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Abstract. For the development of a joint European capacity for monitoring CO; emissions, we created the
framework “CO, Monitoring Challenges City Mapbooks v1.0” (CMC-CITYMAP). It includes a Jupyter note-
book tool (Storm et al., 2025a, https://doi.org/10.18160/P8SV-B99F) which we use to characterise and cluster
cities based on aspects relevant for different CO, monitoring challenges. These include:

a. determining background levels of CO; inflow into a city (“background challenge”).

b. separating the anthropogenic emissions from the influence of the biosphere (“biogenic challenge”).
c. representing spatially and temporally non-uniform emissions in models (“modelling challenge”).
d

. implementing observation strategies not covered by the other challenges (“application-specific observational
challenge”).

We provide and discuss the challenges on a city-by-city basis. Our primary focus, however, is on the relationships
between cities: best practices and lessons learned from monitoring CO, emissions in one city can be transferred
to other cities with similar characteristics. Additionally, we identify cities with characteristics that strongly con-
trast with those of cities with existing urban monitoring systems.While the notebook tool includes 308 cities,
this paper focuses on the results for 96 cities with more than 200 000 inhabitants. We place a particular emphasis
on Paris, Munich, and Zurich. These cities are pilot cities for the Horizon 2020-funded project Pilot Application
in Urban Landscapes (“ICOS Cities”), where a range of urban CO; monitoring methods are being implemented
and assessed. According to our analyses, Zurich — and Munich especially — should be less challenging to monitor
than Paris. Examining the challenges individually reveals that the most significant challenge relative to the other
cities is the “modelling challenge” (c) for Zurich and Paris. Complex urban topography adds to the challenge for
both cities, and in Zurich, the natural topography further amplifies the challenge. Munich has low scores across
all challenges, but with the greatest challenge anticipated from the “application-specific observational challenge”
(d). Overall, Bratislava (Slovakia) and Copenhagen (Denmark) are among the most distant from Paris, Munich,
and Zurich in our dendrogram resulting from numerical cluster-analysis. This makes them strong candidates for
inclusion in the ICOS Cities network, as they would potentially provide the most information on how to monitor
emissions in cities that face different challenges.

Published by Copernicus Publications.
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1 Introduction

“Cities are where the climate battle will largely be won
or lost”, stated United Nations Secretary-General Anténio
Guterres at the 2019 C40 Mayors Summit. In 2020, cities
accounted for approximately 67 %—72 % of global CO,-
equivalent emissions based on consumption-based account-
ing (Lwasa et al., 2022). This share will only increase as the
urban population is projected to rise from 4.2 billion in 2018
to 6.7 billion by 2050 (United Nations, 2018). In response,
many cities in Europe are committed to the EU’s climate tar-
gets to achieve net-zero emissions by mid-century (European
Commission, 2019). Often, they have joined forces in their
efforts through initiatives such as C40 Cities (C40 Cities,
2024) and the Covenant of Mayors (Covenant of Mayors,
n.d.), as well as inclusion in the European Union’s mission
“100 Climate-Neutral and Smart Cities by 2030” (European
Commission, Directorate-General for Research and Innova-
tion, 2024). Cities can achieve climate neutrality by ensuring
they remove as much greenhouse gases as they emit. To reach
this goal, they have drawn up and committed themselves to
implement climate action plans with various mitigation ef-
forts. However, many cities lack the detailed and timely in-
formation on their emission history and trends, which is nec-
essary to evaluate effective action (Hsu et al., 2020). While
various options exist for obtaining this information, verifying
emissions always requires actual observations. Determining
the most effective strategies for these observations is an ac-
tive area of research.

Most cities that engage in emission monitoring use
“bottom-up” approaches that usually do not include direct
observations: activity data (such as traffic counts) are com-
bined with emission factors (such as kgCO; per vehicle km
(vkm)), and the sophistication of its implementation varies.
Several public protocols are available for cities to develop
self-reported inventories (SRIs), including those from ICLEI
— Local Governments for Sustainability, and the Global
Covenant of Mayors (ICLEI, 2024; Global Covenant of May-
ors for Climate & Energy, 2023). The estimates resulting
from using different protocols can show significant differ-
ences (e.g., Albarus et al., 2023; Gurney et al., 2021; Gately
and Hutyra, 2017; Lian et al., 2023). For example, Gurney
et al. (2021) found an average under-reporting of 18.3 %
when comparing the annual emission estimates for 48 U.S.
cities with local SRIs to the common inventory “Vulcan”.
The latter has shown consistency with observations in pre-
vious studies (Gurney et al., 2020; Lauvaux et al., 2020;
Basu et al., 2020). The range of under- or over-reporting
spanned from —145.5 % to +63.5 %. Uncertainties become
even larger when estimating emissions at higher spatial and
temporal resolutions (Super et al., 2021). For example, Lian
et al. (2023, Fig. S10) showed particularly large discrepan-

Earth Syst. Sci. Data, 17, 6681-6701, 2025

I. Storm et al.: Monitoring CO» in diverse European cities

cies in individual 1 km? grid cells when comparing two emis-
sion inventories.

In the “top-down” approach, various types of observations
are used to verify and potentially refine the emission esti-
mates. The observational methods available include — but
are not limited to — measuring concentrations using sen-
sors of varying accuracy and precision, observing total col-
umn concentrations through surface-based remote sensing
and satellites, and measuring direct fluxes with eddy covari-
ance. However, these observations concern total CO, and to
isolate the fossil fuel component, different types of observa-
tions should be used. Options include measurements of co-
emitted trace gases such as CO (e.g. Turnbull et al., 2006;
Nathan et al., 2018) and NO, (e.g. Lopez et al., 2013); co-
located trace gases such as SFg (e.g. Turnbull et al., 2006;
Turnbull et al., 2011); and isotopes like '#C in CO, (e.g.
Turnbull et al., 2006; Lopez et al., 2013; Miller et al, 2020).
There are several options for using observations to provide
information on emissions, often synergistically to improve
each other (Miles et al., 2021). A comprehensive account of
the options can be found in IG3IS “Urban Emission Obser-
vation and Monitoring Good Research Practice Guidelines”
(World Meteorological Organization, 2025). To produce spa-
tially explicit maps with adjusted (bottom-up) emissions, in-
verse modelling is commonly applied. This approach relates
the observations, or the observed upwind-downwind gradi-
ents (e.g. Bréon et al., 2015; Super et al., 2017; Staufer et
al., 2016), to CO, exchanges within the city using transport
models. Next, the CO, emissions are optimised to fit better
with the observations. There are uncertainties also in the ad-
justed emissions, and a study period of at least a few years
may be required to confirm a trend in the emissions with high
confidence (Lauvaux et al., 2020).

Several factors make monitoring CO, emissions particu-
larly challenging and prone to uncertainties. Based on our
experiences and a literature review of monitoring efforts in
cities, we have identified four main areas of challenges. The
first is to accurately represent the variability in boundary con-
ditions, meaning the “background” concentration of air flow-
ing into the city (the “background challenge”). This can sig-
nificantly affect the results as the increase in concentrations
from city emissions is relatively small, even for large cities.
For example, in Indianapolis the enhancement at the down-
wind site was only about 3 ppm in October 2012 (averaged
over 17:00-22:00 UTC), according to Lauvaux et al. (2016).
Using only models to represent the background can intro-
duce errors that are larger than this enhancement, with Lian
et al. (2021) reporting differences as large as 5 ppm for back-
ground concentration for Paris between two models. In ad-
dition, this may create seasonal biases (Sargent et al., 2018).
The alternative is to use observations, which comes with the
challenge of selecting spatially representative locations that
have limited local flux contributions and well-understood at-
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mospheric dynamics (Sargent et al., 2018). Seemingly ho-
mogeneous land cover classified as “cropland” may require
extra attention, as the associated fluxes can vary significantly
due to different management practices and crop rotation cy-
cles. For example, in Miles et al. (2021) two background
towers classified as “agricultural” gave significantly differ-
ent values.

