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Abstract. The lack of high-accuracy, fine-resolution meteorological datasets in China has hindered progress
in climate, hydrological, and ecological studies. In this study, we present a 1 km daily dataset spanning 1961—
2021 across China, which includes six key variables — average, maximum, and minimum temperature, atmo-
spheric pressure, relative humidity, and sunshine duration — to provide a reliable foundation for advancing
related research and applications. The dataset was generated using a novel hierarchical reconstruction frame-
work that leveraged daily observations from 2345 meteorological stations and incorporated topographic at-
tributes. This approach effectively decodes the nonlinear relationships between the meteorological variables
and their spatial covariates, ensuring the generation of gridded daily fields that are both high-resolution and
spatially continuous. Validation against 146 independent stations confirmed the high accuracy of the dataset.
For average, maximum, and minimum temperatures, the errors are minimal (median root mean square er-
rors (RMSEs): 1.16, 1.19, 1.29 °C; median mean errors (MEs): —0.04, —0.10, —0.01 °C), and the consistency
with in-situ data is very high (median correlation coefficients (CCs): 0.99, 0.99, 0.99). Atmospheric pressure
also shows very small errors (median RMSE: 2.65 hPa; median ME: —0.06 hPa) and strong correlation (me-
dian CC: 0.97). Relative humidity exhibits relatively lower accuracy (median RMSE: 6.33 %; median ME:
—0.52 %; median CC: 0.90), but it still exceeds standard benchmarks. Sunshine duration maintains high pre-
cision (median RMSE: 1.48 h; median ME: 0.05 h; median CC: 0.93), indicating the robustness and reliability
of the dataset. Further comparison reveals that in high-altitude and topographically complex regions, the re-
constructed product demonstrates higher actual accuracy than suggested by station-to-grid validation, as spatial
mismatches between stations and grid cells lead to systematic underestimation. Free access to the dataset is avail-
able at https://doi.org/10.11888/Atmos.tpdc.301341 or https://cstr.cn/18406.11.Atmos.tpdc.301341 (last access:
25 November 2025) (Zhao et al., 2024).

With advances in computational power and remote sens-
ing technologies, hydrological modeling has increasingly
evolved toward fully distributed simulations (Lettenmaier et
al., 2015; Singh, 2018), while climate change research con-
tinues to expand across broader spatial and temporal scales
(IPCC, 2021). These developments have placed growing de-
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mands on the resolution and accuracy of basic meteoro-
logical inputs, particularly in ungauged and topographically
complex basins such as the Tibetan Plateau (Fu et al., 2020;
Zhou et al., 2024). High-resolution and high-quality mete-
orological datasets are essential for capturing fine-scale cli-
mate signals, representing land—atmosphere interactions, and
supporting hydrological, ecological, and environmental as-
sessments.
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In recent decades, a wide range of meteorological and en-
vironmental variables — such as land and sea surface temper-
atures, precipitation (King et al., 2003), vegetation indices
(Zeng et al., 2022), soil moisture (Brocca et al., 2017), air
quality (Martin, 2008), and carbon emissions (Wunch et al.,
2017) — have been derived from remote sensing observations
and data assimilation systems. These satellite-based prod-
ucts offer broad spatial coverage and long-term continuity,
enabling significant advances in water resources monitoring
and drought-related climate assessment, particularly in data-
scarce regions (Sheffield et al., 2018). However, despite their
strengths, such products often struggle to represent near-
surface meteorological conditions with sufficient precision.
Their performance is typically constrained by atmospheric
interference, cloud contamination, and limited spatial reso-
lution — factors that become particularly problematic in re-
gions with highly variable terrain. As a result, many satellite-
derived datasets fail to meet the spatial and temporal re-
quirements of land surface modeling, hydrological forecast-
ing, and local-scale climate analysis. To mitigate these lim-
itations, assimilation-based approaches have been increas-
ingly adopted to integrate satellite data, reanalysis fields, and
ground-based observations for near-surface meteorological
forcing generation (Rodell et al., 2004; Laiolo et al., 2015;
Liu et al., 2019; Khaki et al., 2020). While these efforts im-
prove data consistency and spatial completeness, significant
uncertainties persist — especially in areas like western China,
where rugged topography and sparse station distribution pose
persistent challenges (Gao and Liu, 2013; Yang et al., 2013;
Wang et al., 2016; Tang et al., 2016; Qi et al., 2018). These
limitations underscore the pressing need for regionally tai-
lored, high-resolution meteorological datasets that are capa-
ble of capturing local climatic variability and supporting reli-
able simulation in hydrological modeling, drought risk fore-
casting, and water resources management.

