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Abstract. Drought indices are crucial for assessing and managing water scarcity and agricultural risks; however,
the lack of a unified data foundation in existing datasets leads to inconsistencies that challenge the comparability
of drought indices. This study is dedicated to creating CHM_Drought, an innovative and comprehensive long-
term meteorological drought dataset with a spatial resolution of 0.1° and with data collected from 1961 to 2022
in mainland China. It features six pivotal meteorological drought indices: the standardized precipitation index
(SPI), standardized precipitation evapotranspiration index (SPEI), evaporative demand drought index (EDDI),
Palmer drought severity index (PDSI), self-calibrating Palmer drought severity index (SC-PDSI), and vapor pres-
sure deficit (VPD), of which the SPI, SPEI, and EDDI contain multi-scale features for periods of 2 weeks and
1–12 months. The dataset features a comprehensive application of high-density meteorological station data and a
complete framework starting from basic meteorological elements (the China Hydro-Meteorology dataset, CHM).
Demonstrating its robustness, the dataset excels in accurately capturing drought events across mainland China, as
evidenced by its detailed depiction of the 2022 summer drought in the Yangtze River basin. In addition, to eval-
uate CHM_Drought, we performed consistency tests with the drought indices calculated based on Climatic Re-
search Unit (CRU) and CN05.1 data and found that all indices had high consistency overall and that the 2-week-
scale SPI, SPEI, and EDDI had potential early-warning roles in drought monitoring. Overall, our dataset bridges
the gap in high-precision multi-index drought data in China, and the complete CHM-based framework ensures
the consistency and reliability of the dataset, which contributes to enhancing the understanding of drought pat-
terns and trends in China. Free access to the dataset can be found at https://doi.org/10.5281/zenodo.14634773
(Zhang and Miao, 2025).

1 Introduction

Drought is defined as a persistent shortage of water (i.e., be-
low normal levels), exerting various impacts on the function-
ality of natural ecosystems and socio-economic structures
(WMO, 2012). It can significantly affect ecosystems (Gampe
et al., 2021), agricultural practices (Lesk et al., 2021), water
resources (Dobson et al., 2020), and socio-economic con-
ditions (Naumann et al., 2021). Between 1999 and 2020,
droughts affected an average of 69.21 million people an-
nually worldwide, causing direct economic losses amount-
ing to approximately USD 62.7 billion (GNDAR, 2021).
The progression of climate change foretells an increase in

drought occurrences, which are expected to escalate in terms
of frequency, intensity, duration, and scope (Wang et al.,
2022). Therefore, the development of high-quality, multi-
index drought datasets has become crucial to monitor and
analyze drought and to reduce the losses caused by drought.

The diversity of drought types poses significant challenges
in drought assessment, leading to their classification into
four categories: meteorological, hydrological, agricultural,
and socio-economic droughts (Mishra and Singh, 2010). Me-
teorological drought – originating primarily from insuffi-
cient precipitation and exacerbated by global warming ef-
fects like increased potential evapotranspiration (Aadhar and
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Mishra, 2020) and rising saturated vapor pressure differences
(Gamelin et al., 2022) – is the foundational cause of other
drought types (Zhang et al., 2022a). Considering the impact
of agricultural drought on both food crops and other vegeta-
tion types, some researchers have broadened its scope to en-
compass all natural and artificial vegetation or even the entire
ecosystem, termed ecological drought (Sadiqi et al., 2022).
Hydrological drought is characterized by inadequate surface
and groundwater resources within water resource manage-
ment systems, with runoff data commonly being utilized for
its analysis (Dracup et al., 1980). Socio-economic drought,
on the other hand, is associated with the inability of water re-
source systems to satisfy water demands (Huang et al., 2016;
Shi et al., 2018). Because meteorological drought is the ini-
tial index and root cause of a series of interrelated drought
types – such as agricultural drought, hydrological drought,
and socio-economic drought – it is the basis of drought re-
search, and the meteorological drought index has the most
subtypes in drought monitoring and quantification (Svoboda
and Fuchs, 2016; Heim, 2002).

The various meteorological drought indices each possess
distinct advantages and limitations. The widely used Palmer
drought severity index (PDSI) was an early metric; however,
its applicability is limited in extreme climates and non-plains
regions, and this limitation led Wells et al. (2004) to develop
the self-calibrating PDSI (SC-PDSI), which enhances spa-
tial comparability by using dynamically calculated constants
and region-specific calibration. Given the complexity of the
PDSI calculation (the input data include precipitation, tem-
perature, and available water content), the standardized pre-
cipitation index (SPI; McKee et al., 1993), which requires
only precipitation data and is simple to calculate, is by far
the most widely used index and features multiple timescales
to account for the cumulative effects of drought. However,
considering meteorological drought’s sensitivity to solar ra-
diation, wind speed, air temperature, and relative humid-
ity, Vicente-Serrano et al. (2010a) introduced the standard-
ized precipitation evapotranspiration index (SPEI), which as-
sesses droughts by calculating the climate water balance us-
ing the Penman–Monteith FAO equation (Allen et al., 1998)
for potential evapotranspiration (PET). Building on the un-
derstanding of atmospheric factors influencing drought, the
vapor pressure deficit (VPD) emerges as another crucial mea-
sure. The VPD quantifies the discrepancy between actual and
saturated air moisture levels, with higher values signifying
more arid conditions (Gamelin et al., 2022). This metric adds
value to drought analysis by representing the thirst of the at-
mosphere for moisture, a vital factor that many other drought
indices do not consider. In addition, Hobbins et al. (2016)
noted that most drought indices primarily focus on precip-
itation and temperature, with few directly reflecting evap-
oration dynamics. To address this, the evaporative demand
drought index (EDDI) was established, using the relation-
ship between the atmospheric evaporation requirement (E0;
Allen et al., 1998) and actual evapotranspiration (AET) and

monitoring drought through E0’s response to surface drying
anomalies. This exploration of drought indices highlights the
need for high-quality drought data that reflect the various cli-
matic factors that contribute to drought, as well as the fact
that such drought data are essential for accurately assessing
drought and for developing strategies that can mitigate its
far-reaching effects.