A second challenge is correctly attributing the fossil fuel
CO; (ffCO;) component in observed total CO;, (the “bio-
genic challenge”). Correlated and co-emitted trace gases, as
well as 4C in CO,, have already been mentioned as use-
ful observations for this purpose. They can be used to opti-
mise modelled prior biogenic fluxes in addition to the anthro-
pogenic emissions (e.g. Miller et al., 2020). Historically, bio-
genic flux models have been unable to resolve urban vegeta-
tion and its associated fluxes. For example, Lian et al. (2023)
found that their biogenic model only resolved the two largest
parks within the fle-de-France region. They were not op-
timising the biogenic fluxes and instead saw large adjust-
ments to their prior ffCO, emissions, especially during the
growing seasons. One alternative strategy has been to study
only the dormant season and assume biogenic exchange to
be insignificant (e.g. Lauvaux et al., 2016). Recent devel-
opments, including Urban-VPRM (Hardiman et al., 2017)
and pyVPRM (Glauch et al., 2025), can better resolve sub-
kilometre patches of vegetation. Their improvements stem
mainly from the use of high-resolution satellite products, but
they are still parametrised with rural flux data and assumed
to function in the same way also in urban areas. However,
urban management practices have been shown to violate this
assumption. For example, Smith et al. (2019) found that ur-
ban trees have growth rates up to four times compared to
those observed in a nearby forest. A more recent study from
Havu et al. (2024), describes a significant CO, uptake for
the city of Helsinki. This may be attributed to higher ambi-
ent CO;, mole fractions, nutrient variability, and water avail-
ability from irrigation. However, there are also urban studies
where lower CO; uptake and decreased productivity are ob-
served due to factors such as pollutant loads or poor soil con-
ditions (Roman and Scatena, 2011; Ainsworth et al., 2012).
Correctly representing these responses in biogenic flux mod-
els is especially important when the biogenic component is
large compared to anthropogenic emissions. Many studies
have reported estimates for the biogenic component, with its
relative contribution varying to large extent depending on the
city, season, and time of the day (e.g., Turnbull et al., 2015;
Gurney et al., 2017; Sargent et al., 2018; Winbourne et al.,
2022). Studies in Boston (Sargent et al., 2018) and the Wash-
ington, DC/Baltimore area (Winbourne et al., 2022) found
that the influence of biogenic fluxes on the city’s net flux was
sometimes comparable to that of anthropogenic emissions.

The third challenge is representing the urban carbon land-
scape in models (the “modelling challenge’). While the bio-
genic fluxes are discussed separately, additional challenges
arise from the highly non-Gaussian variability of emissions
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across both time and space. About 50 % of fossil fuel related
CO;, emissions in Europe stem from large point sources,
which are required to report their emissions under the EU
ETS (European Union Emissions Trading Scheme) and the
E-PRTR (European Pollutant Release and Transfer Regis-
ter). Although many of these facilities report hourly emis-
sions with high accuracy, most models are unable to use
facility-specific data. Instead, they rely on standard tem-
poral profiles to scale annual totals. This can introduce
large uncertainties, as demonstrated in studies by Super et
al. (2020, 2021). These uncertainties further increase near
point sources, where representing the emission plume accu-
rately is challenging due to the well-mixed assumption in
most models (Lauvaux et al., 2016). Furthermore, as most
emissions from point sources are released from a stack, mod-
els need to incorporate realistic vertical profiles (Brunner et
al., 2019; Maier et al., 2022). Another challenge for trans-
port models in the urban environment is to accurately rep-
resent airflow, which is complicated by variable topography
and tall urban structures. There are models that can do this
with some accuracy (e.g. Berchet et al., 2017; Gaudet et al.,
2017), but they are computationally expensive to run. For ex-
ample, Berchet et al. (2017) use a catalogue-based approach
where a set of pre-computed steady-state flow and dispersion
patterns is matched hourly to actual meteorological observa-
tions. These models require highly resolved spatiotemporal
input data, including both biogenic fluxes and anthropogenic
emissions.

The fourth challenge within the scope of this paper is the
“application-specific observational challenge”. Many chal-
lenges associated with implementing a basic observational
network are inherently intertwined with the other discussed
challenges. These include high precision CO; in-situ obser-
vations on tall towers, low- and mid-cost sensors, ground
based total column FTIRs (Fourier Transform Infrared Spec-
troscopy), and eddy flux towers. In this fourth challenge, we
include the challenges associated with the use of the isotope
14C in CO; and making satellite observations. '4C (radiocar-
bon), can be used to estimate the amount of ffCO; in a sam-
ple. However, high costs limit the spatial and temporal cov-
erage of radiocarbon observations, and therefore co-emitted
species such as CO are often used to fill the gaps. Calibra-
tion with co-located radiocarbon observations remains nec-
essary. A key challenge with radiocarbon observations is ac-
counting for the contribution to the atmospheric signal by
radiocarbon emissions from nuclear facilities (e.g. Levin et
al., 2003; Graven and Gruber, 2011; Bozhinova et al., 2014;
Maier et al., 2023). The impact of these emissions depends
on the proximity of sampling locations to nuclear facilities.
Unaccounted emissions were estimated to mask about 15 %
of ffCO, emissions in flask samples collected at seven In-
tegrated Carbon Observation System (ICOS) stations in the
study by Maier et al. (2023). Even when considered in the
ffCO, estimates, obtaining the appropriate temporal resolu-
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tion for these emissions is difficult. This increases uncertain-
ties in '*C-based ffCO, estimates (Maier et al., 2023).

Another type of observation considered within the scope
of the fourth challenge is column-averaged CO; dry air mole
fraction (XCO») from satellites. These observations require
a clear sky for accurate overpass measurements which can
significantly limit the number of samples collected. For ex-
ample, in a synthetic study for Berlin, Kuhlmann et al. (2019)
found that out of the 365 d in 2012, only 50 appeared suitable
to observe the CO, plume from space due to unfavourable
meteorological conditions during the other 315 d. Further-
more, the emissions during the sample collection were 18 %
higher than the annual total for Berlin, requiring tempo-
ral profiles to correct for this sampling bias. However, as
shown in Super et al. (2020), temporal profiles come with
sometimes large additional uncertainties. Yet another chal-
lenge with satellite observations is that only large emissions
provide a sufficient signal-to-noise ratio in observed XCO,
enhancement. Wang et al. (2020) suggested that emissions
from a city or a power plant larger than 7.33 MtCO, yr~!
(2MtC yr~!) could potentially be constrained between 08:30
and 11:30 using the CO,M instrument, which has a planned
launch in 2026. The threshold corresponds to a posterior un-
certainty smaller than 20 % for more than 10 times within a
year.

In this study, we quantify and compare the challenges for
96 cities by relating them to information gathered from rele-
vant spatial data layers. This is done using various Geograph-
ical Information Science (GIS) techniques to condense infor-
mation from multiple data layers into 18 city metrics. These
metrics represent specific characteristics of the city and are
weighted based on factors that are deemed to make emis-
sion monitoring challenging. Each city is presented in indi-
vidual “mapbooks”, which show their results and associated
maps. These mapbooks can be used by stakeholders or local
experts, as well as in national or pan-European monitoring
strategies, including ICOS (Integrated Carbon Observation
System) and Copernicus’ monitoring and verification sys-
tem (MVS). The full framework of CMC-CITYMAP also
includes an interactive Jupyter notebook that can be down-
loaded or run on the ICOS Jupyter service. It allows users to
update the analyses presented in this study and explore addi-
tional available metrics.

After an overview of our study area and selected cities
(Sect. 2.1), Sect. 2.2 explains how the spatial information
layers are reduced to metrics. Section 2.3 connects the met-
rics to the four monitoring challenges and Sect. 2.4 is detail-
ing how they are integrated into challenge scores and used in
further analyses. Next, the results are presented in four sec-
tions. They begin with the characteristics of individual cities
(Sect. 3.1), proceed to city comparisons (Sect. 3.2 and 3.3),
and conclude with a cluster analysis focusing on the impli-
cations for a joint European urban monitoring capacity. A
discussion of the results follows (Sect. 4), and the study is
concluded in Sect. 6. Section 5 provides links to relevant re-
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sources for the study, including its associated Jupyter note-
book tool and mapbooks.

2 Methods

Spatial information layers representing city characteristics
relevant to the monitoring challenges have been selected.
These layers come from various sources and are available
at different resolutions (see Table 1). City borders are used
to subset the layers, and statistical properties or derived in-
dices are then used to generate comparable metrics for each
city. In some cases, multiple layers are combined to create a
single metric, such as the ratio between biogenic uptake and
anthropogenic emissions (see Sect. 2.2.3). When applicable,
the selected time period is the dormant season during day-
time, which helps reduce the influence of the biosphere and
usually means well-mixed conditions.

2.1 Cities and their surroundings

The city boundaries used in this study were downloaded from
Eurostat’s GISCO service (Eurostat, 2024). These include
only cities within the European Union, and the delineation
method follows the definition provided by the OECD (Organ-
isation for Economic Co-operation and Development). Fine-
grained population data was used to delineate urban cen-
tres, defined as contiguous areas of high population density
(> 1500 residents km~2) with a total population of at least
50000 residents. In turn, the urban centres were associated
with local administrative units, and if more than 50 % of the
population within a unit lived in the urban centre, the local
administrative unit was defined as a city. In cases where adja-
cent local administrative units met the city criteria, they were
merged to form a single city (Dijkstra et al., 2019).

