Earth Syst. Sci. Data, 17, 6669-6680, 2025
https://doi.org/10.5194/essd-17-6669-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth System
Science

Data

Open Access

Introduction

Global spatially-distributed sectoral GDP map
for disaster risk analysis

Takeshi Shoji'-?, Kiyoharu Kajiyama?, Dai Yamazaki'-, Yuki Kita>>, and Megumi Watanabe>*

! Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
2Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
3Gaia Vision Inc., Tokyo, Japan
4LIRA, Observatoire de Paris, Paris, 75014, France

Correspondence: Takeshi Shoji (oi.oh.take @ gmail.com)

Received: 29 October 2024 — Discussion started: 25 November 2024
Revised: 1 July 2025 — Accepted: 4 October 2025 — Published: 1 December 2025

Abstract. Global risk assessments of economic losses by natural disasters while considering various land uses
is essential. However, sector-specific, high-resolution pixel-level economic data are not yet available globally
to assess exposure to local disasters such as floods. In this study, we employed new land-use data to construct
a global, spatially distributed map of sector-specific gross domestic product (GDP). We developed three global
GDP maps, SectGDP30, in 2010, 2015, and 2020 for the service, industry, and agriculture sector with 30 arcsec
resolution. The map (SectGDP30) demonstrates strong consistency (R2 > (0.9) with actual sub-national statis-
tical data, exhibiting superior alignment compared to conventional GDP maps (PB-method) reliant solely on
gridded population information. The methodology refined GDP distribution for specific sectors. Industry GDP
was more accurately mapped using non-residential land areas as a proxy, effectively capturing its localized
concentrations. Agriculture GDP’s accuracy improved by incorporating cropland data and a distance-based dis-
tribution assumption from population agglomeration. Application of this dataset in estimating flood-induced
business interruption (BI) losses confirmed the map’s capacity to represent inter-sectoral differences in es-
timated losses, reflecting varied hazard spatial distributions. This underscores the importance of considering
sector-specific spatial patterns for accurate disaster damage assessment. These maps serve as a foundational
tool for estimating detailed, sector-classified economic losses, enabling precise calculation of sector-specific im-
pacts from diverse natural disasters worldwide. These global sectoral GDP maps (SectGDP30) are available at
https://doi.org/10.5281/zenodo.15774017 (Shoji et al., 2025).

nicipal level have been studied (Wenz et al., 2023); however,

In recent years, as natural disasters have become more fre-
quent and found throughout the world IPCC, 2012), global
spatial data including land use and socioeconomic informa-
tion have become essential for estimating the extent of dis-
aster damage and losses. With the increasing frequency and
impact of localized natural disasters such as floods, high-
resolution data capturing the spatial distribution of socioe-
conomic factors are essential. However, socioeconomic data
published by international organizations such as the World
Bank are often available only at the national or large munic-
ipal level. At the research level, economic data at the mu-
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obtaining grid-level data at a resolution of several kilometers
has been still challenging.

For example, as for the impact-assessment of flood dis-
asters, researchers have undertaken a series of studies by
spatially calculating the amount of asset quantity and pro-
duction activity overlapped with inundated areas, leveraging
global maps. Achieving this necessitates the downscaling of
national-level data of economic activity, mainly gross domes-
tic product (GDP), to finer subnational or grid-based levels.
This type of product by downscaling GDP is called a “spa-
tially distributed GDP map”. This downscaling practice typ-
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ically relies on gridded population data (Tanoue et al., 2021;
Willner et al., 2018). Alternatively, it has involved the as-
sembly and interpolation of available subnational statistics
(Duan et al., 2022; Kummu et al., 2018) or the assumption
that average building heights correlate with economic activ-
ity intensity (Taguchi et al., 2022). GDP maps developed us-
ing these methods are generally created for specific purposes,
such as disaster damage estimation, and are therefore not
typically released as standalone datasets or products. Among
those that are publicly available, “Downscaled gridded global
dataset for gross domestic product (GDP) per capita PPP over
1990-2022” by Kummu et al. (2025), is notable. This dataset
generates gridded GDP map products with resolutions rang-
ing from 30 arcmin to 30arcsec for each year since 1990,
based on sub-national statistics released by various countries
and utilizing population count maps.

