events. There is emerging agreement between GOBMs and fCO2-products on the patterns of decadal 

variability of SOCEAN with a global stagnation in the 1990s, an extra-tropical strengthening in the 2000s 

(McKinley et al., 2020, Hauck et al., 2020). More recently, a fast growth of the sink is simulated by both 

methods between 2001 and 2016, and a stagnation period since then. A stagnation or even decline of SOCEAN 

occurred during the triple La Niña years 2020-2023. The central estimates of the annual flux from the GOBMs 

and the fCO2-products have a correlation r of 0.98 (1990-2023). The agreement between the models and the 

fCO2products reflects some consistency in their representation of underlying variability since there is little 

overlap in their methodology or use of observations.  

 

S.4 Methodology Land CO2 sink SLAND 

S.4.1 DGVM simulations 

The DGVMs model runs were forced by either the merged monthly Climate Research Unit (CRU) and 6 hourly 

Japanese 55-year Reanalysis (JRA-55) data set or by the monthly CRU data set, both providing observation-

based temperature, precipitation, and incoming surface radiation on a 0.5°x0.5° grid and updated to 2023 (Harris 

et al., 2014, 2020). The combination of CRU monthly data with 6 hourly forcing from JRA-55 (Kobayashi et al., 

2015) is performed with methodology used in previous years (Viovy, 2016) adapted to the specifics of the JRA-

55 data.  

Introduced in GCB2021 (Friedlingstein et al., 2022a), incoming short-wave radiation fields take into account 

aerosol impacts and the division of total radiation into direct and diffuse components as summarised below. 

The diffuse fraction dataset offers 6-hourly distributions of the diffuse fraction of surface shortwave fluxes over 

the period 1901-2023. Radiative transfer calculations are based on monthly-averaged distributions of 

tropospheric and stratospheric aerosol optical depth, and 6-hourly distributions of cloud fraction. Methods 

follow those described in the Methods section of Mercado et al. (2009), but with updated input datasets. 

The time series of speciated tropospheric aerosol optical depth is taken from the historical and RCP8.5 

simulations by the HadGEM2-ES climate model (Bellouin et al., 2011). To correct for biases in HadGEM2-ES, 

tropospheric aerosol optical depths are scaled over the whole period to match the global and monthly averages 

obtained over the period 2003-2020 by the CAMS Reanalysis of atmospheric composition (Inness et al., 2019), 

which assimilates satellite retrievals of aerosol optical depth. 

The time series of stratospheric aerosol optical depth is taken from the by Sato et al. (1993) climatology, which 

has been updated to 2012. Years 2013-2020 are assumed to be background years so replicate the background 

year 2010. That assumption is supported by the Global Space-based Stratospheric Aerosol Climatology time 

series (1979-2016; Thomason et al., 2018). The time series of cloud fraction is obtained by scaling the 6-hourly 

distributions simulated in the Japanese Reanalysis (Kobayashi et al., 2015) to match the monthly-averaged cloud 

cover in the CRU TS v4.06 dataset (Harris et al., 2020). Surface radiative fluxes account for aerosol-radiation 

interactions from both tropospheric and stratospheric aerosols, and for aerosol-cloud interactions from 

tropospheric aerosols, except mineral dust. Tropospheric aerosols are also assumed to exert interactions with 

clouds. The radiative effects of those aerosol-cloud interactions are assumed to scale with the radiative effects of 

aerosol-radiation interactions of tropospheric aerosols, using regional scaling factors derived from HadGEM2-
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ES. Diffuse fraction is assumed to be 1 in cloudy sky. Atmospheric constituents other than aerosols and clouds 

are set to a constant standard mid-latitude summer atmosphere, but their variations do not affect the diffuse 

fraction of surface shortwave fluxes. 

In addition to the climate forcing, the DGVMs forcing also include the global atmospheric CO2 time series, 

same as for the GOBMs and described in Section S.3.2 (Lan et al. (2023), the gridded land cover changes (see 

Supplement S.2.2), and the gridded nitrogen deposition and fertilisers (see Table S1 for specific models details).  

Four simulations were performed with each of the DGVMs. Simulation 0 (S0) is a control simulation which 

uses fixed pre-industrial (year 1700) atmospheric CO2 concentrations, cycles early 20th century (1901-1920) 

climate and applies a time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. 

Simulation 1 (S1) differs from S0 by applying historical changes in atmospheric CO2 concentration and N 

inputs. Simulation 2 (S2) applies historical changes in atmospheric CO2 concentration, N inputs, and climate, 

while applying time-invariant pre-industrial land cover distribution and pre-industrial wood harvest rates. 

Simulation 3 (S3) applies historical changes in atmospheric CO2 concentration, N inputs, climate, and land 

cover distribution and wood harvest rates.  

S2 is used to estimate the land sink component of the global carbon budget (SLAND). S3 is used to estimate the 

total land flux but is not used in the global carbon budget. We further separate SLAND into contributions from 

CO2 (=S1-S0) and climate (=S2-S1+S0).  

 

S.4.2 DGVM evaluation 

We apply three criteria for minimum DGVMs realism by including only those DGVMs with (1) steady state 

after spin up, (2) global net land flux (SLAND – ELUC) that is an atmosphere-to-land carbon flux over the 1990s 

ranging between -0.3 and 2.3 GtC yr-1, within 90% confidence of constraints by global atmospheric and oceanic 

observations (Keeling and Manning, 2014; Wanninkhof et al., 2013), and (3) global ELUC that is a carbon source 

to the atmosphere over the 1990s, as already mentioned in Supplement S.2.2. All DGVMs meet these three 

criteria.  

In addition, the DGVMs results are also evaluated using the International Land Model Benchmarking system 

(ILAMB; Collier et al., 2018). This evaluation is provided here to document, encourage and support model 

improvements through time. ILAMB variables cover key processes that are relevant for the quantification of 

SLAND and resulting aggregated outcomes (see Figure S4 for the results and for the list of observed databases). 

Results are shown in Figure S4 and briefly discussed in Section 3.7.5. 

The International LAnd Model Benchmarking (ILAMB) system (Collier et al. 2018; version 2.7.2 (2024): 

https://github.com/rubisco-sfa/ILAMB/releases/tag/v2.7.2) was used to compare the 21 models (20 DGVMs and 

CARDAMOM)  to observational benchmarks for a number of different variables related to the land surface: 

gross primary productivity (GPP), leaf area index (LAI), ecosystem respiration, soil carbon, evapotranspiration, 

runoff, burned areas, fire CO2 emissions, and soil respiration), either for the entire global land surface or for the 

different RECCAP regions. Furthermore, relationships between selected pairs of variables can be visualised 

with ILAMB. Each row for each variable in Figs. S4 is clickable in the full website version  https://gws-

access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/) and gives access to 

geographic plots for such quantities as bias relative to observational benchmark, temporal RMSE from the 

https://github.com/rubisco-sfa/ILAMB/releases/tag/v2.7.2
https://gws-access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/
https://gws-access.jasmin.ac.uk/public/landsurf_rdg/pmcguire/ILAMB_output/TRENDYv13_latest/
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observational benchmark, and difference in max month from the observational benchmark. The full website 

version also gives a spatial Taylor diagram for all the models, as well as time series comparisons of the regional 

mean time-series and the regional mean annual cycle. The Biomass variable was not included this year, due to a 

mismatch between the TRENDY cVeg variable (above-ground and below-ground biomass, for all PFTs) and 

two of the previously used observational benchmark datasets for biomass (Saatchi et al., 2011 and Thurner et al., 

2014), which are both only for forests and for above-ground biomass.  

In the ILAMB setup for TRENDYv13, we have added three more variables (annual-averaged Burned Area, Fire 

Emissions, and Soil Respiration) and we have modified the Koven visualisation slightly for the Soil Carbon 

variable. All four of these changes have been put into a category of variables that we call ‘Ecosystem and 

Carbon Cycle Extended’. Two of the models (EDv3 and SDGVM) compute burned area either on a national 

level or without considering arid non-vegetated lands, as the model biases for burned area for these two models 

are rather high in the world’s deserts, compared to the GFED4.1S observational benchmark until the year 2016. 

However, in the case of SDGVM, the positive burned-area bias in the deserts is not apparent in the fire 

emissions variable.  The Soil Respiration variable has been added only for those models that provided the soilr 

model output, which is calculated as the sum of heterotrophic respiration and root respiration. For the soil 

respiration variable, three observational benchmarks were selected (Tang et al. 2019, 2020, Raich et al. 2002 

and Hashimoto et al. 2015) from the data sets contrasted by Hashimoto et al. (2023). The Koven analysis of the 

Soil Carbon turnover time is part of the standard setup in ILAMB version 2.7.2, but we put it into the Extended 

category largely since it seems to be missing proper application of an aridity mask for all of the models, unlike 

for the Observational Benchmark. We also added a model-fit curve to the Koven analysis, for better 

visualisation by allowing the comparison to the benchmark-fit curve. The TRENDYv13 version of the updated 

ILAMB version 2.7.2 GitHub code fork/branch is available at: 

https://github.com/mcguirepatr/ILAMB/tree/master 

S.4.3 Uncertainty assessment for SLAND 

For the uncertainty for SLAND, we use the standard deviation of the annual CO2 sink across the DGVMs, 

averaging to about ± 0.6 GtC yr-1 for the period 1959 to 2021. We attach a medium confidence level to the 

annual land CO2 sink and its uncertainty because the estimates from the residual budget and averaged DGVMs 

match well within their respective uncertainties (Table 5).  

 

S.5 Methodology Atmospheric Inversions 

S.5.1 Inversion System Simulations 

Fourteen atmospheric inversions (details of each in Table S4) were used to infer the spatio-temporal distribution 

of the CO2 flux exchanged between the atmosphere and the land or oceans. These inversions are based on 

Bayesian inversion principles with prior information on fluxes and their uncertainties. They use very similar sets 

of surface measurements of CO2 time series (or subsets thereof) from various flask and in situ networks. Six 

inversion systems used satellite xCO2 retrievals from GOSAT and/or OCO-2, of which two systems used a 

combination of satellite and surface observations.  

https://github.com/mcguirepatr/ILAMB/tree/master
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Each inversion system uses different methodologies and input data but is rooted in Bayesian inversion 

principles. These differences mainly concern the selection of atmospheric CO2 data and prior fluxes, as well as 

the spatial resolution, assumed correlation structures, and mathematical approach of the models. Each system 

uses a different transport model, which was demonstrated to be a driving factor behind differences in 

atmospheric inversion-based flux estimates, and specifically their distribution across latitudinal bands (Gaubert 

et al., 2019; Schuh et al., 2019). 

Most of the fourteen inversion systems prescribe similar global fossil fuel emissions for EFOS; specifically, the 

GCP’s Gridded Fossil Emissions Dataset version 2024.0 (GCP-GridFEDv2024.0; Jones et al., 2024), which is 

an update through 2023 of the first version of GCP-GridFED presented by Jones et al. (2021b) (Table S4). All 

GCP-GridFED versions scale gridded estimates of CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et 

al., 2019) within national territories to match national emissions estimates provided by the GCP for the years 

1959-2023, which are compiled following the methodology described in Supplement S.1. GCP-

GridFEDv2024.0 adopts the seasonality of emissions (the monthly distribution of annual emissions) from the 

Carbon Monitor (Liu et al., 2020a,b; Dou et al., 2022) for Brazil, China, all EU27 countries, the United 

Kingdom, the USA and shipping and aviation bunker emissions. The seasonality present in Carbon Monitor is 

used directly for years 2019-2023, while for years 1959-2018 the average seasonality of 2019, and 2021 and 

2022 are applied (avoiding the year 2020 during which emissions were most impacted by the COVID-19 

pandemic). For all other countries, seasonality of emissions is taken from EDGAR (Janssens-Maenhout et al., 

2019; Jones et al., 2023), with small annual correction to the seasonality present in 2010 based on heating or 

cooling degree days to account for the effects of inter-annual climate variability on the seasonality of emissions 

(Jones et al., 2021b). 

