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Abstract. The Qinghai–Tibet Plateau (QTP), known as the Third Pole of the Earth and the “water tower of
Asia”, plays a crucial role in global climate regulation, biodiversity conservation, and regional socio-economic
development. Continuous annual vegetation types and their geographical distribution data are essential for study-
ing the response and adaptation of vegetation to climate change. However, there are very limited data on
vegetation types and their geographical distributions on the QTP due to the harsh natural environment. Cur-
rently, land cover and surface vegetation data are typically obtained using traditional classification methods
for each period’s product based on remote sensing information. These approaches do not consider the tempo-
ral continuity of vegetation presence, leading to a gradual increase in misclassified pixels and uncertainty in
their locations, consequently decreasing the interpretability of the long-time-series remote sensing products.
To address this issue, this study developed a new method for long-time continuous annual vegetation map-
ping based on reference vegetation maps and annual updates and mapped the vegetation of the QTP from 2000
to 2022 at a 500 m spatial resolution through the MOD09A1 product. The overall accuracy of continuous an-
nual QTP vegetation mapping from 2000 to 2022 reached 83.27 %, with the reference annual 2020 data reach-
ing an accuracy of 83.32 % and a kappa coefficient of 0.82. This study supports the use of remote sensing
data for long-term continuous annual vegetation mapping. The 500 m annual vegetation maps are available at
https://doi.org/10.11888/Terre.tpdc.301205 (Zhou et al., 2024).

1 Introduction

Vegetation, an integral component of Earth’s ecosystems,
plays an irreplaceable role in maintaining climate stability,
preserving biodiversity, and supplying vital resources for
humans. Vegetation maps not only facilitate a visual com-
prehension of vegetation types and their geographic distri-
bution, but also provide essential data for natural resource
management and environmental protection (Immerzeel et al.,
2010). Particularly, long time series of geographical distri-
bution data on vegetation types are crucial for revealing the
impacts of climate change and human activities on vegeta-

tion, elucidating the succession processes of vegetation, and
scientifically managing vegetation ecosystems.

The availability of large-scale, long-term, and free remote
sensing imagery has significantly advanced the development
of land cover and surface vegetation data. Notable interna-
tional products include the European Space Agency (ESA)
GlobCover_2005 and GlobCover_2009 (300 m) (Bontemps
et al., 2010) as well as the ESA Climate Change Initia-
tive (ESA-CCI) land cover dataset, which offers improved
temporal continuity at a 300 m spatial resolution (Defourny
et al., 2017). Additionally, the National Aeronautics and
Space Administration (NASA) annual MCD12Q1 product
that has existed since 2001 (500 m) (Friedl et al., 2010;
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Sulla-Menashe et al., 2019) is widely used. In China, rep-
resentative products include GlobeLand 30 by Chen et al.
(2015), Finer-Resolution Observation and Monitoring of
Global Land Cover (FROM_GLC)10 and FROM_GLC30 by
Tsinghua University (Gong et al., 2013; Gong et al., 2019),
Global 30 m Land-cover Classification with a Fine Classifi-
cation System (GLC_FCS30) and Global 30 m Land-cover
Dynamics Monitoring Dataset (GLC_FCS30D) by the Chi-
nese Academy of Sciences (Zhang et al., 2019c; Zhang et
al., 2021b, 2024b), and China land cover dataset (CLCD)
by Wuhan University (Yang and Huang, 2021). Leverag-
ing the intelligent remote sensing mapping (iMap) concept
and framework, there has been rapid progress in developing
global-scale seamless daily data cubes and in creating annual
and seasonal land surface maps (Feng and Li, 2020; Liu et al.,
2021a).

Traditional long-time-series land cover and surface veg-
etation datasets are often generated by independently clas-
sifying each period’s product. However, significant spatial
distribution differences between products from different pe-
riods hinder their direct comparability (Liu et al., 2021b).
For instance, NASA’s MCD12Q1 v5 product, produced us-
ing MODIS data and a decision tree classifier (Friedl et
al., 2010), exhibited substantial instability, with an annual
land cover label change rate of approximately 11.4 % be-
tween 2001 and 2013. Similarly, GlobCover_2009 and Glob-
Cover_2005 show notable spatial distribution differences,
making them unsuitable for change detection studies (Bon-
temps et al., 2010). To address this issue, post-processing
methods have been developed and have demonstrated re-
markable effectiveness. For example, the hidden Markov
model method (Sulla-Menashe et al., 2019), applied to the
MCD12Q1.v6 product, reduced the instability of land cover
label changes to 1.6 % compared to MCD12Q1 v5. Another
study, using spatial–temporal consistency methods (Yang
and Huang, 2021), further improved the mapping accuracy
of land cover time series datasets. However, these post-
processing methods rely on the establishment of numerous
subjective rules, leading to complexity and limitations in
their application (Zhang et al., 2024b). In recent years, re-
search on continuous and dense change detection methods
has made rapid progress, particularly with the continuous
change detection and classification (CCDC) algorithm (Zhu
and Woodcock, 2014; Zhu et al., 2019). This technique lever-
ages all available remote sensing data to conduct continu-
ous land cover change detection, providing a new approach
to address the aforementioned issues. For instance, Xian et
al. (2022) used the CCDC method to produce annual land
cover products for the United States from 1985 to 2017,
while Zhang et al. (2024b) applied it to generate the global
GLC-FCS30D product, which demonstrates greater tempo-
ral stability compared to GLC-FCS30. Therefore, there is
an urgent need to develop long-time-series mapping meth-
ods based on change detection to overcome the limitations of
traditional classification and post-processing approaches.

The QTP, known as the “roof of the world” and the wa-
ter tower of Asia, is critical for global climate regulation and
regional socio-economic development (Yao et al., 2012). In
the 1970s, China carried out the first extensive scientific sur-
vey of the QTP. Currently, the second QTP scientific expedi-
tion is underway, with vegetation survey being one of the ma-
jor components (Zhou et al., 2023). Understanding the evo-
lution of vegetation types on the QTP is important for reveal-
ing the effects of climate change on vegetation structure and
function. Additionally, such insights are essential for eluci-
dating the carbon and water cycles of the QTP and for for-
mulating high-quality, sustainable development strategies for
the region amidst global warming (Wang et al., 2022, 2023;
Zhang et al., 2024a).

As the Third Pole of the Earth, the QTP has very lim-
ited data on vegetation types and geographical distribution
due to its harsh natural environment. Currently, the primary
vegetation data for the QTP include a vegetation map of the
Qinghai–Tibet Plateau in 2020 with a 10 m spatial resolution
(Zhou et al., 2022a), a new vegetation map for the Qinghai–
Tibet Plateau by integrated classification from multi-source
data products (2020) (Zhang et al., 2021a), a vegetation
map of the Qinghai–Tibet Plateau in the 1980s (Zhou et al.,
2022b), and a vegetation map of the Qinghai–Tibet Plateau
permafrost zone (Wang et al., 2016). These vegetation dis-
tribution products are single-period maps, which are insuffi-
cient for depicting dynamic changes in vegetation, thus lim-
iting the understanding of vegetation evolution trends and
mechanisms on the QTP. In addition, Wang et al. (2022) de-
scribed the distribution of alpine meadows and alpine steppes
on the QTP and predicted the distribution trends of these veg-
etation types over the next century using precipitation data.
Wang et al. (2023) analyzed the characteristics of grassland
changes on the QTP over the past 40 years from the perspec-
tive of plant community structure. Other studies have focused
on wetlands, waterbodies, glaciers, and other aspects of the
QTP (Zhang et al., 2019a; Hu et al., 2023; Li et al., 2023).
However, these long-time-series products, created with tra-
ditional classification methods, are primarily focused on spe-
cific types, overlooking the need to identify temporal changes
across different types, which limits the accuracy of the prod-
ucts. Therefore, in order to provide continuous data support
for research on the interaction between vegetation and cli-
mate change, there is an urgent need for long-time-series veg-
etation mapping.