A total of 308 cities in the European Union fall within
our study region spanning from 2°W to 19°E and from
47 to 56°N. This is the area where one of our key data
sources — the high-resolution emission data from TNO (the
Dutch Organization for Applied Scientific Research) — is
available. For our study we have considered only cities with
over 200 000 inhabitants, resulting in the 96 cities depicted
in Fig. 1. Most are found in Germany (43), the Netherlands
(15), France (13) and Poland (9). The surroundings of the
cities are defined as the buffer area extending 20 km beyond
the city boundaries and is used for some of the metrics. Ad-
ditionally, the surrounding buffer area in the dominant 30°
wind direction is used to subset data for separately weighted
metrics (see Table 1; Sect. 2.2.1). This puts higher signifi-
cance on the characteristics of the area upwind of the city.

2.2 Extraction of city metrics

Table 1 lists all the input datasets along with brief informa-
tion on how they are analysed to derive metrics for the cities,
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Figure 1. Overview of the 96 characterised cities. The points represent cities, and their colours indicate which of the four challenges has
the highest score. The size of the points increases with the anticipated overall challenge to monitor emissions in them after weighing the

individual challenges equally (see Sect. 2.4.1).

which are used in further analyses. The datasets are avail-
able for the entire region, which is a prerequisite for making
comparisons across the 96 cities. Alternative datasets and de-
rived metrics — which were excluded from this study — are
also available in the notebook tool (Storm et al., 2025a). Sec-
tion 2.2.1 through 2.2.6 focus on the datasets and how they
are used to derive the metrics. Section 2.3.1 through 2.3.4
motivate how the data layers are associated with the indi-
vidual challenges to estimate their relative difficulty. Finally,
Sect. 2.4.1 through 2.4.4 outlines how the metrics are inte-
grated and analysed. This includes how the weights (column
“Challenge (weight)” in Table 1) are applied to the individ-
ual metrics, and how the metrics are adjusted so that higher
values consistently correspond to a greater monitoring chal-
lenge before they are combined.

221 Wind

For the metrics related to wind, eastward and northward
windspeed components at ten meters from European Centre
for Medium-Range Weather Forecasts (ECMWF) Reanaly-
sis v5 (ERAS; Hersbach et al., 2023) have been used. Data
during daytime hours (09:00 to 18:00 UTC) in the winter
months (January and February) of 2018 was used for the
analyses. One of the derived metrics is the “Fraction of time
with wind speed above 2ms~!” at the centroid of the city
boundary. The 2ms~! threshold is also used to filter out low
wind speeds when calculating the fraction of time the wind
is from the dominant wind direction as well as in a couple of
other metrics (see Table 1).

https://doi.org/10.5194/essd-17-6681-2025

The dominant wind direction is determined by aggregat-
ing the wind direction into 30° bins, where north is defined
as ranging from 345 to 15°. The bin found to represent the
dominant wind direction for a city is used in several metrics
(see Table 1) to place emphasis on the surrounding area up-
wind of the city.

2.2.2 Anthropogenic CO> emissions

The bottom-up CO, emission inventory used in this paper
originates from TNO. It includes emissions from different
sectors distributed on a 1/60° x 1/120° grid (approximately
1 km?). Emissions from power plants and industrial facilities
are instead assigned to their exact locations, as derived from
input datasets including E-PRTR (Kuenen et al., 2022, Ta-
ble 1). Standard temporal profiles (updated from Denier van
der Gon et al., 2011) are applied to distribute the annual emis-
sions into hourly values. This is done using sector-specific
scaling factors for individual months, days of the week, and
hours of the day. These profiles are used to get data compa-
rable to biogenic activity at specific times (see Sect. 2.2.3).

All metrics related strictly to anthropogenic CO; emis-
sions use the annual total for the year 2018. “Emission in-
tensity buffer” uses emissions per km? in the 20 km buffer
area around the cities, with an additional metric, “Emission
intensity buffer dominant wind direction”, which highlights
the upwind buffer area. “Share point source emissions” is the
percentage of a city’s total emissions that can be attributed to
point sources.

Earth Syst. Sci. Data, 17, 6681-6701, 2025
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Table 1. An overview of the different input data layers, the metrics they are used to derive, and the specific challenges they contribute to
estimating. Their weights in their contributions to the challenges are provided as percentages. The weights within each category sum to
100 %. For the overall challenge, the four individual challenges are equally weighted (see Sect. 2.4.1).

Data (section) Resolution Reference Reference Metric Metric implication Challenge (weight)
year data
Wind 0.25° x 0.25° 2018 ERAS reanalysis Fraction of time wind from  Expected constancy of ~ Background (30 %)*
(Sect. 2.2.1) (Hersbach et al., 2023) the dominant wind concentration footprint
direction (limited to wind
speed > 2ms™ 1)
Fraction of time with wind  Stagnant flow Background (10 %)*
speed > 2ms ! conditions
ffCO, 1/60° x 1/120° 2018 TNO high resolution Emission intensity buffer Non-city emissions Background (20 %)
emissions by emission inventory within the expected
sector and (Kuenen et al., 2022) footprint
source type
(Sect. 2.2.2)
Emission intensity buffer Background (20 %)
dominant wind direction
(limited to >2m s’l)
Share point source Modelling (30 %)
emission
Non-point-source emission  Expected ffCO; signal ~ Modelling (20 %)
spatial aggregation aggregation
Land cover 10m x 10m 2021 ESA Worldcover v.2 Vegetation heterogeneity Expected separation of ~ Biogenic (30 %)
(Sect. 2.2.3) (Zanaga et al., 2022) biogenic signal
Share cropland in buffer Non-city cropland Background (10 %)
within the expected
footprint
Share cropland in buffer Background (10 %)
dominant wind direction
(limited to > 2ms~ 1)
Net Ecosystem  500m x 500m 2018 VPRM (Mahadevanet ~ NEE relative to ffCO; Signal-to-noise Biogenic (40 %)
Exchange al., 2008; Glauch et al., potential of ffCO,
(NEE) 2025)
(Sect. 2.2.3)
Average NEE Biogenic (30 %)
Building height  100m x 100m 2018 GHSL: Global building  Average building height Expected complexity Modelling (20 %)
(Sect. 2.2.4) heights (Pesaresi and of urban topography
Politis, 2023)
Landform 90m x 90m 2015 Global SRTM Share of flat areas Expected complexity Modelling (15 %)*
(Sect. 2.2.4) Landforms (Theobald of natural topography
etal., 2015)
Topography 25m x 25m 2011 EU-DEM vl.1 Topographic heterogeneity Modelling (15 %)
(Sect. 2.2.4) (European
Environment Agency,
2016)
Emissions from  Exact locations 2021 Annual emission totals ~ Potential nuclear masking Expected interference Observational (25 %)
nuclear of 14C02 from nuclear  (see Eq. 1) of nuclear emissions
facilities facilities when sampling
(Sect. 2.2.5) (Storm et al., 2024) radiocarbon
Nuclear sample selection Observational (25 %)
bias
Cloud cover 0.25° x 025° 2018 ERAS reanalysis Share of days with > 30 % Expected potential for Observational (25 %)

(Sect. 2.2.6)

(Hersbach et al., 2023)

cloud cover summer

Share of days with > 30 %
cloud cover winter

satellite observations

Observational (25 %)

* For these contributions, a lower value means a greater monitoring challenge (see Sect. 2.4).

Earth Syst. Sci. Data, 17, 6681-6701, 2025
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In addition to metrics related to emission intensity and
shares, there is a metric called “non-point-source emission
spatial aggregation”. It is defined as the share of the city’s
total area with the highest emission intensity that in com-
bination holds 50 % of the total emissions from non-point
sources. Higher values therefore mean that remaining emis-
sions are more evenly distributed in the city.

2.2.3 Biospheric CO» exchange

As a representation of biospheric CO, exchange, calcula-
tions of NEE (Net Ecosystem Exchange) provided by Hei-
delberg University were used. The calculations are based on
a new implementation of the Vegetation Photosynthesis and
Respiration Model (VPRM; Mahadevan et al., 2008) in the
pyVPRM tool (Glauch et al., 2025). VPRM is a simple di-
agnostic model that uses remote sensing and meteorological
data to estimate the NEE at high spatiotemporal resolution.
This implementation uses MODIS Terra MODO09A1 Collec-
tion 6.1 8d data (Vermote, 2021) at 500 m resolution and
hourly ERAS meteorological data with a resolution of 0.25°
to retrieve the two-meter temperature and the solar irradiance
(Hersbach et al., 2023). In addition, land cover information
from the Copernicus Land Cover Service is used at 100 m
resolution (Buchhorn et al., 2020).