Global-scale drought datasets have been developed to as-
sess and quantify the impacts of drought. The common
ones mainly include a global multi-scale SPEI calculated
based on Climatic Research Unit (CRU) monthly meteo-
rological data (Beguería et al., 2010; Vicente-Serrano et
al., 2010b), which span the period 1901–2022, with a spa-
tial resolution of 0.5°, covering the global land. Pyarali et
al. (2022) also calculated the SPEI, combining precipita-
tion from the Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS) dataset and PET from the Global
Land Evaporation Amsterdam Model (GLEAM), covering
the period 1981–2018 at a spatial resolution of 5 km. Liu
et al. (2024) combined European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) precip-
itation and PET developed by Singer et al. (2021) to produce
a multi-scale (5, 30, 90, 180, and 360 d) global SPEI dataset
with a time span of 1982–2021 and a spatial resolution of
0.25°. In addition, there are some drought datasets such as the
SPEI calculated based on ERA5 data (Vicente-Serrano et al.,
2023), the PDSI calculated based on TerraClimate (Venkat-
appa and Sasaki, 2021), and the PDSI and SPEI calculated
on the basis of data from the Gravity Recovery and Climate
Experiment (GRACE; Zhao et al., 2017a, b). Since the accu-
racy of these datasets depends largely on the quality of the
meteorological information, differences in the datasets used
by different researchers to compute the same indices can lead
to considerable differences in the results, which complicates
cross-sectional comparisons. This point highlights the urgent
need to utilize consistent and high-quality meteorological
datasets for the calculation of these indices. Also, most ex-
isting drought indices focus on monthly or longer timescales
and may not capture short-term (e.g., weekly scale) meteoro-
logical drought conditions. In addition, there are still contro-
versial aspects in the calculation methods of some indices,
such as PET and reference crop evapotranspiration (ET0),
which have often been calculated in different ways. When
considering AET under energy or water constraints, the ET0
estimates the upper limit of evapotranspiration under en-
ergy constraints, while, under water constraints, the land–
atmosphere feedback affects ET0 in an opposite or comple-
mentary manner. Hobbins et al. (2016) suggested that ET0
could serve as an independent drought indicator and devel-
oped the EDDI. In contrast, Noguera et al. (2022) used PET,
which is commonly used to calculate the SPEI, instead of
ET0 to calculate the EDDI; this approach may differ greatly
from Hobbins et al. (2016), either conceptually or in terms of
calculation results. Overall, addressing these challenges re-
quires a multifaceted approach that includes improving data
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quality and consistency, developing methods to capture a
broader range of timescales, and clarifying drought index
concepts and methods.

Drought is one of the most important types of natural
disasters in China, causing the loss of 10× 106 t of grain
production each year and direct economic losses of up to
CNY 44 billion per year (Su et al., 2018). Under global
warming, the development of drought in China is show-
ing a trend of increasing area, accelerating frequency, and
worsening disaster (Zhang et al., 2022b). Entering the 21st
century, drought events became more frequent. In northern
China, northeastern China, northwestern China, and other ar-
eas, the drought situation is still severe, and some areas in
the south have also become significantly drier with the in-
creased frequency of major drought events (Zhai et al., 2010),
especially with the widespread drought in the summer of
2022 in China’s Yangtze River basin. The evapotranspiration
anomaly for the whole river basin in summer was the sec-
ond highest since 1960 (second only to 2013, with its high
temperature and drought), which further aggravated the wa-
ter deficit in the Yangtze River basin (Lyu et al., 2023).

Some scholars have developed drought datasets for China
in order to better quantify, monitor, or forecast drought.
Wang et al. (2021) developed daily versions of the SPI and
SPEI to quantify short-term meteorological droughts using
data collected over the period 1961–2018 from 484 meteo-
rological stations, but their spatial coverage was limited to
those 484 stations. There are also drought datasets calcu-
lated on the basis of different data products, such as that of
Zhang et al. (2019), who integrated CN05.1 and near-real-
time satellite precipitation products with the SPI dataset at
a spatial resolution of 0.25°, covering 1961–2016. Zhang et
al. (2023b) constructed a daily scale SPEI and SPI using
data with a spatial resolution of 0.1° for the years 1979–
2018 based on the China Meteorological Forcing Dataset
(CMFD). Despite great progress in meteorological data shar-
ing in China, high-resolution, multi-scale, multi-drought-
index datasets are still lacking.

This paper aims to construct a new long-term (1961–2022)
drought dataset (CHM_Drought), including the SPI, SPEI,
PDSI, SC-PDSI, and VPD. According to the characteris-
tics of these indices, we also considered multiple timescales
(among them, the SPI, SPEI, and EDDI have scales of 1 to
12 months and 2 week). Then we evaluated the performance
of CHM_Drought after comparative validation and proved
that CHM_Drought can accurately identify specific charac-
teristics of drought in China and that the complete framework
based on the CHM (the China Hydro-Meteorology dataset)
can increase our understanding of the pattern and trend of
drought in mainland China. This can provide strong support
for the development of drought management and response
strategies.

2 Datasets and processing

2.1 Data

We used several datasets, including the daily meteorolog-
ical station data (Fig. 1) from the China Meteorologi-
cal Administration (CMA; http://data.cma.cn/, last access:
24 July 2024), gridded precipitation data from CHM_PRE
(Han et al., 2023; https://data.tpdc.ac.cn/zh-hans/data/
e5c335d9-cbb9-48a6-ba35-d67dd614bb8c, last access: 24
July 2024), and data from both CRU (https://crudata.uea.
ac.uk/cru/data/hrg/, last access: 24 July 2024) and CN05.1
(a gridded daily observation dataset over mainland China;
https://ccrc.iap.ac.cn/resource/detail?id=228, last access: 24
July 2024). First, we applied meteorological station data
from the CMA to interpolate basic meteorological variables
from 1961 to 2022 at a spatial resolution of 0.1°, including
maximum temperature (Tmax), minimum temperature (Tmin),
mean temperature (Tmean), average wind speed (wind), sun-
shine duration (Ssd), and average relative humidity (Rh). We
directly used CHM_PRE and the interpolated meteorologi-
cal data to compute CHM_Drought. The CN05.1 and CRU
datasets were collected to evaluate CHM_Drought, with
CRU data covering precipitation (pre), Tmax, Tmin, Tmean,
wind, and Ssd and CN05.1 data covering pre, Tmax, Tmin,
Tmean, wind, Rh, and Ssd. Notably, CN05.1’s Ssd data span
1961 to 2018, while other variables span 1961 to 2022.