Small remaining differences between regridding of the GridFED inputs, or the use of different fossil fuel 

emission priors are corrected for by scaling the resulting inverse fluxes to GridFEDv2024.0. The consistent use 

of EFOS ensures a close alignment with the estimate of EFOS used in this budget assessment, enhancing the 

comparability of the inversion-based estimate with the flux estimates deriving from DGVMs, GOBMs and 

fCO2-based methods. The fossil fuel adjustment (including emissions from cement production and cement 

carbonation CO2 sink) ensures that the estimated uptake of atmospheric CO2 by the land and oceans was fully 

consistent within the inversion ensemble.  

The land and ocean CO2 fluxes from atmospheric inversions contain anthropogenic perturbation and natural pre-

industrial CO2 fluxes. On annual time scales, natural pre-industrial fluxes are primarily land CO2 sinks and 

ocean CO2 sources corresponding to carbon taken up on land, transported by rivers from land to ocean, and 

outgassed by the ocean. These pre-industrial land CO2 sinks are thus compensated over the globe by ocean CO2 

sources corresponding to the outgassing of riverine carbon inputs to the ocean, using the exact same numbers 

and distribution as described for the oceans in Section 2.5. To facilitate the comparison, we adjusted the inverse 

estimates of the land and ocean fluxes per latitude band with these numbers to produce historical perturbation 

CO2 fluxes from inversions. 
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S.5.2 Inversion System Evaluation 

All participating atmospheric inversions are checked for consistency with the annual global growth rate, as both 

are derived from the global surface network of atmospheric CO2 observations. In this exercise, we use the 

conversion factor of 2.086 GtC/ppm to convert the inverted carbon fluxes to mole fractions, as suggested by 

Prather (2012). This number is specifically suited for the comparison to surface observations that do not respond 

uniformly, nor immediately, to each year’s summed sources and sinks. This factor is therefore slightly smaller 

than the GCB conversion factor in Table 1 (2.142 GtC/ppm, Ballantyne et al., 2012). Overall, the inversions 

agree with the growth rate with biases between 0.0002-0.065 ppm yr-1 (0.0004-0.13 GtCyr-1) for the period 

2015-2023. 

The atmospheric inversions are also evaluated using vertical profiles of atmospheric CO2 concentrations (Figure 

S5). More than 30 aircraft programs over the globe, either regular programs or repeated surveys over at least 9 

months (except on the SH), have been used to draw a robust picture of the system performance (with space-time 

data coverage irregular and denser in the 0-45°N latitude band; Table S8 and lower panel in Figure S4). The 

fourteen systems are compared to these independent aircraft CO2 observations between 2 and 7 km above sea 

level between 2001 and 2023. Results are shown in Figure S5, where the inversions generally match the 

atmospheric mole fractions to within 0.7 ppm at all latitudes. 

 

S.6 Processes not included in the global carbon budget  

S.6.1 Contribution of anthropogenic CO and CH4 to the global carbon budget 

Equation (1) includes only partly the net input of CO2 to the atmosphere from the chemical oxidation of reactive 

carbon-containing gases from sources other than the combustion of fossil fuels, such as: (1) cement process 

emissions, since these do not come from combustion of fossil fuels, (2) the oxidation of fossil fuels, (3) the 

assumption of immediate oxidation of vented methane in oil production. However, it omits any other 

anthropogenic carbon-containing gases that are eventually oxidised in the atmosphere, forming a diffuse source 

of CO2, such as anthropogenic emissions of CO and CH4. An attempt is made in this section to estimate their 

magnitude and identify the sources of uncertainty. Anthropogenic CO emissions are from incomplete fossil fuel 

and biofuel burning and deforestation fires. The main anthropogenic emissions of fossil CH4 that matter for the 

global (anthropogenic) carbon budget are the fugitive emissions of coal, oil and gas sectors (see below). These 

emissions of CO and CH4 contribute a net addition of fossil carbon to the atmosphere. 

In our estimate of EFOS we assumed (Section 2.1.1) that all the fuel burned is emitted as CO2, thus CO 

anthropogenic emissions associated with incomplete fossil fuel combustion and its atmospheric oxidation into 

CO2 within a few months are already counted implicitly in EFOS and should not be counted twice (same for ELUC 

and anthropogenic CO emissions by deforestation fires). The diffuse atmospheric source of CO2 deriving from 

anthropogenic emissions of fossil CH4 is not included in EFOS. In reality, the diffuse source of CO2 from CH4 

oxidation contributes to the annual CO2 growth. Emissions of fossil CH4 represent 30% of total anthropogenic 

CH4 emissions (Saunois et al. 2020; their top-down estimate is used because it is consistent with the observed 

CH4 growth rate), that is 0.083 GtC yr-1 for the decade 2008-2017. Assuming steady state, an amount equal to 

this fossil CH4 emission is all converted to CO2 by OH oxidation, and thus explain 0.083 GtC yr-1 of the global 
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CO2 growth rate with an uncertainty range of 0.061 to 0.098 GtC yr-1 taken from the min-max of top-down 

estimates in Saunois et al. (2020). If this min-max range is assumed to be 2 σ because Saunois et al. (2020) did 

not account for the internal uncertainty of their min and max top-down estimates, it translates into a 1-σ 

uncertainty of 0.019 GtC yr-1. 

Other anthropogenic changes in the sources of CO and CH4 from wildfires, vegetation biomass, wetlands, 

ruminants, or permafrost changes are similarly assumed to have a small effect on the CO2 growth rate. The CH4 

and CO emissions and sinks are published and analysed separately in the Global Methane Budget and Global 

Carbon Monoxide Budget publications, which follow a similar approach to that presented here (Saunois et al., 

2020; Zheng et al., 2019).  

 

S.6.2 Contribution of other carbonates to CO2 emissions 

Although we do account for cement carbonation (a carbon sink), the contribution of emissions of fossil 

carbonates (carbon sources) other than cement production is not systematically included in estimates of EFOS, 

except for Annex I countries and lime production in China (Andrew and Peters, 2021). The missing processes 

include CO2 emissions associated with the calcination of lime and limestone outside of cement production. 

Carbonates are also used in various industries, including in iron and steel manufacture and in agriculture. They 

are found naturally in some coals. CO2 emissions from fossil carbonates other than cement not included in our 

dataset are estimated to amount to about 0.3% of EFOS (estimated based on Crippa et al., 2019).  

 

S.6.3 Anthropogenic carbon fluxes in the land-to-ocean aquatic continuum 

The approach used to determine the global carbon budget refers to the mean, variations, and trends in the 

perturbation of CO2 in the atmosphere, referenced to the pre-industrial era. Carbon is continuously displaced 

from the land to the ocean through the land-ocean aquatic continuum (LOAC) comprising freshwaters, estuaries, 

and coastal areas (Bauer et al., 2013; Regnier et al., 2013). A substantial fraction of this lateral carbon flux is 

entirely ‘natural’ and is thus a steady state component of the pre-industrial carbon cycle. We account for this 

pre-industrial flux where appropriate in our study (see Supplement S.3). However, changes in environmental 

conditions and land-use change have caused an increase in the lateral transport of carbon into the LOAC – a 

perturbation that is relevant for the global carbon budget presented here.  

The results of the analysis of Regnier et al. (2013) can be summarised in two points of relevance for the 

anthropogenic CO2 budget. First, the anthropogenic perturbation of the LOAC has increased the organic carbon 

export from terrestrial ecosystems to the hydrosphere by as much as 1.0 ± 0.5 GtC yr-1 since pre-industrial 

times, mainly owing to enhanced carbon export from soils. Second, this exported anthropogenic carbon is partly 

respired through the LOAC, partly sequestered in sediments along the LOAC and to a lesser extent, transferred 

to the open ocean where it may accumulate or be outgassed. The increase in storage of land-derived organic 

carbon in the LOAC carbon reservoirs (burial) and in the open ocean combined is estimated by Regnier et al. 

(2013) at 0.65 ± 0.35GtC yr-1. The inclusion of LOAC related anthropogenic CO2 fluxes should affect estimates 

of SLAND and SOCEAN in Eq. (1) but does not affect the other terms. Representation of the anthropogenic 
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perturbation of LOAC CO2 fluxes is however not included in the GOBMs and DGVMs used in our global 

carbon budget analysis presented here. 

 

S.6.4 Loss of additional land sink capacity 

Historical land-cover change was dominated by transitions from vegetation types that can provide a large carbon 

sink per area unit (typically, forests) to others less efficient in removing CO2 from the atmosphere (typically, 

croplands). The resultant decrease in land sink, called the ‘loss of additional sink capacity’, can be calculated as 

the difference between the actual land sink under changing land-cover and the counterfactual land sink under 

pre-industrial land-cover. This term is not accounted for in our global carbon budget estimate. Here, we provide 

a quantitative estimate of this term to be used in the discussion. Seven of the DGVMs used in Friedlingstein et 

al. (2019) performed additional simulations with and without land-use change under cycled pre-industrial 

environmental conditions. The resulting loss of additional sink capacity amounts to 0.9 ± 0.3 GtC yr-1 on 

average over 2009-2018 and 42 ± 16 GtC accumulated between 1850 and 2018 (Obermeier et al., 2021). 

OSCAR, emulating the behaviour of 11 DGVMs finds values of the loss of additional sink capacity of 0.7 ± 0.6 

GtC yr-1 and 31 ± 23 GtC for the same period (Gasser et al., 2020). Since the DGVM-based ELUC estimates are 

only used to quantify the uncertainty around the bookkeeping models' ELUC, we do not add the loss of 

additional sink capacity to the bookkeeping estimate. 



27 
 

Supplementary Tables 

 

Table S1. Comparison of the processes included in the bookkeeping method and DGVMs in their estimates of ELUC and SLAND. See Table 4 for model references. All models include deforestation and forest regrowth after abandonment of 
agriculture (or from afforestation activities on agricultural land). Processes relevant for ELUC are only described for the DGVMs used with land-cover change in this study. 