For the metric related to the general biogenic activity in the
city, average NEE at 15:00 UTC during winter (January and
February) has been calculated. In the metric comparing NEE
and emissions, the ratio between average city-wide NEE and
anthropogenic ffCO; at 15:00 UTC in winter is used. If it is
a challenge during this time of year, when the biosphere is
dormant, it will also be a challenge during the rest of the
year. To estimate how coherent the biogenic active areas are
within the city, an “edge-to-area ratio” for vegetation is ap-
plied. Based on the European Space Agency (ESA) World-
cover dataset v2 (Zanaga et al., 2022), each 10 m resolution
cell attributed to vegetation (classes 10, 20, 30, 40, 90, and
100) is selected. “Edge cells” are defined as cells with at least
one non-vegetated neighbouring cell. The final metric rep-
resents the fraction of vegetation cells that are classified as
edge cells.

The ESA Worldcover dataset is also used to include crop-
land information (class 40) in the metrics “share cropland
buffer” and “share cropland in dominant wind direction”. In
both cases, 20-kilometer buffers around the cities are applied
(see Sect. 2.1). For “share cropland buffer”, the full buffer
area is used. For “share cropland in dominant wind direc-
tion”, only the buffer in the dominant wind direction is con-
sidered to emphasise the upwind area.

2.2.4 Natural and built-up topography

The landform dataset by Theobald et al. (2015) is used to
calculate the share of flat areas (classes 24 and 34) within
the city, while average building heights are derived from the
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dataset by Pesaresi and Politis (2023). The building heights
dataset has a 100 m x 100 m resolution, which is deemed ad-
equate for a city-wide average and indicates whether the city
has many tall buildings.

The spatial variability in the natural topography — the “To-
pographic heterogeneity” metric — is captured by averaging
the Terrain Ruggedness Index (TRI) for each 25m x 25 m
grid cell in the EU-DEM vl.1 (European Environment
Agency, 2016). The TRI is calculated using the methodol-
ogy outlined in Riley et al. (1999): each cell’s value is deter-
mined by taking the square root of the squared and averaged
elevation differences with its eight adjacent cells.

2.2.5 Radiocarbon (4CO,)

When using '*CO, observations to separate fossil and non-
fossil contributions of urban CO, enhancements, it is essen-
tial to account for the impact of anthropogenic '*C emissions
from nuclear facilities. Nuclear emissions enhance the 'C/C
ratio masking part of the '*C/C depletion due to the emis-
sion of ffCO;. This masking effect was on average 15 % in
flask samples collected at seven ICOS stations in the study by
Maier et al. (2023). A Jupyter notebook hosted at the ICOS
Carbon Portal (Storm and Karstens, 2024) is used to quan-
tify nuclear masking using a modification of their Eq. (2.3):
ffCO, (Cg) is calculated using measured CO; (Cpeys) and
AMC (Al% ), with and without considering the nuclear con-

tribution (A ). As in Levin et al. (2003), the relatively in-

nuc
significant respiration term is excluded:
Cog - Aldpg + Crneas - Aldyye — 1000 - Cr

Al4meas = Cir+ Gy
2

6]

AM  is solved for based on modelled concentration
timeseries calculated in the Jupyter notebook (Storm and
Karstens, 2024; Karstens, 2023). The background concen-
trations (All)g) are provided by the ICOS Radiocarbon Lab-
oratory based on measurements from the Mace Head site in
Ireland. Next, Eq. (1) is used once more to back-calculate
what ffCO; (Cg) would need to be if the nuclear contribu-
tion term (A} ) was not considered. The result is compared
to the original modelled ffCO; component (Cg) to calculate
the impact of nuclear masking. For the calculation of the fi-
nal metric for each city, the average differences in percent for
January and February at 12:00 and 15:00 UTC are calculated.

Even when nuclear contributions are accounted for, they
introduce additional uncertainties to the *C-based ffCO, es-
timates. This is primarily because the emission time pro-
file — assumed to be flat and derived from annual nuclear
emissions totals — does not accurately reflect the timing of
emissions (Maier et al., 2023). This limitation motivates the
current sampling strategy at the ICOS Radiocarbon Labora-
tory in Heidelberg: to avoid sampling when nuclear contribu-
tion exceeds 0.5 %o. A second metric, “nuclear sample selec-
tion bias”, calculates the degree of sampling bias that could
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occur in cities if this observational monitoring strategy is
adopted. The modelled concentration timeseries (12:00 and
15:00 UTC, January and February of 2021). It is subset to
when the nuclear contribution is below 0.5 %o, based on cal-
culations in the Carbon Portal notebook (Storm and Karstens,
2024). The metric is calculated as the percentage difference
between the average ffCO, components in the subset and the
average for the entire time series.

2.2.6 Cloud cover

Total cloud cover is extracted from ECMWF ERAS at
12:00 UTC during the winter (January and February) and
summer (June and July) of 2018. Winter and summer are in-
cluded as separate metrics because cloud cover can exhibit
significant seasonal variability depending on the city’s lo-
cation. 12:00 UTC was selected to match with the overpass
time of the planned CO,M satellite mission (Kuhlmann et al.,
2019). The 0.25 x 0.25° data cell in which each city falls is
used to extract a time series of cloud cover in the individual
cities. In turn, a threshold of 30 % cloud cover is used to cal-
culate the proportion of days when samples will likely need
to be discarded.

2.3 Monitoring challenges
2.3.1 Background challenge

The challenge of determining the background concentration
of CO, upwind of the city is connected to wind patterns, nat-
ural fluxes and anthropogenic emissions. Higher wind speeds
result in larger influence regions (“footprints”) and reduce
the impact of strong local sources within the background
region. This leads to more spatially representative back-
ground observations and is one reason for excluding low-
wind-speed observations from further analyses, such as in the
inverse modelling studies over Paris by Bréon et al. (2015)
(>2ms~!) and Lian et al. (2023) (> 3ms~ ).

Wind direction is also relevant for obtaining spatially rep-
resentative observations, as fluxes in the dominant wind di-
rection contribute most to the signal. Even at higher wind
speeds, significant influence from large point sources or an
especially active biosphere can still occur. To account for
this, the emission intensity and the share of cropland sur-
rounding the city are considered, with extra weight given to
the area in the dominant wind direction. Cropland is singled
out because of the added difficulty in correctly represent-
ing associated fluxes, which are influenced by crop cycles
and management practices. A final consideration is wind di-
rection. When it predominantly comes from one direction,
fewer background towers are needed to provide suitable up-
wind values for most observations. This makes the city less
challenging to monitor in terms of the background challenge.
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2.3.2 Biospheric challenge

The carbon landscape of cities includes the natural exchange
of CO» through soils and the biosphere. Understanding the
spatial and temporal distributions of these exchanges is nec-
essary to isolate the contribution of anthropogenic emissions
from observed CO;. To estimate how challenging this might
be, the natural and anthropogenic fluxes as well as land cover
are considered. Whereas models can be used to estimate
the signal from the biosphere, these estimates are associated
with large uncertainties — especially in urban environments.
Therefore, strong biospheric activity in the city is expected
to add to this challenge. Further adding to the challenge is
when the signal from the biosphere is large in comparison to
that from the anthropogenic emissions, as the signal-to-noise
ratio then decreases (e.g. Sargent et al., 2018; Winbourne et
al., 2022). If the city-wide biogenic signal originates from a
coherent area, such as a large park, the challenge is reduced
because partitioning the observations becomes easier. This is
mainly relevant when observing direct fluxes in a city, as the
influence areas (“footprints”) are much smaller compared to
influence areas of concentration measurements (Kljun et al.,
2015).

2.3.3 Modelling challenge

For the challenge of modelling CO; exchange within the city,
both anthropogenic emissions and the city’s natural and ur-
ban topography are considered. Especially point sources add
complexity to this challenge. They emit large quantities of
CO; from high stacks and require high-resolution spatiotem-
poral data and models. Maier et al. (2022) demonstrated that
resolving emissions from stacks, as opposed to ground-level
sources, is important even in regional-scale modelling within
50km of the emission source. Furthermore, large shares of
emissions from point sources can obscure more distributed
sources, making these harder to monitor. The distribution
of remaining non-point source emissions is also relevant to
the modelling challenge. Spatially concentrated emissions
are generally easier to monitor because they limit the spatial
scope of the monitoring network and increase the likelihood
of detecting large emission signals. Larger emission signals
enhance the signal-to-noise ratio and thereby delay the time
at which a monitoring network no longer can detect the —
hopefully — decreasing emissions (Albarus et al., 2024).