While these studies estimated the total amount of eco-
nomic losses without considering the difference between sec-
tors, the sector-classified economic losses also need to be
estimated because indirect economic losses, such as global
supply chain impact caused by the stoppage of production
activity (Willner et al., 2018), can vary significantly depend-
ing upon the sector directly affected by the flood (Sieg et
al., 2019). However, spatial data of sectors by downscaling
national-level data have been lacking. Consequently, in the
context of global studies, the estimation of sector-specific
losses was achieved by extrapolating the values of sectoral
occupation fractions within urban area grids, as reported in
the European Union, to other regions (Alfieri et al., 2017;
Dottori et al., 2018). Alternatively, it is assumed that specific
groups of sectors experience uniform damage ratios (Willner
et al., 2018; Tanoue et al., 2020). These methods did not con-
sider the different spatial accumulation between each sector
and each region, which could lead to the misestimation of
sector-classified losses (Jongman et al., 2012; Willner et al.,
2018).

The dearth of global spatial data of the economic sector
arises from the absence of worldwide maps with compre-
hensive land use categorizations (Wenz and Willner, 2022).
While regional maps provide sectoral land use classifica-
tions, including commercial and industrial areas within urban
regions (e.g., The European Environmental Agency, 2017;
Theobald, 2014; De Moel et al., 2014; Ministry of Land, In-
frastructure, Transport and Tourism, 2021), these classifica-
tions are conspicuously absent from global maps (e.g., Bon-
temps et al., 2012; Esch et al., 2017). Here we focused on
the recent emergence of a global land use map featuring de-
tailed urban area classifications (Pesaresi and Politis, 2022).
This development is made possible by the application of ma-
chine learning techniques that extrapolate relationships be-
tween satellite observations and actual land uses, a method-
ology initially established by the data in the European Union
and the United States (The European Environmental Agency,
2017; Theobald, 2014) and subsequently extended to a global
scale. Although this dataset facilitates a comprehensive con-
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sideration of detailed land-use patterns within urban areas
worldwide, no study has yet integrated this dataset with so-
cioeconomic data. Such integration holds the potential to pi-
oneer a novel approach to estimating natural disaster damage
accurately with sectoral classifications.

The objective of this study is to leverage a recently avail-
able global detailed land use map dataset to construct a spa-
tially distributed sectoral GDP map (SectGDP30). The accu-
racy of the GDP mapping of SectGDP30 is evaluated using
global sub-national scale statistics from the DOSE dataset
(Wenz et al., 2023). Furthermore, to discuss the applicability
of SectGDP30 for practical economic loss estimation, this
study examines the estimation of business interruption losses
incurred due to a flood event in Thailand and compares these
estimations with reported values.

2 Methods

2.1 Spatially distributed sectoral GDP map

The spatially distributed sectoral GDP map was created in
two steps (Fig. 1). First, we classified country level GDP
data into three sectors: the agriculture, service, and indus-
try sector, and they are downscaled to a spatial resolution of
30arcsec based on population data, referred as population-
based map (PB-method). Second, downscaled estimates are
reallocated to the corresponding land use fraction maps de-
rived from satellite products, referred to as land-use-based
map (LUB-method). For both the agriculture and service
sectors, we generated PB-method and subsequently reallo-
cated them using land-use data. This two-step allocation is
necessary because GDP is generally correlated with popu-
lation distribution (Chen et al., 2022; Kummu et al., 2025),
and service-sector GDP, in particular, is strongly influenced
by urban agglomeration effects (Morikawa, 2011). However,
previous studies have shown that at high spatial resolutions,
population data alone may not adequately preserve these cor-
relations (Murakami and Yamagata, 2019; Ru et al., 2023).
Therefore, integrating land-use information is essential to en-
sure spatial consistency. Unlike the agriculture and service
sectors, industry sector GDP doesn’t necessarily follow pop-
ulation distribution. It often expands into suburban or rural
areas with low population density (Zhuang and Ye, 2023).
Accordingly, we bypass the PB-method step and directly al-
locate country-level industrial GDP to land use data. The List
of the datasets used in this method is shown in Table 1.

