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Abstract. Irrigation accounts for the major form of human water consumption and plays a pivotal role in en-
hancing crop yields and mitigating the effects of drought. Accurate mapping of irrigation distribution is essential
for effective water resource management and the assessment of food security. However, the resolution of the
global irrigated cropland map is coarse, typically approximately 10 km, and it lacks regular updates. In our
study, we present a robust methodology that leverages irrigation performance during drought stress as an in-
dicator of crop productivity and water consumption to identify global irrigated cropland. Within each irrigation
mapping zone (IMZ), we identified the dry months of the growing season from 2017 to 2019 or the driest months
from 2010 to 2019. To delineate irrigated cropland, we utilized the collected samples to calculate normalized
difference vegetation index (NDVI) thresholds for the dry months of 2017 to 2019 and the NDVI deviation from
the 10-year average for the driest month. By integrating the most accurate results from these two methods, we
generated the Global Maximum Irrigation Extent dataset at 100 m resolution (GMIE-100), achieving an overall
accuracy of 83.6 %± 0.6 %. The GMIE-100 reveals that the maximum extent of irrigated cropland encompasses
403.17± 9.82 Mha, accounting for 23.4 %± 0.6 % of the global cropland. Concentrated in fertile plains and re-
gions adjacent to major rivers, the largest irrigated cropland areas are found in India, China, the United States,
and Pakistan, which rank first to fourth, respectively. Importantly, the spatial resolution of GMIE-100 surpasses
that of the dominant irrigation map, offering more detailed information essential to support estimates of agri-
cultural water use and regional food security assessments. Furthermore, with the help of the deep learning (DL)
method, the global central pivot irrigation system (CPIS) was identified using Pivot-Net, a novel convolutional
neural network built on the U-net architecture. We found that there is 11.5± 0.01 Mha of CPIS, accounting
for approximately 2.90 %± 0.03 % of the total irrigated cropland. In Namibia, the United States, Saudi Arabia,
South Africa, Canada, and Zambia, the CPIS proportion was greater than 10 %. To our knowledge, this is the
inaugural study to undertake a global identification of specific irrigation methods, with a focus on the CPIS. The
GMIE-100 dataset containing both the irrigated extent and CPIS distribution is publicly available on Harvard
Dataverse at https://doi.org/10.7910/DVN/HKBAQQ (Tian et al., 2023a).
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1 Introduction

Irrigation plays a pivotal role in mitigating the impacts of
drought events (Wang et al., 2021; Wu et al., 2022). As cli-
mate change intensifies, droughts and heatwaves have be-
come more frequent; thus, irrigation has emerged as an effec-
tive strategy to counter these extreme events and bolster the
resilience of agricultural systems (McDermid et al., 2023).
However, irrigation represents a significant human interven-
tion in the global water cycle, as it accounts for 67 % of
global freshwater withdrawal and 87 % of total water con-
sumption (Wu et al., 2022). Therefore, accurate information
about irrigation is critical for both crop monitoring and wa-
ter resource management purposes (Wu et al., 2023b; Tian
et al., 2022). However, the highest available resolution for
existing irrigation maps remains within a range of 500 m to
10 km (Nagaraj et al., 2021; Siebert et al., 2005, 2013). This
resolution is insufficient to support effective crop condition
monitoring and sustainable water resource management at
the subbasin level (Zhang et al., 2022b; Xie and Lark, 2021).

Traditionally, two methods have been used for generating
gridded irrigation maps. The first method involves the allo-
cation of statistical data that uses specific indicators such as
land cover area, peak normalized difference vegetation in-
dex (NDVI) values, and irrigation potential indices (Zhu et
al., 2014; Pervez and Brown, 2010; Zajac et al., 2022). For
example, the Food and Agriculture Organization (FAO) ap-
plied this approach to produce the Global Map of Irrigation
Area (FAO-GMIA) from 1995 to 2005 at a 10 km resolution;
this renowned irrigation map is widely applied in global wa-
ter resource management (Siebert et al., 2015). At the na-
tional scale, several irrigation maps for China have been pro-
duced with resolutions ranging from 500 to 1000 m; these
maps primarily utilize data from the Chinese Statistical Year-
book (Zhu et al., 2014; Zhang et al., 2022c). For the United
States, Pervez and Brown (2010) developed the MODIS Irri-
gated Agriculture Dataset for the United States (MIrAD-US)
with a resolution of 250 m. Zajac et al. (2022) produced the
European Irrigation Map for 2010 (EIM2010), albeit with a
coarser 10 km× 10 km resolution. Importantly, the accuracy
of irrigated cropland maps generated through these methods
relies heavily on the representativeness of the spatial alloca-
tion indicators and the precision of the statistical data. The
indicators used to allocate irrigation areas to each grid often
fail to capture the precise distribution of irrigated cropland,
especially in humid regions (Pervez and Brown, 2010). As a
result, achieving higher-resolution irrigation maps using this
approach can be challenging. Furthermore, due to variations
in terrain types and irrigation techniques, census data may
underestimate the actual irrigation area (Zhang et al., 2022b).
Furthermore, data from different departments may exhibit
discrepancies owing to differing statistical criteria. For ex-
ample, in 2010, the reported irrigation area in California dif-
fered by more than 10 % between the US Geological Survey

and the state’s Department of Water Resources (Meier et al.,
2018).

Scholars have sought to independently derive irrigated
cropland using spectral signatures (Thenkabail et al., 2009;
Salmon et al., 2015). The peak values in time-series vege-
tation indices can serve as indicators of crop water stress,
biomass, and chlorophyll content. Given that irrigated crops
typically exhibit reduced water stress and elevated chloro-
phyll content, disparities in peak vegetation index values
can be harnessed to differentiate between irrigated and rain-
fed croplands. Commonly employed vegetation indices for
this approach include the NDVI, greenness index (GI), land
surface water index (LSWI), chlorophyll vegetation index
(GCVI), and enhanced vegetation index (EVI) (Shahriar Per-
vez et al., 2014; Lu et al., 2021; Chen et al., 2018; Xiang
et al., 2019; dela Torre et al., 2021). The discrimination be-
tween irrigated and rainfed croplands is typically accom-
plished through thresholding or decision tree classification
and relies on selected vegetation indices. Nevertheless, im-
portantly, vegetation indices may not entirely capture crop
water stress, leading to subtle differences in peak vegetation
indices and complicating the mapping of large-scale irrigated
farmland.

To improve the delineation of irrigated cropland, super-
vised classification models incorporate climate variables and
environmental factors, such as precipitation, temperature,
surface temperature, and terrain (Salmon et al., 2015). For
instance, Thenkabail et al. (2009) combined AVHRR vegeta-
tion index time series, precipitation data, elevation informa-
tion, and vegetation cover maps as inputs to a decision tree
classifier, resulting in the creation of the first global irrigated
area map (IWMI-GIAM) at a 10 km resolution based on re-
mote sensing data. Salmon et al. (2015) employed MODIS
vegetation indices and 19 climate variables to produce the
Global Rainfed and Irrigated Cropland map (GRIPC-500) for
2005 at a resolution of 500 m.

In recent years, the mapping of irrigated croplands at
national and regional scales has undergone significant ad-
vancements due to the availability of extensive meteorolog-
ical and remote sensing data stored in Google Earth En-
gine (GEE) (Zhang et al., 2022b; Deines et al., 2019; Xie
et al., 2019; Xie and Lark, 2021). Xie et al. (2021) devel-
oped a random forest model that incorporates a wide ar-
ray of variables, including environmental factors (precipi-
tation, Palmer drought severity index, soil moisture, arid-
ity index, land surface, and air temperature), vegetation in-
dices (NDVI, NDWI, GCVI, WGI, and AGI), and ground
irrigation samples. This model achieved an impressive 30 m
resolution irrigation dataset for the United States (LANID).
Subsequently, Zhang et al. (2022a) applied this methodol-
ogy to generate an irrigated cropland map for China from
2000 to 2019 with a resolution of 500 m (IrriMap_CN). In
the same year, Zhang et al. (2022c) enhanced the resolu-
tion of the irrigation cropland distribution map for China to
250 m. However, this method heavily relies on sample data,
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and the spatial representativeness of these irrigation and rain-
fed samples directly influences the accuracy of the results
(Zhang et al., 2022b). Collecting ground sample points is a
labour-intensive and time-consuming process, and ensuring
their spatial representativeness across larger areas, including
at a global scale, poses considerable challenges (Zhang et al.,
2022c, d; Tian et al., 2022).