 

Bookkeeping Models DGVMs 

H&C20
23 

BLUE OSCAR LUCE CABLE-
POP 

CLASSI
C 

CLM6.
0 

DLEM EDv3 ELM IBIS iMAPL
E 

ISAM ISBA-
CTRIP 

JSBAC
H 

JULES-
ES 

LPJ-
GUESS 

LPJml LPJwsl LPX-
Bern 

OCNv2 ORCHI
DEEv3 

SDGV
M 

VISIT CARDA
MOM 

Processes relevant for ELUC 

Wood harvest and forest 
degradation (a) yes yes yes yes yes no yes yes yes yes yes no yes no yes no yes no yes no (d) yes yes yes yes 

yes 
(R+L) 

Shifting cultivation / Subgrid scale 
transitions yes (b) yes yes yes yes no yes no yes yes yes no no no yes no yes no yes no (d) no no yes yes no 

Cropland harvest (removed, R, or 
added to litter, L) 

yes (R) 
(j) 

yes (R) 
(j) yes (R) 

yes (R) 
(j) yes (R) yes (L) 

yes 
(R+L) yes 

yes 
(R+L) yes (L) yes (R) yes (L) yes yes (R) 

yes 
(R+L) yes (R) yes (R) 

yes 
(R+L) yes (L) yes (R) 

yes 
(R+L) yes (R) yes (R) yse (R) no 

Peat fires yes (k) yes (k) yes (k) yes (k) no no yes no no no no no no yes no no no no no no no no no no yes (k) 

fire as a management tool yes (j) yes (j) yes (h) yes(j) no no no no no no no no no no no no no no no no no no no no yes (k) 

N fertilisation yes (j) yes (j) yes (h) yes(j) no no yes yes no no yes no yes no no yes(i) yes yes no yes yes yes no no no 

tillage yes (j) yes (j) yes (h) yes(j) no yes (g) yes yes no no no no no no no no yes yes no no no yes (g) no no no 

irrigation yes (j) yes (j) yes (h) yes(j) no no yes yes no no no no yes no no no yes yes no no no no no no no 

wetland drainage yes (j) yes (j) yes (h) yes(j) no no no no no no no no yes no no no no no no no no no no no no 

erosion yes (j) yes (j) yes (h) yes(j) no no no yes no no yes no no no no no no no no no no no no yes no 

peat drainage yes (k) yes (k) yes (k) yes (k) no no no no no no no no no no no no no no no no no no no no no 

Grazing and mowing Harvest 
(removed, R, or added to litter, L) 

yes (R) 
(j) 

yes (R) 
(j) 

yes (R) yes (r) 
(j) 

yes (R) no no no yes 
(R+L) 

no yes no yes (R, 
L) 

no yes (L) no yes (R) yes 
(R+L) 

yes (L) no yes 
(R+L) 

no no no no 

Processes also relevant for SLAND (in addition to CO2 fertilisation and climate) 

ecosystem demography (ED) / 
vegetation competition (VC) 

    

yes 
(ED), 
No 

(VC) 

 no no yes no 
yes 

ED, no 
VC 

no  no no No ED, 
Yes VC 

yes no ED, 
yes VC 

yes no ED, 
yes VC 

no ED, VC for PFT-internal dynamics, no dynamic changes of fractional 
cover 

 yes no no 

Fire simulation and/or suppression N.A. N.A. N.A. N.A. no yes yes no yes yes yes no no yes yes yes yes yes yes yes no no yes yes yes (k) 
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Carbon-nitrogen interactions, 
including N deposition 

N.A. N.A. N.A. N.A. yes no (f) yes yes no yes yes no (f) yes no yes yes yes yes no yes yes yes yes (c) no no 

Separate treatment of direct and 
diffuse solar radiation N.A. N.A N.A N.A yes no yes no no yes yes yes no no no yes no no no no no no no no no 

(a) Refers to the routine harvest of established managed forests rather than pools of harvested products. 
(b) No back- and forth-transitions between vegetation types at the country-level, but if forest loss based on FRA exceeded agricultural expansion based on FAO, then this amount of area was cleared for cropland and the same amount of area of 
old croplands abandoned. 

(c) Limited. Nitrogen uptake is simulated as a function of soil C, and Vcmax is an empirical function of canopy N. Does not consider N deposition. 

(d) Available but not active. 

(f) Although C-N cycle interactions are not represented, the model includes a parameterization of down-regulation of photosynthesis as CO2 increases to emulate nutrient constraints (Arora et al., 2009) 

(g) Tillage is represented over croplands by increased soil carbon decomposition rate and reduced humification of litter to soil carbon. 

(h) as far as the DGVMs that OSCAR is calibrated to include it 

(i) perfect fertilisation assumed, i.e. crops are not nitrogen limited and the implied fertiliser diagnosed 

(j) Process captured implicitly by use of observed carbon densities. 

(k) Emissions added from external datasets. 
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Table S2. Comparison of the processes and model set up for the Global Ocean Biogeochemistry Models for their estimates of SOCEAN. See Table 4 for model references. 

      
NEMO-

PlankTOM12 
NEMO4.2-

PISCES (IPSL) 

MICOM-
HAMOCC 

(NorESM1-
OCv1.2) 

MPIOM-
HAMOCC6 

FESOM-2.1-
REcoM3 

NEMO3.6-
PISCESv2-gas 

(CNRM) 
MOM6-COBALT 

(Princeton) CESM-ETHZ MRI-ESM2-3 
ACCESS 
(CSIRO) 

Model specifics   
Physical ocean model 

NEMOv3.6-ORCA2 
NEMOv4.2-
eORCA1L75 

MICOM (NorESM1-
OCv1.2) MPIOM FESOM-2.1 

NEMOv3.6-
GELATOv6-
eORCA1L75 MOM6-SIS2 

CESMv1.3 (ocean 
model based on 
POP2) MRI.COMv5 MOM5 

Biogeochemistry model 
PlankTOM12 PISCESv2 

HAMOCC 
(NorESM1-OCv1.2) HAMOCC6 REcoM-3 PISCESv2-gas COBALTv2 

BEC (modified & 
extended) NPZD+Fe WOMBAT 

Horizontal resolution 
2° lon, 0.3 to 1.5° 

lat 1° lon, 0.3 to 1° lat 
1° lon, 0.17 to 0.25 

lat 1.5° 

unstructured mesh, 
20-120 km 

resolution (CORE 
mesh) 1° lon, 0.3 to 1° lat 

0.5° lon, 0.25 to 
0.5° lat 

1.125° lon, 0.53° to 
0.27° lat 

1° lon, 0.3 to 0.5° 
lat 

1°x1° with enhanced 
latitudinal resolution 
in the tropics and high-
lat Southern Ocean 

Vertical resolution 

31 levels 
75 levels, 1m at the 
surface 

51 isopycnic layers 
+ 2 layers 

representing a bulk 
mixed layer 40 levels 

46 levels, 10 m 
spacing in the top 

100 m 
75 levels, 1m at 

surface 
75 levels hybrid 
coordinates, 2m at 
surface 60 levels 

60 levels with 1-
level bottom 

boundary layer 
50 levels, 20 in the top 
200m 

Total ocean area on native grid (km2) 
3.6080E+08 3.6360E+08 3.6006E+08 3.6598E+08 3.6435E+08 3.6270E+14 3.6111E+08 3.5926E+08 3.6094E+08 3.6134E+08 

Gas-exchange parameterization 
Wanninkhof et al 
(1992) 

Orr et al., 2017 Orr et al., 2017, but 
with a=0.337 

Orr et al., 2017 Orr et al., 2017 Orr et al., 2017; 
Wanninkhof et al. 
2014 

Wanninkhof et al., 
2014 

Wanninkhof (1992, 
coefficient a scaled 
down to 0.31) 

Orr et al., 2017 
Wanninkhof et al 
(1992) 

CO2 chemistry routines 
OCMIP2 (Orr et al. 
2017) mocsy 

Following Dickson 
et al. 2007 

Ilyina et al. (2013) 
adapted to comply 
with OMIP protocol 
(Orr et al., 2017) mocsy mocsy mocsy 

OCMIP2 (Orr et al. 
2017) mocsy 

OCMIP2 (Orr et al. 
2017) 

River input (PgC/yr) 
(organic/inorganic DIC) 

0.723 / - 0.9167 (0.2577 / 
0.659) 

0 0.77 / - 0 / 0 0.611 / - ~0.07 / ~0.15 0.33 / - 0 / 0 
0/0 

Net flux to sediment (PgC/yr) 
(organic/other) 

0.723 / - 0.3969 (0.0855 / 
0.3114) 

around 0.54 / - 0.71/- 0 / 0 around 0.656 / - ~0.11 / ~0.07 
(CaCO3) 

0.21 / - 0 / 0 
0/0 

SPIN-UP procedure   
Initialisation of carbon chemistry 

GLODAPv2 
(preindustrial DIC) 

GLODAPv2 
(preindustrial DIC) 

GLODAPv1 
(preindustrial DIC) 

initialization from 
previous simulation 

GLODAPv2 
(preindustrial DIC) GLODAPv2 

GLODAPv2 
(Alkalinity, DIC). 
DIC corrected to 

1959 level 
(simulation A and 

C) and to pre-
industrial level 

(simulation B and 
GLODAPv2 

(preindustrial DIC) 
GLODAPv2 

(preindustrial DIC) 
GLODAPv1 
preindustrial DIC 
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D) using Khatiwala 
et al 2009 

Preindustrial spin-up prior to 1850 

spin-up 1750-1947 
~300 yrs with 

xCO2=278ppm 
1000 year spin up 

(prior to 1762) ~2000 years 189 years 

long spin-up (> 
1000 years) from 
1750 fixed 
conditions 

Other bgc tracers 
initialized from a 
GFDL-ESM2M 
spin-up (> 1000 
years) 

1422 years (329-
1750) with xCO2 = 

278 
1661 years with 

xCO2 = 278 1000+ years 
Atmospheric forcing fields and CO2  
Atmospheric forcing for (i) pre-
industrial spin-up, (ii) spin-up 1850-
1958 for simulation B, (iii) simulation 
B 

looping ERA5 year 
1990 

looping first ten 
years (1958-1967) 
of JRA55-do-v1.4 

CORE-I (normal 
year) forcing (i, ii, 

iii) 
OMIP climatology 
(i), NCEP year 
1957 (ii,iii) 

JRA55-do v.1.4.0 
repeated year 1961 

(i, ii, iii) 

JRA55-do-v1.5.0 
full reanaylsis (i) 

cycling year 1958 
(ii,iii) 

GFDL-ESM2M 
internal forcing (i), 
JRA55-do-v1.5.0 
repeat year 1959 

(ii,iii) 

(i) until 1750: JRA 
cycles 1958-2022 
(ii, iii) after 1750: 
NYF (mean of 
1958-2018 with 
2001 anomalies) 

JRA55-do v1.5.0 
repeat year 

1990/91 (i, ii, iii) 

(i) 800+ years CORE 
spinup. 250 years 
with JRA55-do and 
another 500 years 
JRA55-do and 
278ppm CO2, (ii) 
and (iii) JRA55-do, 
1990/1991 repeat 
year forcing 

Atmospheric CO2 for control spin-up 
1850-1958 for simulation B, and for 
simulation B 

constant 278ppm; 
converted to pCO2 

temperature 
formulation 

(Sarmiento et al., 
1992) 

xCO2 of 278ppm, 
converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 
xCO2 of 278ppm, 
no conversion to 
pCO2 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 

xCO2 of 278 ppm, 
converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure and water 

vapour pressure 

xCO2 = 278 ppm, 
converted to pCO2 
with atmospheric 

pressure, and 
water vapour 

pressure 

xCO2 of 278ppm, 
converted to pCO2 
with water vapour 

and sea-level 
pressure (JRA55-

do repeat year 
1990/91) 

xCO2 of 278ppm, 
converted to pCO2 

with sea-level 
pressure 

Atmospheric forcing for historical 
spin-up 1850-1958 for simulation A 
(i) and for simulation A (ii) 

1750-1940: looping 
ERA5 year 1990; 
1940-2023: ERA5 

1750-1958 : first 
ten years (1958-

1967) of JRA55-do-
v1.4 , then full 

JRA55 reanalysis : 
JRA55-do-v1.4 

then 1.5 for 2020-
23 (ii) 

CORE-I (normal 
year) forcing; from 

1948 onwards 
NCEP-R1 with 

CORE-II 
corrections 

NCEP 6 hourly 
cyclic forcing (10 
years starting from 
1948, i), 1948-
2021: transient 
NCEP forcing 

JRA55-do-v1.4.0 
repeated year 1961 

(i), transient 
JRA55-do-v1.4.0 

(1958-2019), 
v1.5.0.1 (2020-

2023,ii) 

JRA55-do cycling 
year 1958 (i), 

JRA55-do-v1.5.0 
(ii) 

JRA55-do-v1.5 
repeat year 1959 
(i), v1.5.0 (1959-
2019, v1.5.0.1b 
(2020), v1.5.0.1 

(2021; ii) 

(i): JRA55 version 
1.5.0.1, repeat 

cycle 1958-2023 (ii) 
JRA55 1.5.0.1 

1968-2023 

1653-1957: 
repeated cycle 

JRA55-do v1.5.0 
1958-2018 (i), 

v1.5.0 (1958-2018), 
v1.5.0.1 (2019-

2023; ii) 

(i) JRA55-do, 
1990/1991 repeat 
year forcing, (ii) 
JRA55-do v1.5.0 for 
1958-2019, and 
v1.5.0.1 for 2020-
2023. 