This study aims to develop a new approach to long-time-
series vegetation mapping using remote sensing imagery, and
to map vegetation of the entire QTP at 500 m from 2000
to 2022, using the MOD09A1 remote sensing data.
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2 Materials and methods

2.1 Study area

The QTP, situated between 25°59′30′′ N and 40°1′0′′ N,
67°40′37′′ E and 104°40′57′′ E, has an average elevation of
about 4320 m and a total area of 3.08 million km2 (Zhang et
al., 2021c). This study covers the entire QTP, spanning six
provinces and regions within China – Tibet, Qinghai, Gansu,
Sichuan, Yunnan, and Xinjiang – as well as areas in India,
Pakistan, Tajikistan, Afghanistan, Nepal, Bhutan, Myanmar,
and Kyrgyzstan. In particular, the area of the QTP within
China is about 2.58 million km2 (approximately 83.7 % of
the QTP), with an average elevation of about 4400 m (Yu
et al., 2014; Zhang, 2019; Zhang et al., 2021d, e). The QTP
slopes downward from the high northwest to the lower south-
east, with a humid and rainy climate in the southeast and
arid conditions in the northwest. The vegetation distribution
across the QTP is influenced by topography and climatic con-
ditions, revealing a clear horizontal zonation ranging from
forests, shrubs, and meadows in the southeast to grasslands
and deserts in the northwest. Additionally, as temperatures
decrease with increasing altitude, there is a distinct vertical
stratification in vegetation, ranging from forests at lower el-
evations to alpine meadows and alpine vegetation at higher
elevations.

2.2 Data sources

2.2.1 Training sample data for vegetation type

The vegetation of the QTP is primarily categorized into
15 types (Editorial Board of the Vegetation Map of China,
2007; Zhou et al., 2023). Given the significance of glaciers
and snow cover, this study expanded the vegetation classifi-
cation to 16 types for the 500 m spatial resolution mapping
(Table 1), including evergreen broad-leaved forest (EBF),
evergreen coniferous forest (ECF), coniferous and broad-
leaved mixed forest (CBMF), deciduous broad-leaved for-
est (DBF), deciduous coniferous forest (DCF), scrub (SC),
alpine scrub meadow (ASM), alpine meadow (AM), alpine
grassland (AG), alpine vegetation (AV), alpine desert (AD),
cultivated vegetation (CV), wetland (WE), water (WA), non-
vegetated area (NVA), and glacier and snow (GS).

The training vegetation samples for the QTP within China
were obtained from the vegetation map of the Qinghai–Tibet
Plateau in 2020 with a 10 m spatial resolution (Zhou et al.,
2022a). This product was created using a regional vegetation
mapping method based on terrain–climate–remote sensing
information, with a spatial resolution of 10 m and an over-
all accuracy of 89.5 %. Its classification system is consistent
with that of this study, except for the exclusion of GS, and
was therefore used to generate the vegetation type training
sample data for this research (Zhou et al., 2023). The vege-
tation map was resampled to 500 m. Subsequently, the dom-
inant vegetation type and its proportional area, derived from

the corresponding 50×50 pixels at a 10 m spatial resolution,
were determined as the vegetation type categorization and
pixel purity (reflected as the percentage of the dominant veg-
etation type within these 50×50 pixels) for the 500 m spatial
resolution map. Concurrently, different purity levels and their
area proportions were calculated (Table 2). Random sam-
pling was then conducted in areas with purity levels exceed-
ing 70 %, representing approximately 62.34 % of the QTP.
For the QTP regions outside of China, vegetation type sam-
ple data were obtained from high-resolution Google Earth
imagery from 2020. By visually interpreting these images,
samples were selected from areas with consistent vegetation
types within a 500 m range. Using these methods, a total of
8937 training samples were collected to train the 2020 vege-
tation classification model (Table 1, Fig. 1).

2.2.2 Validation sample data for vegetation type

As the Third Pole of the Earth, the QTP has high altitudes
and sparse human activity, making it difficult to obtain vali-
dation samples. The validation samples in this study consist
of three parts: field measurements, visual interpretation, and
third-party samples.

The field measurement samples include 173 samples
collected during field expeditions on the QTP in 2019,
2020, and 2021. These samples were collected during the
vegetation-growing season on the QTP, with neighboring
samples spaced approximately 50 km apart. It is ensured that
each sample has uniform and consistent vegetation distribu-
tion within a 1 km× 1 km area.

The visual interpretation samples (1002 in total) were
obtained from previous work by Wu et al. (2024) using
Google Earth and Google Earth Engine (GEE). The selected
samples are from areas with consistent vegetation distribu-
tion from 1990 to 2020, and each sample covers an area
greater than 500 m. Each sample was independently inter-
preted by three interpreters using long-time-series Landsat
remote sensing images. Conflicting results were resolved
through a second interpretation, and inconsistent samples
were removed.

The third-party samples include the first all-season sam-
ple set (Li et al., 2017), global land cover validation samples
(Liu et al., 2019), and validation samples gathered through
literature search. The first all-season sample set consists of
approximately 140 000 validation samples worldwide, ob-
tained using Landsat 8 data from 2013–2015. The sec-
ond set includes 44 043 validation samples, primarily from
around 2015, and was published as a validation dataset for
the GLC-FCS30-2015 product. The literature search samples
were obtained from the China National Knowledge Infras-
tructure (https://www.cnki.net/, last access: 19 March 2023)
and Web of Science (https://www.webofscience.com/, last
access: 19 March 2023) databases using keywords such as
Qinghai–Tibet Plateau, vegetation, and vegetation cover to
collect published validation samples from 2000 to 2022.
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Table 1. Vegetation classification system and training and validation sample counts on the QTP.