2.1.1 Population-based sectoral GDP

In the first step, country-level GDP was partitioned into three
sectors and then spatially distributed in proportion to popu-
lation data at a spatial resolution of 30 arcsec. We used GDP
data published by the World Bank (2023), which includes
both annual GDP values and their sectoral ratios for the ser-
vice, industrial, and agricultural sectors, and the Global Hu-
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Figure 1. Flowchart of (top) data processing and (bottom) creation of spatial distributed gross domestic product (GDP) maps of Thailand

for the (a) service, (b) industrial, and (c) agricultural sectors.

man Settlement Layer (GHSL) population grid (R2023; Pe-
saresi and Politis, 2022) as the source of the global gridded
population map. The definition of each sector is shown in Ta-
ble 2. This downscaling method has been widely employed
in previous studies (Kummu et al., 2018; Murakami and Ya-
magata, 2019) and will be utilized in a later section for com-
parison with the new method proposed in this study.
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2.1.2 Sectoral land use fraction map

In the second, step, we reallocated PB-method to global sec-
toral land use fraction map. We generated a sectoral land
use fraction map classified into three sectors (service, indus-
try, and agriculture) and three land use type maps with dif-
ferent spatial resolutions: residential (RES), non-residential
(NRES), and cropland (CROP). To distinguish RES and
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Table 1. List of the datasets used in this study.

Data Format Datatype  Values Spatial Temporal Data source, Reference
range resolution resolution
Built up surface area Raster Ulnt16 0-1000 100 m Five years Global Human
interval Settlement Layer
(1975-2020) (Pesaresi and Politis,
2022)
Non-residential surface area  Raster Ulnt16 0-1000 100 m Five years Global Human
interval Settlement Layer
(1975-2020) (Pesaresi and Politis,
2022)
Crop land area Raster Boolean 0,1(0-no  0.9arcsec Four years Potapov et al. (2022)
cropland, 1 interval
— cropland) (2003-2019)
Population count Raster Float64 O-Inf 30 arcsec Five years Global Human
interval Settlement Layer
(1975-2020) (Pesaresi and Politis,
2022)
Administrative units Vector - - - - GADM 4.1 (GADM,
(Polygon) 2025)

Level 1 Layer

NRES areas, we used Global Human Settlement Layer
(GHSL) (Pesaresi and Politis, 2022) built-up surface (R2022)
data. This layer has 100 x 100 m resolution; each pixel has a
value of 0—10000m? and residential or non-residential ar-
eas may be present within one pixel. For the CROP area, we
used the global map of cropland extent (Potapov et al., 2022),
provided by Global Land Analysis & Discovery, which has
a global spatial resolution of 0.9 arcsec. Maps with the three
classes were resampled and combined into a single global
sectoral land use (residential, non-residential, and cropland)
fraction map at 30 arcsec resolution.

First, we upscaled the land use maps and simultaneously
converted the value of each pixel in both maps into the sec-
toral fraction within one pixel. In each pixel, RES and NRES
had values of 0-10000m? and CROP had a value of 0 or 1
(not cropland or cropland). We upscaled the land use maps to
30 arcsec resolution from RES and NRES at a resolution of
100 x 100 m and CROP at a resolution of 0.9 arcsec using the
GDAL averaging method (GDAL/OGR contributors, 2024).
Using the 30 arcsec maps, we calculated the area attributed to
each land use type in one pixel with a size of 1 x 1 arcsec and
obtained land use fractions for each pixel. Because RES/N-
RES and CROP had different data sources, the total of the
three land use type fractions was greater than one in some
pixels. Therefore, we assumed that the CROP fraction could
fill only areas that were not designated as RES or NRES. Un-
der this assumption, we modified the CROP fraction in each
pixel as follows:

MCROP; = min(CROP; , (1 — RES; — NRES;)) N
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where MCROP; is the modified CROP fraction in pixel i,
CROP; is the original CROP fraction, RES; is the RES frac-
tion, and NRES; is the NRES fraction.

After this modification, RES, NRES, and MCROP were
considered to represent the service, industrial, and agricul-
tural land use sectors, respectively.