Atmospheric CO2 for historical spin-
up 1850-1958 for simulation A (i) and 
simulation A (ii) xCO2 provided by 

the GCB; converted 
to pCO2 

temperature 
formulation 

(Sarmiento et al., 
1992), monthly 
resolution (i, ii) 

xCO2 as provided 
by the GCB, global 

mean, annual 
resolution, 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure (i, 

ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with sea level 

pressure (taken 
from the 

atmopheric forcing) 
and water vapor 
correction (i, ii) 

transient monthly 
xCO2 provided by 
GCB, no 
conversion (i, ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure, 

global mean, 
monthly resolution 

(i, ii) 

xCO2 as provided 
by the GCB, 

converted to pCO2 
with constant sea-
level pressure and 

water vapour 
pressure, global 

mean, yearly 
resolution (i, ii) 

xCO2 at year 1959 
level (315 ppm, i) 

and as provided by 
GCB (ii), both 

converted to pCO2 
with sea-level 

pressure and water 
vapour pressure, 

global mean, yearly 
resolution 

xCO2 as provided 
by the GCB in 2024 

(from 1751 
onward), converted 

to pCO2 with 
locally determined 
atm. pressure, and 

water vapour 
pressure (i, ii) 

xCO2 as provided 
by GCB, converted 
to pCO2 with water 

vapour and sea-
level pressure (i, ii). 

xCO2 as provided by 
the GCB, converted 
to pCO2 with sea-

level pressure 
 
 

Table S3: Description of ocean fCO2-products used for assessment of SOCEAN. See Table 4 for references. 
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 Jena-MLS VLIZ-SOMFFN CMEMS-LSCE-FFNN UExP-FNN-U 
(previously Watson et 
al.) 

NIES-ML3 JMA-MLR OceanSODA-ETHZv2 LDEO HPD CSIR-ML6 

Method Spatio-temporal 
interpolation (version 
oc_v2023). Spatio-
temporal field of 
ocean-internal carbon 
sources/sinks is fit to 
the SOCATv2022 pCO2 
data. Includes a multi-
linear regression 
against environmental 
drivers to bridge data 
gaps, 

A feed-forward neural 
network (FFN) 
determines non-linear 
relationship between 
SOCAT pCO2 
measurements and 
environmental 
predictor data for 16 
biogeochemical 
provinces (defined 
through a self-
organizing map, SOM) 
and is used to fill the 
existing data gaps. 

An ensemble of neural 
network models 
trained on 100 
subsampled datasets 
from SOCAT and 
environmental 
predictors. The models 
are used to reconstruct 
sea surface fugacity of 
CO2 and convert to air-
sea CO2 fluxes 

A self organising map 
feed forward neural 
network (SOM-FNN) 
implementation using 
SOCATv2024 fCO2 
database, corrected to 
the subskin 
temperature (ESA CCI 
v3 bias corrected to 
surface drifter data 
following 
recommendations in 
Dong et al. 2022) of 
the ocean as measured 
by satellites (Goddijn-
Murphy et al, 2015). 
Flux calculation 
corrected for the cool 
and salty surface skin. 
Monthly skin 
temperature 
calculated from ESA 
CCI v3 (Embury et al. 
2024) with the cool 
skin difference 
calculated using NOAA 
COARE 3.5. Flux 
calculations completed 
using FluxEngine 
(Shutler et al., 2016; 
Holding et al., 2019). 

The ensemble of a 
random forest, a 
gradient boost 
machine, and a feed 
forward neural 
network trained on 
SOCAT 2024 fCO2 and 
environmental 
predictor variables. 
The interannual trend 
of fCO2 was estimated 
first by the decadal 
trend of atmospheric 
CO2 and then 
corrected by a so-
called leave-one-year-
out validation method. 
The trend was used to 
normalize fCO2 to the 
mid year of 1982-2023 
for model training. The 
monthly fCO2 maps 
were reconstructed 
using model prediction 
and the trend. 

Fields of total alkalinity 
(TA) were estimated by 
using a multiple linear 
regressions (MLR) 
method based on 
GLODAPv2.2023 and 
satellite observation 
data. 
SOCATv2024 fCO2 data 
were converted to 
dissolved inorganic 
carbon (DIC) with the 
TA. Fields of DIC were 
estimated by using a 
MLR method based on 
the DIC and satellite 
observation data 

OceanSODA-ETHZv2 is 
a two-phase machine 
learning approach. In 
phase 1, we estimate 
the ∆fCO2 8-day 
seasonal cycle 
climatology with a 
Gradient Boosted 
Decision Tree which is 
used as a predictor in 
the next phase. In 
phase 2, we predict 
the non-thermal 
component of ∆fCO2 
at a 8-day by 0.25° by 
0.25° resolution with a 
two-layer fully-
connected neural 
network using 35 
ensemble members. 
The atmospheric CO2 
and non-thermal 
component are added 
back to the result. 

Based on fCO2-misfit 
between observed 
fCO2 and 10 Global 
Carbon BudgetGOBMs. 
The eXtreme Gradient 
Boosting method links 
this misfit to 
environmental 
observations to 
reconstruct the model 
misfit across all space 
and time., which is 
then added back to the 
model-based fCO2 
estimate. The final 
reconstrucion of 
surface fCO2 is the 
average across the 10 
reconstructions. A 
climatology of the 
misfits calculated for 
the years 2000-2023 is 
used as an offset for 
years prior to 1982 
when no/limited 
envionmental 
observations are 
available to train the 
ML algorithm. 

An ensemble average 
of six machine-learning 
models, where each 
model is constructed 
with a two-step 
clustering-regression 
approach to determine 
a non-linear 
relationship between 
SOCAT fCO2 
measurements and 
environmental proxy 
variables, and it used 
to fill the existing data 
gaps. The clustering 
step consists of two 
methods: the Mini-
batch K-means 
clustering and the 
extended Fay and 
McKinley (2014) 
biomes. The regression 
step consists of three 
methods: Gradient 
Boosting Machine, 
Support Vector 
Regression, and Feed-
forward Neural 
Network. 

Gas-exchange 
parameterizatio
n 

Wanninkhof 1992. 
Transfer coefficient k 
scaled to match a 
global mean transfer 
rate of 16.5 cm/hr by 

Wanninkhof 1992. 
Transfer coefficient k 
scaled to match a 
global mean transfer 
rate of 16.5 cm/hr 

Wanninkhof 2014. 
Transfer coefficient k 
scaled to match a 
global mean transfer 
rate of 16.5 cm/hr 

Nightingale et al 2000 Wanninkhof, 2014. 
Transfer coefficient k 
scaled to match a 
global mean transfer 
rate of 16.5 cm/hr in 

Wanninkhof., 2014. 
Transfer coefficient k 
scaled to match a 
global mean transfer 
rate of 16.5 cm/hr 

Wanninkhof 1992, 
averaged and scaled 
for three reanalysis 
wind data, to a global 
mean 16.5 cm/hr (after 

Wanninkhof 1992 
parameterization. 
Transfer coefficient k 
scaled to match a 
global mean transfer 

Wanninkhof 1992, 
averaged and scaled 
for three reanalysis 
wind data, to a global 
mean 16.5 cm/hr (after 
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(Naegler, 2009) (Naegler, 2009) 1990-2019 (Fay et al., 
2021) 

(Naegler, 2009) Naegler 2009; Fay & 
Gregor et al. 2021) 

rate of 16.5 cm/hr 
(Naegler, 2009) 

Naegler 2009; Fay & 
Gregor et al. 2021) 

Wind product JMA55-do reanalysis ERA 5 ERA5 CCMP3.1 ERA5 JRA3Q ERA5 ERA5 ERA 5 

Spatial 
resolution 

2.5 degrees longitude x 
2 degrees latitude 

1x1 degree 0.25x0.25 degree 
regridded to 1x1 
degree 

1x1 degree Regrid 0.25x0.25 
degree monthly data 
to 1x1 degree 

1x1 degree 0.25x0.25 degree 
regridded to 1x1 
degree 

1x1 degree 1x1 degree 

Temporal 
resolution 

daily monthly monthly monthly monthly monthly 8-daily regridded to 
monthly 

monthly monthly 

Atmospheric 
CO2 

Spatially and 
temporally varying 
field based on 
atmospheric CO2 data 
from 169 stations 
(Jena CarboScope 
atmospheric inversion 
sEXTALL_v2021) 

Spatially varying 1x1 
degree atmospheric 
pCO2_wet calculated 
from the NOAA ESRL 
marine boundary layer 
xCO2 and NCEP sea 
level pressure with the 
moisture correction by 
Dickson et al 2007. 

Spatially and monthly 
varying fields of 
atmospheric pCO2 
computed from CO2 
mole fraction (CO2 
atmospheric inversion 
from the Copernicus 
Atmosphere 
Monitoring Service), 
and atmospheric dry-
air pressure which is 
derived from monthly 
surface pressure 
(ERA5) and water 
vapour pressure fitted 
by Weiss and Price 
1980 

Atmospheric fCO2 
(wet) calculated from 
NOAA marine 
boundary layer 
XCO2(atm) and ERA5 
sea level pressure, 
with pH2O calculated 
from Cooper et al. 
(1998). 2023 XCO2 
marine boundary 
values were not 
available at submission 
so we used preliminary 
values, estimated from 
2022 values and 
increase at Mauna Loa. 

NOAA Greenhouse Gas 
Marine Boundary 
Layer Reference. 
https://gml.noaa.gov/c
cgg/mbl/mbl.html 

Atmospheric xCO2 
fields of JMA-GSAM 
inversion model (Maki 
et al. 2010; Nakamura 
et al. 2015) were 
converted to pCO2 by 
using JRA3Q sea level 
pressure. 2023 xCO2 
fields were not 
available at this stage, 
and we used Cape 
Grim and Mauna Loa 
xCO2 increments from 
2022 to 2023 for the 
southern and northern 
hemispheres, 
respectively. 