Recent efforts to generate gridded meteorological forc-
ing datasets in China have primarily followed three method-
ological approaches. The first approach is based on spa-
tial interpolation of in-situ station data to generate gridded
fields (Li, 2008). However, interpolation methods that do
not explicitly account for topographic complexity and en-
vironmental gradients often yield limited accuracy, partic-
ularly in mountainous regions (Li and Heap, 2011; Yu et
al., 2015; Yang and Xing, 2021). To improve spatial real-
ism, elevation-dependent interpolation schemes have been
applied to reconstruct precipitation and temperature in re-
gions such as the Heihe River Basin, the Tibetan Plateau,
and the headwaters of the Yangtze and Yellow Rivers (Wang
et al., 2017; Sun and Su, 2020; Zhao et al., 2022a; Zhang
et al., 2024). The second approach involves spatial down-
scaling and multi-source data fusion. This includes deriv-
ing high-resolution fields from coarse-resolution reanalysis
or climate datasets, or combining satellite, reanalysis, and
station data to reconstruct near-surface meteorological vari-
ables. For instance, Li et al. (2014) employed a two-step
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interpolation method to generate 1km gridded datasets of
air temperature, pressure, humidity, and wind speed across
China. Peng et al. (2019) produced monthly gridded tem-
perature and precipitation data for 1901-2017 using delta
downscaling applied to CRU and WorldClim inputs. He et al.
(2020) developed the China Meteorological Forcing Dataset
(CMFD), which integrates observations from over 1000 sta-
tions with GLDAS and MERRA reanalysis products to pro-
vide daily meteorological variables at 0.1° resolution. Zhao
et al. (2022b) further enhanced precipitation accuracy over
the Yarlung Zangbo Basin by correcting and merging multi-
ple satellite precipitation products with in-situ records. The
third approach draws upon machine learning techniques to
model complex relationships between meteorological vari-
ables and spatial covariates. Global satellite-derived precipi-
tation products such as CMORPH (Joyce et al., 2004; Xie et
al., 2017) and PERSIANN (Sorooshian et al., 2014; Sadeghi
et al., 2019) exemplify early use of neural networks for rain-
fall estimation. In the Chinese context, recent studies — in-
cluding those by Wu et al. (2020), Hong et al. (2021), and
Jing et al. (2022) — have applied deep learning models to
improve the spatial resolution and accuracy of multi-source
precipitation datasets. For temperature, Pang et al. (2017)
evaluated machine learning methods for downscaling daily
mean temperature in the Pear]l River Basin using global cli-
mate model outputs. Zhang et al. (2021) showed that a gra-
dient boosting approach outperformed traditional reanalysis
datasets such as JRA-55 and ERA-Interim over the Tibetan
Plateau. He et al. (2022) applied Gaussian process regression
to generate the GPRChinaTemplkm dataset, a 1 km resolu-
tion monthly temperature product for 1951-2020. However,
the development of machine learning-based gridded prod-
ucts for other meteorological variables — such as atmospheric
pressure, humidity, sunshine duration, and wind speed — re-
mains limited and warrants further research (Li and Zha,
2018; Liu et al., 2022).

To address the limitations of existing meteorological
datasets in spatial resolution, temporal continuity, and vari-
able completeness, this study introduces a high-resolution
dataset of daily near-surface meteorological variables — in-
cluding average, maximum, and minimum air temperature,
atmospheric pressure, relative humidity, and sunshine dura-
tion — across mainland China. Spanning six decades (1961—
2021) with kilometer-level granularity, the dataset is de-
signed to support fine-scale applications such as land sur-
face modeling, drought assessment, and water resource man-
agement. It is particularly suited for both scientific investi-
gations and operational decision-making in data-sparse and
topographically complex regions, such as western China. To
achieve this, a hierarchical and progressive reconstruction
framework is implemented to generate gridded estimates of
six variables at approximately 2 ma.g.l., based on in-situ ob-
servations and a 1 km digital elevation model (DEM). A mul-
tilayer perceptron (MLP) regression model is employed in
this framework to capture nonlinear relationships between
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station observations and topographic predictors (e.g., lati-
tude, longitude, and elevation), enabling fine-scale recon-
struction across complex terrain.

2 Materials

2.1 Training and validation data from CMA

Daily records of station metadata and meteorological vari-
ables — including longitude, latitude, elevation, average tem-
perature, maximum temperature, minimum temperature, at-
mospheric pressure, relative humidity, and sunshine duration
— were obtained from 2440 meteorological stations operated
by the China Meteorological Administration (CMA) for the
period 1961-2021. According to the official documentation
and metadata, these daily records are part of the CMA Sur-
face Climate Daily Dataset, which follows a nationally stan-
dardized observation protocol with unified day boundaries
and homogenized records subjected to multi-tier quality con-
trol procedures. To support independent model validation, a
total of 95 stations were selected as evaluation sites based
on three principles: (1) ensuring geographical representa-
tiveness in terms of longitude, latitude, and elevation; (2)
in densely monitored areas such as eastern China, a greater
number of evaluation stations were retained without signif-
icantly reducing the size of the training dataset; and (3) in
sparsely monitored regions such as western China (including
Tibet and Xinjiang), the number of evaluation stations was
intentionally reduced to ensure adequate data availability for
model training. The remaining 2345 stations were used ex-
clusively for training purposes. The spatial distribution of
both training and evaluation stations is illustrated in Fig. 1.

For the years 2020 and 2021, daily records are limited to
air temperature, as measurements of atmospheric pressure,
relative humidity, and sunshine duration are unavailable dur-
ing this period. Due to variations in the temporal coverage
of individual stations, the amount of available daily data for
model training and evaluation also differs across sites. The
temporal distribution of operational meteorological stations
from 1961 to 2021 is presented in Fig. 2.

2.2 Validation data from supplementary ground-based
observations

2.2.1  Ground observations provided by DWR

To address the limited spatial coverage of validation stations
in the Tibet region, daily average temperature observations
from 12 ground-based meteorological stations were obtained
from the Department of Water Resources (DWR). These sup-
plementary data enhance the robustness of model evaluation
in western China. The locations of the DWR stations are
shown in Fig. 1, and metadata for each station are provided
in Table 1.
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2.2.2 Literature-based datasets from the National
Tibetan Plateau Data Center

To supplement observational data for the evaluation of
gridded meteorological products, a variety of station-based
datasets were obtained from the National Tibetan Plateau
Data Center (TPDC, http://data.tpdc.ac.cn, last access: 25
November 2025), as represented by the blue flag symbols
in Fig. 1. These include: (1) a publicly available dataset of
hourly land—atmosphere interaction observations (Ma et al.,
2024), covering the period 2005-2021, of which two stations
were employed as independent validation sites; (2) data from
18 stations within the HIWATER hydrometeorological obser-
vation network in the upper reaches of the Heihe River Basin
(Liu et al., 2018; Che et al., 2019); and (3) additional station-
based records from 11 individual stations, including 2 sta-
tions from Zhang (2018a, b); 3 stations from Gao (2018); 2
stations from Luo (2019); and 1 station each from Ma (2018),
Wang and Wu (2019), Luo and Zhu (2020), and Meng and Li
(2023).