Though various irrigation maps exist at global and national
scales, many of these maps suffer from either very low spa-
tial resolution or outdated information, as outlined in Table 1
(Dari et al., 2023). Among these data, the Landsat-derived
Global Rainfed and Irrigated-area Product (LGRIP30) is a
high-resolution irrigated cropland with an overall accuracy of
86.5 % using advanced machine learning algorithms, which
was released on February 2023 and is available through
NASA’s Land Processes Distributed Active Archive Center
(LP DAAC) (Teluguntla et al., 2023). The LGRIP30 data in-
dicate a total global net irrigated area (TGNIA) of 0.71 Gha
among all cropland area of 1.80 Gha of croplands, meaning
the irrigation proportion was approximately 39.44 %, sug-
gesting a relative high proportion compared to exiting result
(Thenkabail et al., 2009; Siebert et al., 2015). While some
high-resolution irrigation maps are annually updated, they
are typically applicable only at a national level (Zhang et al.,
2022b; Xie et al., 2021). Thus, the challenge of generating
a higher-resolution and up-to-date global irrigated cropland
map via supervised methods persists.

An additional significant issue is the phenomenon of
“mixed pixels” in MODIS data, which is particularly pro-
nounced in regions with fragmented croplands, such as farm-
lands in southern China and Africa, where agricultural fields
are often smaller than one MODIS pixel (6.25 ha) (Zhang et
al., 2022a). Consequently, global irrigation maps with higher
resolution are urgently needed to support both water resource
management and food security assessments.

Inspired by the fundamental purpose of irrigation, which is
to alleviate the impact of drought, we introduced the Global
Maximum Irrigated Extent with 100 m resolution (GMIE-
100) dataset. This dataset leverages irrigation performance
during periods of drought stress. When drought conditions
prevail, disparities in crop conditions, as indicated by the
peak NDVI values, become more pronounced between irri-
gated and rainfed farmlands. This amplification enables the
precise identification of irrigated farmland across most re-
gions while also reducing the number of required training
samples (Wu et al., 2023a).

Furthermore, considerable variations in irrigation effi-
ciency are apparent among different irrigation types, with
central pivot irrigation systems (CPISs), which achieve an ef-
ficiency rate exceeding 80 % and are the predominant global
sprinkler irrigation method (Tian et al., 2023b). In contrast,
gravity-flowing irrigation methods, while widespread, ex-
hibit a comparatively lower efficiency rate of approximately
60 % (Waller and Yitayew, 2016). Despite the important
role of irrigation in agriculture, few studies have been dedi-

cated to the remote sensing identification of various irrigation
types, indicating a notable gap in scientific exploration. No-
tably, the unique circular configuration of CPISs facilitates
their visual interpretation from satellite imagery, presenting
an avenue for enhanced monitoring and analysis through re-
mote sensing technologies. The advent of deep learning (DL)
has opened avenues for the classification of types of irriga-
tion methods based on distinctive spatial patterns, such as the
CPIS. In this study, Pivot-Net, a shape-attention neural net-
work designed for CPIS identification in satellite imagery,
was used, and a global CPIS dataset (GCPIS) was generated
to estimate the proportion of types of irrigation methods for
the CPIS.

2 Materials and methods

Taking inspiration from the fundamental purpose of irriga-
tion, our aim is to identify periods of drought stress to high-
light disparities in crop conditions between irrigated and
rainfed croplands. We began by utilizing the 65 monitoring
and reporting units (MRUs) established by CropWatch (Wu
et al., 2015; Gommes et al., 2016). These MRUs, which ac-
count for factors such as crop types, agricultural potential,
and environmental conditions, served as the foundation for
dividing global cropland into 110 irrigation mapping zones
(IMZs). The first-level 65 agroecological zones provide a
broad global overview. To address limitations in represent-
ing water stress and irrigation within zones, we introduced a
more detailed classification, creating second-level agroeco-
logical zones based on arid indices, water availability, soil
types, and landforms. Ultimately, we utilized 110 IMZs as
the foundational units for determining the specific timing of
drought stress, as illustrated in Fig. 1. This comprehensive
approach enabled us to capture and amplify the distinctions
in crop conditions between irrigated and rainfed croplands.
Irrigated cropland is defined as agricultural land that benefits
from human interventions and is equipped with irrigation in-
frastructure, including facilities like canals and central pivot
systems (Salmon et al., 2015; Meier et al., 2018). This defini-
tion includes areas that receive irrigation at any time during
the season, regardless of whether they are irrigated in every
season or not.

The general framework for detecting drought stress and
evaluating crop conditions in irrigated and rainfed cropland is
illustrated in Fig. 2. The study was inspired by the purpose of
irrigation, i.e. that it mitigates the effect of water stress. Basi-
cally, we assume that water stress can be regular or irregular.
If there are crops during the dry season, the irrigation should
occur regularly. Otherwise, irrigation is just complementary
to rainfall in extremely dry years, which means irrigation is
irregular. For regular irrigation, we could detect vegetation
signal in the dry season (DM-NDVI) when precipitation can-
not meet water demand for crops. For irregular irrigation, we
compare the NDVI in extremely dry years to the 10-year av-
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Table 1. List of existing irrigation maps at the global or national scale.

Dataset Coverage Spatial
resolution

Time Method summary Reference

Global Irrigated Area
Map (IWMI-GIAM)

Global 10 km 2000 Uses decision tree classifier with veg-
etation index & environmental data as
input

Thenkabail et al. (2009)

Global Map of Irriga-
tion Area (FAO-GMIA)

Global 10 km 1995/2000/2005 Allocates census data based on
land cover area

Siebert et al. (2015)

Global Rainfed, Irri-
gated and Paddy Crop-
lands (GRIPC-500)

Global 500 m Single map
2005

Includes climate variables and environ-
mental factors in a decision
tree classifier

Salmon et al. (2015)

Global Food-Support
Analysis Data
(GFSAD)

Global 1 km 2010 Created using multiple input data in-
cluding satellite, climatic, and census
data

Thenkabail et al. (2012)

Landsat-derived Global
Rainfed and Irrigated-
Cropland Product
at nominal 30 m of
the World
(USGS-LGRIP30)

Global 30 m 2015 Landsat-derived global rainfed and irri-
gated cropland product within cropland
extent

Teluguntla et al. (2023)

Landsat-based
Irrigation Dataset
(LANID)

United
States

30 m 1997–2017 Random forest model based on environ-
mental variables & vegetation indices

Xie et al. (2021, 2019);
Xie and Lark (2021)

Annual irrigation
maps across China
(IrriMap_CN)

China 500 m 2000–2019 Random forest with remote sensing in-
dex and environmental index

Zhang et al. (2022b)

Remotely sensed high-
resolution irrigated area
in India

India 250 m 2000–2015 NDVI series in decision tree method Ambika et al. (2016)

erage level and calculate the deviation (NDVIdev) to deter-
mine whether it is irrigated or not. To determine whether a re-
gion has regular or irregular irrigation, we used both of these
indicators and chose the method with the higher accuracy.

Then, with the support of the DL model, a CPIS identifi-
cation model focused on circular shapes was trained and ap-
plied to the entire world to generate global CPIS distribution
data. The extent of the CPIS was recognized as the extent
of irrigation used to update the global extent of irrigation. Fi-
nally, we estimated the proportion of irrigation types of CPIS
within irrigated cropland.

2.1 Input data

In this research, the distribution of rainfall on a global scale
plays a pivotal role in determining the necessity for crop irri-
gation. The focus of this study was the 10-year period from
2010 to 2019, and the aim was to identify the driest year
within this time frame. Two distinct sources of precipitation
data were utilized:

(a) Tropical Rainfall Measuring Mission (TRMM) data
from the TRMM collection TRMM/3B43V7, which
provides monthly precipitation estimates, were em-

ployed for geographical areas ranging from 50° S to
50° N. This data source offers insights into precipitation
patterns within this specific region.