NOAA's marine 
boundary layer 
product for xCO2 is 
linearly interpolated 
onto a 0.25°x0.25° grid 
and resampled from 
weekly to 8-daily. xCO2 
is multiplied by ERA5 
mean sea level 
pressure, where the 
latter corrected for 
water vapour pressure 
using Dickson et al. 
(2007). These results 
are regridded to a 
monthly 1x1 degree 
pCO2atm. 

NOAA's marine 
boundary layer (MBL) 
surface xCO2 product 
is linearly interpolated 
to a 1x1 degree 
monthly grid for years 
1979-2023. Prior to 
1979, calculating an 
offset between the 
MBL and Mauna Loa 
seasonal climatologic 
xCO2 values for a 
subset of common 
years (1979-1989) 
yields a mean 
seasonality difference 
which is then applied 
to the Mauna Load 
time series. Monthly 
1x1 degree xCO2 is 
multiplied by ERA5 
mean sea level 
pressure, with the 
correction for water 
vapour pressure using 
Dickson et al. 2007, 
using ERA5 SST and 

NOAA's marine 
boundary layer 
product for xCO2 is 
linearly interpolated 
onto a 1x1 degree grid 
and resampled from 
weekly to monthly. 
ERA5 mean sea level 
pressure is used, 
where the latter 
corrected for water 
vapour pressure using 
Dickson et al. (2007). 
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EN4 SSS. FInally 
converted to fCO2 
using ERA5 SST and SLP 

Total ocean area 
on native grid 
(km2) 

3.63E+08 3.63E+08 3.50E+08 3.61E+08 

3.62E+08 

3.19E+08 3.55E+08 3.586 E+8 3.63E+08 

method to 
extend product 
to full global 
ocean coverage 

 Arctic and marginal 
seas added following 
Landschützer et al. 
(2020). No coastal cut. 

   Fay & Gregor et al. 
2021 

Coverage of the global 
ice free ocean (ice frac 
< 0.9) 

Based on method in 
Fay & Gregor et al. 
2021. Gaps were filled 
with monthly 
climatology 
(Landschützer et al. 
2020) scaled for 
interannual variability 
based on the temporal 
evolution of this 
product for all years. 

Method has near full 
coverage 
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Table S4. Comparison of the inversion set up and input fields for the atmospheric inversions. Atmospheric inversions see the full CO2 fluxes, including the anthropogenic and pre-industrial 
fluxes. Hence they need to be adjusted for the pre-industrial flux of CO2 from the land to the ocean that is part of the natural carbon cycle before they can be compared with SOCEAN and 
SLAND from process models. See Table 4 for references. 
Name Jena 

CarboScope 
Copernicus 
Atmosphere 
Monitoring 
Service 
(CAMS) 

Carbon-
Tracker 
Europe 
(CTE) 

NISMON-
CO2 

CT-NOAA CMS-Flux Copernicus 
Atmosphere 
Monitoring 
Service 
(CAMS) 

GONGGA COLA GCASv2 UoE IAPCAS MIROC-
ACTM 

NTFVAR 

Version 
number 

r76nbetEXT
oc_v2024E 

v23r1 v2024 v2024.1 CT2022 + 
CT-
NRT.v2024-1 

v2024 FT24r1 v2023 v2024 v2024 v2024 v2024 v2024 v2024 

Flags               
Observations               
Atmospheric 
observations (a, 
b) 

Flasks and 
hourly from 
various 
institutions 
(outliers 
removed by 
2σ criterion) 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.0 
and 
NRT_v9.3 
and 
obspack_co
2_466_GVe
u_v9.2_202
40502 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v8.0 
and v9.0 and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.0 
and 
NRT_v9.3 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v7.0 
and 
NRT_v9.2. 

ACOS-
GOSAT B9 
and OCO-2 
V11.1 and 
obspack 
GLOBALVIE
Wplus v9.1 

OCO-2 ACOS 
retrievals 
from NASA, 
v11.1 

OCO-2 v11r 
data that 
scaled to 
WMO 2019 
standard 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2. 
And OCO-
2_b11.1_LN
LG 

ACOS v11 
OCO-2 XCO2 
retrievals, 
scaled to 
WMO 2019 
standard 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.2 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIE
Wplus v9.1 
and 
NRT_v9.3 
and JMA 

Hourly 
resolution 
(well-mixed 
conditions) 
obspack 
GLOBALVIEW
plus v9.1 and 
NRT_v9.2 
and GOSAT 
XCO2 data 
NIES Level 2 
product 
v02.97 and 
v03.05 

Period covered 1976-2023 1979-2023 2001-2023 1990-2023 2000-2023 2010-2023 2015-2023 2015-2023 2015-2023 2015-2023 2001-2023 2001-2023 2001-2023 2010-2023 
Prior fluxes               
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Biosphere and 
fires Zero ORCHIDEE, 

GFEDv4.1s 
SiB4-MERRA 
and GFAS 

VISIT and 
GFEDv4.1s 

GFED-CASA 
and 
GFED_CMS(
Climatology 
for the CT-
NRT of 
CT2022 plus 
statistical 
flux anomaly 
model). 

CARDAMOM ORCHIDEE, 
GFEDv4.1s 

ORCHIDEE-
MICT and 
GFEDv4.1s 

VEGAS + 
GFAS 

BEPS CASA v1.0, 
climatology 
after 2016 
and GFED4.0 

CASA v1.0, 
climatology 
after 2016 
and GFED4.0 

CASA-3h Zeng et al. 
2020 and 
GFAS 

Ocean CarboScope 
oc_v2024E 

CMEMS-
LSCE-FFNN 
2024 

CarboScope 
v2022 and 
v2023 

JMA global 
ocean 
mapping 
(Iida et al., 
2021) 

Ocean 
inversion 
fluxes, 
Takahashi 
pCO2 

ECCO-
Darwin and 
MOM6 

CMEMS-
LSCE-FFNN 
2023 

Takahashi 
climatology 

Jena OC-
v2023 

JMA Ocean 
CO2 Map 
v2023 
(Global) and 
v2024 
(regional) 

Takahashi 
climatology 

Takahashi 
climatology 

Takahashi 
climatology 

Zeng et al. 
2014 

Fossil fuels (c) GridFED 
v2024.0 

GridFED 
2023.1 with 
an 
extrapolatio
n to 2023-24 
based on 
Carbonmoni
tor and NO2 

GridFED 
2023.1 and 
2024.0 

GridFED 
v2024.0 

Miller/CT, 
and 
ODIAC/NAS
A 

GridFED 
v2024.0 

GridFED 
2023.1 with 
an 
extrapolatio
n to 2023-
24based on 
Carbonmoni
tor and NO2 

GridFED 
2024.0 

GridFEDv20
23.1 and 
v2024.0 

GridFEDv20
24.0 

GridFED 
2024.0 

GridFED 
2024.0 

GridFEDv20
24.0 

GridFEDv20
24.0 

Transport and 
optimization               
Transport 
model TM3 LMDZ v6 TM5 NICAM-TM TM5 GEOS-CHEM LMDZ v6 GEOS-Chem 

v12.9.3 
GEOS-CHEM 
v13.0.2 

MOZART-4 GEOS-CHEM GEOS-CHEM 
v12.5 

MIROC-
ACTM 

NIES-TM-
FLEXPART 

Weather forcing ERA ECMWF ECMWF JRA55 ERA5 MERRA2 ECMWF MERRA2 MERRA-2 GEOS5 MERRA MERRA JRA-55 ERA5(NIES-
TM)/JRA-
55(FLEXPART
) 

Horizontal 
Resolution Global 

3.83°x5° 
global ~90 
km in the 
horizontal 

Global 3°x2°, 
Europe 
1°x1°, North 

glevel-5 
(~223 km) 

Global 3°x2°, 
North 
America 

Global 4°x5° global ~90 
km in the 
horizontal 

Global 
2°x2.5° 

2°×2.5° 2.5°×1.875° Global 
2°x2.5° 

Global 4°x5° 2.8°×2.8° NIES-TM 
3.75x3.75°an
d FLEXPART 
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(hexagons) America 
1°x1° 

1°x1° (hexagons) 0.1x0.1° 

Optimization Conjugate 
gradient (re-
ortho-
normalizatio
n) 

Variational 5-week 
ensemble 
Kalman 
smoother 

Variational 12-week 
ensemble 
Kalman 
smoother 

Variational Variational Nonlinear 
least 
squares 
four-
dimensional 
variation 
(NLS-4DVar) 

Ensemble 
Kalman 
Filter (LETKF 
with 
CEnKF/AAP
O) 

Ensemble 
Kalman filter 

Ensemble 
Kalman filter 

Ensemble 
Kalman filter 

Bayesian 
inversion, 
similar to 
that of 
Rayner et al. 
(Tellus, 
1999) 

Variational, 
M1QN3 

(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022; obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring 
Laboratory. http://doi.org/10.25925/20230801. 

(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024; obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20240215. 
(c) GCP-GridFED v2024.0 and v2023.1 (Jones et al., 2024, 2023) are updates through the year 2023 of the GCP-GridFED dataset presented by Jones et al. (2021b). 

 

 
  

http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
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Table S5: Overview of the Earth System Models (ESMs) and the simulations. 

Model CanESM5 EC-Earth3-CC IPSL-CM6A-CO2-LR MIROC-ES2L MPI-ESM1.2-LR 

Resolution Atmosphere 
T63, 49 hybrid levels up to 
1hPa 

T255, 91 levels 2.5°x1.25°, 79 levels T42, 40 levels T63, 47 levels 

Resolution Ocean 
1° refined meridionally to 
1/3° near Equator, 45 levels 

1°, 75 levels 1° (nominal), 75 levels Tripolar (∼1°), 62 levels 1.5°, 40 levels 

Assimilation 
Atmosphere 

ERA-Interim (Dee et al. 
2011) from 1980 to 2018 
and ERA5 (Hersbach et al. 
2020) afterwards: full-field 
nudging of temperature, 
horizontal wind and specific 
humidity 

ERA5 (Hersbach et al. 2020) 
full-field 

None 

3D full field wind and T of 
JRA55 (Kobayashi et al. 
2015) with the simplified 
IAU (Tatebe et al. 2012) 

ERA-40 (Uppala et al. 2005) 
before 1979 and ERA5 
(Hersbach et al. 2020) from 
1980: Vorticity, divergence, 
log(p), T; full field with 
nudging 
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Assimilation Ocean 

Nudging to 3D potential 
temperature and salinity 
from ORAS5 reanalysis (Zuo 
et al. 2019). Sea surface 
temperature relaxed to 
interpolated values from 
NOAA’s OISSTv2 from Nov. 
1981 to present, and 
NOAA’s ERSSTv3 prior 
(Smith et al. 2008). 