2.2.3 Validation data from GSOD

The Global Surface Summary of Day (GSOD) dataset,
compiled by the National Centers for Environmental Infor-
mation (NCEI), is based on international data exchanges
conducted under the World Meteorological Organization
(WMO) World Weather Watch Program. This dataset pro-
vides daily summaries of 18 surface meteorological variables
from more than 9000 global stations, with records available
from 1929 to the present. Observation data from eight mete-
orological stations in the Taiwan region were obtained from
the NCEI online archive (https://www.ncei.noaa.gov/access/
search/data-search/global-summary-of-the-day, last access:
25 November 2025) and processed for use in validation. De-
tailed metadata and data availability for these stations are
summarized in Table 2.

2.3 Static geospatial input: SRTM DEM (1km)

The Digital Elevation Model (DEM) provides high-
resolution geographic information — including longitude, lat-
itude, and elevation — that is required for the spatial recon-
struction of meteorological variables. In this study, the DEM
was used as an essential input for the reconstruction model to
ensure spatial consistency and accuracy. Although the model
supports flexible output resolutions, a spatial resolution of
1 km was selected to balance computational efficiency and
data detail. The DEM used herein was derived by resampling
the latest version of the Shuttle Radar Topography Mission
(SRTM) data (version 4.1), as provided by the Consortium
for Spatial Information of the CGIAR (Jarvis et al., 2008).
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Figure 1. The spatial distribution of training and evaluation meteorological stations in China.
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Figure 2. The spatial distribution of training and evaluation meteorological stations in China.

2.4 Climate regionalization map of China

The Climate Regionalization Map of China, compiled by the
China Meteorological Administration in 1978 using climate
data from 1951 to 1970, divides the country into nine cli-
matic zones. The dataset is publicly available via the Re-
source and Environmental Science Data Platform (https:/
www.resdc.cn/, last access: 25 November 2025). For the pur-
pose of comparative analysis of regional climatic patterns,
the four subtropical zones — Northern Subtropical, Middle
Subtropical, Southern Subtropical, and Northern Tropical —
were merged into a single Subtropical Zone. The revised
classification scheme consists of six zones: Plateau Climate
Zone, Northern Temperate Zone, Middle Temperate Zone,
Southern Temperate Zone, Subtropical Zone, and Middle
Tropical Zone, as illustrated in Fig. 1.
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2.5 Existing gridded products for comparison

To assess the reliability and application potential of the
reconstructed meteorological variables, representative and
widely used gridded datasets were selected for comparison
based on their scientific relevance and availability. Specifi-
cally, for average temperature, atmospheric pressure, and rel-
ative humidity, we employed the latest version of the China
Meteorological Forcing Dataset (CMFD 2.0), whose earlier
versions have been extensively used in land surface, hydro-
logical, and ecological modeling over China (He et al., 2020).

The CMFD 2.0 (He et al., 2024) provides high-resolution
(0.1°), 3-hourly gridded meteorological data for the period
1951-2020, covering the land area between 70-140°E and
15-55° N. It includes near-surface temperature, surface pres-
sure, specific humidity, wind speed, radiation, and precipita-
tion. Compared to previous versions, CMFD 2.0 incorporates
ERAS reanalysis and station observations through updated
data sources and artificial intelligence techniques, particu-

https://doi.org/10.5194/essd-17-7251-2025
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Table 1. Detailed information on records from DWR ground-based meteorological observation stations.

Time Range (yyyy/mm/dd)

Element Type

Number Station Name Station Type

1 Nugesha Meteorological
2 Yangcun Meteorological
3 Nuxia Meteorological
4 Jiangzi Meteorological
5 Rikaze Meteorological
6 Pangduo Meteorological
7 Tangjia Meteorological
8 Lhasa Meteorological
9 Yangbajing Meteorological
10 Gongbujiangda  Meteorological
11 Gengzhang Meteorological
12 Bayi Water Level

2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2001/12/31
2001/01/01-2001/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/12/31
2001/01/01-2003/05/31

Average temperature

Table 2. Detailed meteorological data from 8 meteorological stations of Taiwan Region.

Number

Station name

Time range (yyyy/mm/dd)

Element Type

0NN R WD~

TAINAN 593580
SUNGSHAN
TANSHUI

ILAN CITY
TAIBEI
TAINAN
TAOYUAN

KAOHSIUNG INTERNATIONAL

1973/01/07-1998/12/31
1961/01/01-2021/12/31
1973/01/07-1977/10/31
1973/01/07-1998/12/31
1973/01/01-1998/12/31
1961/01/01-2021/12/31
1961/01/01-1999/07/26
1973/01/01-2021/12/31

Average temperature,
maximum temperature,
minimum temperature
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larly for radiation and precipitation variables. It also intro-
duces metadata on station relocations and expands the spatial
coverage beyond China’s borders, thereby improving tempo-
ral consistency and cross-regional applicability.

As CMFD 2.0 does not include sunshine duration, we in-
corporated two additional datasets for its evaluation. This
step is critical because sunshine duration reconstruction con-
stitutes the final step in our hierarchical framework, necessi-
tating a thorough accuracy assessment to evaluate potential
uncertainty propagation. To this end, we selected two com-
plementary benchmarks: one long-term station-based prod-
uct and one recent high-resolution satellite product. (1) The
sunshine duration (SSD) dataset (He, 2024, 2025) serves as
the long-term, station-based benchmark. It provides a ho-
mogenized daily sunshine duration record across China from
1961 to 2022 at a 2.0° x 2.0° resolution. Developed from
over 2200 meteorological stations and corrected for non-
climatic influences (e.g., station relocations and instrumental
changes), it offers a reliable baseline for evaluating the tem-
poral stability and long-term climatological consistency of
our reconstruction. (2) The Himawari AHI-based daily sun-
shine duration (SD) dataset (Zhang et al., 2025) provides a
recent, high-resolution (5 km) satellite perspective for 2016—
2023. It enables a direct assessment of our product’s quality

https://doi.org/10.5194/essd-17-7251-2025

during the 2016-2019 overlap period and serves as a bench-
mark for evaluating fine-scale spatial accuracy.