(b) Global Land Data Assimilation System (GLDAS) data
for precipitation were used for areas outside the 50° S
to 50° N range, as GLDAS provides information on pre-
cipitation in regions beyond the tropical band.

Additionally, the evapotranspiration product,
MOD16A2.006, which was introduced by Mu et al. in
2013 (Mu et al., 2013), was utilized. This product can
determine the water surplus during the driest months within
each IMZ. The MOD16A2.006 dataset is characterized
by an 8 d composite time frame and a pixel resolution of
500 m. It is derived from the Penman–Monteith equation
and incorporates both daily meteorological reanalysis data
and remotely sensed data products from MODIS. This
comprehensive dataset aids in the assessment of water
availability and evapotranspiration dynamics during critical
dry periods.

The 30 m spatial resolution NDVI data from the Landsat
sensors Thematic Mapper (TM), Enhanced Thematic Map-
per Plus (ETM+), and Thermal Infrared Sensor (OLI-TIRS)
on board Landsat-5, Landsat-7, and Landsat-8, respectively,
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Figure 1. Samples of irrigated, rainfed, and central pivot irrigation system (CPIS) from multiple sources and mapping units for irrigation
mapping and CPIS identification. GVG is the GPS, Video, GIS system for collecting field data. VHR means very high resolution. IMZs
means irrigation mapping zones.

were used in Google Earth Engine (GEE) (Gorelick et al.,
2017) to differentiate irrigated and nonirrigated areas across
various IMZs during a specific period. The NDVI data were
masked using the cloud and water mask in the flag file and
rescaled into the same range between −1 and 1.

2.2 Sample data

Acquiring irrigation samples on a global scale presents
an enormous challenge due to significant labour and cost
requirements, primarily attributable to the extensive geo-
graphic scope. To globally classify irrigated and nonirrigated
cropland, a single dataset of adequately representative sam-
ples is needed; however, such a dataset is currently unavail-
able. The scarcity of irrigation datasets tailored to specific
crop types hinders precise differentiations between irrigated
and nonirrigated croplands. In most countries, except for In-
dia, China, and Pakistan, the area allocated to irrigated crop-
lands constitutes a relatively minor fraction of the total culti-
vated area. This paucity of representation poses challenges in
amassing a substantial sample size suitable for classification
purposes. Contemporary irrigation maps often have coarse
spatial resolutions, which curtail their efficacy in generating
precise samples for classification endeavours. To overcome
these limitations and establish a robust sample dataset, an
integrative methodology was employed. This approach en-
tailed the fusion of data originating from three independent

sources, facilitating a more comprehensive and accurate ap-
praisal of global irrigated and nonirrigated croplands.

The first source comprises field data points collected us-
ing the GVG (GPS, Video, GIS) application in China (sur-
veyed from 2010 to 2019), Cambodia (in 2019), Ethiopia
(from 2018 to 2019), Zambia (from 2016 to 2019), Mozam-
bique (from 2016 to 2019), and Zimbabwe (from 2016
to 2019). This application serves as a comprehensive field
data collection system that integrates GPS for precise po-
sitioning, a video for capturing geo-tagged photographs,
and a GIS system for managing geographic information
(Wu et al., 2023a, 2020), which can be downloaded via
https://gvgserver.cropwatch.com.cn/download (last access:
17 February 2025). By conducting observations of irrigation
infrastructure, including irrigation canals, reservoirs, lakes,
rivers, and irrigation wells, and through interactions with
farmers, we were able to determine the types of irrigation
in the fields. Additionally, irrigation was applied for cer-
tain crop types, such as winter wheat in the North China
Plain, cotton in Xinjiang, and vegetable and tomatoes in most
provinces. Meanwhile, irrigated crops usually appear greener
and lusher compared with nearby crops. If it cannot be distin-
guished following the above characteristics, the inquiry of lo-
cal farmers could give the answer. The collected dataset com-
prises a total of 78 338 sample points, including 36 809 rain-
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Figure 2. Flow chart of GMIE-100 with a typical irrigation type of CPIS. GVG is the GPS, Video, GIS system for collecting field data.
VHR means very high resolution. IMZs means irrigation mapping zones. NDVIdev: NDVI deviation in extremely dry years with the 10-year
average level. DM-NDVI: NDVI in the dry season.

fed samples and 41 529 irrigation samples, with the majority
of these points located in China, totalling 72 224 points.

The second data source consists of validation points col-
lected as part of the Global Food Security Analysis Data
30 (GFSAD30) project, which is made available to the pub-
lic through the website https://croplands.org/app/data/search
(last access: 17 February 2025). This project is a collabo-
rative effort involving the United States Geological Survey
(USGS), various universities, research institutions, and com-
panies such as Google. These sample points were collected
or derived as part of the project’s objective to support global
food security analysis at a 30 m spatial resolution. Some sam-
ples were collected via field surveys conducted using mo-
bile applications. Others were derived from interpretations
of remote sensing imagery, such as MODIS and Landsat TM
data, crop-specific thematic maps, foundational geographic
data (e.g. road networks), and other geospatial information
(e.g. elevation data layers). The dataset encompasses a to-
tal of 17 076 sample points, comprising 3000 rainfed points
and 14 076 irrigated points. The majority of these points are
located in Brazil (13 368), Australia (2192), Thailand (393),
and Tunisia (389).

The third supplementary data source involved the acqui-
sition of samples through visual interpretation of very high

resolution (VHR) images available in GEE. The following
irrigation points were selected based on identifiable irriga-
tion infrastructure: (1) central pivot irrigation systems, which
are easy to identify due to their shapes; (2) clearly visi-
ble irrigation systems, which are clearly visible on VHR
images; (3) rain-deficient cultivated areas, which are areas
classified as cropland with insufficient rainfall but exhibit-
ing NDVI values indicating vegetation presence and an-
nual growth rings; and (4) high vegetation signals during
dry seasons, identified by elevated vegetation indices dur-
ing these periods. The United Nations Food and Agricul-
ture Organization’s Global Map of Irrigation Areas (FAO
GMIA) (Siebert et al., 2013) and the World Heritage Irriga-
tion Structures (WHIS) list (https://www.icid.org/icid_his1.
html, last access: 17 February 2025) were used as reference
sources. The FAO GMIA’s Irrigation Areas of Interest (AEI)
and WHIS listings were consulted to identify irrigation ar-
eas. Rainfed irrigation points were selected based on FAO
GMIA’s criteria. If a region lacked any irrigation infrastruc-
ture and the AEI value from the FAO GMIA was zero, the
area was classified as a rainfed irrigation sample.

Figure 1 illustrates a total of 115 379 sample points. In to-
tal, 80 % of these data, or 92 303 points (comprising 37 650
rainfed and 54 653 irrigated points), were employed for train-
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ing or calibrating the threshold. The remaining 20 %, or
23 076 points (comprising 10 892 rainfed cropland points and
12 184 irrigated points), were used for result validation.