Types Definitions Training Validation
samples samples

Evergreen broad-leaved Forest communities composed of evergreen broad-leaved tree 936 76
forest (EBF) species

Evergreen coniferous Forest communities composed of evergreen coniferous tree species 768 102
forest (ECF)

Coniferous and broad- Forest communities composed of both coniferous and broad-leaved 475 25
leaved mixed forest tree species
(CBMF)

Deciduous broad-leaved Forest communities composed of broad-leaved tree species that 570 62
forest (DBF) shed leaves in winter and grow in summer

Deciduous coniferous Forest communities composed of coniferous tree species that shed 370 91
forest (DCF) leaves in winter and grow in summer

Scrub (SC) Vegetation communities dominated by shrubs 397 79

Alpine scrub meadow Vegetation communities composed of alpine shrubs and alpine 213 49
(ASM) meadows, adapted to cold, windy, dry, and alpine climates

Alpine meadow (AM) Vegetation communities primarily consisting of herbaceous plants 1375 310
suited to cold climates

Alpine grassland (AG) Vegetation communities composed of alpine grasslands with low 872 217
biomass and a short growing season

Alpine vegetation (AV) Vegetation communities occurring above the treeline or shrub belt 503 97
and below the permanent snow line, dominated by ice- and cold-
tolerant plants

Alpine desert (AD) Deserts composed of cold- and drought-tolerant cushion subshrubs 499 325

Cultivated vegetation Vegetation communities formed through human cultivation 469 109
(CV)

Wetland (WE) Vegetation communities composed of water, bare soil, and 246 81
herbaceous or woody plants

Water (WA) Areas covered by water year-round 377 91

Non-vegetated area Areas composed of natural soil, sand, or rock 204 36
(NVA)

Glacier and snow (GS) Areas covered by ice and snow year-round 663 439

Table 2. Purity and area proportion of a 500 m resolution pixel samples of vegetation types on the QTP within China.

Purity (%) 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 90–100

Area proportion (%) 0.02 0.04 1.01 4.20 8.28 12.55 11.56 11.40 12.55 38.39

The third-party validation samples in this study carry cer-
tain uncertainties, such as spatial range and homogeneity.
According to Li et al. (2017), the first all-season sample set
includes samples with varying unit sizes (30, 100, 250, 500,
and 1000 m), with those larger than 500 m being rare (only
10.6 %). Samples smaller than 500 m are not suitable for val-
idating 500 m vegetation maps. Additionally, the global land

cover validation samples from Liu et al. (2019) and those
from literature searches only guarantee accuracy in sampling
time and type but not spatial extent. To address these issues,
this study applied the method of Feng et al. (2012) to extract
spatially homogeneous regions from MOD09A1 data by an-
alyzing the range of values in a 3× 3 grid of 500 m pixels.
Thresholds for homogeneity were set for each band: 0.03 for
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Figure 1. Spatial distribution of training (2020) and validation (2000–2022) samples for vegetation mapping at a 500 m resolution on
the QTP.

blue, green, and red; 0.06 for near-infrared; and 0.03 for both
shortwave infrared 1 and shortwave infrared 2. If the range
of values across all bands fell within these thresholds, the
area was considered homogeneous. GS areas on the QTP are
mostly classified as heterogeneous areas. Therefore, the sam-
ples labeled as GS in the third-party samples are visually in-
terpreted to remove unreasonable ones. After applying this
quality control, 1014 third-party validation samples were ob-
tained, including 327 from the global all-season sample li-
brary, 499 from the GLC-FCS30-2015 global validation set,
and 188 from literature searches.

The validation sample dataset for this product contains
2189 samples from field measurements, visual interpreta-
tion, and third-party samples (Table 1, Fig. 1). Among them,
173 field measurement samples are available for validating
the 2020 product. There are 1002 samples from visual in-
terpretation, characterized by stable attributes over multiple
years, making them suitable for validating annual products
from 2000 to 2020. Furthermore, 1014 third-party validation
samples can be used to validate annual products from 2000
to 2019.

2.2.3 Remote sensing data

Remote sensing data in this study were sourced from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
series satellite imagery provided by NASA. As one of the
longest-operating Earth observation instruments currently in
orbit, MODIS is a multi-spectral observation sensor launched
in May 1999 that enables efficient and comprehensive ob-
servation of the Earth. The MOD09A1 surface reflectance
dataset, obtained through the GEE platform (Gorelick et al.,

2017), is a Level 3 product generated from daily surface re-
flectance observations using an 8 d compositing algorithm.
This algorithm selects the best observation during the 8 d pe-
riod based on criteria such as minimal cloud cover and high-
est observation quality (Vermote et al., 2015). The dataset has
undergone standardized pre-processing provided by NASA,
including radiometric calibration, atmospheric correction,
and cloud masking based on quality assurance (QA) flags
(Vermote et al., 2015; Vermote, 2021). To ensure the data
were suitable for this study, additional processing steps were
applied. The original sinusoidal projection of MOD09A1
was converted to the WGS 84 geographic coordinate grid to
maintain spatial consistency with other datasets, and the data
were spatially subsetted to the QTP region to match the study
area. The MOD09A1 dataset provides surface reflectance in
seven spectral bands (Table 2) with a spatial resolution of
500 m, and 1051 MOD09A1 images from 1 January 2000 to
31 December 2022 were used to generate annual vegetation
maps at a 500 m resolution for the QTP. These pre-processing
steps ensure the reliability and quality of the data for vegeta-
tion classification and long-term analysis.

2.2.4 Climate and terrain data

Temperature and precipitation are key driving factors for
the distribution and dynamic changes in vegetation types
on the QTP, and the incorporation of climate data signifi-
cantly enhances the understanding of vegetation distribution
on the QTP (Wang et al., 2022; Zhou et al., 2023; Zhang
et al., 2024a). This study utilized climate data, which in-
cluded annual precipitation (AP) and annual average tem-
perature (AT) across the entire QTP from 2000 to 2022. For
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the QTP within China, climate data at 1000 m were obtained
from the National Tibetan Plateau Data Center, specifically
the 1 km monthly precipitation dataset for China (1901–
2023) and the 1 km monthly mean temperature dataset for
China (1901–2023) (Peng et al., 2017a, b, 2019; Peng, 2019;
Ding and Peng, 2020; Peng, 2020). To derive the precipi-
tation and temperature features required for this study, the
monthly precipitation data were summed to calculate annual
totals, while the monthly mean temperature data were aver-
aged over the year. In contrast, climate data for areas of the
QTP outside China were derived from the Climatic Research
Unit (CRU) high-resolution gridded dataset, featuring a spa-
tial resolution of approximately 50 000 m. The digital eleva-
tion model (DEM) and derived features are crucial for vege-
tation mapping. The terrain data was from the Shuttle Radar
Topography Mission (SRTM) by the United States Geologi-
cal Survey (USGS) (Farr et al., 2007), with a spatial resolu-
tion of 30 m. At last, this study applied the mean sampling
method in GEE to resample data on AP, AT, elevation, slope,
and aspect variables derived from SRTM data to a 500 m spa-
tial resolution for integration into vegetation mapping.

2.3 Vegetation mapping of the QTP at a 500 m
resolution in 2020

2.3.1 Classification platform and algorithm

The GEE cloud platform offers a variety of machine learn-
ing models, such as support vector machine (SVM) and ran-
dom forest (RF), the latter of which was utilized in this study
for vegetation mapping (Gorelick et al., 2017; Zhang et al.,
2023). The RF model is an ensemble-learning-based ma-
chine learning algorithm that mitigates the overfitting risk in-
herent in single decision trees by constructing and integrat-
ing multiple decision trees (Breiman, 2001). This approach
not only enhances the accuracy and stability of predictions,
but also has been widely applied in the vegetation mapping.