EN4 (Good et al. 2013) 3D 
nudging T and S with 
weaker nudging band 
around equator. SST and 
SSS restoring to ORAS5 (Zuo 
et al. 2019). Atmospheric 
forcing: DFS5.2 1958-1979 
and ERA5 after 1980 

Nudging towards SST 
(ERSSTv5) and SSS (EN4) 
using a restoring coefficient 
dependent on the mixed 
layer depth (Ortega et al. 
2017) 

3D full field T, S, and sea-ice 
concentration of an ocean 
objective analysis (Ishii and 
Kimoto 2009) with the 
simplified IAU (Tatebe et al. 
2012) 

EN4 (Good et al. 2013) 3D 
full field T and S with 
ensemble Kalmann filter 
(Brune et al. 2018) 

Assimilation Land 
Indirectly through response 
of CLASS-CTEM to the data-
constrained coupled ESM 

LPJ-GUESS forced offline 
with ERA5 1979-2020 after 
preindustrial 
spinup+transient up to 
1979 

None None 

Indirectly initialized by 
atmospheric and oceanic 
data assimilation within the 
fully coupled ESM 

Ensemble Size 10 10 10 10 10 

Period of reconstruction 1960-2023 1980-2023 1960-2023 1960-2023 1960-2023 

Hindcasts and forecasts 
1 year starting from Jan. 1st 
1980-2024 

14 months starting from 
Nov.1st 1980-2023 

1 year starting from Jan. 1st 
1981-2024 

14 months starting from 
Nov. 1st 1980-2023 

14 months starting from 
Nov.1st 1980-2023 

External forcings 

The Coupled Model Intercomparison Project Phase 6 (CMIP6) historical (1960-2014) plus SSP2-4.5 baseline and CovidMIP two year blip scenario 
(after 2015) (Eyring et al. 2016; Lamboll et al. 2021). The CO2 emissions forcing from 2015 onward are substituted by GCP-GridFED (Jones et al. 
2021; 2023) for all the models except for IPSL-CM6A-CO2-LR. Note the difference in global integrated CO2 emissions between CMIP6 CovidMIP 
and GCP-GridFED in recent years is within the emission uncertainty. 
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Table S6. Comparison of the projection with realised fossil CO2 emissions (EFOS). The ‘Actual’ values are first the estimate available using actual data, and the ‘Projected’ values refers to 
estimates made before the end of the year for each publication. Projections based on a different method from that described here during 2008-2014 are available in Le Quéré et al., 
(2016). All values are adjusted for leap years. 
 World China USA EU28 / EU27 (i) India Rest of World (ii) 
 Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual Projected Actual 

2015 (a) 
–0.6% 

0.06% 
–3.9% 

–0.7% 
–1.5% 

–2.5% – – – – 
1.2% 

1.2% 
(–1.6 to 0.5) (–4.6 to –1.1) (–5.5 to 0.3) (–0.2 to 2.6) 

2016 (b) 
–0.2% 

0.20% 
–0.5% 

–0.3% 
–1.7% 

–2.1% – – – – 
1.0% 

1.3% 
(–1.0 to +1.8) (–3.8 to +1.3) (–4.0 to +0.6) (–0.4 to +2.5) 

2017 (c) 
2.0% 

1.6% 
3.5% 

1.5% 
–0.4% 

–0.5% – – 
2.00% 

3.9% 
1.6% 

1.9% 
(+0.8 to +3.0) (+0.7 to +5.4) (–2.7 to +1.0) (+0.2 to +3.8) (0.0 to +3.2) 

2018 (d) 
2.7% 

2.1% 
4.7% 

2.3% 
2.5% 

2.8% 
-0.7% 

-2.1% 
6.3% 

8.0% 
1.8% 

1.7% 
(+1.8 to +3.7) (+2.0 to +7.4) (+0.5 to +4.5) (-2.6 to +1.3) (+4.3 to +8.3) (+0.5 to +3.0) 

2019 (e) 

0.5% 
0.1% 

2.6% 
2.2% 

-2.4% 
-2.6% 

-1.7% 
-4.3% 

1.8% 
1.0% 

0.5% 
0.5% 

(-0.3 to +1.4) (+0.7 to +4.4) (-4.7 to -0.1) (-5.1% to 
+1.8%) (-0.7 to +3.7) (-0.8 to +1.8) 

2020 (f) 
-6.7% 

-5.4% 
-1.7% 

1.4% 
-12.2% 

-10.6% 

-11.3% 
(EU27) -10.9% 

-9.1% 
-7.3% 

-7.4% 
-7.0% 

      

2021 (g) 4.8% 5.1% 4.3% 3.5% 6.8% 6.2% 6.3% 6.8% 11.2% 11.1% 3.2% 4.5% 
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(4.2% to 
5.4%) 

(3.0% to 
5.4%) 

(6.6% to 
7.0%) 

(4.3% to 
8.3%) 

(10.7% to 
11.7%) 

(2.0% to 
4.3%) 

2022 (h) 

1.1% 
0.9% 

-1.5% 
0.9% 

1.6% 
1.0% 

-1.0% 
-1.9% 

5.6% 
5.8% 

2.5% 
0.6% 

(0% to 1.7%) (-3.0% to 
0.1%) 

(-0.9% to 
4.1%) 

(-2.9% to 
1.0%) 

(3.5% to 
7.7%) 

(0.1% to 
2.3%) 

2023 (j) 

1.1% 
1.3% 

4.0% 
4.9% 

-3.0% 
-3.3% 

-7.4% 
-8.4% 

8.2% 
8.2% 

0.4% 
0.7% (0.0% to 

2.1%) 
(1.9% to 

6.1%) (-5% to -1%) (-9.9% to -
4.9%) 

(6.7% to 
9.7%) 

(-1.4% to 
2.3%) 

2024 (k) 

0.8% 
 

0.1% 
 

-0.9% 
 

-2.8% 
 

3.7% 
 

1.7% 
 

(-0.2% to 
1.7%) 

(-1.7% to 
1.9%) 

(-2.1% to 
0.3%) 

(-5.2% to -
0.3%) 

(3.3% to 
4.0%) 

(-0.1% to 
3.5%) 
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Table S7 Attribution of fCO2 measurements for the year 2023 included in SOCATv2024 (Bakker et al., 2016, 2024) to 
inform ocean fCO2-based data products. 

Platform 
Name Regions 

No. of 
measureme

nts Principal Investigators 
No. of 

datasets 
Platform 
Type 

Atlantic 
Explorer North Atlantic, coastal 48,596 Bates, N. R.; Enright M. 20 Ship 
Atlantic Sail North Atlantic, coastal 16,770 Steinhoff, T.; Körtzinger, A. 3 Ship 
Bell M. 
Shimada 

North Pacific, Tropical Pacific, 
coastal 35,730 Alin, S.; Feely, R. 7 Ship 

Cap San 
Lorenzo Tropical Atlantic, coastal 18,343 Lefèvre, N. 1 Ship 
CCE1_122W_3
3N Coastal 1,426 Sutton, A.; Send, U.; Ohman, M. 1 Mooring 
CCE2_121W_3
4N Coastal 417 Sutton, A.; Send, U.; Ohman, M. 1 Mooring 
Colibri North Atlantic, coastal 24,528 Lefèvre, N. 3 Ship 

Equinox 
North Atlantic, Tropical 
Atlantic, coastal 19,612 Wanninkhof, R.; Pierrot, D. 12 Ship 

F.G. Walton 
Smith Coastal 3,831 

Barbero L.; Pierrot, D.; 
Wanninkhof, R. 3 Ship 

Finnmaid Coastal 311,468 
Rehder, G; Bittig, H. C.; Glockzin, 
M. 10 Ship 

G.O. Sars Arctic, North Atlantic, coastal 103,965 Skjelvan, I. 12 Ship 
GAKOA_149W_
60N Coastal 470 Monacci, N. 1 Mooring 
Gordon Gunter North Atlantic, coastal 24,848 Wanninkhof, R.; Pierrot, D. 4 Ship 
Henry B. 
Bigelow Coastal 18,661 Wanninkhof, R.; Pierrot, D. 3 Ship 
Heron Island Coastal 1,322 Tilbrook, B.; van Ooijen E. 1 Mooring 
Investigator Southern Ocean 152,788 Tilbrook, B.; Akl, J.; Neill, C. 7 Ship 
Kangaroo 
Island Southern Ocean 378 Tilbrook, B.; van Ooijen E. 1 Mooring 
KC_BUOY Coastal 3,020 Evans, W. 1 Mooring 

Keifu Maru II 
North Pacific, Tropical Pacific, 
coastal 7,300 Enyo, K. 5 Ship 

Maria Island Southern Ocean 1,640 Tilbrook, B.; van Ooijen E. 1 Mooring 
Marion 
Dufresne Indian Ocean, Southern Ocean 5,662 Lo Monaco, C.; Metzl, N. 1 Ship 

New Century 2 

North Atlantic, North Pacific, 
Tropical Pacific, Southern 
Ocean, coastal 258,209 Nakaoka, S.-I.; Takao, S. 16 Ship 

Papa_145W_50
N North Pacific 820 

Sutton, A.; Cronin, M.; Emerson, 
S. 1 Mooring 

Quadra Island 
Field Station Coastal 78,466 Evans, W. 1 Mooring 
R/V Belgica Coastal 4,485 Theetaert, H.; Gkritzalis, T. 1 Ship 

Roger Revelle 
Tropical Pacific, Southern 
Ocean 37,941 

Alin, S.; Woosley R. J.; Feely, R.; 
Martz T. R. 3 Ship 
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Ryofu Maru III 
North Pacific, Tropical Pacific, 
coastal 7,454 Enyo, K. 7 Ship 

SA Agulhas II Southern Ocean 7,123 
Hamnca, S.; Tsanwani, M.; 
Monteiro, P. M. S. 1 Ship 

Sea Explorer 

Southern Ocean, Coastal, 
Tropical Atlantic, North 
Atlantic 69,377 Olivier, L.; Landschützer,P. 3 Ship 

Seaspan Royal Coastal 230,720 Evans, W. 6 Ship 

Simon Stevin Coastal 80,488 
Gkritzalis, T.; Theetaert, H.; 
T'Jampens, M. 11 Ship 

Soyo Maru North Pacific, coastal 42,169 Ono, T. 2 Ship 

Statsraad 
Lehmkuhl 

North Atlantic, Tropical 
Atlantic, Southern Ocean, 
coastal 27,582 Becker, M.; Olsen, A. 2 Ship 

Tangaroa Southern Ocean 15,315 Currie, K. I. 3 Ship 
TAO170W_0N Tropical Pacific 2,091 Sutton, A. 1 Mooring 
Thomas G. 
Thompson 

North Pacific, Tropical Pacific, 
Southern Ocean, coastal 29,782 Alin, S.; Feely, R. 5 Ship 

Trans Future 5 
North Pacific, Tropical Pacific, 
Southern Ocean, coastal 159,856 Nakaoka, S.-I.; Takao, S. 14 Ship 

Tukuma Arctica North Atlantic, coastal 53,130 Becker, M.; Olsen, A. 17 Ship 
Victor 
Angelescu Southern Ocean 23,904 Berghoff C.; Arbilla L.; Veccia M. 3 Ship 
Wakataka 
Maru North Pacific, coastal 62,156 Tadokoro, K.; Ono, T. 5 Ship 
WHOTS_158W
_23N Tropical Pacific 1,440 

Sutton, A.; Weller, B.; 
Pluddemann, A. 1 Mooring 
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Table S8. Aircraft measurement programs archived by Cooperative Global Atmospheric Data Integration 
Project (Schuldt et al. 2023 and 2024) that contribute to the evaluation of the atmospheric inversions (Figure 
S5). 
Site 
code 

Measurement program name in 
Obspack Specific doi Data providers 

AAO 
Airborne Aerosol Observatory, 
Bondville, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ABOVE 

Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE) 

https://doi.org/10.3334/ORN
LDAAC/1404 

Sweeney, C., J.B. Miller, A. Karion, S.J. 
Dinardo, 
and C.E. Miller. 2016. CARVE: L2 
Atmospheric Gas Concentrations, Airborne 
Flasks, Alaska, 2012-2 
015. ORNL DAAC, Oak Ridge, Tennessee, 
USA. 