In calculations for the drought index, as recom-
mended by Li et al. (2023), we adopted the Global
Gridded Surfaces of Selected Soil Characteristics data
(https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1006, last
access: 24 July 2024) for the soil available water capacity
(AWC) data. When comparing with VPD data, we also used
the third-generation normalized difference vegetation index
(NDVI) of the Global Inventory Monitoring and Modeling
System (GIMMS; https://climatedataguide.ucar.edu/climate-
data/ndvi-normalized-difference-vegetation-index-3rd-
generation-nasagfsc-gimms, last access: 24 July 2024) for
comparison for the period 1982–2022. In evaluating the per-
formance of CHM_Drought in the drought zone of China, we
used the aridity index (AI) – that is, the ratio of annual pre-
cipitation to potential evapotranspiration – to classify the arid
regions of China (Fig. 1) (Li et al., 2021; https://csidotinfo.
wordpress.com/data/global-aridity-and-pet-database/, last
access: 24 July 2024).

2.2 Data processing

To ensure the integrity and reliability of our dataset, rigor-
ous data quality control measures were implemented during
the preprocessing stage. This involved a comprehensive data-
cleaning process to address various aspects, including the
identification and treatment of outliers and the handling of
missing values. First, outliers within the meteorological sta-
tion data were identified and addressed using appropriate sta-
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Figure 1. Distribution of 2419 meteorological stations and pattern of China’s drylands. The drylands are further classified into four subtypes
based on the aridity (1−AI): hyper-arid (AI< 0.05), arid (0.05≤ AI< 0.20), semi-arid (0.20≤ AI< 0.50), and dry sub-humid (0.50≤
AI< 0.65). Shaded circles mark stations, and darker circles indicate higher elevations (digital elevation model, DEM).

tistical techniques. This step aimed to detect any data points
that deviated significantly from the expected distribution and
could potentially distort the analysis results. Second, miss-
ing values present in the dataset were carefully handled to
minimize their impact on the overall dataset quality: we have
removed any missing values to ensure that only valid sites
are used for daily data interpolation.

Before calculating the drought index, we interpolated the
basic meteorological variables (Tmax, Tmin, Tmean, wind, Ssd,
Rh; see Fig. 2), incorporating the correlation decay distance
(CDD) specific to each variable (Fig. S1 in the Supplement).
Details on CDD are provided in the Supplement. For the in-
terpolation process, we adopted angular distance-weighted
interpolation (ADW), which considers angular weight in ad-
dition to the distance weight function, making it more robust
in relation to outliers. ADW with CDD provides a key ben-
efit that other methods may not emphasize as directly: the
gradual decrease in correlation with increasing distance be-
tween stations. For missing values, we did not fill in the time
series but rather used only stations with data available for
spatial interpolation each day. We interpolated meteorolog-
ical elements to 0.1° spatial resolution, which is consistent
with CHM_PRE.

3 Methodology

3.1 Standardized precipitation index (SPI)

The SPI is a dryness index proposed by American scholars
McKee et al. (1993) and is used to analyze the drought situa-
tion in Colorado. It is a powerful, flexible, and simple index,
which takes precipitation as the research object, monitors
precipitation on a long timescale, characterizes the correla-
tion between precipitation and climate characteristics within
a certain period of time, and is as effective for the analysis
of wet periods or cycles as for the analysis of dry periods
or cycles. Because the SPI has the characteristics of multiple
timescales, these timescales can reflect the impact of drought
on the availability of different water resources. The SPI is
used to calculate the distribution probability 0 of precipita-
tion within a certain period of time, then to perform normal
standardization, and finally to classify the drought level with
the standardized precipitation cumulative frequency distribu-
tion:

f (x)=
1

βγ0(γ )
xγ−1e−x/β x > 0 , (1)
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Figure 2. Flowchart of the drought index construction system. The
meteorological variables include maximum temperature (Tmax),
minimum temperature (Tmin), average temperature (Tmean), aver-
age wind speed (wind), sunshine duration (Ssd), and average rela-
tive humidity (Rh). CRU_Drought and CN05.1_Drought represent
drought indices calculated based on CRU and CN05.1 meteorolog-
ical data, respectively.

where β > 0 and γ > 0 are scale and shape parameters, re-
spectively. The detailed calculation method can be found in
the Supplement.

3.2 Standardized precipitation evapotranspiration index
(SPEI)

Compared with the SPI, the SPEI more comprehensively
reflects the relationship between precipitation and potential
evapotranspiration (PET) and better reveals the impact of
the hydrological cycle (Vicente-Serrano et al., 2010a). Since
SPEI considers the sensitivity of atmospheric evaporation de-
mand to drought, it is especially suitable for dry and warm
climate zones in areas with increased temperature and PET
and can better capture drought dynamics than the SPI (Li et
al., 2020). First, PET is calculated. The second step is to cal-
culate the difference between precipitation (P ) and PET, i.e.,
D = P −PET. The third step is to transform data D as fol-
lows:

SPEI=W −
(c2W + c1)W + c0

[(d3W + d2)W + d1]W + 1
, (2)

where W =
√
−2ln(T ), and T is the probability of a defi-

niteD value. The values of the coefficients are follows: c0 =

2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308. The detailed calculation
method can be found in the Supplement. According to the
FAO standard, we use the Penman equation to calculate PET

as follows:

PET=
0.4081(Rn−G)+ γ 900

T+273u2(es− ea)

1+ γ (1+ 0.34u2)
, (3)

where 1 is the slope of the saturated vapor pressure–
temperature relationship (kPa°C−1),Rn is the net radiation at
the ground surface (MJm−2 d−1), and G is the soil heat flux
(MJm−2); on a timescale of 1 to 10 d, the soil heat capacity
of the reference meadow is quite small and can be neglected.
γ is the psychrometric constant (kPa°C−1), T is the mean
daily air temperature at 2 m height (°C), u2 is the wind speed
at 2 m height (ms−1), es is the saturation vapor pressure of
the air (kPa), and ea is the actual vapor pressure of the air
(kPa). The detailed calculation formulas for 1, γ , ea, es, and
Rn can be found in the Supplement.

3.3 Evaporative demand drought index (EDDI)

The EDDI was developed by Hobbins et al. (2016) as an in-
dicator of atmospheric drying potential, which can indicate
plant stress on the ground. Therefore, the physically based
ET0 index has the advantage of being more direct and more
dependent on atmospheric physics principles than the SPEI
and AET calculation methods that rely on remote sensing
data. The EDDI, similarly to the SPI and SPEI, incorpo-
rates multiple timescales, and the accumulation time can vary
from 1 week to 1 year or more. For the calculation of ET0 in
the EDDI, we used the standardized reference evapotranspi-
ration equation (Allen et al., 2005) adopted by the American
Society of Civil Engineers (ASCE) in developing the EDDI.
Although some scholars have equated PET and ET0 in recent
years (Noguera et al., 2022), there are differences between
the two (Xiang et al., 2020).

ET0 =
0.4081(Rn−G)+ γ Cn

T+273u2(es− ea)

1+ γ (1+Cdu2)
(4)

In the above, Cn (Kmms3 Mg−1 d−1) and Cd (sm−1) are the
“numerator constant” and “denominator constant”, respec-
tively, with values as defined in Allen et al. (2005). The EDDI
is derived using the inverse method approximation detailed
in Vicente-Serrano et al. (2010a), which is repeated here for
convenience:

EDDI=W −
(c2W + c1)W + c0

[(d3W + d2)W + d1]W + 1
. (5)

The values of the coefficients are as follows: c0 =

2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788,
d2 = 0.189269, and d3 = 0.001308.

For P (ET0)≤ 0.5,

W =
√
−2ln(P (ET0)) , (6)

and for P (ET0)> 0.5,

W =
√
−2ln(1−P (ET0)) . (7)

Please refer to the Supplement for a more detailed descrip-
tion of the EDDI.
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3.4 Palmer drought severity index (PDSI_China)

The PDSI is a drought index with clear physical meaning
established by Palmer (1965). Its introduction was an impor-
tant turning point in the history of drought index research.
The PDSI is one of the most widely used drought indices in
meteorological drought research and monitoring (Dai et al.,
2004). When calculating water balance, the PDSI considers
pre-season precipitation and water supply and demand, with
clear physical meaning. Water deficit (d) is the difference be-
tween actual precipitation (P ) and climate-appropriate pre-
cipitation (P ′). To make the PDSI a standardized index, af-
ter the water deficit d is determined, it is multiplied by the
climate weight coefficient K of a given month in a given
place to obtain the water anomaly index Z, also known as
the Palmer Z index, which indicates the deviation degree be-
tween the actual climate dry–wet condition and its average
water condition in a given month and place: Z = dK , where
the value of K is determined by the month and geographical
location.

Ki =
a∑12

j=1DjK
′

j

K ′i (8)

The empirical constant a = 17.67 obtained by Palmer from
the data of nine stations in seven states was revised to 16.84
according to the climate characteristics of China (Zhong
et al., 2019); therefore, we calculate it as PDSI_China,
where

∑12
j=1DjK

′

j is the average annual absolute moisture
anomaly over the years, and j represents January to Decem-
ber. The methodology is described in the Supplement.

3.5 Self-calibrating Palmer drought severity index
(SC-PDSI)

Based on PDSI, Wells et al. (2004) proposed and evaluated
an SC-PDSI. SC-PDSI automatically calibrates the index be-
havior at any location by replacing the empirical constants
in the index calculation with dynamically calculated values.
Compared with the PDSI, it can adapt to local climate (Dai,
2011) and has been proven to have better applicability in
China (Bai et al., 2020; Shao et al., 2018). Since the disad-
vantages of the PDSI mainly revolve around its inconsistency
between different locations and because it uses multiple em-
pirical parameters that depend on the study area in the calcu-
lation process, Wells et al. (2004) believed that changing the
ratio (K̃) could solve the spatial inconsistency of the PDSI
without changing the way the PDSI deals with seasonal cli-
mate changes.

K̃ =
a∑12

j=1djK
′

j

K ′i (9)

Since
∑12
j=1djK

′

j can be approximately regarded as the
annual sum of the average absolute value of Z (Z̃ =∑12
j=1djK

′

j ) and the value of a, 17.67, as obtained by Palmer,

is the average value of Z̃ (i.e., the annual average sum of va-
por anomalies), and since PDSI is based on cumulative vapor
anomalies, K̃ = expected average PDSI

observed average PDSI . The non-extreme value
range of the PDSI is defined as −4 to 4, but, in practice, this
range is different. Palmer (1965) argues that if the PDSI were
truly a standardized measure of drought severity then values
outside of that range (−4 to 4) would occur with roughly the
same frequency. If the frequency of extreme events is fe then
the feth percentile should be−4.00 and the (100−fe)th per-
centile should be 4.00. So K̃ = expected feth percentile of the PDSI

observed fe percentile of the PDSI .
Defining an extreme drought as a “one-in-50-years event”
does not determine the percentage of PDSI values below
−4.00 as it may last 2 months or 2 years. In this implemen-
tation, Wells et al. (2004) used an fe value of 2 %, which
resulted in the following climate characterization equation:

K =

{
K ′(−4/2nd percentile), if d < 0

K ′(4/98th percentile), if d ≥ 0
. (10)

See the Supplement for detailed formulas.