When it comes to the natural and urban topography, high
shares of flat, uniform topography and low buildings reduce
airflow complexity. This, in turn, makes it easier to model
atmospheric transport.

2.3.4 Observational challenge

The metrics in this challenge relate to specific observational
methods that are not covered in the other challenges: using
radiocarbon to distinguish between fossil fuel and biogenic
components and using satellites to make XCO; observations.
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As mentioned in the introduction, there are additional ob-
servational methods, and these may be preferred especially
if the two discussed here prove challenging (World Mete-
orological Organization, 2025). A well-established issue in
using radiocarbon to infer ffCO; is radiocarbon emissions
from nuclear facilities. “Potential nuclear masking” refers to
the underestimation in ffCO, signal the nuclear contribution
is modelled to cause if ignored. It is called “potential” be-
cause it can be corrected for, but large uncertainties in the
correction arise from the quality of emission data and un-
certain transport modelling. Hence, the challenge increases
with the magnitude of the potential nuclear masking. A pre-
ferred practice is to avoid sampling when the nuclear contri-
bution is expected to be significant. However, this can lead
to sampling bias which is estimated for the “nuclear sample
selection bias” metric. Ideally, the ffCO; signal should be of
similar magnitude in both avoided and collected samples. A
greater difference means a greater sampling bias and adds to
the observational challenge.

The metrics related to making observations using satellites
is based on cloud cover. Summer and winter are considered
as separate metrics as there can be large differences between
the seasons. Higher shares of cloud cover will limit the sam-
ples from future satellite missions, thereby adding to the ob-
servational challenge.

2.4 Integration and analysis of city characteristics

The collected metrics for the 96 cities are further analysed
using statistical methods. These methods include the calcu-
lation of challenge scores and similarity matrices for the four
individual challenges and an overall challenge score. In turn,
the similarity matrices facilitate similarity searches and clus-
ter analyses.

To prepare the collection to be combined, the selected met-
rics are transformed using a min-max normalisation between
the 10-90 percentile. All cities in the 10th percentile are as-
signed the value of zero, and those beyond the 90th percentile
are assigned the value of one. The remaining cities are scaled
linearly between zero and one. The 10-90 percentile range
is used to focus the analyses on the typical range of values
across cities. Without normalisation, a large outlier could re-
ceive a value of one, while all other cities would get values
close to zero. Even after scaling, the metric “Emission in-
tensity buffer” still shows a strong disparity: the city in the
90th percentile has a value 17 times greater than that in the
10th percentile (see Table 2). The effect is evident in Fig. 3b,
where the distribution is strongly skewed.

In most cases, a higher value of a metric can be inter-
preted as more challenging to monitor. However, the oppo-
site is true for the metrics “Fraction of time wind from the
dominant wind direction (limited to wind speed > 2ms~1)”,
“Fraction of time wind speed > 2ms~!, and “Share of flat
areas”’. Therefore, the scaled values are inverted to ensure all
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metrics are interpreted in the same way before being com-
bined into challenge scores.

2.4.1 Weights

To reflect that some metrics are expected to contribute more
to the challenges than others, they are weighted as specified
in Table 1. For the overall challenge, the scores of each of
the four identified challenges are weighted equally. The in-
dividual weights within a challenge are assigned based on
our literature review (as presented in Sect. 1) and experi-
ence in the field. A sensitivity analysis was performed to
assess how the overall challenge score changed under dif-
ferent weighting schemes. Naturally, cities whose metrics al-
most exclusively indicate that they are either relatively hard
or relatively easy to monitor will show more robust challenge
scores. Once more data becomes available to link the differ-
ent metrics to how well an area can be monitored, weights
may be assigned in a more quantitative way. However, it
should always be possible to adjust choices to accommodate
the different needs of stakeholders and to recognize the value
of local expert knowledge.

2.4.2 Challenge scores

The scaled and weighted characteristics are combined to cre-
ate individual and overall challenge scores which range be-
tween zero and one, or 0 % and 100 %, for minimum and
maximum relative challenge. The minimum and maximum
values can be achieved if a city consistently falls within the
bottom 10th or top 90th percentile for all metrics.

2.4.3 Similarity matrices

In addition to creating challenge scores, the scaled and
weighted characteristics are used to generate similarity ma-
trices based on Euclidean distances. The Euclidean distance,
D, between two cities x and y is calculated as follows:

D(x,y)= /> (i—y)? )

Where x; and y; represent the ith scaled and weighted metric
scores of for cities x and y respectively. Distances are com-
puted for all city pairs, resulting in 96 x 96 matrices for each
of the individual challenges as well as for the overall chal-
lenge.

Similarity matrices created using Euclidean distances are
suitable for further analyses, including hierarchical cluster-
ing, discussed next.

2.4.4 Dendrogram cluster analysis

Based on the similarity matrix for the overall challenge (see
Sect. 2.4.3), a dendrogram is constructed. A dendrogram is a
tree-like diagram that visually represents hierarchical clus-
ters. It starts with each city represented as an individual
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branch. The branches are incrementally merged according to
their similarity. There are different strategies for this merg-
ing, and we use a strategy called “Ward’s method” where the
total within-cluster sum ASS of squared Euclidean distances
is minimized:

- Ic; z
ASS(C;.C)) = —-D(z,-,)_w) @)
ICil+ |Cj] ’

Where ASS is calculated for all possible combinations of two
clusters, C; and C}, that can be merged. |C;|and |Cj| repre-
sent the number of cities within each cluster. x; and x ; are
the centroids of these clusters. The Euclidean distances be-
tween the centroids are calculated using Eq. (2).

As clusters are merged, the dendrogram moves towards
forming a single branch (see Fig. 4). The later that two
branches are merged, the more dissimilar the cities in the two
branches are. Before merging, the branches can be viewed as
individual clusters. Visual inspection of the dendrogram tree
reveals a set of meaningful clusters, discussed further in the
result section.

3 Results

The results begin with a section that highlights some of the
individual characteristics of the cities and exemplifies what
several of the input spatial data layers look like (see Fig. 2).
Next, the challenge scores estimated from the combination
of metrics are presented, followed by their application in
similarity searches. Finally, general similarities and dissim-
ilarities among all cities are identified based on the cluster
analysis result. There is a general focus on Paris, Munich,
and Zurich as these are part of the evolving urban observa-
tion network within ICOS (https://www.icos-cp.eu/projects/
icos-cities, last access: October 2024). Similarity searches
are employed to identify the potential for knowledge ex-
change between cities that face similar challenges to those
within the network. Finally, the cluster analysis is used to
identify cities that are dissimilar to those already in the net-
work. These cities are argued as good candidates for addi-
tions to the ICOS Cities network. More details about other
specific cities can be found in the resources published along
with this study (see Sect. 5).

3.1 General characteristics

The 96 selected cities exhibit a wide range of values across
the different characteristics with 90th percentile values that
are often several times higher than the 10th percentile values
(see Table 2). The 10th-to-90th percentile span is most ex-
treme for metrics that include emissions from point sources.
While many cities have none, some have large emitters that
account for almost all the emissions in the city. Furthermore,
the non-Gaussian distribution of large emission sources con-
tributes to high variability of emission intensity in the sur-
roundings of the cities and partly explains major differences
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in the ratio between NEE and anthropogenic CO;. Nuclear
facilities are also unevenly distributed, with particularly large
amounts of radiocarbon emitted from La Hague, located on
the coast of Normandy, France. This creates significant “nu-
clear masking potential” in a handful of cities that are close
and results in a mean value that is as large as the 90th per-
centile. There are also significant differences in the sam-
pling bias introduced by adopting the strategy of discarding
samples with large nuclear contributions. The large differ-
ences between cities lead to very different challenges when
it comes to emission monitoring, confirming the primary mo-
tivation for this study.

Figure 3 shows all 18 metrics for the ICOS Cities pilot
cities, Munich, Zurich, and Paris. Paris stands out among the
other cities for its relatively low citywide NEE relative to
its large ffCO; emissions, which makes emission monitoring
easier. However, the NEE in Paris is associated with frag-
mented vegetation, as indicated by the high vegetation het-
erogeneity metric. One implication is that signals from emis-
sions are mixed with signals from biogenic activity, making it
difficult to isolate them. Another factor indicating that Paris
is relatively challenging to monitor is its average building
height of 8.9 m, which falls in the 90th percentile. This com-
plex urban topography complicates the transport modelling.