2.3.2 Construction of vegetation mapping features

The features used in vegetation mapping are divided into four
categories (Table 3): terrain (elevation, slope, aspect), cli-
mate (AT and AP), surface reflectance (R, N , B, G, M , S1,
S2), and 14 index features which are constructed from the
single-band surface reflectance. These features were derived
from the MOD09A1 remote sensing imagery data spanning
from 1 January to 31 December 2020. Additionally, six per-
centiles – 15 %, 30 %, 45 %, 60 %, 75 %, and 90 % – were
calculated for the 7 reflectance bands and the 14 indices, rep-
resenting the time series characteristics of each pixel. The
15th and 90th percentiles were used as substitutes for the
minimum and maximum values of the time series observa-
tions, effectively mitigating the influence of extreme values
in time series data (Zhang et al., 2021b). The 30 %, 45 %,
60 %, and 75 % features were selected to capture temporal

trends uniformly while avoiding feature redundancy (Sulla-
Menashe et al., 2019; Zhang et al., 2024b). A total of 131 fea-
tures were formulated from these four categories for vegeta-
tion mapping on the QTP.

2.3.3 Feature importance evaluation and feature
selection

Among the 131 features used for vegetation mapping,
126 optical remote sensing features (excluding topography
and climate) were constructed based on surface reflectance.
These features are prone to severe collinearity issues, which
can lead to model overfitting, increased computational costs,
and diminished interpretability. To mitigate the issue of high
collinearity among these features, the variance inflation fac-
tor (VIF) was employed, providing the ratio of variance in a
model with multicollinearity among features to the variance
in a model where multicollinearity is absent (James et al.,
2013; Ngabire et al., 2022):

VIFj =
1

1−R2
j

, (1)

where VIFj is the VIF for feature j and R2
j is the squared

multiple correlation coefficient obtained from the regression
of feature j with all other features. A higher VIF value indi-
cates more severe collinearity, with a VIFj greater than 30
suggesting significant collinearity in feature j . This study
utilized the RF classifier to determine the optimal feature
combination for vegetation classification. The importance of
terrain, climate, and optical remote sensing features was as-
sessed through the RF classifier and filtered using the VIF
method (Ramosaj and Pauly, 2019; Zhang et al., 2019b). The
features were then ranked according to the calculated impor-
tance, and the top-ranking feature, along with combinations
such as the top two and top three, was used to construct var-
ious RF models for all possible feature combinations. The
feature set with the smallest out-of-bag error was chosen as
the best feature set for vegetation mapping on the QTP.

2.3.4 Evaluation of mapping accuracy

An optimal combination of terrain, climate, and optical re-
mote sensing data in 2020 was integrated to achieve veg-
etation mapping of the QTP based on RF model in this
study. The mapping accuracy was evaluated using the confu-
sion matrix method, which involved calculating overall accu-
racy (OA, Eq. 2), kappa coefficient (kappa, Eq. 3), producer’s
accuracy (PA, Eq. 4), and user’s accuracy (UA, Eq. 5).

OA=

n∑
i=1
mi

N
, (2)
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Table 3. Vegetation mapping features at a 500 m resolution on the QTP.

Category Features Formula Description

Terrain Elevation The height of the terrain above sea level (m)
Slope The steepness of the terrain (°)
Aspect The direction the terrain slope faces (°)

Climate AT Annual average temperature
AP Annual precipitation

Surface reflectance R Red 620–670 nm
N Near-infrared 841–876 nm
B Blue 459–479 nm
G Green 545–565 nm
M Mid-infrared 1230–1250 nm
S1 Shortwave infrared 1 1628–1652 nm
S2 Shortwave infrared 2 2105–2155 nm

Vegetation index NDVI N−R
N+R

Normalized difference vegetation index
(Tucker, 1979)

EVI 2.5 N−R
N+6R−7.5B+1 Enhanced vegetation index (Huete et al.,

1999)
RVI N

R
Ratio vegetation index (Crippen, 1990)

DVI N −R Difference vegetation index (Roujean and
Breon, 1995)

SAVI (N−R)·1.5
N+R+0.5 Soil adjusted vegetation index (Huete,

1988)
GCVI N

G
− 1 Green chlorophyll vegetation index (Lobell

et al., 2015)
NIRV (N−R)·N

N+R
Near-infrared reflectance of vegetation
(Badgley et al., 2017)

Urban index NDBI S1−N
S1+N

Normalized difference built-up index (Zha
et al., 2003)

IBI NDBI−(SAVI+(G−S1)/(G+S1))/2
NDBI+(SAVI+(G−S1)/(G+S1))/2 Index-based built-up index (Xu, 2008)

Water index NDWI G−N
G+N

Normalized difference water index
(McFeeters, 1996)

LSWI N−S1
N+S1

Land surface water index (Xiao et al., 2004)

Snow index NDSI G−S1
G+S1

Normalized difference snow index (Hall et
al., 1995)

NDGlaI G−R
G+R

Normalized difference glacier index
(Keshri et al., 2009)

Soil index BI (S1+R)−(N+B)
(S1+R)+(N+B) Bare soil index (Chen et al., 2004)

kappa=
N ×

n∑
i=1
mi −

n∑
i=1

(Gi ×Ci)

N2−
n∑
i=1

(Gi ×Ci)
, (3)

PA=
mi

Gi
, (4)

UA=
mi

Ci
, (5)

where mi is the count of correctly classified pixels for cate-
gory i; n is the count of categories; N is the overall quantity
of classified pixels; Ci and Gi are the total counts of pixels
classified as and actually in category i, respectively; OA is
the overall accuracy; kappa is the kappa coefficient; PA is
the mapping accuracy; and UA is the user accuracy.
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2.4 Continuous annual vegetation mapping at a 500 m
resolution from 2000 to 2022

The workflow represents the process for generating annual
vegetation maps in QTP from 2000 to 2022 (Fig. 2). It be-
gins with breakpoint detection, where the continuous change
detection (CCD) algorithm (Eq. 6) is applied to the red, near-
infrared, and shortwave infrared 1 bands of MOD09A1 data,
identifying breakpoint regions for the QTP (Sect. 2.4.1).
These breakpoint regions are then used in the potential
vegetation change area identification algorithm to deter-
mine potential change areas for 2000–2019 and 2021–2022
(Sect. 2.4.2). Subsequently, the actual vegetation type identi-
fication algorithm is applied to these potential change areas,
producing preliminary annual vegetation maps for the cor-
responding years (Sect. 2.4.3). Finally, the spatial–temporal
consistency method is used to refine these preliminary maps,
generating the annual vegetation maps of the QTP from 2000
to 2022 (Sect. 2.4.4).

2.4.1 Continuous change detection algorithm

The continuous change detection and classification (CCDC)
algorithm integrates time series and spectral characteristics
to detect temporal “breakpoints” and classify land cover
changes. Originally developed for Landsat data (Zhu and
Woodcock, 2014; Zhu et al., 2019), it has been extended to
MODIS and Sentinel datasets (Shimizu et al., 2019; Tang et
al., 2019; Xian et al., 2022). In this study, CCDC was applied
to long-term vegetation mapping on the QTP, leveraging its
ability to dynamically detect changes and update classifica-
tions to improve temporal consistency (Zhang et al., 2024b).