2.3 Land cover and cropland datasets

In this research, we delineated irrigated croplands within
the extent of cropland. The definition of cropland was the
same as that of the Joint Experiment of Crop Assess-
ment and Monitoring (JECAM) network for the Group on
Earth Observations Global Agricultural Monitoring Initia-
tive (GEOGALM), which defines the land used for sea-
sonal crops (sowed/planted and harvested at least once within
12 months), such as cereals, root, and tuber crops; for oil
crops; and for economically significant crops, such as sugar,
vegetables, and cotton (Waldner et al., 2016). Additionally,
the land occupied by greenhouses was considered cropland.
To achieve comprehensive global cropland coverage, the syn-
thesized data were obtained from 16 recent national and
regional datasets spanning 2015–2019, which were supple-
mented by two global satellite-derived land cover datasets, as
listed in Table 2. In this study, all land cover classes that met
the cropland definition were consolidated into a single cat-
egory labelled “cropland”. On the other hand, various non-
vegetation land cover classes (e.g. urban or water) and veg-
etated classes (e.g. forest or grasslands), including agricul-
tural categories (e.g. permanent crops, cultivated rangeland,
and grassland), were amalgamated into one class as “non-
cropland”. The cropland mask at a 30 m resolution could be
obtained from the International Research Center of Big Data
for Sustainable Development Goals via https://data.casearth.
cn/thematic/cbas_2022/158 (last access: 17 February 2025).
These data integrated more than 10 cropland datasets includ-
ing global cropland products, FROM-GLC (Yu et al., 2013)
and GFSAD30 (Thenkabail et al., 2021), and national and re-
gional datasets, such as ChinaCover (Wu et al., 2017, 2024),
Cropland Data Layers (Boryan et al., 2011), Agriculture and
Agri-Food Canada Annual Crop Inventory (Fisette et al.,
2013; McNairn et al., 2009), and MapBiomass (do Canto et
al., 2020). More information about this cropland mask can be
found in the Supplement. These data have been utilized for
their extensive validation by local experts, leading to their
high precision in mapping cropland (Wu et al., 2023a). The
overall accuracy of this cropland was 89.4 %. Moreover, this
mask has also been employed in other studies to map global
crop intensity (Zhang et al., 2021a).

2.4 Irrigation mapping method

2.4.1 Identifying the dry months and dry years

The cumulative yearly rainfall and monthly rainfall (P ) for
2010–2019 were calculated from the TRMM dataset for all
the IMZs via GEE. Simultaneously, monthly potential evapo-
transpiration (PET) data for the same time were derived from

the MOD16A2.006 product in GEE. The monthly water sur-
plus (P −PET) was calculated by subtracting the monthly P
and the monthly PET.

Within the growing seasons of 2017–2019, we identified
the dry months by pinpointing the lowest differences be-
tween the monthly P and PET. Additionally, we determined
the driest year from 2010–2019 based on the lowest annual
P , and the corresponding driest month was identified as the
month with the lowest P −PET value during the driest year
within the growing season.

2.4.2 Identifying thresholds of NDVI and NDVI deviation

Irrigated cropland is characterized as cropland subjected to
human interventions and equipped with irrigation infrastruc-
ture, including systems such as canals and CPISs (Wu et al.,
2023a). The specific threshold for distinguishing between ir-
rigated and nonirrigated cropland varies across IMZs. The
threshold for each IMZ was determined by training samples
through visual interpretation of very high resolution images
from Google Earth.

For each IMZ, the maximum NDVI was calculated within
the cropland extent during dry months (NDVImax-DM) us-
ing Landsat-8 images in Google Earth Engine to detect veg-
etation signals. In regions where regular irrigation is neces-
sary, irrigated cropland can be mapped annually. However,
to avoid missing fallow land based on the results of a single
year, irrigated croplands were identified through the NDVI
threshold over a 3-year period from 2017 to 2019.

For regions with ample rainfall, drought stress may not
be a concern. Hence, satellite data spanning the 2010–2019
period were utilized to identify the crop conditions during
extreme drought events. The NDVI deviation (NDVIdev) was
calculated for the driest month of the driest year from 2010–
2019 for the cropland pixels according to the following for-
mula:

NDVIdev =
NDVImax−DriestM− 10YNDVIDM

10YNDVIDM
, (1)

where NDVImax-DriestM is the maximum NDVI value in the
driest month over 10 years, and 10YNDVIDM is the monthly
average NDVI in the same month.

For each IMZ, the midpoint value for a cropland pixel
was determined from the irrigated and nonirrigated training
points via Fisher’s linear discriminant (Duda et al., 2012):

Nmidpoint=
Nirrigated+Nnonirrigated

2
, (2)

where Nirrgated and Nnonirrigated represent the mean values of
the NDVI or NDVIdev at irrigated and nonirrigated points,
respectively.

For each IMZ, the Nmidpoint of the NDVI value and
NDVIdev, serving as the threshold value, was calculated us-
ing irrigated and rainfed samples. Subsequently, pixels ex-
hibiting an NDVI exceeding their specific threshold values
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for dry months or an NDVIdev below the threshold during
the driest month of the driest year were designated irrigated;
otherwise, the pixels below the threshold were classified as
nonirrigated.

The final threshold value was determined by selecting the
NDVI or NDVIdev threshold that yielded the highest overall
accuracy in distinguishing irrigated cropland in the valida-
tion samples. Subsequently, the chosen threshold value for
either the NDVI or NDVIdev of the IMZ was applied to the
respective pixels, which were accepted as the final results. If
the maximum NDVI value in dry months achieved higher ac-
curacy for identifying irrigated cropland, the corresponding
region usually needs regular irrigation and thus is labelled as
region irrigation regular (RIR). Otherwise, the region needs
irrigation only occasionally for some years and thus is la-
belled as region irrigation occasional (RIO).

Taking IMZ C48, primarily situated in Pakistan, as an ex-
ample, Fig. 3a illustrates the monthly NDVI profile for the
year 2017 within Pakistan (IMZ C48, south Asia, Punjab to
Gujarat). It is evident that the discrepancy in NDVI values
between irrigated and nonirrigated crops remained marginal
for the majority of the months in 2017. However, in Febru-
ary 2017, during a period of drought stress characterized
by a meager precipitation of 4.4 mm or a precipitation-to-
evapotranspiration ratio of 0.02, the disparity in NDVI val-
ues became notably more pronounced and distinguishable.
Consequently, the optimal NDVI threshold of 0.44 was as-
certained to be the most suitable for discriminating irrigated
from nonirrigated regions, as depicted in Fig. 4b.

For the RIO, IMZ C58 was chosen as an example. Fig-
ure 3d and f illustrate the monthly NDVI profiles for the ex-
treme drought year of 2012, the 10-year average NDVI value,
and the NDVI deviation of the extreme drought year from the
10-year average. The comparison revealed that rainfed crop-
land exhibited more substantial fluctuations in the NDVI than
did irrigated cropland. Consequently, the NDVIdev (NDVI
deviation) during severe drought or extremely arid conditions
was employed to differentiate irrigated cropland from other
categories. The NDVIdev midpoint was established as 0.12
following Eq. (2).

By combining these two categories of irrigated cropland,
we created a comprehensive global irrigation map. For fur-
ther detailed information, please refer to Wu et al. (2023a).
Originally, the Global Maximum Irrigated Extent (GMIE)
dataset was established at a 30 m resolution, featuring a bi-
nary classification into irrigated and rainfed cropland. This
resolution was determined by the availability of cropland
masks and NDVI data, both of which are at the 30 m scale.
However, the extent of irrigation may vary due to crop ro-
tation and fallow cropland, which are clearly observable
at a 30 m resolution and impact the extent of irrigated
cropland. We calculated the irrigated cropland proportion
within 100 m× 100 m to reduce these effects. The GMIE-
100 dataset ranges from 0 to 1, with a no-data value set at
−99.

2.5 CPIS identification

Inspired by the spatial attention gate, four attention blocks
were incorporated into the connections between downsam-
pling and upsampling within the U-Net architecture (Fig. 4).
Pivot-Net incorporates four spatial attention gates to effec-
tively capture information about the round shape of the CPIS.
To enhance the model’s ability to understand shape-related
intermediate features during boundary detection and segmen-
tation tasks, a multitask learning approach was employed
to train the model. This approach integrates pixel-wise seg-
mentation and boundary prediction as integral components
of Pivot-Net’s learning objectives. This method was success-
fully applied to identify CPISs for the whole of the United
States (Tian et al., 2023b).

We generated composite, cloud-free satellite data by uti-
lizing optical images from Sentinel-2 and Landsat-8 for each
tile within GEE from March to August 2020. All exported
data from GEE were stored in Google Drive. The world was
divided into 345 tiles of 6°× 6°, 23 of which were anno-
tated manually (Fig. 5). In total, 80 % of all the CPIS labels
or 9140 patches with 256× 256 pixels were used for train-
ing the model, and the remaining 20 % of the CPIS labels or
2284 patches were used for accuracy validation.