ACG Alaska Coast Guard  Sweeney, C.; McKain, K.; Karion, A.; 
Dlugokencky, E.J. 

ACT 
Atmospheric Carbon and Transport - 
America  Sweeney, C.; Dlugokencky, E.J.; Baier, B; 

Montzka, S.; Davis, K. 
AIRCOR
ENOAA NOAA AirCore  Colm Sweeney (NOAA) AND Bianca Baier 

(NOAA) 

AJAX 

Alpha Jet Atmospheric eXperiment 
(AJAX)   

Emma L. Yates, Laura T. Iraci, Susan S. 
Kulawik, Ju-Mee Ryoo, Josette E. Marrero, 
Caroline L. Parworth, Thao Paul V. Bui, 
Cecilia S. Chang, Jonathan M. Dean-Day 
(NASA Ames Research Center), Jason M. 
St. Clair, Thomas F. Hanisco (Atmospheric 
Chemistry and Dynamics Laboratory, NASA 
Goddard Space Flight Center) 

ALF Alta Floresta  Gatti, L.V.; Gloor, E.; Miller, J.B.; 

AOA 
Aircraft Observation of Atmospheric 
trace gases by JMA  ghg_obs@met.kishou.go.jp 

BGI Bradgate, Iowa  Sweeney, C.; Dlugokencky, E.J. 

BNE Beaver Crossing, Nebraska  Sweeney, C.; Dlugokencky, E.J. 

BRZ Berezorechka, Russia  Sasakama, N.; Machida, T. 

CAR Briggsdale, Colorado  Sweeney, C.; Dlugokencky, E.J. 

CMA Cape May, New Jersey  Sweeney, C.; Dlugokencky, E.J. 

CON 

CONTRAIL (Comprehensive 
Observation Network for TRace gases 
by AIrLiner) 

http://dx.doi.org/10.17595/20
180208.001 

Machida, T.; Ishijima, K.; Niwa, Y.; Tsuboi, 
K.; Sawa, Y.; Matsueda, H.; Sasakawa, M. 

CRV 
Carbon in Arctic Reservoirs 
Vulnerability Experiment (CARVE)  Sweeney, C.; Karion, A.; Miller, J.B.; Miller, 

C.E.; Dlugokencky, E.J. 
DND Dahlen, North Dakota  Sweeney, C.; Dlugokencky, E.J. 

ESP Estevan Point, British Columbia  Sweeney, C.; Dlugokencky, E.J. 

ETL East Trout Lake, Saskatchewan  Sweeney, C.; Dlugokencky, E.J. 

FWI Fairchild, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

GSFC 
NASA Goddard Space Flight Center 
Aircraft Campaign  Kawa, S.R.; Abshire, J.B.; Riris, H. 

HAA Molokai Island, Hawaii  Sweeney, C.; Dlugokencky, E.J. 

HFM Harvard University Aircraft Campaign  Wofsy, S.C. 

HIL Homer, Illinois  Sweeney, C.; Dlugokencky, E.J. 

HIP 
HIPPO (HIAPER Pole-to-Pole 
Observations) 

https://doi.org/10.3334/CDIA
C/HIPPO_010 

Wofsy, S.C.; Stephens, B.B.; Elkins, J.W.; 
Hintsa, E.J.; Moore, F. 

IAGOS- In-service Aircraft for a Global  Obersteiner, F.; Boenisch., H; Gehrlein, T.; 

https://doi.org/10.3334/ORNLDAAC/1404
https://doi.org/10.3334/ORNLDAAC/1404
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CARIBIC Observing System Zahn, A.; Schuck, T. 
IAGOS-
CORE 

In-service Aircraft for a Global 
Observing System  Christoph Gerbig (Max-Planck-Institut für 

Biogeochemie, Jena) 

INX INFLUX (Indianapolis Flux Experiment)  Sweeney, C.; Dlugokencky, E.J.; Shepson, 
P.B.; Turnbull, J. 

LEF Park Falls, Wisconsin  Sweeney, C.; Dlugokencky, E.J. 

MAN Manaus, Brazil  Miller, J.B.; Martins, G.A.; de Souza, R.A.F. 

NHA 
Offshore Portsmouth, New Hampshire 
(Isles of Shoals)  Sweeney, C.; Dlugokencky, E.J. 

OIL Oglesby, Illinois  Sweeney, C.; Dlugokencky, E.J. 

ORC 
ORCAS (O2/N2 Ratio and CO2 
Airborne Southern Ocean Study) 

https://doi.org/10.5065/D6SB
445X 

Stephens, B.B, Sweeney, C., McKain, K., 
Kort, E. 

PFA Poker Flat, Alaska  Sweeney, C.; Dlugokencky, E.J. 

RBA-B Rio Branco  Gatti, L.V.; Gloor, E.; Miller, J.B. 

RTA Rarotonga  Sweeney, C.; Dlugokencky, E.J. 

SAN Santarem, Brazil  Sweeney, C.; Dlugokencky, E.J.; Gatti, 
L.V.; Gloor, E.; Miller, J.B. 

SCA Charleston, South Carolina  Sweeney, C.; Dlugokencky, E.J. 

SGP Southern Great Plains, Oklahoma  Sweeney, C.; Dlugokencky, E.J.; Biraud, S. 

TAB Tabatinga  Gatti, L.V.; Gloor, E.; Miller, J.B. 

TGC Offshore Corpus Christi, Texas  Sweeney, C.; Dlugokencky, E.J. 

THD Trinidad Head, California  Sweeney, C.; Dlugokencky, E.J. 
UGD Kajjansi Airfield, Kampala, Uganda  McKain, K; Sweeney, C 
ULB Ulaanbaatar, Mongolia  Sweeney, C.; Dlugokencky, E.J. 
WBI West Branch, Iowa  Sweeney, C.; Dlugokencky, E.J. 
(a) Schuldt et al. 2023. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957-2022; 
obspack_co2_1_GLOBALVIEWplus_v9.0_2023-09-09; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20230801. 
(b) Schuldt et al. 2024. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 2023-2024; 
obspack_co2_1_NRT_v9.2_2024-03-25; NOAA Earth System Research Laboratory, Global Monitoring Laboratory. 
http://doi.org/10.25925/20240215. 

 

 

http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
http://doi.org/10.25925/20230801.
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Table S9. Main methodological changes in the global carbon budget since first publication. Methodological changes introduced in one year are kept for the following years unless noted. Empty 
cells mean there were no methodological changes introduced that year. 

Publication 
year 

Fossil fuel emissions LUC emissions Reservoirs 
Uncertainty & other 

changes Global Country (territorial) Country 
(consumption)  Atmosphere Ocean Land 

2006 (a)  Split in regions       

2007 (b)    ELUC based on FAO-
FRA 2005; constant 
ELUC for 2006 

1959-1979 data from 
Mauna Loa; data 
after 1980 from 
global average 

Based on one ocean 
model tuned to 
reproduced observed 
1990s sink 

 ±1σ provided for all 
components 

2008 (c)    Constant ELUC for 
2007 

    

2009 (d)  Split between Annex 
B and non-Annex B 

Results from an 
independent study 
discussed 

Fire-based emission 
anomalies used for 
2006-2008 

 Based on four ocean 
models normalised 
to observations with 
constant delta 

First use of five 
DGVMs to compare 
with budget residual 

 

2010 (e) Projection for 
current year based 
on GDP 

Emissions for top 
emitters 

 ELUC updated with 
FAO-FRA 2010 

    

2011 (f)   Split between Annex 
B and non-Annex B 

     

2012 (g)  129 countries from 
1959 

129 countries and 
regions from 1990-
2010 based on 
GTAP8.0 

ELUC for 1997-2011 
includes interannual 
anomalies from fire-
based emissions 

All years from global 
average 

Based on 5 ocean 
models normalised 
to observations with 
ratio 

Ten DGVMs available 
for SLAND; First use 
of four models to 
compare with ELUC 
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2013 (h)  250 countriesb 134 countries and 
regions 1990-2011 
based on GTAP8.1, 
with detailed 
estimates for years 
1997, 2001, 2004, 
and 2007 

ELUC for 2012 
estimated from 
2001-2010 average 

 Based on six models 
compared with two 
data-products to 
year 2011 

Coordinated DGVM 
experiments for 
SLAND and ELUC 

Confidence levels; 
cumulative 
emissions; budget 
from 1750 

2014 (i) Three years of BP 
data 

Three years of BP 
data 

Extended to 2012 
with updated GDP 
data 

ELUC for 1997-2013 
includes interannual 
anomalies from fire-
based emissions 

 Based on seven 
models 

Based on ten models Inclusion of 
breakdown of the 
sinks in three 
latitude bands and 
comparison with 
three atmospheric 
inversions 

2015 (j) Projection for 
current year based 
Jan-Aug data 

National emissions 
from UNFCCC 
extended to 2014 
also provided 

Detailed estimates 
introduced for 2011 
based on GTAP9 

  Based on eight 
models 

Based on ten models 
with assessment of 
minimum realism 

The decadal 
uncertainty for the 
DGVM ensemble 
mean now uses ±1σ 
of the decadal 
spread across models 

2016 (k) Two years of BP data Added three small 
countries; China’s 
emissions from 1990 
from BP data (this 
release only) 

 Preliminary ELUC 
using FRA-2015 
shown for 
comparison; use of 
five DGVMs 

 Based on seven 
models 

Based on fourteen 
models 

Discussion of 
projection for full 
budget for current 
year 
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2017 (l) 

Projection includes 
India-specific data 

  

Average of two 
bookkeeping models; 

use of 12 DGVMs 

 

Based on eight 
models that match 

the observed sink for 
the 1990s; no longer 

normalised 

Based on 15 models 
that meet 

observation-based 
criteria (see Sect. 

2.5) 

Land multi-model 
average now used in 
main carbon budget, 

with the carbon 
imbalance presented 
separately; new table 
of key uncertainties 

2018 (m) 
Revision in cement 

emissions; Projection 
includes EU-specific 

data 

Aggregation of 
overseas territories 

into governing 
nations for total of 

213 countries a 

 
Average of two 

bookkeeping models; 
use of 16 DGVMs 

Use of four 
atmospheric 

inversions 

Based on seven 
models 

Based on 16 models; 
revised atmospheric 

forcing from 
CRUNCEP to CRUJRA 

Introduction of 
metrics for 

evaluation of 
individual models 
using observations 

2019 (n) Global emissions 
calculated as sum of 

all countries plus 
bunkers, rather than 
taken directly from 

CDIAC. 