2.1.3 Land-use-based agriculture sector GDP

To better reflect the spatial structure of production activ-
ities, we introduce the supplier effect, which assumes a
beneficiary-supplier relationship. Specifically, agricultural
production occurring in peri-urban or rural areas surround-
ing major population centers is regarded as supplying food
and resources to those urban beneficiaries. These agricultural
zones, while themselves sparsely populated, are functionally
integrated with the urban economy. Therefore, they are ex-
pected to exhibit higher GDP values than similarly sparse re-
gions that are not spatially or economically connected to ur-
ban demand. To capture this spatial interdependence, the sup-
plier effect applies a distance-decay reallocation from ben-
eficiary pixels in PB-method to nearby supply-side pixels,
namely those identified as MCROP. Technically, this is im-
plemented as a linear decay function, in which full weight
is given within an inner threshold of 150 km, and weight de-
creases linearly to zero at an outer threshold of 300 km.

w;j = ifdij <dj:1;
if diy <dij Sdoy : 1 _(dij —din)/ din;
ifdij > dou : 0 2)
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Table 2. Definition of each sector, based on the International Stan-
dard Industrial Classification (ISIC) Rev 4, in the GDP data by the
World Bank (2023).

Sector Definition of ISIC
Agriculture  ISIC 01-03 (A)
Service* ISIC 50-99
Industry ISIC 05-43 (B-F)

* Note that only the Service sector is based on
ISIC Rev. 3.

2.1.4 Land-use-based service sector GDP

Similarly, the PB-method of the service sector is reallocated
to residential areas (RES) by applying the supplier effect.
The rationale here differs slightly from that for agriculture.
Grid-scale population data (e.g., at 30 arcsec resolution, or
approximately 1 x 1 km per pixel) are too fine to represent
realistic service usage, since people commonly travel more
than 1 km by car or public transportation to access services
(Ciccone and Hall, 1996). Therefore, this reallocation is de-
signed to represent commuting patterns, where service activ-
ities in peri-urban zones support nearby urban demand cen-
ters. In this context, we use a supplier effect with an inner
threshold of 25 km (representing high-intensity interaction)
and an outer threshold of 50 km, beyond which service con-
tributions are assumed negligible.

2.1.5 Land-use-based industry sector GDP

We distributed the industry sector GDP in each country by
multiplying the distributed GDP per pixel by the NRES in
each pixel. Thus, the distribution was performed for each
country, as follows:

Industry GDP per pixel = Total Industry GDP

country country
/> NRES; 3)
Industry GDP_ry,; = Industry GDP per pixelcountry
x NRES; 4)

where is the Industry GDP per pixel of sector s in the country,
is the total sectoral GDP of industry in the country, is the non-
residential area in pixel i, n is the total number of pixels in
the country, and is the distributed industry GDP in pixel i in
the country.

2.2 Comparison of GDP distribution methods

We created two types of spatial distributed GDP map:
population-based (PB-method), Land-use-based (LUB-
method). The PB map was generated by downscaling the
country GDP only in proportion to the gridded population
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count into a 30 arcsec map. The LUB-method was generated
for each sectoral area and sectoral GDP per area. To assess
the effectiveness of the proposed LUB mapping approach,
we compared it against PB-method using the DOSE dataset
(Wenz et al., 2023), which provides sectoral GDP estimates
at the sub-national administrative unit level (GADM level
1). Both GDP maps (i.e., PB-method and LUB-method)
were spatially aggregated from 30 arcsec resolution to the
corresponding GADM Level 1 administrative boundaries
to enable direct comparison with DOSE data. Comparison
involved three steps: (1) Scatter plots were generated to
evaluate the agreement between the aggregated values from
each GDP map and corresponding sectoral GDP values from
the DOSE dataset (agriculture, service, and industry) used as
reference data. (2) For each method and sector, we computed
the absolute value of the relative error between estimated
and reference GDP values and derived the cumulative distri-
bution functions to illustrate the distribution of errors across
all administrative units. (3) We computed the difference
in absolute relative errors between the LUB-method and
PB-method to evaluate the improvement or deterioration
in accuracy. For each administrative unit, this metric was
calculated as:

AE = Erus — Eps,
|GDPestimate - GDPDOSE|

where E = )
GDPpose

A negative value of (AFE) indicates that LUB-method is
closer to the reference than PB-method (i.e., an improve-
ment), while a positive value indicates a deterioration in ac-
curacy compared to PB-method. The comparison was con-
ducted using only administrative units for which all three sec-
toral GDP values were available for the year 2010. In total,
the comparison included 1165 administrative units across 57
countries.