Subsequently, we transferred the trained model, which
was stored on a local high-performance computer, to Google
Drive. By employing the robust computational capabilities of
Google Colab Pro+ (https://colab.research.google.com/, last
access: 17 February 2025), which seamlessly accesses satel-
lite data in Google Drive, we applied the well-trained Pivot-
Net model across all tiles. The satellite data were partitioned
into 256× 256 patches with a 128-pixel overlap (stride= 128
pixels). The final prediction was determined by selecting the
maximum prediction probability within the overlap region.

3 Results and discussion

3.1 Spatial pattern of irrigated cropland and GCPIS

The spatial distribution of GMIE-100 is shown in Fig. 6. The
GMIE-100 revealed that the maximum extent of irrigated
cropland is 403.17± 9.82 Mha (million hectares), which ac-
counts for 23.4 %± 0.6 % of the global cropland, equiva-
lent to 1724.08 Mha. This figure surpasses the total area
equipped for irrigation reported by FAOSTAT for 2000–2008
(307.60 Mha) (Siebert et al., 2013) and closely aligns with
the irrigated area estimated by IWMI–GIAM (406.40 Mha,
representing 19.5 % of global cropland in 2000) (Thenk-
abail et al., 2009). India (94.85 Mha, representing 50.4 %
of cropland) has the largest area of irrigated cropland in
the world, with China (85.16 Mha, 50.0 % of cropland)
and Pakistan (18.04 Mha, 80.2 % of cropland) ranking sec-
ond and fourth, respectively. In addition, the United States
(26.54 Mha, 15.5 % of cropland) ranks third globally in terms
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Figure 3. NDVI profile in 2017 (a); NDVI histogram in February 2017 (b) (Pakistan IMZ C48 as an example); monthly NDVI in an
extremely dry year (2012), 10-year average NDVI, and NDVIdev for typical central pivot irrigated cropland (c, d) and rainfed cropland (e,
f) in southern Ukraine (IMZ C58). The background images in (c) and (e) are Landsat-8 images. Panels (c) and (e) are credited to the U.S.
Geological Survey.

of irrigated cropland. For the remaining countries, less than
10 Mha of cropland is irrigated.

The irrigated cropland is notably concentrated in regions
characterized by expansive plains and proximity to rivers.
These flat and river-proximal areas are well suited for irri-
gation due to easy access to water resources (Jianxi et al.,
2015; Wu et al., 2021). In fact, a substantial portion of the
global irrigated cropland, encompassing 224 Mha, or 55.6 %
of the total irrigated cropland, is situated in such plain re-
gions. Prominent examples include the Ganges Plain, the In-
dus Plain, and the North China Plain, all of which host sig-
nificant expanses of irrigated cropland. Nevertheless, despite
their close proximity to water sources, there are areas where

the proportion of irrigated land remains low. For instance,
regions such as the Danube estuary in Romania exhibit an ir-
rigation proportion of 3.65 %, despite experiencing high an-
nual food production variability (Wriedt et al., 2009). Simi-
larly, the Zambezi basin, which encompasses countries such
as Zambia (4.1 %) and Mozambique (4.2 %), struggles with
food insecurity despite its access to water resources.

Apart from plains, oases within arid zones represent a sig-
nificant category of regions with extensive irrigated crop-
land. These areas are distinctive due to their limited precipi-
tation but abundant sunlight and heat resources (Chen et al.,
2023b). In oases, the availability of irrigation is crucial for
crop survival. Approximately 31 Mha of irrigated cropland

https://doi.org/10.5194/essd-17-855-2025 Earth Syst. Sci. Data, 17, 855–880, 2025



864 F. Tian et al.: GMIE

Figure 4. Architecture of the shape-attention Pivot-Net (Tian et al., 2023b).

is situated within arid zone oases, constituting 7.7 % of the
total irrigated cropland. Well-known oasis agricultural re-
gions across the world include the Nile basin and the delta
region in Egypt, the California Valley in the United States,
and Xinjiang in China. These areas thrive due to their irri-
gation practices, which enable the productive use of scarce
water resources amid arid conditions (Cui et al., 2024).

The distribution of irrigated cropland exhibits distinct pat-
terns when examined from both latitude and longitude per-
spectives. Along the latitude, we observe exceptionally high
irrigation proportions around the 30° N latitude, which en-
compasses regions along the lower Yangtze River, Ganges
River, Indus River, and Nile River. These river basins are
characterized by dense concentrations of irrigated cropland,
owing to the availability of water resources from these ma-
jor river systems (Nagaraj et al., 2021). On the other hand,
when assessing irrigation proportions along the longitude, we
observe elevated levels of irrigation between 60 and 120° E.
This longitudinal span encompasses prominent regions such
as the Indus-Ganges Plain and the North China Plain, which
are renowned for their high levels of irrigated agriculture.

For the CPIS worldwide, the spatial pattern is depicted
in Fig. 7. The total area of the CPIS is estimated to be
115 192.2± 100.0 km2, comprising 2.9 % of the total irri-
gated area. The area in Chen’s research is 107 232.8 km2

(Chen et al., 2023a) in global arid regions. The CPIS is
mainly distributed in the high plain aquifers (HPAs), in-
cluding north Texas, Kansas, and Nebraska; southern Brazil;
South Africa; and the Middle East region. Along the longi-
tude, the CPIS proportion is high from 90 to 120° W, which

matches the range of HPAs, while the CPIS proportion is rel-
atively apparent between 30 and 60° N with latitude.

The distributions of irrigated cropland and CPIS propor-
tions across the six continents are depicted in Fig. 8a. Asia
has the most irrigated area, covering 273.79 Mha, with an ir-
rigation proportion of 39.3 %. North America follows with
16.9 %, South America with 15.5 %, Europe with 10.6 %,
Africa with 9.6 %, and Oceania with 9.2 %. For the types of
irrigation method, the CPIS proportion was highest in North
America, with CPISs accounting for 13.8 % of the total irri-
gated area, followed by South America at 5.0 % and Oceania
at 2.9 %.

In Fig. 8b, we summarize the irrigation and CPIS propor-
tions across different climate zones. We used the global arid-
ity index and criteria in the literature to classify climate zones
(Zomer et al., 2022). The irrigation proportion decreases sig-
nificantly, from 91.8 % in hyperarid zones to 20.7 % in semi-
humid zones. It then exhibits a slight increase to 21.4 % in
humid zones. These variations in irrigation proportions cor-
respond to the distinct water availability and climatic condi-
tions in these regions. For the irrigation methods, the CPIS
proportion is highest in the hyperarid region (5.7 %), fol-
lowed by the semiarid region (3.9 %).

Figure 9a shows the irrigation proportion for each coun-
try. Notably, the irrigation proportion increases with geo-
graphical expansion from north Africa through west Asia,
south Asia, and east Asia. In Fig. 9b, the irrigation pro-
portions are presented for each IMZ. The spatial distribu-
tion aligns with the pattern depicted in Fig. 9a. Several
countries in west Asia and north Africa, including Oman,
Saudi Arabia, Qatar, and Egypt, boast irrigation proportions
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Figure 5. (a) Distribution of irrigation mapping zones and irrigated and rainfed cropland samples. (b–f) Five annotated tiles for CPIS labels
and images. Panels (b)–(f) are the coordinates of the lower left corner point of each tile. Panels (g)–(k) are detailed maps of CPIS labels.
Their locations are shown in panels (b)–(f) as yellow rectangles. The background images in panels (b)–(k) are Landsat-8 images.

of 100 %. Additionally, three countries surpassed an irri-
gation proportion of 80 %, namely, Turkmenistan (89.4 %),
Uzbekistan (81.3 %), and Pakistan (80.4 %). Among all the
IMZs, Gansu–Xinjiang in China has the highest irrigation
proportion at 100.0 %, followed by the central northern
Andes (96.2 %), Eurasian–African deserts (90.5 %), south-
ern Himalayas in India (84.0 %), semi-arid Southern Cone
(82.9 %), and Lower Yangtze in China (80.8 %).