3.6 Vapor pressure deficit (VPD)

Vapor pressure deficit (VPD) is one of the most important
climate variables used to simulate the flux and state of wa-
ter and carbon in ecosystem models and is one of the main
driving factors of vegetation evapotranspiration. It is also an
important meteorological variable in fire warning models and
in warning models for the spread of pests, diseases, and epi-
demic diseases (Green and Hay, 2002). Therefore, VPD is
widely used in various hydrological cycle, vegetation carbon
cycle, and evapotranspiration estimation models (Hashimoto
et al., 2008; Wang and Dickinson, 2012). Saturated vapor
pressure is a function of temperature and can be directly cal-
culated from temperature, as shown in the Tetens empirical
formula (Allen et al., 1998):

e0(T )= 0.6108exp
[

17.27T
T + 237.3

]
, (11)

where T is the air temperature (°C), and e0(T ) is the satu-
rated water vapor pressure at temperature (kPa). Since the
above equation is a nonlinear function, for the average satu-
rated vapor pressure with such a long interval at the monthly
scale, if the average temperature is used to replace the daily
maximum and minimum temperatures then the estimated
value of the average saturated vapor pressure will be low, and
the corresponding vapor pressure difference will be small.
Therefore, the mean value of the saturated vapor pressure
corresponding to the daily average maximum and minimum
temperatures within the time interval is used for calculation
(Li et al., 2024):

es =
e0(Tmax)+ e0(Tmin)

2
, (12)
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where es is the average saturated vapor pressure (kPa), and
Tmax and Tmin are the daily average highest and lowest air
temperature (°C), respectively. The actual vapor pressure ea
(kPa) is calculated according to the monthly average relative
humidity (ϕmean): ea = es

ϕmean
100 and VPD= es− ea.

3.7 Consistency test for the drought dataset

To evaluate the consistency of CHM_Drought, we cal-
culated the same index, namely CRU_Drought and
CN05.1_Drought, using CRU and CN05.1 data, respectively
(see Sect. 2). For consistency testing of CHM_Drought (the
data characteristics are shown in Table 1), we resampled both
the CHM_Drought (0.1°) and CN05.1_Drought data (0.25°)
to 0.5° to match the spatial resolution of CRU_Drought
(0.5°).

Pearson’s correlation coefficient (CC) and the Nash–
Sutcliffe efficiency coefficient (NSE) were used as the evalu-
ation indices of data consistency to detect the consistency of
CHM_Drought, CN05.1_Drought, and CRU_Drought at the
same spatial resolution (0.5°) and over the same time span
(1961–2022). To assess the differences in the consistency of
different timescales, we selected 1-, 3-, 6-, and 12-month
scales for evaluation; the results are presented in Sect. 4.2.
The formulas are as follows:

NSE= 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − y)2

, (13)

CC=
∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
, (14)

where y =
∑N
i=1yi
N

, yi is the CHM_Drought value at time i
(i = 1, · · ·,N ), y is the mean value taken over N , N is the to-
tal data size of yi (i = 1, · · ·,N ), and ŷi is the CRU_Drought
(or CN05.1_Drought) value at time i; x and y represent the
sample means of the two, respectively.

4 Results and discussion

4.1 Performance of CHM_Drought during the 2022
summer drought in the Yangtze River basin

A severe drought occurred in the south of China in the sum-
mer of 2022, mainly concentrated in the Yangtze River basin.
To show the performance of the CHM_Drought dataset in
monitoring drought, we use the summer (June, July, August;
JJA) of 2022 in the Yangtze River Basin as an example to ex-
amine the monitoring capabilities of drought indices. For the
SPI, SPEI, and EDDI, we selected a 3-month scale (seasonal
scale; Jin et al., 2020), as shown in Fig. 3. Due to the cumu-
lative effect of drought, the drought performance is different
on different timescales. Therefore, we also examined the 2-
week and 1-, 3-, and 6-month scales (Fig. 4), in which case
the 2-week scale takes mid-August 2022 as the node, while

the 1-, 3-, and 6-month scales all show the value from August
2022.

The indices exhibit varied degrees of drought severity,
with each index offering a unique perspective based on its
inherent parameters. For instance, the SPI-3 and SPEI-3, fo-
cusing on precipitation anomalies, highlight significant defi-
ciencies across the central and eastern regions, aligning with
the Yangtze River basin’s experiences. The EDDI-3, which
emphasizes evaporative demand, suggests a widespread and
intense drought condition, notably in the southern regions,
indicating a profound hydrometeorological imbalance; this is
similar to the 2022 summer high-temperature profile shown
by Ma and Yuan (2023). The PDSI_China and SC-PDSI in-
dices, which incorporate soil moisture conditions and the
long-term climatic context, reveal extreme drought severity
levels in the Yangtze River basin. These conditions reflect
the compound effects of prolonged precipitation deficits,
high temperatures, and the resulting soil moisture depletion.
Lastly, the VPD index maps out the atmospheric moisture
demand, which reached anomalously high levels in the illus-
trated period, particularly in the Yangtze River basin. This
condition aggravates the drought impact by enhancing evap-
otranspiration rates, which in turn further depletes soil mois-
ture and stresses vegetation. Wang et al. (2023) have also
demonstrated that a record-breaking compound drought–
heatwave hit the Yangtze River basin in summer 2022, re-
sulting in the strongest anomalies of VPD and soil moisture
since 2000.