Munich and Zurich both have strong dominant wind di-
rections. This is advantageous for representing the inflow
boundary conditions with a limited network of tall tower sta-
tions measuring concentrations. However, compared to the
other cities the wind speed is quite frequently below 2ms~'.
This rather adds to the challenge, as upwind observations are
less likely to be spatially representative during periods of low
wind-speed. Both cities have low shares of emissions from
point sources and are not expected to have a major problem
with nuclear contribution in potential radiocarbon samples.
Figure 2d shows the point sources in Zurich, but we note that
the largest point source — Zurich’s airport — lies just outside
the city boundaries and is therefore not included in the met-
ric “share of point source emission”. Airports cannot be rep-
resented with take-off and landing information in the TNO
emission inventory and are therefore represented by point
sources which keep their exact location.

All three cities differ significantly when it comes to nat-
ural topography; Zurich stands out with only 6 % flat areas
and a high topographic variability, placing it in the 90th per-
centile for both these metrics (see Fig. 2a). As in Paris, with
its complex urban topography, this will make modelling in
Zurich particularly challenging. Out of the three cities, Mu-
nich has the most advantageous natural and urban topogra-
phy for monitoring ffCO, emissions.

3.2 Challenge scores

The overall challenge scores (see Sect. 2.4.2) range from
30 % for Leiden, the Netherlands — indicating a relatively low
challenge — to 59 % for Rouen, France (see Table 3). The
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Table 2. Averages, standard deviations, 10th- and 90th-percentile values for the 18 metrics based on the 96 analysed cities.

Metric Unit Mean  10th percentile ~ 90th percentile Std.
Fraction of time wind speed >2ms™! % 84 73 93 10
Fraction of time wind from dominant wind direction (limited to wind speed >2ms~!) % 26 21 32 5
Emission intensity buffer tCO, km—2 5264 750 14621 6899
Emission intensity buffer dominant wind direction (limited to wind speed > 2 m s7h tCO, km~2 5342 368 14994 12051
Share of point source emission % 29 0 76 28
Non-point-source emission spatial aggregation % 19 12 25 5
Vegetation heterogeneity % 24 14 34 7
Share cropland buffer % 30 12 51 14
Share cropland buffer dominant wind direction (limited to wind speed >2ms™ b % 30 5 57 21
NEE relative to emissions % 25 8 44 22
Average NEE pumolm—2s~1  0.60 0.39 0.81 0.18
Average building height m 7.2 55 8.9 1.2
Share flat areas % 44 12 71 22
Topographic heterogeneity m 2.6 1.1 5.1 1.8
Nuclear masking potential % 20 4.6 19.7 108
Nuclear sample selection bias % 19 3.9 38 12
Share days > 30 % clouds summer % 74 68 82 59
Share days > 30 % clouds winter % 88 81 95 5.6

biogenic and modelling challenges contribute the most to
these scores for the two cities, respectively. No clear spatial
patterns are observed in which challenge dominates across
nearby cities, except around the Ruhr area in western Ger-
many (see Fig. 1). Here, many cities can expect challenges to
determine background concentrations. A main driver is that
many of these cities are close to each other, which results
in high emission intensity in their surroundings, thereby in-
creasing the background challenge.

Among the three target cities, Munich has a low overall
challenge score (34 %), close to that of Leiden. Compared to
other cities, the scores associated with the biogenic challenge
and modelling challenges are particularly low (see Table 3).
Like for Paris, the ratio between NEE and ffCO, emission is
small, and for Munich the average NEE is also relatively low
placing the city in the 10th percentile of the biospheric chal-
lenge (see Fig. 3). While the overall score of Zurich is similar
to that of Munich, there are differences between individual
challenges. In particular, the modelling challenge stands out
due to the Zurich’s complex urban and natural topography.

Paris has the highest overall score of the three and stands
out for its high score in the challenge of determining back-
ground concentrations. Paris is also in the third quartile when
it comes to the observational and modelling challenges. Con-
tributing factors include a high concentration of emissions
from point sources and tall buildings, as well as high cloud
cover, especially in the summer. The cloud cover likely re-
duces the number of useful satellite observations. The influ-
ence of nuclear emissions is the highest among the three pi-
lot cities but remains relatively low compared to all 96 cities
considered.
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3.3 Similarity searches

Similarity matrices are used to quantify the potential to trans-
fer the CO, monitoring experience gained from the three
ICOS pilot cities, exemplified here with Munich. In terms of
similarities relevant to the background challenge, Linz (Aus-
tria), Mulhouse (France), and Augsburg (Germany) are most
like Munich (see Table 4). These are cities where, as in Mu-
nich, this challenge is relatively low (see Table 3). In prac-
tice, this could mean that only a few background towers are
needed in the outskirts of the cities to obtain representative
boundary conditions for most situations. The biogenic chal-
lenge in Munich is also low, as similar cities include Brussels
(Belgium), Nantes, and Lille (France). It will not be as diffi-
cult to separate the anthropogenic signal in these cities as it
is in cities at the opposite end of the spectrum from Munich.
Cities such as Bratislava (Slovakia) and Erfurt and Hagen
(Germany) are listed as the most dissimilar to Munich in this
aspect (see Table 4).

Out of the 96 cities, Nuremberg is overall the city most
like Munich, while the corresponding cities for Zurich and
Paris are the German cities Kassel and Berlin. Their mon-
itoring strategies could look similar, but to overcome indi-
vidual challenges it may still be useful to consider similari-
ties in terms of the specific challenges. In terms of the back-
ground challenge, Karlsruhe (Germany) is most similar to
Zurich, and Charleroi (Belgium) to Paris. Charleroi is also
most like Paris regarding the biogenic challenges, and for
Zurich, the corresponding city is Brussels. Tables listing the
top five most similar cities to each of the 96 cities across
the different challenges are provided in the mapbooks (see
Sect. 5).
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Figure 2. Four of the input data layers subset for Zurich, showing (a) natural topography, (b) land cover, (¢) biosphere net ecosystem
exchange (NEE), and (d) total ffCO,. The largest green point in the CO, emission map (d) represents Zurich’s airport and falls just outside
the city border. The biogenic flux map (c) is based on an average from wintertime afternoons in 2018 (see Sect. 2.2.3).

3.4 Cluster analysis

As a complement to the similarity searches, the results from
a dendrogram cluster analysis shows the overall structure
of similarities and dissimilarities across all 18 metrics (see
Fig. 4). The matching of cities with the ICOS Cities pilot
cities, as exemplified in Sect. 3.3, could be improved for
many of the 96 cities if more clusters were represented by pi-
lot cities. Hence, the dendrogram can be used to guide future
network expansion. Munich and Paris both fall into the same
cluster, C1, whereas Zurich is in cluster C4 (see Fig. 4). The
hierarchical structure of the dendrogram shows that cities
in cluster C3, followed by those in cluster C5, are the fur-
thest away in the cluster space from the already represented
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clusters. A prominent city in cluster C3 is Copenhagen,
Denmark. Its characteristic signature (see CMC-CITYMAP;
Sect. 5) indicates that Copenhagen is expected to face a
greater biogenic challenge compared to the pilot cities. Us-
ing complementary observations of correlated trace gases or
isotopes to separate the ffCO; signal will be especially im-
portant in similar cities. However, the use of AC would
come with the additional uncertainty of accounting for nu-
clear emissions which have a significant influence in Copen-
hagen. This aspect of the city adds to its observational chal-
lenge. Both the background and the modelling challenges are
relatively minor: The main challenges stem from the lack of a
dominant wind direction and a high average building height,
though the latter is still lower than in Zurich and Paris.
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Figure 3. (a) The 18 metrics listed along the y-axis are linearly scaled between the values of the city at the 10th percentile and the city at the
90th percentile, out of the 96 cities (see Table 2). They are organized along the y-axis according to their association with the four discussed
challenges. Higher values indicate greater challenges to monitor CO, emissions. (b) Density plot showing where most cities fall in the linear

scaling between the 10th and 90th percentile.

Bratislava, Slovakia, is a good candidate from cluster C5
and faces an even higher biogenic challenge than Copen-
hagen. However, the vegetation is relatively clustered in
space which makes the signal less mixed. Bratislava also
stands out for its high share of cropland surrounding the city,
which complicates the determination of representative back-
ground levels of CO;. A solution there could be to deploy
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more background sites to capture the potential heterogeneity
of cropland fluxes. Cities in the final cluster, C2, are located
closer in cluster space to those that already include pilot cities
(see Fig. 4) but could be prioritized next.
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Table 3. Challenge scores for Paris, Munich, and Zurich along with the cities with the highest and lowest scores overall, and for each of the
four challenges. The higher the score, the greater the anticipated challenge. Highest and lowest scores for each challenge are shown in bold.

