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Abstract. Evapotranspiration (ET) is an important component of the terrestrial water cycle, carbon cycle, and
energy balance. Currently, there are four main types of ET datasets: remote sensing–based, machine learning–
based, reanalysis–based, and land–surface–model–based. However, most existing ET fusion datasets rely on a
single type of ET dataset, limiting their ability to effectively capture regional ET variations. This limitation
hinders accurate quantification of the terrestrial water balance and understanding of climate change impacts.
In this study, the accuracy and uncertainty of thirty ET datasets (across all four types) are evaluated at multi-
ple spatial scales, and a fusion dataset BMA (Bayesian model averaging)-ET, is obtained using BMA method
and dynamic weighting scheme. ET from FLUXNET2015 as reference, the study recommends remote sensing-
and machine learning-based ET datasets, especially Model Tree Ensemble Evapotranspiration (MTE), Penman-
Monteith-Leuning (PML) and Process-based Land Surface Evapotranspiration/Heat Fluxes (PLSH), but the op-
timal selection depends on season and vegetation type. At the basin scale, most of ET datasets demonstrate
superior performance. Relative uncertainty based on remote sensing and machine learning is low at the grid
point scale. The fusion dataset BMA-ET accurately captures trends in ET, showing a global terrestrial increasing
trend of 0.65 (0.51–0.78) mm yr−1 during the period 1980–2020. BMA-ET has higher correlation coefficients
and lower root-mean-square errors than most individual ET datasets. Validation using ET from FLUXNET2015
as reference shows that correlation coefficients of more than 70 % of the flux sites exceed 0.6. Validation re-
sults based on independent data sources show that the correlation coefficients of BMA-ET with AmeriFlux,
ChinaFlux, and ICOS reach 0.61, 0.72, and 0.74, respectively. Overall, BMA-ET provides a comprehensive,
long-term resource for understanding global ET patterns and trends, addressing the limitation of prior ET fu-
sion efforts. Free access to the dataset can be found at https://doi.org/10.5281/zenodo.15470621 (Wu and Miao,
2025).

1 Introduction

Terrestrial evapotranspiration (ET) is the physical process by
which water is converted from liquid to gaseous state from
surface soils, vegetation or water surfaces, and it is accom-
panied by energy conversion processes (Wang and Dickin-
son, 2012). Specifically, ET consists mainly of soil evapo-
transpiration, vegetation transpiration, canopy interception,
and evaporation from water or ice surfaces (Lawrence et al.,
2007). Globally, about two-thirds of precipitation is evapo-

rated into the atmosphere each year, while more than half
of the net solar radiation absorbed by land surfaces is used
to evaporate surface moisture (Jasechko et al., 2013). Evapo-
transpiration is the nexus of the coupled global water-carbon-
energy cycle (Zheng et al., 2025) and is a key process for
quantifying the response of the hydrological cycle to global
change (Chai et al., 2025). ET datasets are classified into
four main types in this study: remote sensing–based, machine
learning–based, reanalysis–based, and land–surface–model–
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based (Table 1). These four types of ET datasets are now
widely used in scientific research.

Against the background of global warming (Hu et al.,
2025) and intensification of the hydrological cycle (Zhang
et al., 2025), global ET is showing obvious interannual and
seasonal variations (Wang and Dickinson, 2012). Therefore,
accurate estimation of terrestrial ET is not only necessary
for understanding the distribution of water and energy at dif-
ferent spatial and temporal scales but also important for re-
search in many disciplines, such as hydrology and meteorol-
ogy. However, due to the complexity of spatial and temporal
variations in ET, the many factors affecting ET, and the lim-
ited availability of field observations, there are large discrep-
ancies among ET estimates from different methods, resulting
in large uncertainties in existing assessments of spatial and
temporal variations in global ET (Long et al., 2014).