 

 

Average of two 
bookkeeping models; 

use of 15 DGVMs 

Use of three 
atmospheric 

inversions 

Based on nine 
models Based on 16 models  

a Raupach et al. (2007) 
b Canadell et al. (2007) 
c GCP (2008) 
d Le Quéré et al. (2009) 
e Friedlingstein et al. (2010) 
f Peters et al. (2012a) 
g Le Quéré et al. (2013), Peters et al. (2013) 
h Le Quéré et al. (2014) 
i Le Quéré et al. (2015a) 
j Le Quéré et al. (2015b) 
k Le Quéré et al. (2016) 
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l Le Quéré et al. (2018a) 
m Le Quéré et al. (2018b) 
n Friedlingstein et al. (2019) 
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Table S10: Translation of global carbon cycle models' land flux definitions to the definition of the LULUCF 
net flux used by National GHG Inventory (NGHGI) reports to UNFCCC. Non-intact lands are used here as 
proxy for "managed lands" in the country reporting. NGHGIs are gap-filled (see Sec. C.2.3 for details). For 
comparison, we provide the net land flux on managed land from atmospheric inversions and FAOSTAT 
estimates. Units are GtC yr-1. 
Carbon flux Source 2004-2013 2014-2023 

ELUC 
Bookkeeping 
estimates from Table 
5 

1.41 1.13 

SLAND total DGVMs from Table 5 3.15 3.19 
SLAND in non-
intact forest DGVMs 1.75 1.83 
ELUC minus 
SLAND in non-
intact forest 

Bookkeeping ELUC & 
DGVM SLAND -0.34 -0.70 

LULUCF NGHGIs -0.57 -0.76 
Net land flux 
on managed 
land 

Atmospheric 
inversions -0.80 -0.69 

LULUCF FAOSTAT 0.32 0.30 
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Table S11 - Evaluation of global ocean biogeochemistry models based on comparison with observation-based interior 
ocean carbon accumulation and process-based evaluation metrics for Atlantic Meridional Overturning Circulation 
(AMOC), Southern Ocean sea surface salinity and surface ocean Revelle factor (following the RECCAP2 ocean model 
evaluation chapter, Terhaar et al., 2024) and Southern Ocean stratification index (Bourgeois et al., 2022). See 
supplementary text C3.3 for details of calculation and observational data sources. Note that AMOC from MOM6-Cobalt 
(Princeton) is only available between 2018 - 2022, which is the value reported here 

  Global Ocean Biogeochemistry Models 

Metric 
Observat
ions 

ACCES
S 
(CSIRO
) 

CESM-
ETHZ 

FESO
M2.1-
REco
M 

MOM
6-
Cobalt 
(Princ
eton) 

MPIO
M-
HAMO
CC6 

MRI-
ESM2-
3 

NEMO
-
PISCES 
(IPSL) 

NEMO
-
PlankT
OM12 

NEMO
3.6-
PISCES
v2-gas 
(CNR
M) 

NorES
M-
OC1.2 

Interior ocean anthropogenic carbon accumulation in GtC yr⁻¹ 

Global (1994-2007, Gruber et 
al., 2019) 

33.8 ± 
4.0 36.4 26.0 31.4 27.1 19.9 27.4 28.9 25.4 27.1 33.6 

North (1994-2007, Gruber et 
al., 2019) 5.9 6.4 5.3 5.9 5.1 3.6 5.6 6.0 4.3 5.8 6.8 

Tropics (1994-2007, Gruber et 
al., 2019) 17.5 15.0 8.7 13.3 11.5 9.1 12.5 12.8 12.5 12.5 13.7 

South (1994-2007, Gruber et 
al., 2019) 10.4 15.0 12.0 12.3 10.6 7.2 9.4 10.1 8.6 8.8 12.9 

Global (1994-2004, Müller et 
al., 2023) 

29.3 ± 
2.5 24.6 19.5 24.1 20.6 15.3 20.3 21.9 18.5 21.2 24.8 

Global (2004-2014, Müller et 
al., 2023) 

27.3 ± 
2.5 31.4 22.5 27.4 24.2 18.5 23.8 25.0 22.4 23.8 28.5 

            

Atlantic Meridional 
Overturning Circulation at 
26°N, 2005-2022 in Sv (Moat et 
al., 2023) 

17.0 ± 
1.3 9.7 13.0 10.2 10.7 15.3 13.5 14.2 17.9 13.1 22.9 

            

Southern Ocean sea surface salinity 2005-2022 in psu (Good et al., 2013) 

subpolar seasonally stratified 
biome (SPSS) 33.942 34.262 33.809 34.295 34.061 33.925 34.074 34.239 33.873 33.824 34.116 

subpolar seasonally stratified 
and subtropical seasonally 
stratififed biomes (SPSS+STSS) 34.307 34.577 34.185 34.565 34.385 34.254 34.363 34.554 34.358 34.124 34.506 

            

Southern Ocean stratification 
index 2005-2022, in kg m-3 
(Bourgeois et al., 2022, Good 
et al., 2013) 5.88 5.45 5.97 5.68 6.13 5.97 6.03 5.60 5.06 6.18 5.76 
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Surface ocean Revelle factor 

1997-2007, unitless 
(GLODAPv2.2016, Lauvset et al., 
2016) 10.44 10.61 10.33 10.65 10.34 10.72 10.60 10.65 10.49 10.77 10.58 

2005-2021, unitless 
(OceanSODA_v2023, updated 
from Gregor and Gruber, 2021) 10.62 10.77 10.52 10.84 10.52 10.93 10.79 10.81 10.65 10.93 10.75 
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Supplementary Figures 

 
Figure S1. Ensemble mean air-sea CO2 flux from a) global ocean biogeochemistry models and b) fCO2 based 

data products, averaged over 2014-2023 period (kgC m-2 yr-1). Positive numbers indicate a flux into the ocean. 

c) gridded SOCAT v2024 fCO2 measurements, averaged over the 2014-2023 period (µatm). In (a) model 

simulation A is shown. The fCO2-products represent the contemporary flux, i.e. including outgassing of riverine 

carbon, which is estimated to amount to 0.65 GtC yr-1 globally.  
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Figure S2. Evaluation of the GOBMs and fCO2-products using the root mean squared error (RMSE) for the 

period 1990 to 2023, between the individual surface ocean fCO2 mapping schemes and the SOCAT v2024 

database. The y-axis shows the amplitude of the interannual variability of the air-sea CO2 flux (A-IAV, taken as 

the standard deviation of the detrended annual time series). Results are presented for the globe, north (>30°N), 

tropics (30°S-30°N), and south (<30°S) for the GOBMs (see legend, circles) and for the fCO2-based data 

products (star symbols). The fCO2-products use the SOCAT database and therefore are not independent from the 

data (see Section 2.5.1).  
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Figure S3. Trend evaluation of six from the eight fCO2-products used for SOCEAN (blue circles - CSIR-ML6, 

NIES-ML3, VLIZ-SOMFFN, OceanSODA-ETHZv2, JMA-MLR, Jena-MLS) . The x-axis represents the mean 

fCO2 trend bias from a model subsampling exercise (following Hauck et al., 2023) using four of the GCB2023 

GOBMs (CESM, FESOM-REcoM, IPSL and MRI-ESM). The y-axis represents the flux trend as submitted  by 

the fCO2 product to this study. Besides the northern hemisphere, where all of the six fCO2-products overestimate 

the subsampled model trend, there is a clear relationship between the trend reconstruction bias and the flux trend 

(red line with grey dashed lines representing the 1 sigma uncertainty  interval), indicating that flux trends are 

sensitive to the fCO2-products ability to reconstruction biases. 

 

 



56 
 

 

Figure S4. Evaluation of the DGVMs using the International Land Model Benchmarking system (ILAMB; 

Collier et al., 2018) Skill scores relative to other models. The benchmarking is done with observations for GPP 

and ecosystem respiration (Reichstein et al., 2007; Lasslop et al., 2010; Knauer et al., 2018; Jung et al., 2017; 

Tramontana et al., 2016; Alemohammad et al., 2017), leaf area index (Vermote, 2019; Claverie et al., 2016; De 

Kauwe et al., 2011; Myneni et al., 1997), soil carbon (Hugelius et al., 2013; Fischer et al., 2008), 

evapotranspiration (De Kauwe et al., 2011; Martens et al., 2017; Miralles et al., 2011; Mu et al., 2011), and 

runoff (Dai and Trenberth, 2002; Hobeichi et al., 2019; Hobeichi et al., 2020). Metrics include relationships 

between carbon cycle variables, precipitation (Adler et al., 2003) and temperature (Harris et al., 2014). For each 

model–observation comparison a series of error metrics are calculated, scores are then calculated as an 

exponential function of each error metric, and finally for each variable the multiple scores from different metrics 

and observational datasets are combined to give the overall variable scores. Overall variable scores increase 

from 0 to 1 with improvements in model performance. The set of error metrics vary with dataset and can include 

metrics based on the period mean, bias, root mean squared error, spatial distribution, interannual variability, and 

seasonal cycle. The relative skill score shown is a Z score, which indicates in units of standard deviation the 

model scores relative to the mean score for a given variable. Grey boxes represent missing model data.  



57 
 

 
Figure S5. Evaluation of the atmospheric inversion products. The mean of the model minus observations is 

shown for four latitude bands in three periods: (first panel) 2001-2023, (second panel) 2010-2023, (third panel) 

2015-2023. The 14 systems are compared to independent CO2 observations from aircraft over many places of 

the world between 2 and 7 km above sea level. Aircraft measurements archived in the Cooperative Global 

Atmospheric Data Integration Project (Schuldt et al. 2023, Schuldt et al. 2024) from sites, campaigns or 

programs that have not been assimilated and cover at least 9 months (except for SH programs) between 2001 

and 2023, have been used to compute the biases (top row) and their standard deviations (middle row) in four 45° 

latitude bins. Land and ocean data are used without distinction, and observation density varies strongly with 

latitude and time as seen on the lower panels. 



58 
 

 
 

Figure S6. Comparison of the estimates of each component of the global carbon budget in this study (black line) 

with the estimates released annually by the GCP since 2006. Grey shading shows the uncertainty bounds 

representing ±1 standard deviation of the current global carbon budget, based on the uncertainty assessments 
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described in Supplement S1 to S4. CO2 emissions from (a) fossil CO2 emissions excluding cement carbonation 

(EFOS), and (b) land-use change (ELUC), as well as their partitioning among (c) the atmosphere (GATM), (d) the 

land (SLAND), and (e) the ocean (SOCEAN). See legend for the corresponding years, and Tables 3 and A8 for 

description of changes in methodology. The budget year corresponds to the year when the budget was first 

released. All values are in GtC yr-1. 

 

Figure S7. Differences in the HYDE/LUH2 land-use forcing used for the global carbon budgets GCB2022 

(Friedlingstein et al., 2022b), GCB2023 (Friedlingstein et al., 2023), and GCB2024 (this paper). Shown are 

year-to-year changes in cropland area (top panel) and pasture area (middle panel). To illustrate the relevance of 
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the update in the land-use forcing to the recent trends in ELUC, the bottom panel shows the land-use emission 

estimate from the bookkeeping model BLUE (original model output, i.e., excluding emissions from peat fire and 

peat drainage).  
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Figure S8: Split of net fluxes from wood harvest and other forest management into gross emissions and gross 

removals. Solid lines denote the average of the three bookkeeping models and shaded areas the full range (min-

max) of the bookkeeping model estimates. 
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Figure S9. Fire carbon emissions for the months January-September for each year 2003-2024 from two global 

fire emissions products. (Top row) Global emissions. (Middle row) Emissions for the northern hemisphere 

extratropics (>30° N), tropics (30° N-30° S) and southern extratropics (>30° S). (Bottom row) Emissions by 

RECCAP2 region. The Global Fire Assimilation System (GFAS; Di Giuseppe et al., 2018) (left column) and 

the Global Fire Emissions Database (GFED, version 4.1s; van der Werf et al., 2017) (right column) are among 

the most widely applied global fire emissions products based on satellite remote sensing of fire. GFED relies on 

the post-fire detection of burned areas combined with fuel consumption factors. GFAS relies on the detection of 

thermal energy release during active fires. 
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