Figures 9c and 8d are the CPIS proportions for each coun-
try and the IMZ, respectively. CPISs are mainly concen-
trated in countries with intensified agricultural regions and
extreme arid zones, such as the Middle East. The highest
proportion of CPISs is in Namibia (23.4 %), followed by the

United States (20.33 %), Saudi Arabia (16.3 %), South Africa
(15.7 %), Canada (12.6 %), Zambia (12.5 %), the Gaza Strip
(12.2 %), and Brazil (9.6 %). For the IMZs, the proportions
of CPISs were greatest in the Amazon (C24) at 81.2 %, north
of the High Plains (C12-4) at 42.5 %, south Zambia (C09-
3) at 41.6 %, American northwestern Great Plains (C12-3) at
36.0 %, western Mongolia (C47) at 25.0 %, British Columbia
to Colorado (C11) at 24.2 %, the American Cotton Belt to
the Gulf Coastal Plain in Mexico (C14-1) at 22.8 %, and the
southwest Mexican and northern Mexican highlands (C18) at
21.4 %.
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Figure 6. Global dataset of 100 m resolution irrigated cropland proportions.

3.2 Reliability of the GMIE-100

For each IMZ, the irrigation mapping method and threshold
of the NDVI or NDVIdev are shown in Fig. 10. For the IMZ
with a consistent dry season, the NDVI difference method
was employed to determine the difference in amplification
conditions between irrigated and rainfed cropland. To avoid
the omission of fallow land and crop rotation, the maximum
NDVI in the dry months of 2017–2019 was selected. The
NDVI threshold for each IMZ was determined using training
samples, which ranged from 0.10 in extremely arid regions,
such as the Eurasian–African deserts (IMZ C64), to 0.74 in
British Columbia to Colorado in North America (IMZ C11),
as shown in orange in Fig. 10. These thresholds are integral to
the accurate identification of irrigated cropland within each
IMZ.

For regions without a significant dry season, the driest
month of an extremely dry year among the 10 years (2010–
2019) was selected to amplify the crop conditions between
irrigated and rainfed cropland. The NDVIdev was used as
a proxy to measure crop condition deviations from the 10-
year average by using collected training samples. The values
ranged from −1.0 % (Amazon, C24) to −37.0 % (C60-10,
northwestern Greece and southwestern Albania), as shown
in blue in Fig. 10.

Figure 11 shows the training accuracy of each IMZ. The
NDVI or NDVIdev threshold was determined using the Fisher
discrimination method with 92 303 samples. Then, the train-
ing accuracy was assessed, which was between 0.31 % in the
Amazon (C24) and 100 % in western Asia (C31-2). Despite
the accuracy in some humid regions, such as northern South
and Central America (42 %) and the Caribbean (49 %), there
are 89 IMZs with accuracies greater than 80 % among the
105 IMZs with cropland. The specific accuracy for each IMZ
is detailed in Table S1. The confusion matrix accuracy met-
rics of GMIE-100 are shown in Table 2. To validate the final
accuracy of the GMIE-100, the remaining 20 % of the sam-
ples totalling 23 076 points were used. The overall accuracy
of GMIE-100 was 83.6 %, with a user accuracy of 86.1 %
and producer accuracy of 82.2 %.

The accuracy of GMIE-100 was evaluated in 10 coun-
tries, and the results are presented in Fig. 12, which shows
the overall accuracy, user accuracy, and producer accuracy
for each country. In China, the accuracy was assessed us-
ing 13 963 ground truth points derived from multiyear GVG
data. The overall accuracy was 85.5 %, with a predicted ac-
curacy of 86.7 % and user accuracy of 83.3 %. Commission
and omission errors were prevalent in humid areas, such as
southern China, Cambodia, and Myanmar. In other countries,
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Figure 7. The distribution of irrigation types within the irrigation extent. Panels (a)–(d) show the detailed map of CPISs. The location of
each subfigure is labelled in the main global map.

Figure 8. The irrigation proportion and CPIS proportion of total irrigated area for continents (a) and climate zones (b).
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Figure 9. The irrigation proportion for each country (a) and IMZ (b) and the CPIS proportion of total irrigated cropland for each country (c)
and IMZ (d).

Table 2. Confusion matrix and accuracy assessment of GMIE-100.

Field points

Classes Rainfed Irrigation Total User accuracy

Predicted Rainfed 9270 2170 11 440 81.0 %
Irrigated 1622 10 014 11 636 86.1 %
Total 10 892 12 184 23 076
Producer accuracy 85.1 % 82.2 %

Overall accuracy: 83.6 %

the overall accuracy of the GMIE-100 datasets was generally
acceptable.

The accuracy metrics and confusion metrics for the CPIS
are listed in Table 3. The model achieved a high validation
accuracy of 97.87 %± 0.1 %. The F1 score, which is a bal-
ance between precision and recall, is 86.87 %± 0.1 %. The
mean intersection over union (IOU) is 87.25 %± 0.2 %. We
visualized four patches with dense CPISs in Fig. 13. Overall,
the CPIS was accurately identified in most cases.

3.3 Comparison with existing irrigation datasets

3.3.1 Comparison of irrigated cropland

To compare GMIE-100 against four existing irrigation prod-
ucts, we downscaled GMIE-100 and GRIPC-500 and USGS-
LGRIP30 to a 1 km resolution and scaled IWMI-GIAM and
FAO-GMIA to a 1 km resolution via the bilinear interpola-
tion method. The results are shown in Fig. 14. The spatial
pattern of irrigated cropland in GMIE-100 generally coin-
cided with that of the other products. Irrigated cropland was
most concentrated in the North China Plain and Ganges and
Indus River basin from a worldwide perspective.
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Figure 10. The thresholds of the NDVI difference and deviation for each IMZ.

Table 3. Confusion matrix of the GCPIS identified with Pivot-Net.

CPIS predict Recall

0 1

CPIS label 0 119 938 874 735 300
1 2 077 463 9 303 403 81.75 %± 0.2 %

Precision 92.68 %± 0.1 %

Overall accuracy 97.87 %± 0.1 %

Nevertheless, there were notable discrepancies in the de-
tailed distributions of irrigated cropland patches, such as
those in northeast China, the East European Plain, the Planí-
cie de la Plata of South America, and the lower Mississippi
River basin (Fig. 15). In the North China Plain, the irri-
gated cropland appears denser within USGS-LGRIP30 and
GRIPC-500 than in the other products. According to cen-
sus data from China, the average irrigation proportion for
three provinces (Heilongjiang, Jilin, Liaoning Province) is
39.32 %. According to the GMIE-100 results, the irrigation
proportion is 27.45 %, which is closer to the census data.
For the irrigated cropland in the East European Plain, USGS-
LGRIP30 illustrates a broader distribution of irrigated crop-
land, which is significantly denser than that portrayed in
GMIE-100 and the other three datasets (Fig. 15b1–b4). No-

tably, the GRIPC-500 dataset indicates a considerable extent
of irrigated cropland in the Planície de la Plata region when
compared to GMIE-100 and the other products (Fig. 15c1–
c4). According to census data from Brazil, the reported ir-
rigation proportion is 6 %, whereas it is 58 % and 72 % in
USGS-LGRIP30 and GRIPC-500, respectively.

To validate the proposed GMIE-100, we compared it with
national census data. The results are shown in Fig. 16.
For comparison with existing global irrigation products,
we also compared GMIE-100 against FAO-GIAM, IWMI-
GMIA, USGS-LGRIP30, and GRIPC-500. The R2 between
the GMIE-100 and 23 national census datasets was 0.92,
with an RMSE of 3.52 % and a MAE of 2.74 %. For FAO-
GIAM and IWMI-GMIA, the R2 values with GMIE-100
were 0.72 and 0.73, respectively. The determination coef-
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Figure 11. Training accuracy for each irrigation map zone.