The CCDC algorithm comprises two components: con-
tinuous change detection (CCD) and classification (C). The
CCD component uses a time series fitting model (Eq. 6) with
harmonic and slope terms to analyze remote sensing data,
capturing seasonal variations and the interannual changes.
When residuals exceed a specified threshold, the correspond-
ing time period is flagged as a “break”. The CCD segments
the entire observation sequence into several subsequences,
each separated by breaks. Each subsequence is then modeled
independently using specific fitting coefficients (Fig. 2). The
second part of the CCDC, the C, uses the RF method to clas-
sify each subsequence based on its fitting coefficients (Zhu
and Woodcock, 2014). Considering the influence of terrain
and climate on vegetation distribution in the QTP (Zhou et
al., 2023), this study employed a pre-established 2020 classi-
fication model (Sect. 2.3) which incorporates terrain, climate,
and remote sensing data to identify potential change areas.

ρ̂(i, t)= c0i+

N∑
n=1

(
ani cos

2πn
T
t + bni sin

2πn
T
t

)
+c1i t, (6)

where ρ̂(i, t) is the predicted value of the ith band on Julian
day t ; T is the average number of days in a year; ani and

bni are the harmonic coefficients of the nth order for the
ith band; c0i and c1i are the intercept and slope coefficients,
respectively; and N represents the highest order of harmon-
ics, which is set to 3 in this study.

The CCDC algorithm was initially developed in MATLAB
(Zhu and Woodcock, 2014) and later in Python (Brown et al.,
2020). To address its high computational demands for long-
term, large-scale monitoring, this study utilized the GEE
platform, which provides the CCDC algorithm as a time seg-
mentation tool (ee.Algorithms.TemporalSegmentation.Ccdc)
(Arévalo et al., 2020; Pasquarella et al., 2022). This study
primarily used GEE’s default parameters, modifying only
breakpointBands and dateFormat. The breakpointBands pa-
rameter was set to include the red (R), near-infrared (N ),
and shortwave infrared 1 (S1) bands, which correspond to
chlorophyll content, leaf structure, and water content, respec-
tively (Tucker, 1979; Curran, 1989; Gao, 1996). The date-
Format parameter was set to 2, indicating that all breakpoint
times are represented as Unix timestamps. Finally, using the
MOD09A1 remote sensing imagery from 2000 to 2022 and
the CCD algorithm, breakpoint regions on the QTP during
2000–2022 were identified.

2.4.2 Potential vegetation change area identification
algorithm

The annual mapping method in this study involves the base-
line year T and the updated year T −1. Therefore, the poten-
tial change area for the year T − 1 (ST−1) depends on the
breakpoint regions of T (BT ) and T − 1 (BT−1). The de-
tailed algorithm process is illustrated in Fig. 2. In general,
at the same spatial location, if there is at least one breakpoint
region in both year T and year T − 1 (gray areas), the cor-
responding location is marked as a potential change area for
year T − 1 (green areas). This can be expressed as

ST−1 = (BT−1 ∩BT )∪
(
BT−1 ∩BT

)
∪
(
BT−1 ∩BT

)
, (7)

where ST−1 is the potential vegetation change area for
year T − 1; BT−1 and BT are the breakpoint regions for
year T − 1 and T ; and BT−1 and BT are the non-breakpoint
regions for year T − 1 and T , respectively. Finally, using
the potential vegetation change area identification algorithm
and the breakpoint regions on the QTP during 2000–2022
(Sect. 2.4.1), potential vegetation change areas were identi-
fied for 2000–2019 and 2021–2022. The year 2020 was used
as the baseline year in this study and did not require updating.

2.4.3 Actual vegetation type identification algorithm

The potential vegetation change areas merely indicate re-
gions where vegetation types might change, thus ne-
cessitating further identification of the actual vegetation
change areas (Fig. 2). Based on the RF model constructed
in 2020 (M2020) and combining the terrain, climate, remote
sensing data, and ST−1, the actual vegetation types in the
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Figure 2. Workflow for a 500 m resolution vegetation mapping on the QTP from 2000 to 2022.

potential change areas for T − 1 (R′T−1) can be determined
(Eq. 8). Subsequently, the T − 1 vegetation map (RT−1) was
obtained by overlaying and analyzing R′T−1 and RT (Eq. 9).

R′T−1 =M2020 (FT−1,ST−1) , (8)

RT−1 =

{
R′T−1 ST−1 and R′T−1 6= RT ,

RT otherwise,
(9)

where M2020 is the RF model for the year 2020; FT−1 is the
vegetation mapping features for the year T − 1; ST−1 is the
potential vegetation change area for the year T − 1; R′T−1 is
the vegetation classification result for the potential change
area of the year T − 1; RT and RT−1 are the vegetation
classification results for the years T and T − 1, respectively.
Finally, by integrating the actual vegetation type identifi-
cation algorithm with the potential vegetation change areas
(Sect. 2.4.2), preliminary annual vegetation maps for 2000–
2019 and 2021–2022 were generated.

2.4.4 Spatial–temporal consistency

The RF model used in this study, although exhibiting strong
classification accuracy and robustness, employs a per-pixel
classification strategy, which can result in salt-and-pepper
noise (Yang and Huang, 2021). To mitigate this issue, this
study employs a spatial–temporal constraint method, which
assesses the consistency of each pixel’s label within a 3×3×
3 cube across both spatial and temporal dimensions (Fig. 2).
The consistency, Cx,y,t , is calculated by averaging the agree-
ment of the central pixel’s label with the labels of 27 sur-
rounding pixels (Yang and Huang, 2021; Li et al., 2015):

Cx,y,t =
1
27

x+1∑
i=x−1

y+1∑
j=y−1

t+1∑
k=t−1

I
(
Labelx,y,t = Labeli,j,k

)
, (10)

where I is an indicator function returning 1 if the labels
match and otherwise 0. If Cx,y,t < 0.5 and t > 2000, the
pixel is deemed misclassified, and its label is corrected to
match the previous year’s central label. For the year 2000,
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where previous year data are unavailable, the label is adjusted
to the most frequent label in the spatial 3× 3 area. This ap-
proach assumes that significant, inconsistent changes are un-
likely both spatially and temporally, thereby enhancing the
accuracy of the classification. Based on the preliminary an-
nual vegetation maps (Sect. 2.4.3) and the spatial–temporal
constraint method, the final product of this study, the annual
vegetation maps of the QTP from 2000 to 2022, was pro-
duced.