City Overall ‘ Background ‘ Biogenic ‘ Modelling ‘ Observational
% QandR* | % QandR* | % QandR* | % QandR* | % QandR*
Munich, DE 34 Q1(6) 31 Q225 30 Q1(9) 26 Q1(17) 50 Q3 (65)
Zurich, CH 35 Q19 20 Q1(5 34 Q119 54 Q3 (70) 32 Q2(206)
Paris, FR 45 Q3 (65) 45 Q3 (61) 38 Q2(29) 50 Q3(57) 48 Q3 (61)
Leiden, NL 30 Q1(1) 32 Q230 33 Q117 30 Q2(26) 24 Q1 (16)
Rouen, FR 59 Q4 (96) 38 Q241 41 Q2 (35) 80 Q4 (96) 76 Q4 (92)
Kassel, DE 40 Q2 (34) 14 Q1(1) 50 Q3 (66) 56 Q4 (76) 41 Q2 41)
Groningen, NL 45 Q3 (49) 70 Q4 (96) 66 Q4 (85) 9 Q1) 38 Q2(28)
Rennes, FR 40 Q2 (29) 42 Q3 (58) 18 Q1(1) 40 Q2 (40) 57 Q4 (80)
Gliwice, PL 42 Q2 (45) 27  Q1(17) 76 Q4 (96) 18 Q1 (6) 47 Q3 (57)
Almere, NL 32 Q13 39 Q2 (46) 49 Q3 (61) 1 Q1(1) 39 Q239
Rouen, FR 59 Q4 (96) 38 Q241 41 Q2 (35) 80 Q4 (96) 76 Q4 (92)
Diisseldorf, DE 39 Q2 (28) 64 Q4 (94) 39 Q23D 51 Q3(62) 03 Q1(1)
Dijon, FR 55 Q495 36 Q2 (36) 38 Q2(28) 53 Q3 (69) 93 Q4 (96)

* “Q & R” stands for Quartile and Rank.

Table 4. Similarity to Munich in terms of the four individual challenges, as well as overall similarity when the four challenges are combined

(“overall challenge”). A higher value indicates greater similarity.

Overall (%) Background (%)

Biogenic (%)

Modelling (%) Observational (%)

Most similar

Nuremberg, DE (92)
Vienna, AT (92)
Augsburg, DE (91)
Hanover, DE (91)
Paris, FR (91)

Linz, AT (98)
Mulhouse, FR (98)
Augsburg, DE (96)
Ostrava, CZ (95)
Zurich, CH (93)

Brussels, BE (100)
Nantes, FR (100)
Lille, FR (100)

The Hague, NL (100)
Antwerp, NL (100)

Tilburg, NL (97)

Angers, FR (96)

Orléans, FR (96)

Lens, FR (96)
Monchengladbach, DE (95)

Graz, AT (97)
Vienna, AT (97)
Bratislava, SK (95)
Gliwice, PL (94)
Wroctaw, PL (92)

Most dissimilar

Haarlemmermeer, NL (62)
Groningen, NL (63)
Cologne, DE (64)

The Hague, NL (65)
Rotterdam, NL (65)

Haarlemmermeer, NL (80)
Gdynia, PL (80)

Odense, DE (81)
Groningen, NL (81)
Alkmaar, NL (81)

Bratislava, SK (42)
Erfurt, DE (42)
Hagen, DE (42)
Miinster, DE (42)
Saarbriicken, DE (42)

Nates, FR (56)
Rennes, FR (56)
Lens, FR (57)
Angers, FR (59)
Reims, FR (59)

Antwerp, NL (66)
Karlsruhe, DE (67)
Gelsenkirchen, DE (67)
Linz, AT (67)
Mannheim, DE (68)

4 Discussion

The metric scores in this study are derived from the relative
distribution of the selected cities which are all from a subre-
gion in western Europe (see Fig. 1). If cities from a broader
geographic area, spanning different climate zones, were in-
cluded, the range of values would likely change. For exam-
ple, we would expect a wider range in the cloud cover metric,
as some regions experience consistently cloudy conditions
for part of the year. Large point sources in additional cities
could further increase the already high 90th percentile values
in related metrics. In our dataset, 13 out of the 96 cities ac-
count for 75 % of the point source emissions, resulting in the
skewed distribution seen in Fig. 3b. A city like Paris — with
19 % of emissions from point sources — receives a score of

Earth Syst. Sci. Data, 17, 6681-6701, 2025

only 0.25 out of one, where one indicates the highest level of
challenge.

Another important aspect affecting our results is how our
cities are defined geographically. Our city borders are based
on the OECD definition of a city (Dijkstra et al., 2019), but
these still rely on local administrative boundaries provided by
the countries. Albarus et al. (2023) observe that the drawing
of administrative boundaries sometimes results in cities be-
ing separated from large portions of emissions in their imme-
diate surroundings. Other times, the boundaries may include
extended areas of nonurban land cover. The former scenario
places greater demands on CO; emission monitoring to dis-
tinguish between emissions within and outside the borders
(Albarus et al., 2023). This issue is partly addressed in our
study, as adjacent administrative units with high population
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Figure 4. Dendrogram based on the similarity matrix created from all 18 metrics included in the overall challenge. The different colours
represent five distinct clusters formed by drawing a horizontal line at the desired separation between the dendrogram branches. Paris (C1),

Munich (C1), and Zurich (C4) are highlighted on the x-axis.

densities form a single city (Dijkstra et al., 2019). However,
significant nearby emission sources may still be excluded, as
in Zurich, where the airport falls just outside the city bound-
aries (see Fig. 2d). The effect of this is mitigated by the fact
that the airport still contributes to the city’s challenge scores
through its inclusion in the 20 km buffer area (see Sect. 2.1).
One option could be to consider emission intensity, rather
than population, as a criterion for merging local administra-
tive units in the OECD approach. This would preserve the
advantage of integrating readily available statistics from lo-
cal administrative units in future analyses. Another alterna-
tive could be to define city boundaries entirely based on the
highest-resolution emission data available, creating so-called
“carbon cities”. This approach would likely reduce the inclu-
sion of large nonurban areas on the outskirts of cities, which
particularly affects our urban vegetation-related metrics.
Our selection of metrics and how they are synthesised
into four challenges are motivated by our literature review
(as presented in Sect. 1) and experience in the field. Some
of the studies present results that can be discussed in the
context of our findings. Previous studies in Paris shed light
on what we refer to as the “background challenge”, where
Paris scores in the 3rd quartile. The relatively high score for
Paris aligns with the findings of Sargent et al. (2018). They
warned that boundary conditions can be particularly com-
plex for continental cities due to long- and medium-range
transport from both distant urban areas and biogenic sources.
Lian et al. (2021) indeed found especially large discrepan-
cies between different modelled boundary conditions when
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air was coming from continental Europe — up to 5 ppm be-
tween two products. This is significant, as the CO; gradients
between urban and suburban “background” towers in Paris
were found to be 5-10 ppm in the summer and 20-30 ppm in
the winter (Lian et al., 2023). In cities or regions with lower
emission intensities than Paris, a bias in the boundary condi-
tions would be even more impactful. For example, Lauvaux
et al. (2012) found that a 0.55 ppm bias in the boundary con-
dition resulted in a substantial impact on the posterior annual
CO3 flux for Iowa and the surrounding states.

Best practices proposed to mitigate the “background chal-
lenge” include using observations to find upwind-downwind
gradients for inversions (e.g., Bréon et al., 2015; Staufer et
al., 2016), or to constrain the modelled boundary conditions
with observations (e.g., Sargent et al., 2018). Our metrics as-
sociated with the challenge offer an estimate for how spa-
tially representative the observations may be by considering
fluxes nearby the cities. Our consideration of wind speed and
direction also ties to how many useful observations would be
available for the different practices aimed at limiting the bias
from boundary conditions. These factors greatly reduced the
number of samples that could be used in the inversion over
Paris by Bréon et al. (2015). At the time, the background con-
centration was sampled from only two towers, and the wind
speed threshold, like ours, was 2ms~ !, Compared with the
other cities, Paris is among the most favourable in terms of
wind speed but exhibits one of the most variable wind di-
rections. Today, more background towers are available, and
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cities with similar characteristics could also benefit from de-
ploying a larger number of background sites from the outset.