3 Methodology

3.1 MLP-based hierarchical progressive reconstruction
framework

The reconstruction of near-surface meteorological fields in
this study is based on multilayer perceptron (MLP) models
— a class of deep feedforward neural networks capable of
capturing complex nonlinear relationships through layered
transformations (Bisong, 2019). Each MLP consists of an in-
put layer, multiple hidden layers, and an output layer, and
is trained using a two-phase process: feedforward propaga-
tion, in which input data are transmitted through the network
to produce predictions, and backpropagation, during which
model parameters are iteratively adjusted to minimize pre-
diction errors. This learning mechanism enables MLPs to
extract spatial and statistical patterns from high-dimensional
data while maintaining strong generalization capability. Ow-
ing to these characteristics, MLPs have been successfully ap-
plied in diverse domains such as medical diagnostics (Karay-
ilan and Kilic, 2017; Desai and Shah, 2021), finance (Duan,
2019; Weytjens et al., 2021), and hydrology (Singh et al.,
2012; Choubin et al., 2016; Ren et al., 2020).

Earth Syst. Sci. Data, 17, 7251-7270, 2025
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In this study, MLP models serve as the computational
foundation of the hierarchical progressive reconstruction
framework developed to generate high-resolution, spatially
complete datasets of near-surface meteorological variables.
This framework is designed to address both variable inter-
dependence and geographic heterogeneity by reconstructing
each target variable sequentially using a tailored set of spa-
tial and meteorological predictors. As illustrated in Fig. 3, it
consists of two functional modules: a training module and a
reconstruction module. The training module learns nonlinear
spatial mapping functions from in-situ station data, capturing
daily spatial patterns across complex terrain. The reconstruc-
tion module then applies the trained parameters to gridded
predictor layers to generate continuous spatial fields at the
desired resolution. To ensure both the accuracy and feasibil-
ity of the reconstruction, input features are selected based on
their relevance to the spatial distribution of each variable and
the availability of high-resolution gridded data. Topographic
predictors (latitude, longitude, and elevation) are used con-
sistently throughout the framework, while previously recon-
structed meteorological variables are incorporated as auxil-
iary inputs in subsequent steps.

The hierarchical reconstruction framework comprises four
sequential steps, each targeting a specific meteorological
variable — (a) air temperature, (b) atmospheric pressure, (c)
relative humidity, and (d) sunshine duration. This ordering
is guided by both physical dependencies and statistical con-
siderations, allowing upstream variables to serve as essen-
tial inputs for reconstructing downstream variables. In the
first step, air temperature is reconstructed using only geo-
graphic predictors — longitude, latitude, and elevation. Al-
though solar radiation and land surface characteristics, which
fundamentally shape temperature patterns, are not explicitly
included (Peixoto and Oort, 1992; Hartmann, 2016), these
geographic features serve as effective proxies for capturing
dominant spatial gradients. In the second step, atmospheric
pressure is modeled using a three-layer MLP, incorporating
geographic variables and temperature. Atmospheric pressure
is jointly determined by air density and gravitational acceler-
ation, both of which vary with temperature and elevation due
to their effects on the atmospheric hydrostatic balance (Ma-
son et al., 2016). Including temperature as a predictor thus
improves the model’s ability to reproduce its spatial variabil-
ity. The third step addresses relative humidity, modeled using
a four-layer MLP with geographic predictors, temperature,
and atmospheric pressure as inputs. Relative humidity de-
pends on both actual and saturation vapor pressures (Wallace
and Hobbs, 2006; Mason et al., 2016); the former is partially
influenced by atmospheric pressure, while the latter is pri-
marily governed by temperature and increases exponentially
according to the Clausius—Clapeyron relationship. Incorpo-
rating both temperature and pressure enhances the model’s
ability to capture the complex spatial behavior of humidity.
Building on the preceding steps, the final reconstruction tar-
gets sunshine duration, which is influenced by the combined
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effects of the solar astronomical position, atmospheric ra-
diative processes, and synoptic-scale weather systems. Ac-
cording to WMO (2023), sunshine duration is defined as
the total time during which direct solar irradiance exceeds
120 W m—2. Geographic predictors provide the spatial con-
text, while temperature, pressure, and humidity reflect dy-
namic atmospheric states and cloud-related feedbacks. These
variables are physically grounded and observationally acces-
sible. A four-layer MLP model is therefore employed in the
final step to reconstruct the spatial distribution of sunshine
duration.

Overall, this progressive framework ensures that each re-
construction step is guided by physically meaningful and
context-specific predictors. By integrating the hierarchical
dependencies among meteorological variables, the approach
yields spatially complete and physically consistent gridded
datasets that are suitable for large-scale climate and environ-
mental applications.

3.2 Evaluation metrics

In this study, four evaluation metrics were employed: Mean
Error (ME), Mean Squared Error (MSE), Root Mean Square
Error (RMSE), and Correlation Coefficient (CC). These met-
rics were utilized in two distinct phases: the MLP model
training phase and the meteorological products evaluation
phase. The formulas for the four metrics are as follows:

ME:%XH:(Y,—?,) (1)

t=1

MSE = %Z(Y, —1?,)2 )
=1
RMSE = vVMSE 3

_ ELm-n(n-v)
/z;;l(n 7 (-7

where n denotes the total number of days in the time series;
t represents the rth day; ¥; and Y denote the in-situ value
of the target variable and the mean in-situ value of the tar-

CC

get variable, respectively; and Y, and Y denote the model’s
estimated value and the mean estimated value, respectively.

During the training phase, MSE was used as the loss func-
tion to measure and optimize the performance of the MLP
model. Upon completion of the training, ME and CC were
computed between the estimated outputs — derived from the
model parameters at the optimal training state — and in-situ
records of the target variable, with particular emphasis on
CC to ensure comprehensive model performance evaluation.
If the MSE was low but the CC was poor, the hyperparam-
eters of the deep learning model were adjusted, and training
continued until satisfactory results were achieved.

https://doi.org/10.5194/essd-17-7251-2025



K. Zhao et al.: 1 km daily meteorological dataset across China

Training

7257
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Figure 3. MLP-based hierarchical progressive reconstruction framework for China.