3 Results

3.1 Vegetation mapping of the QTP at a 500 m
resolution in 2020

Due to the significant collinearity among the 126 features in
MODIS data, this study focused on 13 features with VIF be-
low 30, including various band reflectance features and vege-
tation indices such as NDGlaI 15 %, NDGlaI 90 %, IBI 30 %,
NDBI 90 %, IBI 15 %, IBI 90 %, EVI 90 %, NDVI 90 %, IBI
75 %, IBI 60 %, LSWI 90 %, M 90 %, and IBI 45 %. Com-
bined with two climate factors (AT and AP) and three terrain
features (elevation, slope, and aspect), an 18-feature set was
created for out-of-bag (OOB) error analysis. The results indi-
cated that the OOB error decreased as the number of features
increased, reaching a minimum of 0.135 with 11 features,
beyond which there was a slight increase (Fig. 3a). Subse-
quently, the top 11 features were selected to construct the
RF model: AP, elevation, NDVI 90 %, AT, slope, M 90 %,
EVI 90 %, NDBI 90 %, NDGlaI 90 %, NDGlaI 15 %, and IBI
75 %. Among them, AP, elevation, AT, and slope ranked first,
second, fourth, and fifth in importance score, respectively.
Therefore, climate and terrain are significant factors influ-
encing vegetation distribution on the QTP (Fig. 3b). Finally,
the 2020 vegetation map of the QTP was generated on the
GEE platform at a 500 m spatial resolution (Fig. 4) based on
the developed RF model.

The 2020 vegetation map of the QTP includes 16 types
(Fig. 4). Among these, four types cover areas larger than
400 000 km2: AM, AG, AD, and AV. The AM covers the
largest area, approximately 798 000 km2, mainly in the east-
ern and southern regions of Gansu and Qinghai provinces.
The AG covers around 578 000 km2, predominantly in the
central part of the plateau, with a distinct transitional zone
adjoining the AM. The AD, covering about 562 000 km2,
is primarily located in the Xinjiang region. The AV covers
approximately 474 000 km2 and is widely distributed from
above the treeline or shrub zone to the lower limit of the
perennial snow line on the QTP. Among the five forest types
in the QTP, ECF cover the largest area, about 154 000 km2,
mainly distributed in the Hengduan Mountains in the south-
east of the QTP and near the Indus River in the west. DCF
cover the smallest area, approximately 12 000 km2, primarily
located along the northwestern border of the QTP.

3.2 Continuous annual vegetation mapping at a 500 m
resolution from 2000 to 2022

This study used the CCD algorithm to detect breaks in
the dense time series MODIS data of the QTP from 2000
to 2022, defining these breaks as potential changes (PCs)
(Fig. 5a). Subsequently, an RF model incorporating terrain,
climate, and remote sensing data was applied to annually
update and generate vegetation maps of the QTP, identify-
ing changes between adjacent years as real changes (RCs)
(Fig. 5b).

Approximately 31.8 % of the QTP is classified as PC ar-
eas. Regions with one or two instances of PC account for
18.2 % and 7.12 % of the area, respectively (Fig. 5g), primar-
ily located at the junctions of AM, AG, and AD in the central
part of the plateau (Fig. 5a). Notably, areas near Hala Lake
in the northeast (ROI1) and Lake Manasarovar in the south-
west Ali region (ROI2) experienced more than five instances
of change, covering approximately 0.82 % of the total area
of the QTP (Fig. 5c and d). Compared to the PC areas, the
RC areas from the annual vegetation maps of the QTP are
significantly smaller (Fig. 5b), encompassing only 3.17 % of
the total area. As shown in Fig. 5g, regions with one or two
instances of RC account for 2.75 % and 0.34 % of the QTP,
respectively. Areas with three or more instances of RC make
up only 0.08 %, with no regions experiencing five or more
instances of change. In all categories of change frequency,
the area of RC is consistently smaller than that of PC. In
the RC regions of ROI1 and ROI2, only a few areas show
one or two instances of change. Notably, in ROI2, no areas
with five instances of PC (red) appear in the corresponding
RC regions; only a small portion shows a single instance of
RC change.

Although the CCD model, which relies on dense spectral
data, often detects many false changes – meaning that many
breaks detected by CCD do not necessarily represent land
type transformations (Zhu et al., 2019) – the RF model based
on climate, terrain, and remote sensing data produces annual
vegetation maps that effectively reduce these false changes.
The frequency and area of detected change regions are sig-
nificantly smaller compared to the CCD model results.

Figure 6 illustrates the area changes in 16 vegetation types
on the QTP from 2000 to 2022. All forest types remained
relatively stable, with changes within 0.3 %. Among the five
forest types, ECF showed a small decrease, reducing by ap-
proximately 400 km2 (0.28 %), while DCF had a small in-
crease by about 14 km2 (0.12 %). Except for DBF, SC and
ASM have limited distributions on the plateau. ASM de-
creased by about 300 km2 (1.02 %), primarily before 2005.
AM, AG, AV, and AD are the four most widespread types
on the plateau. AM and AV showed significant increases,
with AM rising by about 8800 km2 (1.11 %) and AV by about
12 600 km2 (2.73 %). In contrast, AD significantly decreased
by about 21 500 km2 (3.69 %). AG fluctuated but notably de-
clined by about 3100 km2 (0.54 %) after 2016. CV increased
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Figure 3. Evaluation of the 2020 vegetation classification model on the QTP.

Figure 4. Vegetation types and spatial distribution at a 500 m resolution on the QTP in 2020.

by approximately 500 km2 (1.32 %), mainly after 2018. WA
showed the most significant change, increasing by about
4300 km2 (8.40 %) between 2000 and 2022. GS decreased by
approximately 200 km2 (0.17 %), primarily after 2010. Both
WE and NVA showed a decreasing trend, with reductions of
about 600 and 100 km2, respectively, from 2000 to 2022.

As shown in Fig. 7, most RC occurred only once, pre-
dominantly in the northern, eastern, and southwestern parts
of Selin Co. In 2000, these areas were classified as WE,
AD, and AG, respectively. From 2000 to 2022, these re-
gions gradually transformed into WA, as evident in the re-
mote sensing images. Specifically, the northern WE transi-

tioned to WA between 2000 and 2015, the eastern AD be-
tween 2000 and 2010, and the southern AG between 2000
and 2005. The WA in this region increased from approxi-
mately 43.43 % in 2000 to 48.73 % in 2022, marking a 5.3 %
rise. Simultaneously, AG, AD, and WE decreased by 1.09 %,
2.56 %, and 1.65 %, respectively. The eastern AD was the
most significant contributor to the expansion of Selin Co’s
water.

In the northeastern part of Hala Lake, close to ROI1, the
area primarily consists of AG, AV, AD, and GS. Figure 8b
shows that most changes in this region from 2000 to 2022
occurred once or twice. The area of GS changed very lit-
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Figure 5. Overview of potential change (PC) and real change (RC) areas on the QTP from 2000 to 2022. (a, b) Distribution of PC and RC on
the QTP. (c–f) PC and RC areas in ROI1 and ROI2. (g) Area statistics of PC and RC on the QTP.

Figure 6. Annual area changes for 16 vegetation types on the QTP from 2000 to 2022.
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Figure 7. Annual vegetation cover changes in Area 1 (31.5002° N, 88.6985° E). (a, c) Remote sensing images from 2000 and 2022, re-
spectively. (b) Distribution and frequency of RC. (d–i) Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k) Area
proportions of major vegetation types in 2000 and 2022, respectively.

tle over the past 23 years, increasing slightly from 6.32 %
to 6.34 %. In contrast, AG expanded significantly, from
41.67 % to 53.49 %, which is an increase of about 11.82 %.
Meanwhile, the areas of AD and AV decreased by 9.51 %
and 2.33 %, respectively. These changes mainly occurred in
transition zones, particularly between AG and AD, where
most conversion from AD to AG happened between 2000
and 2010. The shift from AV to AG mostly occurred be-
tween 2000 and 2005. Notably, some areas in Fig. 8b ex-
perienced two changes. These changes mainly reflect fluc-
tuations between AD and AG (Fig. 8c and d), likely due to
similar climate and spectral characteristics in the transition

zones, causing some pixels to switch between the two types
multiple times.