Figure 12. Accuracy for countries with GVG (GPS, Video, GIS) irrigation validation points.

ficient between USGS-LGRIP30 and GMIE-100 was only
0.45, with an RMSE of 35.6 %, the lowest value among
these three existing irrigation products. When we compared
USGS-LGRIP30 with the national census, the R2 value was
only 0.25. When comparing GMIE-100 with GRIPC-500,

the R2 value was 0.51, with an RMSE of 29.89 %. The scatter
plot shows that GRIPC-500 was consistently overestimated
in comparison with GMIE-100.
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Figure 13. Accuracy assessment for the CPIS identification results. Panels (a)–(d) are the composted images; panels (a1)–(d1) are the
prediction results of Pivot-Net, and panels (a2)–(d2) are the comparisons between our results and the labels. TP represents true positive pixels,
while TN represents true negative pixels. FP means false positive samples. Panels (a3)–(d3) are the labels. The central point coordinates of
panels (a)–(d) are (33.86, 46.37), (−47.34, 16.41), (−65.74, 32.03), and (25.11, 28.06), respectively. The background images in panels
(a)–(d) are Landsat-8 images. Panels (a)–(d) are credited to the U.S. Geological Survey.

3.4 Advantages and limitations of GMIE-100

We used irrigation performance to map irrigation at regular
intervals. Irrigation areas exhibit significant variability in ir-
rigation water use (Puy et al., 2021, 2022). Thus, changes
in the irrigated area could reflect variations in agricultural
water use, which is important for local water resource man-
agement. Due to a lack of updated information, global maps
of irrigated areas often rely on estimates from approximately
2000 (Nagaraj et al., 2021). For RIR regions, irrigation maps
can be updated every 3 years by collecting the vegetation
signals during each dry season. For RIO regions, irrigation
maps can be updated every 10 years based on crop status
during extremely dry events. Although the irrigated cropland
extent during the dry season can be identified from 2010 to
2019, our aim was to provide the most up-to-date informa-
tion based on satellite data over the 2017–2019 period.

Periodic cropland fallowing refers to the practice of not
cultivating or tilling all croplands within a single year. This
approach is often employed to restore soil fertility as part of
a crop rotation scheme or to prevent excess agricultural pro-
duction. The use of the NDVI or NDVIdev thresholds enables
the identification of only those lands that have been actively
cultivated. Subsequently, these cultivated lands can be fur-
ther categorized into either irrigated or rainfed land. An area
is designated as irrigated if it has been cultivated at least once
during the driest month over a span of 3 years. This criterion
aids in discerning areas that are actively managed for crop
production from those temporarily left fallow or unplanted.

The spatial resolution of this dataset was 100 m, which is
greater than that of the dominant irrigation data map. High-
resolution irrigated cropland data are essential for quantify-
ing agricultural water use (Wu et al., 2022). The resolution of
most existing irrigation data is very coarse, varying between
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Figure 14. Comparison of existing irrigation production at 1 km (GMIE-100, GRIPC-500, USGS-LGRIPC30) or 10 km resolution (IWMI-
GIAM and FAO-GMIA).

500 m and 10 km (Xie et al., 2019). As shown in Fig. 17,
GRIPC-500, IWMI-GIAM, and FAO-GMIA fail to capture
detailed information on irrigated cropland. Even though the
resolution of USGS-LGRIPC-30 was greater than that of
GMIE-100, the latter descriptions of heterogeneous irrigated
cropland distributions in the North China Plain (Fig. 17a1
and a3) and the US Plateau (Fig. 17d1 and d3) were better
than the former. An evapotranspiration–precipitation prod-
uct with 500 m resolution was used to determine the driest
months within each IMZ, and the time period was used to
detect irrigation performance and detect irrigated cropland.
Within each IMZ, 30 m NDVI data were used as major in-
put. Then, to avoid effect fallow land and crop rotation, we
calculate the irrigation proportion within 100 m.

As for the maximum extent, it should be understood sep-
arately for RIR and RIO. For RIR, the largest area refers to
the cropland area irrigated at least once over the past 3 years
(2017–2019) because we detect irrigation every year for this

region. To avoid missing fallow land, we identify the largest
extent over the 3-year period (2017–2019). For RIO, it means
the cropland area was irrigated at least once in the last decade
(2010–2019). For RIO, irrigation occurs occasionally. We
determine whether the cropland is irrigated in the driest year.
But in the normal year, the irrigation may not be necessary
in this area. Thus, we identified the largest extent area for the
last 10 years (2010–2019). On the other hand, when we com-
pare our result with nation census data, the result shows high
consistency. Compared with USGS-LGRIP30 and GRIPC-
500, our result does not exhibit significant overestimation.

When discussing irrigation extents, it is crucial to differen-
tiate between “net irrigated area” and “gross irrigated crop-
land area”. The net irrigated area refers to the actual land
area equipped with irrigation facilities and receiving irriga-
tion, while the gross irrigated cropland area encompasses
all the land that can potentially be irrigated during a crop’s
growing season, regardless of whether it is continuously irri-
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Figure 15. Comparison with existing irrigation production for the hotspot region of irrigation. The corresponding location is labelled in
Fig. 14 with a blue rectangle.

gated throughout the season. For instance, if a plot of land
is planted and irrigated twice in one growing season, that
land should be counted twice, reflecting in the gross irri-
gated cropland area. Therefore, the gross irrigated area typi-
cally exceeds the net irrigated area because it accounts for in-
stances of multiple plantings and irrigations. This distinction
is vital for accurately assessing the use of water resources
and planning agricultural production. In our research, we
estimated maximum irrigation extent under the assumption
that irrigation equipment is specifically deployed to mitigate
the most water-stressed conditions. Thus, we estimated the
net irrigation area for the selected growing season, whose
value should be largest during that decade or 3-year period.
For RIR, we estimate the net irrigation in the dry season
and growing season that experiences the greatest water stress
each year. Similarly, for RIO, we evaluate net irrigation area

based on a single growing season that has undergone an ex-
treme drought event in the last decade.

Furthermore, with the support of the DL method,
we successfully mapped CPISs globally, which enabled
our investigation of specific irrigation methods. We
found 11.5± 0.1 Mha of CPISs worldwide, composing
2.90 %± 0.03 % of the total irrigated cropland. To the best
of our knowledge, this is the first study to map the CPIS
irrigated method, despite Chen’s research on CPI mapping
in global arid regions (Chen et al., 2023a). GMIE com-
prises both the irrigated cropland extent and specific irriga-
tion method (CPIS) distributions with relatively high resolu-
tion, thus providing subbasin water consumption and with-
drawal estimations for all sectors (Wu et al., 2022). Due to
the variation in irrigation efficiency among different types
of irrigation methods, CPISs demonstrate an efficiency ex-
ceeding 80 %, while gravity-flowing irrigation methods ex-
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Figure 16. Comparison of national irrigation proportions between GMIE-100 and national census data (a), FAO-GMIA (b), IWMI-GIAM
(c), USGS-LGRIP30 (d) and GRIPC-500 (e).

hibit a comparatively low efficiency of approximately 60 %
(Waller and Yitayew, 2016). Therefore, irrigation efficiency
can be estimated based on types of irrigation methods in
the future. This process could enhance the understanding
of the irrigation paradox (Grafton et al., 2018), which indi-
cates that technological advancement increases irrigation ef-
ficiency, but crop water levels do not decrease. However, this
study excluded other irrigation types because the identifica-
tion of CPISs relied on the circle shape in the satellite data,
and other irrigation types lack this distinct feature. The iden-
tification of other irrigation types in the future will be impor-
tant for water use estimations (Boutsioukis and Arias-Moliz,
2022), maybe with the help of big geodata. In the maximum
irrigation extent, we include all the irrigation types that could
mitigate water stress.

Compared to the surveillance classification method, our
method requires fewer samples. However, due to a lack of
expertise, all spectral characteristics of irrigated farmland
were studied using training samples, which increased the re-
quired number of samples. Xie’s research used 20 000 sam-
ples for irrigation mapping in the United States (Xie et al.,
2019). Zhang’s research used approximately 100 000 sam-
ples to identify irrigated croplands in China (Zhang et al.,
2022b). By determining the NDVI difference and NDVI de-
viation between irrigated and rainfed cropland, the required
number of training samples could be drastically reduced. In

this study, a total of 92 303 samples were used to determine
the NDVI threshold and the NDVI deviation threshold at
the global scale. Moreover, training samples in China were
mostly collected on site, which is more precise than visual
interpretation.