On different timescales of the same index, different infor-
mation emerges. At the 2-week scale (Fig. 4) the indices pro-
vide a snapshot of the immediate drought situation, which
is highly valuable for short-term drought relief and response
planning. Over 1-month and 3-month scales, the indices be-
gin to show patterns of persistent drought conditions; these
scales are critical for assessing the medium-term impact on
agriculture and water resources. The 6-month scale reveals
long-term drought conditions, which are crucial for planning
and managing water resources, as well as for understanding
the broader environmental impacts of extended droughts. It
is also informative to compare different indices at the same
timescale. We found that the results of the SPI-2W (Fig. 4a)
show that the southern part of China, mainly the Yangtze
River basin (Zhang et al., 2023a), has a short-term precipita-
tion gap and that the precipitation in this region is far below
the average level. The SPEI-2W (Fig. 4e) not only reflects
the lack of precipitation but also takes into account the possi-
ble increase in evaporation due to high temperatures, making
the drought in the southern region more severe. The effects
of temperature increase that may not be captured by the SPI
are reflected in the SPEI. For the EDDI-2W (Fig. 4i), the dra-
matic increase in atmospheric water demand is a direct result
of the heatwave, and the EDDI-2W shows that the whole of
China – and, in particular, the Yangtze River basin – is in this
drying condition, which may further exacerbate soil drying
and water stress on crops.
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Table 1. CHM_Drought dataset summary table, including drought index calculation input variables, timescale, and index characteristics.

Drought index Input parameters Timescale Characteristics

SPI P 2 weeks, 1–12 months The calculation is simple and widely used
SPEI P , PET 2 weeks, 1–12 months Similar to SPI but with a temperature component
EDDI ET0 2 weeks, 1–12 months The EDDI shows the anomaly in evaporative demand aggre-

gated
PDSI_China P , PET, AWC 1 month Parameter calibration with Chinese regional characteristics
SC-PDSI P , PET, AWC 1 month The SC-PDSI is developed for each station or grid and changes

based upon the climate regime of the location
VPD Tmean, Rh month VPD affects the closure of plant stomata and describes how dry

the air is

All abbreviations: P denotes precipitation, ET0 denotes reference crop evapotranspiration, PET denotes potential evapotranspiration, Tmean denotes average
temperature, Rh denotes average relative humidity, and AWC denotes soil available water capacity.

Figure 3. Spatial distribution of summer (June, July, August; JJA) drought characteristics in the Yangtze River basin, China. Here, (a), (b),
and (c) depict the 3-month-scale spatial distribution of drought indices, while (d), (e), and (f) present the average summer (JJA) values for
these indices.

4.2 Consistency assessment of the multi-scale SPI,
SPEI, and EDDI based on CHM_Drought with
CRU_Drought (or CN05.1_Drought)

Figure 5 illustrates the spatial distribution of CC values based
on the CHM for the SPI-6, SPEI-6, and EDDI-6 with those
calculated based on CRU and CN05.1, respectively. Fig-
ure S2 in the Supplement is similar to Fig. 5 but illustrates
the spatial distribution of the NSE. We can see that the corre-
lations at the 6-month scale are high overall, with the corre-
lations being above 0.8 in most regions, especially in the wet
areas at low altitudes, and the correlations in the northwest-
ern region are generally lower than those in the southeastern
region, especially in the Qinghai–Tibet Plateau region, which
has the lowest station density (Miao et al., 2024). However,

most of the data developed so far are limited by the poor per-
formance of sparse sites, whether they are developed meteo-
rological data (He et al., 2020; Wu and Gao, 2013) or drought
datasets (Wang et al., 2021). Simply comparing the three in-
dices, the overall correlations and the NSE values of the SPI
and EDDI are generally higher than those of the SPEI, while
the regions with low correlations and NSE values in terms
of the SPEI (Figs. 5 and S2) are mainly concentrated in the
extremely arid regions. One consideration is that the corre-
lations and NSE values depend on the quality and accuracy
of the dataset. Another consideration is that, for the arid re-
gions, the measurement of precipitation and evaporation is
more difficult than it is in the wet regions, and the SPEI is
not a single meteorological input compared with the SPI and
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EDDI but is rather a series of P −PET values, resulting in
greater noise (uncertainty) in the data.

When the timescale is changed, for example, to a
longer timescale (12 months; from Figs. S2–S4 in the
Supplement), we find that the overall correlation between
CHM_Drought and CRU_Drought (or CHM_Drought and
CN05.1_Drought) remains high, which proves the robust-
ness of the data. However, the spatial distributions of
CHM_Drought vs. CRU_Drought and of CHM_Drought vs.
CN05.1_Drought still differ in the northwest; when com-
pared with CN05.1_Drought, the regions with large differ-
ences are on the western side of the Qinghai–Tibet Plateau,
where the sites are notably the sparsest (Fig. 1); when com-
pared with CRU_Drought, the region with poor consistency
also includes the hyper-arid region (Fig. 1).

The consistency assessment at different timescales is
shown in Fig. 6. With an increase in timescale, although the
median value in the boxplot remains basically unchanged,
the lower quartile shifts downward progressively. This indi-
cates that the consistency of the SPEI calculated by the two
datasets decreases as the timescale increases, especially in
areas with low correlation (such as the arid northwestern re-
gion). As can be seen from Figs. S2 and S4, at the 12-month,
scale the NSE value in the northwestern arid region is lower
than it is at the 6-month scale. Aside from the limitations of
the observational data, this may be due to climate variability
as climate factors (such as precipitation patterns and drought
frequency and intensity) may have greater changes, resulting
in larger inconsistency in the subsequent long-term records.
It is also possible that, in the arid region, extreme climate
events (such as extreme drought or rainstorms) may occur
more frequently, and these extreme events may increase in-
consistency at a long timescale. As can be seen from Fig. 6c
and d, the inconsistency between the SPEI, SPI, and EDDI
is the largest at the monthly scale, but the consistency in-
creases with the increase in timescale. This may be due to
the accumulation of precipitation and evaporation processes
over time: evaporation (or potential evapotranspiration) is a
dynamic process that takes time to accumulate in sufficient
quantities, as is precipitation. In the short term, some ex-
treme weather events (such as heavy rain or drought) may
affect the amount of precipitation or evaporation, but in the
long term, such events may have only a small effect. There-
fore, on a longer timescale, the SPI and SPEI may reflect a
more consistent and stable drought condition rather than be-
ing affected by short-term weather events.