3.3 Accuracy validation

The annual vegetation map of the QTP is dynamically up-
dated using 2020 as the reference year, making its accuracy
crucial for long-term product reliability. Due to minimal dif-
ferences in vegetation distribution between adjacent years,
samples from 2019, 2020, and 2021 were used to validate the
reference map. This validation set included 1175 samples.
The results showed an OA of 83.32 % for 2020, with a kappa
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Figure 8. Annual vegetation cover changes in Area 2 (37.6311° N, 95.8644° E). (a, c) Remote sensing images from 2000 and 2022, re-
spectively. (b) Distribution and frequency of RC. (d–i) Annual vegetation maps for 2000, 2005, 2010, 2015, 2020, and 2022. (j, k) Area
proportions of major vegetation types in 2000 and 2022, respectively.

coefficient of 0.82 (Table 4). For most vegetation types, the
UA for DCF, AM, AV, AD, and WA exceeded 90 %, and
the PA for DCF, WE, WA, and GS was also above 90 %.
However, the UA and PA for CBMF were only 57.14 % and
48.00 %, respectively. This lower accuracy is likely because
CBMF, as a mix of coniferous and broad-leaved forests, is
often misclassified by the RF model as EBF, ECF, or DBF
due to spatial similarities. Overall, the 2020 vegetation map,
validated with 1175 samples, achieved sufficient accuracy to
be used as the reference for dynamic updates.

The third-party samples (1014 samples) and visual inter-
pretation samples (1002 samples) were used to validate the

accuracy of annual vegetation maps. The third-party samples
mainly include grasslands, AD, and GS. Because the first all-
season sample set and the global land cover validation sam-
ples did not differentiate between AM and AG, these two
types were combined under the grasslands category during
the validation process. The third-party samples mainly origi-
nate from 2014 (190 samples) and 2015 (666 samples), with
smaller numbers from other years. The visual interpretation
samples exhibit stable characteristics across multiple years,
making them suitable for validating annual vegetation maps
from 2000 to 2019.
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Figure 9. Annual overall accuracy of vegetation maps from 2000
to 2019.

Validation results indicated that accuracy from 2000
to 2019 remained above 80 %, with the lowest being 82.07 %
in 2015 (Fig. 9). Upon inspection, most of the misclassi-
fied samples were located in the barren land (vegetation
cover< 10 %) category in the first all-season sample set,
which corresponds to AD in the vegetation maps. However,
some samples of this category were classified as AG in the
vegetation map. There are definitional differences between
barren land and AD. Additionally, AD and AG represent two
largest vegetation types on the QTP, and there are signifi-
cant transitional zones between these two types (Fig. 4). As
a result, the accuracy in 2015, when a large number of third-
party samples were used, was slightly lower than in other
years. Moreover, because there were insufficient validation
samples for 2021 and 2022 and 2020 has already been vali-
dated as the reference year, the overall accuracy of the annual
vegetation maps is estimated to be 83.27 % based on the av-
erage accuracy from 2000 to 2019.

4 Discussion

4.1 Evaluating the efficacy of the CCD algorithm in
annual vegetation mapping from 2000 to 2022

This study proposed a method for long-time continuous an-
nual vegetation mapping. Specifically, the CCD algorithm
was applied to MODIS data from 2000 to 2022 to detect
breakpoints. Subsequent processes involved identifying po-
tential change areas, recognizing true vegetation types, and
ensuring spatial–temporal consistency. This enabled consis-
tent mapping of vegetation on the QTP annually from 2000
to 2022. The CCD algorithm in this study used harmonic
functions to fit long-term remote sensing images, thereby
identifying breakpoints and determining the timing of these
breakpoints. To ensure the algorithm effectively captures
vegetation dynamics, we selected the R (red), N (near-
infrared), and S1 (shortwave infrared 1) bands for break-
point detection. The R band is related to chlorophyll content,
the N band to canopy structure, and the S1 band to vegeta-
tion water content (Tucker, 1979; Curran, 1989; Gao, 1996).
Combining these complementary bands enables the CCD al-
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Figure 10. Validation of vegetation mapping: consistent change detection in WA sample (35.2425° N, 82.9294° E) by CCD, Landsat, and
annual vegetation maps.

gorithm to effectively detect breakpoints in vegetation dy-
namics on the QTP.

For instance, in Fig. 10, the CCD algorithm was applied
to detect changes in the R, N , and S1 bands of the sampling
site from 2000 to 2022. The results indicated that there was
a breakpoint in 2011 (highlighted in yellow), dividing the
period into Fit1 (from 2000 to 2011) and Fit2 (from 2011

to 2022). The annual amplitude of the three bands exhibited
small fluctuations with stable interannual patterns. In con-
trast, the amplitude of theR andN bands in Fit2 far exceeded
that of Fit1, showing significant differences in seasonal pat-
terns within the year. Additionally, for the S1 band, the over-
all reflectance in Fit2 was substantially lower than in Fit1, re-
flecting distinct seasonal fluctuations within the year. Based
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Figure 11. Validation of vegetation mapping: consistency of no change detection in forest sample (28.7617° N, 95.2794° E) by CCD,
Landsat, and annual vegetation maps.

on the annual Landsat images from 2009 to 2013, there was
a noticeable expansion of WA in the selected area, marking
a transition from AD prior to 2011 to WA thereafter. The
annual vegetation maps accurately captured this transition,
with the area represented as brown–yellow (AD) before and
up to 2010 and shifted to deep blue (WA) from 2011 onward.

This change was further corroborated by the CCD fitting re-
sults and visual interpretation of the Landsat images.

In Fig. 11, the CCD algorithm indicated that there were
no breakpoints from 2000 to 2022. The annual and interan-
nual variations in the R, N , and S1 bands were stable over
the years. Combined with the Landsat images, the selected
area was consistently classified as EBF without any detected
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Figure 12. Validation of vegetation mapping: CV sample (35.2474° N, 100.8570° E) changes detected by CCD not reflected in Landsat and
annual vegetation maps.

changes. The long-time annual vegetation maps consistently
reflected this characteristic.

However, abrupt changes detected by the CCD algorithm
may not always accurately reflect real changes on the ground
(Zhu and Woodcock, 2014; Du et al., 2023). In Fig. 12, an
area of CV on the QTP was examined. The CCD results indi-
cated a breakpoint in 2018, with data from 2000 to 2018 cat-

egorized as Fit1 and post-2018 as Fit2. Although Fit2 shows
greater amplitude in the R, N , and S1 bands compared to
Fit1, the waveform remains similar. Despite a breakpoint be-
ing detected, Landsat images from 2016 to 2020 confirm that
the area consistently featured CV. The detected changes were
likely caused by variations in cultivation practices in 2018 or
similar factors rather than actual changes in vegetation. As a
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Figure 13. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a) Region dominated by WA and AG.
(b) Region dominated by GA and AM.

result, the annual vegetation maps did not capture the change
detected by the CCD in 2018.