In the subsequent evaluation phase of the meteorological
reconstruction products, RMSE, ME, and CC were calcu-
lated between in-situ records and corresponding grid esti-
mates. These metrics effectively validated the accuracy and
reliability of the reconstruction products, confirming discrep-
ancies with the observed data.

4 Results and discussion

4.1 MLP training and test results

To evaluate the generalization capability of the reconstruc-
tion models and prevent overfitting, we randomly assigned
10 % of the daily in-situ observations from 1961 to 2021
to the test dataset using a fixed random seed, with the re-
maining 90 % used for training. Figure 4 presents the per-
formance metrics of the daily MLP models across six me-
teorological variables: average temperature, maximum tem-
perature, minimum temperature, atmospheric pressure, rela-
tive humidity, and sunshine duration. Three standard evalua-
tion metrics are used: ME (Fig. 4a), MSE (Fig. 4b), and CC
(Fig. 4c). The mean values of all metrics are highly consistent
between training and test phases, indicating strong general-
ization and no evidence of overfitting. These results confirm
the stability and precision of the deep learning-based hierar-
chical progressive reconstruction framework. Notable devi-
ations across all metrics are limited to a very small number
of days and are primarily attributed to substantial gaps in the
in-situ observations.

https://doi.org/10.5194/essd-17-7251-2025

The ME values are close to zero for all variables in both
phases. Specifically, the mean ME for maximum and mini-
mum temperatures is exactly 0 °C, while the other four vari-
ables also show near-zero mean errors, with at least one
phase yielding a mean ME of 0. The range of ME values
is also narrow. During training, ME ranges from —0.49 °C
to 0.46 °C for average temperature, —3.55 to 2.61 hPa for at-
mospheric pressure, —2.15 % to 1.96 % for relative humid-
ity, and —0.54 to 0.50 h for sunshine duration. The test phase
exhibits even narrower ME ranges: —0.32 to 0.36 °C (aver-
age temperature), —2.25 to 1.94 hPa (atmospheric pressure),
—1.83 % to 1.49 % (relative humidity), and —0.42 to 0.41 h
(sunshine duration). These results suggest minimal system-
atic bias in the model predictions across all variables. The
MSE, which emphasizes the impact of large residuals by
squaring the error magnitude, consistently exceeds the ME
across all variables. As shown in Fig. 4b, the daily MSE val-
ues are low in both phases, with only a slight increase in the
test phase. Temperature-related variables — including aver-
age, maximum, and minimum temperature — exhibit low and
stable MSE values, with means below 1°C? and only mi-
nor differences (typically 0.1-0.3 °C?) between training and
test phases. This indicates that the model captures temper-
ature dynamics with high accuracy and strong generaliza-
tion. For atmospheric pressure, which inherently exhibits a
larger numerical scale, the mean MSE values remain rela-
tively low — 6.9 hPa? in the training phase and 8.5 hPa? in the
test phase. Notably elevated MSE values are observed only
on a few days in 1961, primarily due to substantial gaps in
the observed atmospheric pressure records. Relative humid-
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ity and sunshine duration also show consistently low error
levels, with training phase MSEs of 14.1 %? and 1.2h? , and
slightly higher values of 20.7 %7 and 1.8 h? in testing phase.
Analysis of the CC value indicates strong agreement between
model estimates and observed values across all variables.
Notably, atmospheric pressure achieves perfect agreement,
with a mean CC of 1.00 in both phases. Average, maximum,
and minimum temperatures also show consistently high cor-
relations, with mean CCs of 0.98, 0.98, and 0.99 in the train-
ing phase, and 0.97, 0.97, and 0.98 in the testing phase. Al-
though the CCs for relative humidity and sunshine duration
are slightly lower, they remain strong — 0.94 and 0.91 in train-
ing, and 0.92 and 0.87 in testing, respectively.

Collectively, the results highlight the proposed frame-
work’s ability to accurately identify and reconstruct the spa-
tial structures of diverse meteorological variables, demon-
strating strong generalization across different element types
and conditions.

4.2 \Validation of gridded meteorological element
products using in-situ data

An independent validation was conducted using long-term
in-situ records from 146 stations, as described in Sect. 2.1
and 2.2. These stations were entirely excluded from the
model training and testing phases, and their observations
served as reference data for an objective evaluation of the re-
constructed products’ accuracy and spatial generalizability.
The validation results confirm that the reconstructed mete-
orological products achieve high overall accuracy, with par-
ticularly strong performance in regions with dense training
data. Notably, even in areas with sparse or absent observa-
tions — such as northwestern China and Taiwan — the model
maintains stable and reliable performance, indicating strong
spatial generalizability and a capacity to extrapolate beyond
the training domain. This highlights the potential of the pro-
posed framework for broad application in diverse climatic
and geographic settings. Model performance was quantified
by calculating RMSE, ME, and CC between the 1 km gridded
estimates and the corresponding station observations. The
evaluation metrics were visualized through box plots (Fig. 5)
and spatial distribution maps (Fig. 6).

As shown in the box plots of RMSE, ME, and CC (Fig. 5),
the reconstructed products for average, maximum, and min-
imum air temperature exhibit minimal errors and excellent
consistency with in-situ observations. Median RMSEs are
1.16, 1.19, and 1.29 °C, respectively; median MEs are close
to zero (—0.04, —0.10, and —0.01 °C); and median CCs are
exceptionally high (0.99, 0.99, and 0.99). Despite its inher-
ently larger magnitude, atmospheric pressure also demon-
strates high precision, with a median RMSE of 2.65 hPa, ME
of —0.06 hPa, and CC of 0.97. In comparison, the relative
humidity product shows moderately lower agreement with
observations, reflected in a median RMSE of 6.34 %, ME of
—0.52 %, and CC of 0.90. However, since it is primarily used
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as an input for the reconstruction of sunshine duration, its ef-
fect on overall model performance is limited. Indeed, the sun-
shine duration product demonstrates higher accuracy, with
a median RMSE of 1.48 h, ME of 0.05h, and CC of 0.93.
Although relative humidity exhibits slightly weaker perfor-
mance than other variables, its accuracy still exceeds typical
benchmarks and remains suitable for practical applications.