Regarding the “biogenic challenge”, Lian et al. (2023)
highlighted their poorly resolved and non-optimised biogenic
fluxes as a key area for improvement in future studies in
Paris. It was pointed out as a likely contribution to the 20 %
increase in their optimised ffCO, estimates compared to the
emission inventory used as prior (April-June). Different bor-
ders for Paris (Lian et al., 2023; Fig. 1) are just one of the rea-
sons we cannot directly compare our results, but based on our
analysis the significance of the biosphere is not surprising:
even in winter afternoons the modelled net influence of the
biosphere is 8 % compared to the ffCO, emissions. On sum-
mer afternoons the NEE is more than twice the magnitude
of the anthropogenic emissions. If we instead consider bor-
ders roughly bounded by Le Bourget Airport in the north and
Paris-Orly in the south, the corresponding values are 0.9 %
and 11 %, which are more in line with the findings and adjust-
ments to the ffCO, emissions in Lian et al. (2023). It is also
consistent with the work by Albarus et al. (2024), who ob-
served much lower signal-to-noise ratios further away from
the Paris city centre. However, even given the borders extend-
ing further into the area with a lower ffCO, signal-to-noise
ratio, Paris has a low biogenic challenge score compared to
most of our cities (2nd quartile). Hence, even cities with low
scores likely require the use of well-calibrated biospheric
models, preferably optimised with complementary direct flux
measurements and observations of correlated tracers and/or
isotopes. This is quite likely preferable to the strategy of us-
ing observations only in the dormant season (e.g. Lauvaux et
al., 2016), as this comes with the additional uncertainties of
using temporal profiles to scale the results to the rest of the
year (Super et al., 2020; Super et al., 2021).

For the “modelling challenge” most of the metrics are
related to the complexity of natural and urban topography,
which puts high demands on models to accurately resolve the
airflow. This is the main driver for Zurich’s challenge score
(3rd quartile). However, the study by Berchet et al. (2017)
conducted in Zurich shows good performance of their model,
which they found to fulfil the requirements for air pollution
modelling at most of the tested sites. Although the require-
ment for modelling CO is higher, this is promising for cities’
abilities to overcome this challenge. Hence, cities with scores
similar to that in Zurich could benefit from adopting such
a model. The challenge for models to accurately represent
nearby point source emissions is also well-established (e.g.
Gaudet et al., 2017; Maier et al., 2022; Brunner et al., 2019).
This challenge is compounded by large emission quantities
stemming from these sources, which generally do not have
point-source-specific temporal profiles. While hourly emis-
sions are sometimes available, such as for many power plants
throughout Europe, most models currently cannot include
them.

The “application-specific observational challenge” cur-
rently combines metrics related to how well-suited cities are
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for making satellite and radiocarbon observations. They can
be evaluated independently in Fig. 3, and stakeholders in-
terested in specific cities can consider the two observational
methods separately in the mapbooks (Storm et al., 2025b,
https://doi.org/10.18160/Z66D-05JT). The satellite section
currently only includes cloud cover, as this is a crucial factor,
affecting the number of expected samples (e.g. Kuhlmann et
al., 2019). However, the relevance of satellite observations
to our study is debatable, as only a limited number of cities
(15) had emission quantities greater than 7.33 MtCO, yr~!
in 2018 — the threshold suggested by Wang et al. (2020) as
appropriate for monitoring emissions from space with the
CO,M instrument.

For the use of 14CO, observations, the observational chal-
lenge is linked to how much contribution is expected from
emissions from nuclear facilities. As in previous studies (e.g.,
Maier et al., 2023), we used a flat annual emission rate to
simulate this, but improving the resolution of this emission
data is a priority at the ICOS Radiocarbon Laboratory. For
example, knowing the timing of emissions from La Hague,
France, would significantly enhance the feasibility of using
radiocarbon in many cities beyond those closest to it. In
2021, La Hague accounted for 39 % of the 14Cin CO; emis-
sions from European nuclear facilities (Storm et al., 2024),
with large quantities released during short periods. Excluding
La Hague’s emissions from our analyses, thereby simulating
conditions between major emission events, reduces the nu-
clear masking potential’s 10th to 90th percentile range from
5 %—20 % to 3 %—11 %. This highlights how our findings can
guide and motivate future efforts and underscores the impor-
tance of updating our analyses as new data becomes avail-
able to the community. In addition, the nuclear challenge also
depends on the '*CO, sampling strategy to be established
within the city: When coordinated upwind and downwind
sampling is employed, it can be assumed that most of the nu-
clear contribution will be captured in the up-and-downwind
samples and is thus intrinsically corrected.

Our focus has been on placing our results within the con-
text of existing urban CO, monitoring studies, with particular
attention to our three pilot cities. While it was not feasible
nor possible to evaluate each individual metric and its true
relevance to the challenges, our framework offers a founda-
tion for future discussion and refinement as the research field
progresses. Within ICOS Cities, it can support the project vi-
sion of developing “blueprints” for monitoring emissions in
European cities. We recommend a modular approach for this,
enabling cities to match with and adopt strategies from the pi-
lot city that are most similar in ways relevant to the specific
challenges. This approach is comparable to that of the “Twin-
ning Learning Program”, part of the European Union’s mis-
sion “100 Climate-Neutral and Smart Cities by 2030”, where
cities are paired based on shared barriers to achieving climate
neutrality. From a pan-European monitoring strategy per-
spective, it is important to develop blueprints for strategies
that are effective across the diverse characteristic signatures
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found in Europe. To support this, we identified Bratislava and
Copenhagen as cities that are among the most distinct from
the three cities currently in the ICOS Cities network, mak-
ing them strong potential candidates for inclusion into the
network. This assessment considered all metrics in combina-
tion. A modular approach could also be applied here. Cities
with high scores in the “biogenic challenge” — which is low
for the three pilot cities relative to the others — would then
be highlighted as especially suitable candidates. Bratislava
would again be among the recommended cities. All in all,
there are numerous ways our framework can be used to cre-
ate analyses like those presented in this study. Adjustments
could range from minor changes to the weights of the 18 met-
rics to entirely different analyses based on a new selection of
metrics that are readily available for our cities but not used
here.

5 Data availability

For the datasets used to derive the metrics in this paper,
we refer to the cited references. The resulting collection of
18 metrics, along with several metrics excluded from the
study, is published along with the notebook tool (Storm et
al., 2025a, https://doi.org/10.18160/P8SV-B99F). Individual
PDFs, referred to as “mapbooks”, contain maps and analy-
sis results for all cities. These are published as a collection
and can be downloaded for the individual cities (Storm et al.,
2025b, https://doi.org/10.18160/Z66D-05JT).

6 Conclusions

This study presents a methodology to understand and quan-
tify the differences between cities and what these differences
mean from a CO; emission monitoring perspective. We anal-
yse 96 cities in western Europe using 18 defined metrics,
linking these metrics to four key CO, monitoring challenges.
Next, the challenges are quantified to provide insights into
the evolving network of urban observatories in Europe, with
a focus on the ICOS Cities pilot cities: Paris, Munich, and
Zurich. Their relationships to the other 93 cities are quan-
tified to illustrate: (1) which monitoring challenges may be
most significant, (2) which cities are similar and could ben-
efit from knowledge exchange, and (3) which cities are dis-
similar and may serve as candidate cities if there is funding
to expand the ICOS Cities network.

Overall, our results suggest that Zurich and Munich are
relatively easy to monitor, with Zurich facing the greatest
challenge in the “modelling challenge” and Munich in the
“application-specific observational challenge”. Paris scores
similarly to Zurich in the modelling challenge but has high
scores in the other challenges except for the “biogenic chal-
lenge”. Cities similar to Munich are identified across the dif-
ferent challenges, suggesting, for instance, that monitoring
strategies used to address the background challenge in Mu-
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nich may also be effective in for example Linz (Austria).
Paris, Munich, and Zurich fall into two out of five clusters
when considering all 18 metrics. Copenhagen and Bratislava
are highlighted as prominent cities in clusters that are cur-
rently not represented by the ICOS Cities network. These
could be interesting candidates if an extension to the pilot
network is considered.

We have only highlighted a few examples from the results,
which represent just a subset of the potential analyses that
can be drawn from the framework we have developed. We
refer to Sect. 5 for how to access results for specific cities of
interest or to conduct new analyses based on a different set
of characteristics.

As the field of urban emission monitoring continues to
evolve, we anticipate ongoing developments that will both
help mitigate current challenges and enhance our suggested
methods for analysing them. Regarding the mitigation of
challenges, we have highlighted, among other examples, the
need for improved urban-specific biogenic models and trans-
port models capable of resolving airflow in urban environ-
ments. The research continues to advance, and datasets with
higher accuracy than the one used in this study are already
available for individual cities. As use of these models and
data becomes more widely adopted, they can be applied in
analyses similar to ours. With more training data, we may
start to better understand the relationships between different
city characteristics and their influence on the ease of mon-
itoring emissions. One possible approach is to use machine
learning, correlating model—data differences with these char-
acteristics.

7 Interactive computing environment

The notebook tool, provided as a Jupyter Notebook with ac-
companied Python files, can be run directly in the Interactive
Computing Environment offered by the ICOS Carbon Portal
(Storm et al., 2025a, https://doi.org/10.18160/P8SV-B99F).
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