3 Results

We developed three GDP maps for service, industry, and
agriculture sectors in 2010, 2015, and 2020. We excluded
other years because of the low coverage of national GDP
statistics in the World Bank data. Hereafter, the map gen-
erated using the LUB method within the Methods will be re-
ferred to as “SectGDP30”, and the map generated using the
PB method will be referred to as “PB-method”. The maps
of SectGDP30 are shown in Fig. 2a, b, and c. Additionally,
to clarify the difference of spatial distribution among sec-
tors, we showed (Fig. 2d) the map of the largest GDP sec-
tor in each grid in the world. Globally, the distribution of
economic sectors generally correlates with population distri-
bution, with concentrations observed in urban centers. How-
ever, variations exist in the detailed distributions. The ser-
vice sector’s distribution predominantly concentrates in ur-
ban areas across countries, consistent with population distri-
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bution patterns and the use of residential data. In contrast, in-
dustrial GDP, proxied by non-residential areas, shows a ten-
dency toward greater concentration in coastal regions. Con-
versely, agricultural GDP, while exhibiting some correlation
with population distribution, is characterized by a more ex-
pansive distribution in inland areas compared to the service
sector.

Examining individual countries allows for the identifica-
tion of more specific differences in the distribution of each
sector at a finer scale, shown in Fig. 3. In the figure of Japan,
Japan’s three major metropolitan areas — Tokyo, Osaka, and
Aichi — show variations in sectoral distribution, despite their
common characteristic of high population concentration. In
the GDP map, the service sector predominates in the coastal
areas of Tokyo and Osaka, which are marked by high pop-
ulation and service industry presence. In contrast, Aichi’s
coastal regions exhibit a widespread predominance of indus-
trial GDP. Industrial GDP is not uniformly distributed across
the entire Aichi area. Within Aichi, the more inland urban
center, such as the Nagoya area, shows a prevalence of the
service sector, with industrial GDP concentrated in coastal
areas. These findings align with Aichi’s higher proportion of
industrial GDP compared to Tokyo and Osaka (Wenz et al.,
2023, and the formation of an extensive industrial belt along
its coastal regions. This dataset facilitates the depiction of
detailed distributional differences within these areas.

When comparing central Bangkok with its southeastern re-
gion, a similar pattern emerges as a case in Japan. The south-
eastern area, specifically the Eastern Seaboard and Eastern
Economic Corridor (EEC) centered around Laem Chabang
Port, has developed as an industrial hub. In this region, in-
dustrial GDP predominates over service sector GDP. Regard-
ing the distribution of agricultural GDP, Japan shows fewer
pixels where agricultural GDP is dominant, largely because
much of its agricultural land is located relatively close to ur-
ban areas. However, in Thailand and France, extensive ar-
eas with dominant agricultural GDP are observed around
metropolitan centers like Bangkok and Paris. For instance,
Fig. 4a, which shows only agricultural GDP for France, illus-
trates that agricultural GDP is minimally developed around
densely populated Paris. Conversely, it depicts widespread
agricultural activity in the less populated surrounding re-
gions.

To validate the accuracy of this GDP map, we conducted a
comparative analysis with DOSE, a dataset providing sec-
toral GDP figures at the sub-national administrative unit
level. For this validation, the 30 arcsec resolution GDP map
was spatially aggregated according to the GADM dataset’s
Level 1 administrative divisions, which are used by DOSE.
The aggregated GDP values for each administrative unit were
then calculated and compared with DOSE’s figures.

The results are presented in Fig. 4a, b, and c. These three
scatter plots indicate that SectGDP30 exhibits a similar dis-
tribution to actual sub-national scale sectoral GDP (R% > 0.9
in all the sectors). When examined by sector, many adminis-
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trative units with discrepancies in service and industrial GDP
show an underestimation compared to actual data. Given that
the total GDP per sector at the national level aligns with real
data in this study, this discrepancy likely results from over-
distributing GDP in a few administrative units within cer-
tain countries, leading to an underestimation in many other
smaller administrative units. While service and industrial
GDP inherently concentrate in specific local areas, and this
GDP map depicts that, some countries show an excessive
concentration in particular regions. This trend is less appar-
ent in agricultural GDP, which exhibits less localized distri-
bution, and no strong pattern of overestimation or underesti-
mation was observed.