The spatial distribution of RMSE, ME, and CC for all six
meteorological variables are further illustrated in Fig. 6, and
consistent with expectations, the Subtropical and Southern
Temperate Zones in southeastern China (STZ-southeastern
China) display the best performance across all variables,
largely due to the high density of training stations in these
regions. In contrast, performance metrics are relatively lower
in the Middle Temperate, Southern Temperate, and Plateau
Climate Zones of northwestern China (MSPZ-northwest
China), as well as in Taiwan, where no stations were included
in training. Nevertheless, model performance in these regions
remains robust. Notably, despite the absence of training data
in Taiwan, the MLP model accurately reconstructs air tem-
perature in that region, suggesting strong spatial generaliz-
ability.

For temperature variables, both Figs. 5 and 6 indicate min-
imal spatial variation, with most RMSEs, MEs, and CCs in
STZ southeastern China and MSPZ northwest China falling
within the ranges of 0.49 to 2°C, —2 to 2°C, and 0.95 to
1.00, respectively. A few outliers, primarily located in the
Tibetan Plateau, Xinjiang, and Taiwan, fall outside these
ranges. Specifically, temperature errors in Taiwan range from
3.3 to 6 °C for RMSE, —0.5 to —4 °C for ME, and 0.7 to 0.9
for CC, indicating a general underestimation of air temper-
ature in this region. For the atmospheric pressure product,
RMSE, ME, and CC values in STZ southeastern China gen-
erally range from 0.8 to 15hPa, —5 to 5hPa, and 0.85 to
1.00, respectively. In MSPZ northwest China, most ME val-
ues range from —41 to OhPa, indicating a slight tendency
toward underestimation. For the relative humidity product,
spatial patterns of RMSE reveal that values in western China
consistently range from 8% to 31 %, whereas in eastern
China they are generally smaller, with the majority of stations
falling within 3.6 % to 8 %. ME values further indicate that
only a few stations (six, mostly located along the margins of
the Tibetan Plateau and in Xinjiang) in western China exhibit
larger negative biases in the range of —29 % to —5 %, while
the vast majority of stations in both regions fall within —5 %
to 5 %. In eastern China, ME values for almost all stations
fall within —5 % to 5 %. Similarly, CC values show a consis-
tent spatial pattern nationwide, generally ranging from 0.80
to 1.00, with only three isolated stations in western China
falling within the range of 0 to 0.7. For the sunshine duration
product, RMSE, ME, and CC values exhibit minimal spatial
variability across China. RMSE values generally range from
1.2 to 2.0h, ME values from —0.4 to 0.5h, and CC values
from 0.80 to 1.00. Values beyond these ranges are observed
only at a few isolated stations.
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Figure 5. Box plots of RMSE, ME, and CC for grid-modelled data of six meteorological element products and in-situ data.

4.3 Evaluation and comparison against existing gridded
products

4.3.1 Average temperature, atmospheric pressure,

relative humidity

Although 95 CMA stations were initially reserved for vali-
dating the gridded meteorological products developed in this
study, they were not used in the evaluation of CMFD 2.0
due to the lack of publicly available information on the sta-
tion sources used in its construction. This raised concerns
that some or all of these CMA stations might have already
contributed to the CMFD 2.0. To avoid potential data over-
lap and ensure an objective and independent evaluation, the
CMA stations were excluded from the validation analysis.
Instead, observational data from 51 ground stations intro-
duced in Sect. 2.2.1, 2.2.2, and 2.2.3 were used to assess
the accuracy of the reconstructed meteorological variables
against CMFD 2.0. These stations provided daily records for
one to three of the following variables: average temperature
(48 stations), atmospheric pressure (25 stations), and relative
humidity (29 stations). As maximum/minimum temperature
and sunshine duration were largely unavailable at these sites
and not included in CMFD 2.0, the evaluation focused exclu-
sively on the three core variables.

As shown in Fig. 7, except for atmospheric pressure —
where CMFD 2.0 exhibits a higher median CC value (0.96)
than this reconstructed dataset (0.87) — the gridded meteo-
rological dataset developed in this study demonstrates gen-
erally comparable or slightly improved performance relative
to CMFD 2.0 in terms of median RMSE, ME, and corre-
lation coefficient across the evaluated variables. Notably, al-
though the correlation for atmospheric pressure is marginally
lower in the dataset developed in this study, it yields substan-
tially smaller errors, with median RMSE and ME of 3.61 and
—0.61 hPa for this dataset, and 17.14 and 9.41 hPa for CMFD
2.0, respectively. For average temperature and relative hu-
midity, the two gridded products exhibit similar median
CC values. However, the reconstructed dataset yields con-

Earth Syst. Sci. Data, 17, 7251-7270, 2025

sistently lower median RMSE and ME, suggesting slightly
improved accuracy. Specifically, the values for temperature
are 1.98 and —0.21 °C, compared to 2.08 and —0.46 °C for
CMFD 2.0. For relative humidity, the corresponding values
are 10.75 % and —1.05% for the reconstructed dataset, while
CMEFD 2.0 reports 11.12 % and —2.40 %.

These findings are particularly evident in high-altitude re-
gions represented by 51 validation sites predominantly lo-
cated in the southern Tibetan Plateau and the Heihe River
Basin, where the gridded fields of average temperature, at-
mospheric pressure, and relative humidity developed in this
study demonstrate good agreement with station observations.
Compared with CMFD 2.0, a widely used multi-source re-
analysis product in China, the reconstructed dataset provides
improved spatial resolution and slightly enhanced accuracy
at these alpine sites. These results suggest the potential of the
dataset to support regional-scale hydrometeorological stud-
ies in cold and topographically complex environments.