In addition, we quantified the uncertainties of the SPI,
SPEI, and EDDI at different timescales (Fig. 7). We used the
standard deviation to quantify the results, which were simi-
lar to those in Figs. S2–S4. The regions with higher standard
deviations, such as the arid northwest, highlight the spatial
variability in uncertainty across different datasets. This sug-
gests that the drought indices calculated from these datasets
may show obvious discrepancies in regions with sparse ob-
servational coverage. The observed uncertainties can be at-

tributed to several factors, with the first being (1) the interpo-
lation technique. The variability in interpolation techniques
across datasets is a critical factor contributing to uncertainty.
For instance, the CHM dataset employs advanced interpola-
tion techniques based on high-density observational stations,
while the CRU and CN05.1 datasets utilize the methods of
thin plate smooth spline (TPSS) and inverse distance weight-
ing (IDW), respectively (Harris et al., 2020; Xu et al., 2009).
These methodological differences become particularly pro-
nounced in areas with complex topography, such as the arid
northwest. Xu et al. (2022) demonstrated that TPSS per-
forms well in capturing broad climate gradients, though it
may overly smooth the results in data-sparse regions, lead-
ing to underestimation of extremes. Conversely, IDW might
overemphasize local station values, causing biases in interpo-
lated fields (Shen et al., 2023). The second factor is (2) sparse
observational coverage. Limited observational inputs in cer-
tain regions further exacerbate uncertainty. Liu et al. (2009)
highlighted that the density of interpolation sites is the key
factor influencing interpolation accuracy. They found that
the performance of interpolation methods, such as kriging
or IDW, deteriorates significantly as the number of sites de-
creases. The third factor is (3) the inclusion of auxiliary co-
variates. Differences in the incorporation of auxiliary covari-
ates, such as topography, land cover, or climate zones, also
contribute to dataset discrepancies. For instance, the CHM
dataset incorporates high-resolution digital elevation models
(DEMs) as covariates, while the CRU dataset primarily re-
lies on planar spatial gradients without explicitly considering
terrain effects (Harris et al., 2020). This leads to substantial
differences in regions with complex orography.

4.3 Consistency assessment of PDSI_China and the
SC-PDSI based on CHM_Drought with
CRU_Drought (or CN05.1_Drought)

We evaluated the consistency of PDSI_China and the SC-
PDSI in China. According to Fig. 8 and Fig. S5 in the Sup-
plement, the two indices have high correlations over China as
a whole. However, PDSI_China, corrected according to data
from Chinese meteorological stations, is significantly better
than the SC-PDSI. Except for the areas with low station den-
sity, the overall correlation is high, especially in the wet ar-
eas. The biggest difference between PDSI_China and the SC-
PDSI comes from the calibration method. The SC-PDSI uses
the self-calibration method, but it may not consider the re-
gional differences in China, which may affect the accuracy
of the SC-PDSI because it relies on appropriate calibration
to reflect the climate characteristics of specific areas. In ad-
dition, the SC-PDSI takes into account the climate character-
istics of specific areas through the self-calibration method,
making it, in theory, more sensitive to local climate change.
Therefore, although it does not have multi-scale characteris-
tics like PDSI_China, this greater sensitivity to local climate
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Figure 4. Spatial distribution of three drought indices (the SPI, SPEI, and EDDI) in the Yangtze River basin, China, across multiple
timescales (2 weeks, 1 month, 3 months, and 6 months) using August 2022 as an example. (a–d) SPI-2W indicates the 2-week-scale SPI,
SPI-1 indicates the 1-month-scale SPI, SPI-3 indicates the 3-month-scale SPI, and SPI-6 indicates the 6-month-scale SPI. The scales of the
SPEI and EDDI follow the same naming pattern.

Figure 5. (a–c) Correlation spatial distributions of the SPI-6, SPEI-6, and EDDI-6 based on CHM and CRU data. (d–f) Correlation spatial
distributions of the SPI-6, SPEI-6, and EDDI-6 based on CHM and CN05.1 data. The histogram at the bottom left in each subplot shows the
distribution of correlation coefficients for all grid cells.
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Figure 6. Boxplots of the CC and NSE of three drought indices
(the SPI, SPEI, and EDDI) calculated based on the CHM and either
(a, b) CRU or (c, d) CN05.1 at different monthly scales (1, 3, 6, and
12 months). The middle line within each box indicates the median,
the upper and the lower edges mark the 25th and 75th percentiles,
and the whiskers show the 2.5th and 97.5th percentiles.

improves its ability to reflect drought change in the short term
compared with PDSI_China.

4.4 Consistency assessment of VPD based on
CHM_Drought with CN05.1_Drought

When the VPD value is higher, it indicates that the atmo-
sphere is drier, the transpiration of plants is enhanced, and
more water is needed to maintain growth. Therefore, VPD
reflects the water use demand of plants to a large extent. Fig-
ure 9 shows results from the consistency evaluation of VPD
calculated using the CHM and CN05.1. We found that the
consistency of VPD calculated using CN05.1 is very high,
and the correlation in each region of China is generally above
0.8 (Fig. 9a). In addition, we compared the seasonal distribu-
tion of VPD with the results of Yuan et al. (2019) and found
that the seasonal spatial distribution is also very consistent.
It is mainly reflected in the high VPD in the arid and semi-
arid areas of northwestern China and the low VPD in the
Tibetan Plateau, northeastern China, and in most regions of
south China, especially in summer (Fig. S6 in the Supple-
ment).