Given its performance, the CCD algorithm effectively
identifies the regions and timings of breakpoints in long-time
remote sensing imagery, making it a suitable foundational
method for detecting potential change areas in annual vege-
tation mapping. Although the CCD algorithm is susceptible
to false positives due to factors such as changes in cultivated
species (Fig. 12), the subsequent methods employed in this

study, including potential area identification, true vegetation
type recognition, and spatial–temporal constraints, help mit-
igate these false positive errors (Fig. 12).

4.2 Inter-comparison with other products

MCD12Q1 (Friedl and Sulla-Menashe, 2022; Sulla-Menashe
et al., 2019), CLCD (Yang and Huang, 2021, 2023), and
GLC-FCS30D (Liu et al., 2023; Zhang et al., 2024b) were

https://doi.org/10.5194/essd-17-773-2025 Earth Syst. Sci. Data, 17, 773–797, 2025



792 G. Zhou et al.: Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022

Figure 14. Comparison with the annual vegetation maps, MCD12Q1, CLCD, and GLC-FCS30D. (a) Region dominated by AM and AG.
(b) Region dominated by ECF and AM).

selected for cross-comparison with the annual vegetation
maps. MCD12Q1 provides annual global land cover data
at a 500 m resolution from 2001 to 2022 using the Interna-
tional Geosphere–Biosphere Programme (IGBP) classifica-
tion system, which includes 17 categories, such as evergreen
needleleaf forest, grassland, and cropland. CLCD offers 30 m
land cover data for China from 1990 to 2022, classifying
land into nine types: cropland, forest, shrub, grassland, water,
snow/ice, barren, impervious, and wetland. GLC-FCS30D

delivers land cover data from 1985 to 2022, with 5-year in-
tervals before 2000 and annual intervals thereafter, covering
35 detailed land cover categories. Based on the temporal cov-
erage of these products, annual vegetation maps from 2001,
2011, and 2021 were selected for cross-validation, with a re-
gional focus on four main types: WA, GS, grassland, and for-
est.

Landsat remote sensing images reveal significant shrink-
age of water in this region from 2001 to 2021 (Fig. 13a).
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In 2001, all four products accurately depicted the distribu-
tion of WA, with clear boundaries and complete represen-
tation. By 2011, GLC-FCS30D identified part of the WA
as WE, while the other three products consistently showed it
as WA. By 2021, the WA had markedly shrunk compared to
their extent in 2001. Compared to the Landsat images, CLCD
showed an omission of WA, with most areas transforming
into AD, while GLC-FCS30D misclassified part of the WA
as WE and identified some non-water areas as WA.

For GS areas, all four products demonstrated good iden-
tification in 2001, 2011, and 2021 (Fig. 13b). Uniquely, the
annual vegetation maps identified additional alpine vegeta-
tion. Consequently, in the vicinity of GS, MCD12Q1 cate-
gorized these areas as AD, while CLCD and GLC-FCS30D
largely classified them as grassland. The annual vegetation
maps not only preserved the distribution details of GS, AD,
and AG from the comparison products, but also provided a
more detailed classification of AV.

However, the three comparison products classified this
region simply as grassland without further differentiation
(Fig. 14a). Grassland is the dominant vegetation type on the
QTP, covering approximately 57 % of the QTP. According to
Zhou et al. (2022a), grasslands on the QTP can be divided
into AG, AM, ASM, and AD. Therefore, it is essential to
differentiate between AG, AM, ASM, and AD. In Fig. 14a,
the overall distribution of AG and AM has remained consis-
tent over time, though changes have occurred in their transi-
tion zones. For example, in the southwestern AM region of
Fig. 14a, some AG areas have gradually transitioned to AM
over the past 23 years.

Forests are sparsely distributed on the QTP, found mainly
on the southern slopes of the Himalayas and in the southeast-
ern region (Fig. 14b). Their distribution has remained stable
over the years with minimal change. Among the four prod-
ucts, CLCD did not differentiate forest types and thus rep-
resents them under the general category of forest. In con-
trast, the other three products classified the forested areas as
ECF. MCD12Q1 shows a smaller forest extent and includes
a notable proportion of CBMF within this range. The for-
est extent in the annual vegetation maps, CLCD, and GLC-
FCS30D shows high consistency with the Landsat images.
However, the annual vegetation maps identified some ASM
in the meadow areas adjacent to forests.

5 Data availability

The 500 m annual vegetation maps of
QTP from 2000 to 2022 are available at
https://doi.org/10.11888/Terre.tpdc.301205 (Zhou et al.,
2024). The vegetation maps are stored in TIFF format,
with the file name QTP_Vegetation_Map_XXXX.tif, where
XXXX represents the year. All files can be opened and
reprocessed using software such as ArcGIS, QGIS, and
ENVI. Each TIFF dataset contains values from 0 to 16,

where 0 represents invalid values and 1 to 16 correspond to
the 16 vegetation types listed in Table 1. We used MOD09A1
(https://doi.org/10.5067/MODIS/MOD09A1.061,
Vermote, 2021), MCD12Q1
(https://doi.org/10.5067/MODIS/MCD12Q1.061, Friedl
and Sulla-Menashe, 2022), and SRTM (Farr et al., 2007)
data used in this study. The 1 km monthly precipitation
dataset for China (1901–2023), the 1 km monthly mean
temperature dataset for China (1901–2023), the vegetation
map of the Qinghai–Tibet Plateau in 2020 with a 10 m
spatial resolution, and QTP boundary dataset were provided
by the National Tibetan Plateau/Third Pole Environment
Data Center (https://data.tpdc.ac.cn, National Tibetan
Plateau/Third Pole Environment Data Center, 2024). The
first all-season sample set can be downloaded from https:
//data-starcloud.pcl.ac.cn/resource/54 (Peng Cheng Labora-
tory, 2024). The global land cover validation samples can be
downloaded from https://doi.org/10.5281/zenodo.3551995
(Liu et al., 2019). The CLCD can be downloaded from
https://doi.org/10.5281/zenodo.8176941 (Yang and Huang,
2023), and the GLC-FCS30D can be download from
https://doi.org/10.5281/zenodo.8239305 (Liu et al., 2023).

6 Conclusions

long time series of annual regional vegetation types and ge-
ographic distribution data are vital for examining the im-
pact of climate change on vegetation and its evolutionary
trends. In this study, annual vegetation of the QTP from 2000
to 2022 at a 500 m spatial resolution was mapped through the
MOD09A1 product together with a reference year vegetation
classification map and a breakpoint detection algorithm. The
study achieved an overall accuracy of 83.27 % for continuous
annual vegetation mapping at a 500 m resolution from 2000
to 2022. The study supports the use of remote sensing data
to mapping long-term continuous annual vegetation. Further-
more, it facilitates the elucidation of the spatial and temporal
evolution of regional and global vegetation against the back-
ground of global warming.
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