Next, we compared the results from SectGDP30 with the
PB-method. The comparison method involved using sectoral
GDP figures for each administrative unit, as before, and cal-
culating the cumulative distribution of the differences from
DOSE’s figures. This result is presented in Fig. 4d. Sectoral
analysis reveals that the industrial sector shows the most sig-
nificant improvement when compared to PB-method. As pre-
viously mentioned, industrial GDP distribution often exhibits
localized concentrations even in sparsely populated areas.
This suggests that a method using only non-residential land
use information and concentrating distribution over relatively
small areas is more appropriate than PB-method, which relies
on population distribution data.

The service sector shows a slight decline in accuracy com-
pared to PB-method. In the service sector, overall regional
results showed a slight decrease in accuracy for SectGDP30
compared to PB-method. However, some regions exhibited
improved accuracy with SectGDP30. Fundamentally, there
is minimal difference between SectGDP30 and PB-method
as the spatial distributions of residential areas (upon which
SectGDP30 relies) and population (upon which PB-method
relies) largely coincide.

Conversely, SectGDP30 incorporates Supplier effect, real-
locating each grid’s GDP to residential areas within a 50km
radius. This results in a smoother connection of urban and
rural area distribution differences compared to PB-method.
This effect is evident in the Alpine regions of Switzerland
(CHE), specifically in administrative level districts such as
Uri, Wallis, Graubunden, and Glarus. While these Swiss
Alpine areas have a significant population, residential areas
are limited, and actual statistical service GDP is not high.
Therefore, in Switzerland, service GDP should be distributed
not based on simple population distribution but rather in
the plains north of the Alps, where numerous residential ar-
eas exist. This case demonstrated an improvement in Sect-
GDP30 accuracy. Agricultural GDP also shows an improve-
ment compared to PB-method, with an increase in the num-
ber of administrative units exhibiting smaller errors.
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Figure 2. The sectoral GDP maps of (a) service sector, (b) industry sector, (¢) agricultural sector, (d) the map of the largest GDP sector in

each grid of 30 arcsec.

4 Discussion — Business interruption loss
estimation for the 2011 Thailand flood

To assess how the improvement of the GDP map affects the
result of flood loss estimation, an additional analysis of es-
timating business interruption losses resulting from the ac-
tual flood event in Thailand in 2011 by the new sectoral
GDP map was conducted. Following established definitions
of economic losses from prior studies (Tanoue et al., 2020;
Rose, 2004), economic impacts can be categorized into three
main types: damage, direct economic loss, and indirect eco-
nomic loss. This additional analysis focused exclusively on
estimating Business Interruption loss (BI loss) among these
three economic impacts due to the lack of information nec-
essary for the estimation of the other components.

To calculate BI loss, we prepared hazard, exposure, and
vulnerability data. As the hazard, we used two inundation
period maps of the target event in Thailand, based on simu-
lation and satellite observations. The simulation-based inun-
dation period map was generated using the Catchment-based
Macro-scale Floodplain (CaMa-Flood) global riverine inun-
dation model (Yamazaki et al., 2011). To obtain an inunda-
tion map based on the simulation by CaMa-Flood, CaMa-
Flood used daily runoff data generated by a reduced-bias
meteorological forcing dataset at 15 arcmin resolution, and
S14FD-Reanalysis data (Iizumi et al., 2017) to simulate the
daily inundation depth at 15 min resolution. Because S14FD
is a bias-corrected dataset, we used daily inundation depth
values without bias correction, such that the inundation pe-
riod may be calculated directly from the daily inundation
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depth (Taguchi et al., 2022). Then, we downscaled the 15-
arcmin daily inundation depth to 30 arcsec resolution and cal-
culated the inundation period as the number of days in which
the inundation depth exceeded 0.5 m in each pixel. We also
used an inundation period map based on Terra/Moderate Res-
olution Imaging Spectroradiometer (MODIS) images, which
is publicly available on the Global Flood Database (Tell-
man et al., 2021). We referred to the former hazard map as
“CaMa-Flood” and the latter map as “MODIS” in this study.
The days between August and December in 2011 were only
counted as inundation days for matching the inundation pe-
riod by CaMa-Flood simulation and that by MODIS obser-
vation, which started from August and ended around the end
of December.