4.3.2 Sunshine duration

To comprehensively evaluate the accuracy of the recon-
structed product, two representative benchmark datasets
were employed: the homogenized station-based SSD prod-
uct (2°) to assess long-term temporal consistency, and the
high-resolution satellite-based Himawari SD product (5 km)
to examine spatial performance. In addition, daily sunshine
duration observations from 95 CMA stations were used as in-
dependent references, since the supplementary stations pre-
sented in Sect. 2.2 did not provide sunshine duration records.

As shown in Fig. 8, when compared with the SSD dataset
over 1961-2019, the reconstructed product demonstrated
highly consistent accuracy. The median RMSE values were
identical for both products (1.48 h), and the median CC val-
ues were likewise identical (0.93). The ME differed only
slightly (0.05h for the reconstructed dataset and 0.02h for
SSD), indicating comparable bias levels. Boxplot analy-
sis further indicated that the reconstructed product exhib-
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Figure 7. Boxplot comparison of RMSE, ME, and CC for average temperature, atmospheric pressure, and relative humidity between CMFD

2.0 and the reconstructed dataset developed in this study.

ited slightly narrower interquartile ranges, whereas the SSD
dataset showed fewer outliers in RMSE and CC. It should
be noted that although some of the 95 CMA validation sta-
tions may have been included in the SSD development, our
reconstruction model excluded these stations from training,
ensuring a higher degree of validation independence.

For spatial performance, the reconstructed dataset was
compared with the Himawari SD dataset over the overlap-
ping period of 2016-2019 (Fig. 9). The evaluation was based
on 91 stations, since three of the 95 validation stations had
invalid sunshine duration values during this period and one
station was located within the SD control region. Both prod-
ucts showed comparable RMSE levels (1.53 h for the recon-
structed dataset compared with 1.48 h for Himawari). The
satellite dataset achieved a slightly higher CC (0.94 com-
pared with 0.92), reflecting stronger agreement in daily varia-
tions, while the reconstructed dataset exhibited a smaller ME
(0.08 h compared with 0.21 h), indicating reduced bias.

These complementary results indicate that the reconstruc-
tion framework can achieve accuracy comparable to both
a long-term homogenized station-based dataset and a high-
resolution satellite-derived dataset.

4.4 Influence of elevation mismatch on validation
accuracy

In certain areas of the MSPZ northwest China region — par-
ticularly in Tibet and Xinjiang — the validation metrics pre-
sented in Sect. 4.2 indicate relatively lower performance. To
examine whether this discrepancy is related to spatial in-
consistencies between meteorological station elevations and
those of the corresponding grid cells, we analyzed eleva-
tion differences using the 1km DEM. Specifically, eleva-
tion mismatch was calculated as the difference between the
recorded elevation of the 146 validation stations and the
DEM-derived elevation of their corresponding grid cells, as
shown in Fig. 10. A total of 36 stations were identified where
the elevation difference exceeded 50 m, marked with red
numbered symbols in Fig. 10a. These stations are primar-
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ily located in high-relief regions, and while not all lie within
the Plateau Climate Zone, that zone exhibits the largest eleva-
tion mismatches. Figure 10b ranks these stations by descend-
ing elevation difference, with the maximum discrepancy of
591 m observed at Station 1 (DWR: Pangduo), followed by
323 m at Station 2 (CMA: Tianshan Daxigou) in Xinjiang.
To assess the influence of elevation mismatch on validation
accuracy, we used the actual longitude, latitude, and eleva-
tion of the 36 stations as inputs to the reconstruction mod-
ule of the MLP-based framework. For each station, the long-
term time series of six meteorological variables — average
temperature, maximum temperature, minimum temperature,
atmospheric pressure, relative humidity, and sunshine dura-
tion — were estimated. RMSE, ME, and CC values were then
calculated by comparing these station-based estimates with
the corresponding in-situ observations, and further compared
with the original grid-based validation results.

Figure 11 summarizes the key findings. First, for average
temperature, maximum temperature, minimum temperature,
and atmospheric pressure, the RMSE and ME between in-
situ observations and station-based estimates show substan-
tially greater improvement than those derived from gridded
estimates. Notably, the magnitude of improvement increases
with larger absolute elevation differences. While relative hu-
midity and sunshine duration also exhibit improvements, the
extent is considerably smaller. In contrast, the CCs show
modest increases across variables, though the improvement
is less pronounced than that observed in error metrics. These
results confirm that the MLP-based reconstruction frame-
work yields more accurate estimates than the grid-based ap-
proach discussed in Sect. 4.2, particularly in high-altitude
and topographically complex regions.

These findings also highlight potential limitations in us-
ing in-situ station data to validate gridded meteorological
products — especially in regions with coarse spatial resolu-
tion or substantial terrain variability. As grid size increases,
spatial mismatches between stations and grid cell averages
(in terms of latitude, longitude, and elevation) become more
pronounced. Even at 1 km resolution, notable elevation mis-
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matches were observed in high-altitude areas. For variables
highly sensitive to elevation and geographic location — such
as air temperature and atmospheric pressure — relying on a
single station to represent an entire grid cell can introduce
significant uncertainty in complex terrain.