Additionally, there are several limitations to this method.
Firstly, the accuracy of our method varies significantly across
different regions due to the variability in climate, soil types,
crop species, and irrigation practices among different areas.
According to the accuracy reports for each irrigation map-
ping zone, cropland is present in 105 out of the total 110 ir-
rigation mapping zones, with 96 of them exhibiting an accu-
racy greater than 70 %. There are only nine divisions with ac-
curacies below 70 %, most of which are situated in the south-
east Asian island countries, such as Thailand, Myanmar, and
Laos, and the tropical rainforest areas of South America, no-
tably the Amazon, characterized by their humid conditions.
We acknowledge that there is significant uncertainty in these
aforementioned regions; however, the proportion of irriga-
tion in these areas is typically not as substantial compared
to arid and semi-arid regions. The task of identifying irri-
gation in these regions using machine learning methods is
also challenging, as it is not straightforward to fully distin-
guish between irrigated and rainfed cropland without accu-
rate phenological inputs. A potential solution for improving
accuracy in humid regions could involve the integration of ir-
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Figure 17. Comparison between GMIE-100 and existing global irrigation products in detail; their specific locations are labelled in the
corresponding subfigure Fig. 15 with red rectangles.

rigation performance assessments to select optimal time win-
dows, coupled with advanced machine learning techniques.
Additionally, the representativeness of sample points can be
further improved, e.g. by identifying CPISs via DL methods
(Tian et al., 2023b; Chen et al., 2023a), which are commonly
used in the United States, Brazil, and the Middle East.

Second, although GMIE-100 provides a relatively high-
resolution distribution of irrigated cropland, it produces some
mixed pixels with cropland or noncropland and irrigated or
rainfed cropland. This is especially true for regions with
extremely small agricultural fields (Fritz et al., 2015). The
cropland masks had the greatest influence on the GMIE-100
dataset (Salmon et al., 2015; Meier et al., 2018), despite
the selection of 16 distinct cropland datasets derived from
country- and region-level sources as high-priority inputs.
These datasets often demonstrate disparities in estimating
the distribution of cropland, particularly in African countries,
due to the complex landscape, frequent cloud cover, and the
presence of small agricultural fields (Nabil et al., 2020). Con-
sequently, inaccuracies within the cropland datasets trans-
ferred onto the GMIE-100 dataset. Nevertheless, importantly,
these datasets remain the primary sources of cost-effective
and up-to-date information covering vast geographical areas.

Actually, we just focus on seasonal cropland because per-
manent crops are generally used for fruit trees, nut trees,
coffee, tea, and some types of vines; this is recognized as
shrub or tree in most land cover systems such as ESRI (Karra
et al., 2021), FROM-GLC (Yu et al., 2013), GLAD_Map
(Potapov et al., 2022), GLC-FCS30 (Zhang et al., 2021b),
and WorldCover (Zanaga et al., 2022). Conversely, harvest
crops, maize, soybean, wheat, and rice are most important
for food security. Therefore, we choose this definition to dis-
tinguish irrigated and rainfed cropland rather than the def-
inition from FAO. Different crop definitions as input data
may produce varied irrigated cropland area, which will def-
initely introduce uncertainty in the final result. A consistent,
high-resolution cropland mask with high accuracy is urgently
needed to solve this problem.

Thirdly, because it is challenging to collect the global field
samples, we fused three sources of samples. From different
country, there are varied dominant sample sources. For in-
stance, in China, most samples were collected from the GVG
field survey, while in Brazil, major samples were from the
USGS. Except countries with GVG and USGS samples, the
visual interpretation data were the dominant source of sam-
ples. This also ensures the represented manner of irrigated
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cropland. Overall, the number of samples was very large.
Basically, this irrigated and rainfed sample database suffices
for the globally irrigated cropland mapping compared with
global cropland expansion mapping research (Potapov et al.,
2022), which achieved cropland mapping globally with thou-
sands of samples. Meanwhile, these fused samples maybe
introduce some uncertainty in terms of representation. This
effect should be acceptable in arid and semi-arid regions be-
cause the irrigation performance is relatively easy to identify.
However, the uncertainty may increase in wet regions due to
the complexity of irrigated cropland. Also, a parcel of land
is designated as irrigated if it receives any supplemental ar-
tificial water supply to support crop cultivation at least once
during the growing season. The Global Maximum Irrigated
Extent (GMIE) dataset, initially developed at a 30 m reso-
lution, categorizes each pixel as either irrigated or rainfed
cropland. Thus, even if a pixel contains less than 100 % irri-
gated cropland, it is classified as an irrigated pixel within that
30× 30 m area. As a result, there may be a tendency towards
overestimation due to the mixed pixels at the 30 m resolu-
tion, particularly in regions with smaller fields such as south-
ern China, southeast Asia, and parts of Africa. However, the
relatively high resolution of the pixels helps to mitigate this
uncertainty to a certain extent.

4 Code and data availability

The data are publicly accessible through the following link:
https://doi.org/10.7910/DVN/HKBAQQ (Tian et al., 2023a).
The GMIE-100 dataset spans values ranging from 0 to 1, with
a designated no-data value of −99. Globally, there are 67
tiles available, each with a maximum extent of 21°× 21°.
In cases where these tiles overlap with land, they maintain
the standard extents; however, adjustments are made to the
tile extents as needed to accommodate the terrestrial range.
The GCPIS was stored in shapefile format in zip files. The
irrigation unit zone can be downloaded from https://doi.org/
10.7910/DVN/HKBAQQ (Tian et al., 2023a).

5 Conclusion

High-resolution and updated irrigation maps are important
for tracking regional water use and food production situa-
tions. Using irrigation performance data collected during the
dry season of the growing season and during extreme drought
events, we produced the GMIE-100 with a 100 m resolu-
tion with the support of GEE. In this study, the entire globe
was divided into 110 zones based on variations in climate
and phenology. In each IMZ, we identified the dry months
during the growing seasons from 2017–2019 or, alterna-
tively, the driest months during the most arid year from 2010
to 2019. To distinguish irrigated cropland, we employed
92 303 samples to determine thresholds for the NDVI dur-
ing the dry months of 2017 to 2019 and the NDVI deviation

from the 10-year average for the driest month (NDVIdev).
The NDVI or NDVIdev threshold that achieved the high-
est overall accuracy was selected to distinguish irrigated
and rainfed cropland. All the algorithms were conducted us-
ing GEE with the code https://code.earthengine.google.com/
eaafaab35dde9bbe37f443e80c716479 (last access: 17 Febru-
ary 2025).

With the support of the DL method, the global CPIS
was identified using Pivot-Net. We identified 11.5 Mha
of CPIS irrigated cropland, accounting for approximately
2.90 %± 0.03 % of the total irrigated cropland. However,
in Namibia, the United States, Saudi Arabia, South Africa,
Canada, and Zambia, the proportion of CPISs was greater
than 10 %. To our knowledge, this is the first attempt to iden-
tify types of irrigation methods globally, although other types
of irrigation methods, such as gravity flow, are still dominant
types of irrigation methods. Nevertheless, our approach fa-
cilitates the estimation of irrigation efficiency based on dif-
ferent types of irrigation method proportions to support high-
accuracy subbasin-scale water resource management.

Finally, the GMIE-100 was produced with a 100 m reso-
lution. Using 23 076 points to validate the results, we found
that the overall accuracy of GMIE-100 was 83.6 %± 0.6 %,
but it varied among the different IMZs. The GMIE-100 in-
dicates that the largest extent of irrigated cropland reached
403.17± 9.82 Mha, which accounts for 23.4 %± 0.6 % of
the total global cropland. Spatially, irrigated cropland is con-
centrated in great plain regions and regions near rivers. A
total of 224 Mha of irrigated cropland, accounting for 55.6 %
of the total irrigated cropland, is in the plains regions. The
Ganges Plain, the Indus Plain, and the North China Plain
all have large amounts of irrigated cropland worldwide. The
GMIE-100 provides more detailed information about irri-
gated and rainfed cropland and thereby improves its ability
to support agricultural water use estimation and regional food
situation assessment.
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