As exposure, we used two spatial distributed GDP maps
at 30 arcsec resolution for comparison, SectGDP30 and PB-
method. As a vulnerability, we considered a recovery coeffi-
cient, which decided the ratio of the length of recovery period
which is required until business restart to the inundation pe-
riod. This value reflects the system vulnerability of the city.
We used 2 as a recovery coefficient, which was used in pre-
vious study on a global scale (Taguchi et al., 2022). As for
the recovery period as vulnerability, we used the method of
Tanoue et al. (2020). The recovery period RP;, when the pro-
duction in a pixel is assumed to have recovered linearly from
zero at the end of the flood period to the same level of pro-
duction before the flood, was obtained by multiplying the in-
undation period by a coefficient (= 2 in this study). Thus,
the recovery period was assumed to take twice as long as
the inundation period. Finally, BI loss was estimated by the
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Figure 3. The map of the largest GDP sector in each grid of 30 arcsec in (a) France, (b) Thailand, and (c) Japan.

method described by Tanoue et al. (2020), as follows:

N 3 RP;\ AGDP;
Bl loss = Zi:lZs {(IP, + T) X T} (6)

where i, N, and s are the pixel number, total number of pix-
els in the inundated area, and sector number (1 = service,
2 = industry, and 3 = agriculture), respectively; IP;, RP;,
AGDP; ¢, and Nd are the inundation period, recovery period
at pixel i, annual GDP of pixel i and sector s, and the number
of days in a year.

And we obtained the total BI losses by summing BI losses
of all the grids in the target area.

Earth Syst. Sci. Data, 17, 6669-6680, 2025

The results of the BI loss estimation were shown in Fig. 5.
We compared the calculated BI losses with the actual eco-
nomic loss reported in the PDNA (The World Bank, 2011).
In this report, both damage and loss were estimated. Damage
is due to the destruction of physical assets and loss is caused
by foregone production and income and higher expenditures
in the definition in the report. This means that the loss in the
report included both business interruption loss and other ad-
ditional expenditures and costs. Because there was not any
other reported loss which only focused on BI loss, we com-
pared with the loss, including other components, in this re-
port.

https://doi.org/10.5194/essd-17-6669-2025
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Firstly, comparing the losses by the different hazard data
with the same exposure, SectGDP30, the service sector loss
according to CaMa-Flood (USD 15.86 billion) was over 12-
fold larger than that according to MODIS (USD 1.29 billion).
This large difference was caused by the shorter average in-
undation period and smaller flood area in MODIS than in

https://doi.org/10.5194/essd-17-6669-2025

CaMa-Flood. MODIS is known to tend to fail to capture the
flood extent in urban areas with high densities of tall build-
ings and that leads to the underestimation in inundation. In
addition to different total losses, ratios of industry sector loss
to the total loss differed between two results: 48.20 % accord-
ing to CaMa-Flood and 35.62 % according to MODIS. This
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Figure 5. Spatial distribution of the inundation period of the 2011
Thailand flood, obtained from (a) Catchment-based Macro-scale
Floodplain (CaMa-Flood) simulation and (b) Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) observation data, and the
simulation Business interruption losses (USD billion, current value
in 2011) due to the 2011 Thailand flood, estimated by combining
hazards and exposures; the total loss is written in the center of each
circle. (¢) CaMa-Flood and PB-method, (d) CaMa-Flood and Sect-
GDP30, (¢) MODIS and PB-method, (f) MODIS and SectGDP30,
and (g) the World Bank report (2011).

result showed the sectoral ratio of the loss can be changed
depending on spatially different hazards. It is caused by the
fact that SecGDP30 can show the different spatial distribu-
tion of each sectoral GDP, while municipality-level statistics
cannot show the spatial distribution in a fine resolution. This
sectoral difference was newly found by this study since the
traditional population-based GDP map also could not show
this difference between sectors.