Studies have shown that VPD’s impact on land productiv-
ity change in China is second only to soil moisture (Cheng et
al., 2022), and the effect of high VPD is greater than that of
high soil moisture in promoting vegetation productivity (Tu
et al., 2024). Therefore, we believe that the correlation be-
tween NDVI and VPD (Fig. S7 in the Supplement) serves as
an additional metric to evaluate the data. We found that the
correlation between VPD and NDVI was lower in the arid
northwest and southwest of China. This may be due to wa-
ter limitations in the arid northwest. Due to the very limited
precipitation in this region, vegetation growth and develop-
ment may mainly depend on water availability rather than on
VPD. VPD mainly describes the dryness of the air. In ex-
tremely arid conditions, even if the VPD is high, vegetation
growth may be severely limited by water scarcity, resulting
in a lower correlation between VPD and NDVI. In contrast,
southwestern China’s topography is complex, including high
mountains and deep valleys, and the climate types are di-
verse. These topographic and climatic conditions may lead
to a more complex relationship between VPD and NDVI. For
example, mountainous areas may have lower VPD due to the
frequent occurrence of clouds and fog, but this may not nec-
essarily reflect the actual water status of the vegetation on
the ground. Rainfall and clouds are common in southwestern
China and may reduce the dryness of the air, thus affecting
the correlation between VPD and NDVI. In addition, differ-
ent types of vegetation have different responses to VPD. For
example, some plants can survive in arid conditions by regu-
lating the opening of stomata to reduce water evaporation. In
southwestern China, diverse vegetation types (e.g., evergreen
forest, shrub, and crops) may have different physiological re-
sponses to changes in VPD, which may lead to a lower cor-
relation between VPD and NDVI.

5 Limitations and future work

Although this study provides valuable data resources for
drought research in China, there are also limitations that
point to potential directions for future research. First, the
data uncertainty in northwestern China is relatively large
due to meteorological stations being sparse. Although both
CRU and CN05.1 are obtained based on station interpola-
tion, the data consistency is generally not high in areas with
sparse meteorological stations (including hyper-arid areas
from Fig. 1) when compared with their calculated drought
index. This may hinder the accurate assessment and under-
standing of drought conditions in the region. Second, because
the spatial resolution of CHM_Drought is 0.1°, the higher the
accuracy, the lower the confidence of the spatial resolution
in the site-sparse areas. However, it is important to recog-
nize the inherent limitations of uncertainty quantification in
sparse observational data. To address these uncertainties, fu-
ture work could integrate satellite data or reanalysis products
to expand spatial coverage or apply advanced machine learn-
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Figure 7. Spatial distribution of the standard deviations of the SPI, SPEI, and EDDI drought indices across three data sources (CRU, CHM,
and CN05.1) at various timescales (1, 3, 6, and 12 months). Here, (a–c) show the 1-month scale, (d–f) show the 3-month scale, (g–i) show
the 6-month scale, and (j–l) show the 12-month scale.

ing techniques, such as deep learning, to capture complex
spatial and temporal patterns. Third, although six common
meteorological drought indices have been developed and are
powerful tools for understanding the diversity of drought,
PDSI_China and SC-PDSI, for example, are more dependent
on the accuracy of soil available water capacity (AWC) data,
and there are currently no high-quality AWC data with a spa-
tial resolution matching that of CHM_Drought (0.1°).

Additionally, a critical area for future work involves the
use of the latest climate projections, such as those from the
Coupled Model Intercomparison Project Phase 6 (CMIP6),
to estimate future values of drought indices. This approach
could offer more robust and detailed insights into how cli-

mate change may impact drought frequency, intensity, and
duration in China and globally. Integrating CMIP6 projec-
tions with drought indices can help in understanding future
drought risks under various greenhouse gas emission scenar-
ios, thereby enhancing drought preparedness and mitigation
strategies. Moreover, this could also involve developing or
refining drought indices (including an agricultural drought
index or hydrological drought index) that are more sensi-
tive to projected changes in precipitation, temperature, evap-
oration, and other climatic variables influenced by climate
change.
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Figure 8. (a, b) Correlation spatial distributions of PDSI_China and the SC-PDSI based on CHM and CRU data. (d, e) Correlation spatial
distributions of PDSI_China and the SC-PDSI based on CHM and CN05.1 data. (c, f) Spatial distribution of the standard deviations of
PDSI_China and the SC-PDSI across three data sources (CRU, CHM, and CN05.1). The histogram at the bottom left in each subplot shows
the distribution of values for all grid cells.

Figure 9. Spatial distributions of correlation (a) and the NSE (b) of VPD based on CHM and CN05.1 data.

6 Data availability

This high-resolution long-term drought dataset covers the
period of 1961–2022, and it will continue to be up-
dated annually. It contains data at a spatial resolution of
0.1°× 0.1°, covering the domain of 18–54° N, 72–136° E.
The NetCDF formatted output files of the CHM_Drought
dataset are freely accessible at https://doi.org/10.5281/
zenodo.14634773 (Zhang and Miao, 2025).

7 Conclusions

We developed new high-resolution multi-drought indices
from data across mainland China with a 0.1° resolution,
spanning 1961 to 2022. The dataset includes six meteoro-
logical drought indices, namely the SPI, the SPEI, the EDDI,
PDSI_China, and the SC-PDSI. All six drought indices can
monitor drought events in China well, although different in-
dices and different scales have different performance charac-
teristics. The shorter timescale (2 weeks) drought index can
be used as an early warning tool for drought, but it is more
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sensitive to short-term precipitation or temperature, which
may limit its use in monitoring drought or cold areas. The de-
veloped dataset, CHM_Drought, is highly consistent with the
drought indices calculated on the basis of CRU and CN05.1.

In conclusion, the development of this high-resolution
(0.1°), reliable drought dataset for China from 1961 to 2022
marks a multifaceted contribution to drought research and
management. It not only enhances our ability to monitor, pre-
dict, and respond to drought conditions but will also support
strategic planning across multiple sectors, including agri-
cultural planning and management, water resource manage-
ment, climate change adaptation strategies, and even inter-
disciplinary research to enable researchers to understand the
compounding effects of drought. By addressing the urgent
need for accurate and accessible drought data, this dataset
opens new avenues for research and policy-making that can
mitigate the impacts of drought and contribute to the sustain-
able management of natural resources.
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