4.5 Spatial distribution of meteorological elements in
China at 1 km resolution

To evaluate the spatial performance and climatic representa-
tiveness of the reconstructed dataset, we analyzed the long-
term mean values of six meteorological variables at a spa-
tial resolution of 1km across mainland China from 1961 to
2019. The spatial distributions show strong consistency with
known climatic gradients and topographic variations, reflect-
ing the combined effects of latitude, elevation, and oceanic
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influence on regional meteorological conditions, as illus-
trated in Fig. 12. Temperature exhibits clear spatial variation
governed by both latitude and elevation. The Northern Tem-
perate Zone and the Plateau Climate Zone record the lowest
values, with annual mean, maximum, and minimum temper-
atures of —3.8, 4.3, and —11.0°C in the Northern Temper-
ate Zone, and —1.7, 6.2, and —8.3 °C in the Plateau Climate
Zone. In contrast, the Subtropical Zone records 16.1, 21.3,
and 12.5 °C, while the Tropical Zone reaches 24.2, 28.9, and
21.1 °C, respectively. Atmospheric pressure strongly reflects
elevation differences. While most zones maintain annual
mean values above 900 hPa, the Plateau Climate Zone shows
a significantly lower pressure of approximately 608 hPa. Rel-
ative humidity decreases from southeast to northwest, shaped
by maritime influence and topographic relief. The Tropi-
cal and Subtropical coastal zones record the highest annual
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mean values of 83 % and 78 %, respectively. The North-
ern Temperate Zone reaches 70 %, while interior zones, in-
cluding the Middle Temperate and Plateau Climate Zones,
record lower values of approximately 55 %. Sunshine dura-
tion shows an inverse pattern relative to humidity and cloudi-
ness. The longest annual average sunshine durations are ob-
served in the Qinghai-Tibet Plateau and the Middle Temper-
ate Zone in Xinjiang and Inner Mongolia, with 8.0 and 7.8 h
per day, respectively. In contrast, the Subtropical coastal zone
receives only about 4.6 h due to persistent cloud cover and
high moisture levels.

The reconstructed spatial patterns show strong agreement
with China’s climatic zonation and physiographic structure,
demonstrating that the dataset reliably captures the spatial
distribution of key climate-controlling factors, including el-
evation, latitude, and terrain complexity. This consistency
highlights the physical soundness and regional adaptability
of the reconstruction framework, which is informed by to-
pographic features rather than relying solely on spatial prox-
imity. The dataset thereby offers robust support for regional-
scale analyses in hydrology, meteorology, and ecology, espe-
cially in contexts where high spatial resolution and internal
data consistency are required.

5 Data availability

The 1km daily dataset of near-surface meteorological vari-
ables over mainland China includes air temperature (average,
maximum, and minimum) for the period 1961-2021, and at-
mospheric pressure, relative humidity, and sunshine duration
for the period 1961-2019. The dataset is expected to undergo
ongoing maintenance and temporal extension contingent on
the availability of new observational data. The GeoTIFF-
formatted output files at 1 km spatial resolution are freely
accessible at https://doi.org/10.11888/Atmos.tpdc.301341
(Zhao et al., 2024).
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6 Conclusion

This study presents a nationwide, high-resolution dataset of
six daily near-surface meteorological variables — average,
maximum, and minimum temperature, atmospheric pressure,
relative humidity, and sunshine duration — reconstructed at
1 km spatial resolution over mainland China for the period
1961-2019 (1961-2021 for air temperature). Instead of re-
lying on traditional spatial interpolation, the reconstruction
framework models nonlinear relationships between meteoro-
logical variables and topographic predictors — such as eleva-
tion, latitude, and longitude — enabling physically informed
estimation across a wide range of climatic and geographic
conditions.

Validation using 146 independent meteorological stations
demonstrates that the dataset achieves consistently high ac-
curacy across all variables. For average, maximum, and min-
imum temperature, the median RMSEs are 1.16, 1.19, and
1.29 °C, respectively; the corresponding median MEs are ap-
proximately —0.04, —0.10, and —0.01 °C, with correlation
coefficients equal to 0.99. Atmospheric pressure shows sim-
ilarly strong performance, with a median RMSE of 2.65 hPa,
a median ME of —0.06 hPa, and a correlation coefficient
of 0.97. Relative humidity and sunshine duration also per-
form reliably, with median RMSEs of 6.33 % and 1.48h,
MEs of —0.52 % and 0.05 h, and correlation coefficients of
0.90 and 0.93, respectively. Further comparison reveals that
station-to-grid validation underestimates the true accuracy of
gridded products, particularly in topographically complex re-
gions where elevation mismatches distort point-to-grid com-
parisons. In such areas, model estimates based on exact sta-
tion coordinates consistently yield better validation metrics
than those derived from station-to-grid comparisons, espe-
cially for elevation-sensitive variables.

The comparative evaluation against existing gridded prod-
ucts further confirms the quality and robustness of the re-
constructed dataset, while complementing existing bench-
mark products with enhanced spatial resolution (1 km), par-
ticularly suited for heterogeneous environments. For average
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Figure 12. Annual spatial distribution of 6 meteorological elements in China from 1961 to 2019 based on daily reconstructed products.

temperature, atmospheric pressure, and relative humidity, the
reconstructed product exhibits consistently lower RMSE and
ME than CMFD 2.0 at independent validation stations, with
particularly substantial error reduction observed for atmo-
spheric pressure. In the comparison of sunshine duration,
the reconstructed dataset achieves temporal accuracy nearly
identical to the homogenized, long-term station-based SSD
product and spatial accuracy comparable to the recent, high-
resolution satellite-based Himawari SD dataset, while fur-
ther reducing systematic bias, thereby providing a more bal-
anced and reliable benchmark across both temporal and spa-
tial scales.

In addition to its high overall accuracy, the dataset demon-
strates stable spatial performance across China’s major cli-
matic zones. Temperature and pressure variables maintain
low RMSEs and strong correlations in both humid south-
eastern and arid northwestern regions, with most temperature
RMSEs, MEs, and CCs falling within the ranges of 0.49 to
2, —2 to 2°C, and 0.95 to 1.00, respectively. Relative hu-
midity and sunshine duration show limited spatial variabil-
ity, with only a few isolated stations displaying notable de-
viations. Even in data-sparse regions like Taiwan — excluded
from model training — the reconstructed temperature fields
align reasonably well with in-situ observations, indicating
the dataset’s spatial robustness beyond the training domain.

The dataset provides spatially continuous, temporally
complete, and variable-accurate daily meteorological

Earth Syst. Sci. Data, 17, 7251-7270, 2025

records, supporting a wide range of regional-scale applica-
tions in hydrology, meteorology, and ecology.
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