Comparing the results using CaMa-Flood and SectGDP30
with the World Bank Report figures (Fig. 5d and g), Sect-
GDP30 more accurately represents the smaller proportions
of agricultural damage compared to when PB-method is used
(Fig. 5¢). This indicates that SectGDP30 can effectively con-
strain the allocation of agricultural GDP in areas with high
population but limited agricultural land. Conversely, while

Earth Syst. Sci. Data, 17, 6669-6680, 2025
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the Report figures show a significant proportion for the in-
dustry sector, SectGDP30 results estimate the industry sec-
tor to be almost on par with the service sector. It showed
the industry loss was underestimated although the hazard in
the numerical simulation, by CaMa-Flood, captured the flood
extent over the industrial sector area and the long-lasting in-
undation period. The reported value excludes assets damage
but includes economic losses other than production reduction
by direct contact with the flood, such as production stoppage
due to shortages of raw materials induced by blocked roads.
Therefore, if we assume that the new sectoral GDP map cap-
tured the industrial locations and they were successfully con-
sidered to be flooded, this underestimation is presumed to be
caused by a lack of data reflecting the indirect production
stoppage.

Related to this limitation of the indirect production stop-
page, it is important to recognize that the methodology, in-
cluding that of this paper and previous studies, which deter-
mines the GDP produced in each pixel using indicators such
as GDP per unit area, overlooks the fact that labor supplied
from remote locations is necessary for GDP production. To
rephrase this with the example of a factory affected by a dis-
aster: while the GDP output itself occurs at the factory’s loca-
tion, the workers who carry out the production reside in sur-
rounding or remote areas. Therefore, if a disaster occurs in
these remote residential areas, the GDP output should cease.
However, pixel-based calculation methods would fail to rep-
resent this cessation of GDP output as long as the factory’s
pixel is unaffected. This is considered a non-negligible im-
pact in regions where economic activity and residential areas
are clearly separated, but quantifying this impact on a global
scale is currently challenging. Alongside future research on
regional differences in GDP per unit area, this remains a lim-
itation that we must consider moving forward.

5 Data availability

The global sectoral GDP maps are publicly available via Zen-
odo at https://doi.org/10.5281/zenodo.15774017 (Shoji et al.,
2025). The maps on Zenodo correspond to the SBCE maps
in this paper and are stored as geotiff files. In total, there are
nine maps in the dataset, for each sector (service, industry,
and agriculture) and year (2010, 2015, and 2020).

6 Summary

This study developed a spatially distributed sectoral GDP
map (SectGDP30) by leveraging recently available global,
high-resolution land use datasets. This map demonstrates
strong consistency (R? > 0.9) with actual sub-national sta-
tistical data and exhibits greater alignment with sub-national
GDP statistics compared to conventional GDP maps (PB-
method) that rely solely on gridded population maps.

https://doi.org/10.5194/essd-17-6669-2025
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For the industry sector, the methodology successfully dis-
tributed industrial GDP with better accuracy than popula-
tion distribution alone. This was achieved by adopting “Non-
residential areas” as a proxy, which effectively captures the
localized nature of industrial GDP distribution in specific re-
gions within each country. For agriculture, accuracy was im-
proved over PB-method by distributing GDP based on farm-
land maps and assuming GDP generation in areas approxi-
mately 150-300 km from wide-area population centers. Re-
garding the service sector, incorporating population distribu-
tion within specific ranges, even when using residential land
use map information, resulted in GDP being distributed only
to actual built-up and designated residential areas. This ap-
proach achieved an accuracy comparable to the PB-method.

As an application of this dataset, business interruption (BI)
loss estimation due to floods was conducted using the sec-
toral GDP map. This confirmed that the new sectoral GDP
map can represent inter-sectoral differences in estimated BI
losses, corresponding to varying spatial distributions of haz-
ards. This validation underscores the importance of consid-
ering the spatially distinct distributions of sectors when es-
timating actual disaster damage. It also highlights the need
for developing new estimation methods that account for the
processes of GDP generation.

This new global sectoral GDP map serves as a founda-
tional tool for estimating sector-classified economic losses.
It meticulously considers the complexity of global land use
patterns at a detailed level, enabling accurate calculation
of sector-specific losses from various natural disasters on a
global scale.
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