An important part of hydrological cycle research is ET
dataset assessment, which involves comparing and analysing
different ET datasets to improve the accuracy, reliability and
applicability of ET estimates. In recent years, with the de-
velopment of remote sensing technology and data process-
ing methods, research on the assessment of ET datasets has
made significant progress. Chao et al. (2021) evaluated five
remotely sensed datasets in the continental US using re-
constructed ET data (Recon) as a baseline, and the results
showed that the GLEAM dataset, P-LSH dataset, and PML
dataset showed better performance at the annual scale dur-
ing 2003–2008, followed by the MTE and MODIS datasets.
Yu et al. (2023) validated and assessed the consistency and
uncertainty of nine ET datasets in the continental US un-
der normal and extreme weather conditions using eddy co-
variance (EC) flux observations and the three-cornered hat
(TCH) method, and the results showed that the accuracy of
the different ET datasets varied depending on the land cover
type and that GLEAM3.6b and two fusion datasets – re-
liability ensemble averaging (REA) and Synthesized (Syn)
– showed superior results for most land cover types dur-
ing 2003–2015. Pan et al. (2020) analysed the spatial and
temporal variations of global terrestrial ET, and the results
showed that the annual mean global terrestrial ET ensem-
bles averaged by three different methods were basically the
same; results also showed that the ensembles of the remote
sensing–based physical models and the machine learning al-
gorithms both exhibited an increasing trend for ET during the
period 1982–2011, while the ensembles of the land surface
models on average did not show a significant change. Xie et
al. (2024) evaluated the accuracy and uncertainty of seven
satellite-based and two reanalysis datasets for global terres-
trial ET and found no single ET dataset could provide the
most accurate ET estimates for all land cover types; GLASS-
AVHRR and GLASS-MODIS were the two datasets with the
lowest relative uncertainty, while MERRA2 had the largest
relative uncertainty from 2003 to 2015.

To reduce ET data uncertainty, improve data precision, and
extend the study period, researchers have used data fusion

techniques – such as arithmetic averaging, weighted averag-
ing, and machine learning methods – to integrate multiple
ET datasets into a more reliable dataset. Zhang et al. (2019)
developed the first set of coupled global terrestrial ET and
vegetation gross primary productivity datasets at 500 m reso-
lution for the period 2000–2020 based on the multi-scale fu-
sion of the PML-V2 ET model with station and basin obser-
vations and global remote sensing data. He et al. (2020) de-
veloped a gridded ET dataset (1982–2011) from statistical or
empirical data, remotely sensed data, and land-surface mod-
els for the contiguous United States (CONUS), which was
integrated via Bayesian three-cornered hat (BTCH) and en-
semble mean (EM) methods, and the results show that BTCH
outperforms EM and all individual parent datasets compared
to eddy covariance towers (ETEC) from AmeriFlux sites and
ET values from the water balance method (ETWB). Lu et
al. (2021) obtained a long series (1980–2017) of global daily
evapotranspiration datasets (REA-ET) with a spatial resolu-
tion of 0.25° using the fusion of reliability ensemble aver-
aging methods based on three widely used model-based ET
datasets, including ERA5, MERRA2, and GLDAS2-Noah
reanalysis data, and the results showed that the fusion dataset
captured the evapotranspiration trends in different areas well
and performed well for all vegetation cover types.

With the development of remote sensing technology and
improved data fusion methods, a large number of ET datasets
have emerged. However, existing efforts to fuse ET datasets
have not generally involved multiple types of ET datasets
but have mainly focused on fusion of a single type of ET
dataset, which limits their ability to capture characteristics of
regional ET variations. This limitation seriously hampers the
accurate quantification of the terrestrial water balance and
understanding of climate change impacts. The current study
looks at more datasets, including four types of ET datasets,
comprising 30 ET datasets in all, and the ET datasets are
also evaluated from more diverse perspectives, from the site
scale to the basin scale to the global scale, which can pro-
vide data references for studies at different spatial scales.
Therefore, this study attempts to develop a long time se-
ries (1980–2020) global terrestrial evapotranspiration dataset
based on ET from FLUXNET2015 and four types of global
evapotranspiration datasets (a total of 30 ET datasets) using
a Bayesian model averaging (BMA) algorithm; the aim is to
obtain an ET fusion dataset that contains more diverse in-
formation than previous efforts. A key advancement of this
fusion dataset lies in its dynamic weighting scheme, which
adjusts for different vegetation types and years with non-
overlapping coverage among ET datasets. This approach sig-
nificantly improves the utilization of FLUXNET2015 obser-
vations, especially across diverse vegetation types.
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Table 1. Descriptions of four types of evapotranspiration datasets.

Dataset basis Description Shortcomings

Remote sensing Remote sensing models are used to calculate evapotran-
spiration from the surface by obtaining parameters such
as surface vegetation cover, leaf area index, and surface
temperature and combining them with meteorological
data.

Optical sensors are affected by weather during the ac-
quisition of remote sensing datasets (Schaepman-Strub
et al., 2006).

Machine learning Using artificial intelligence–based algorithms in combi-
nation with large quantities of meteorological data and
multi-source evapotranspiration datasets, evapotranspi-
ration datasets are obtained by calibrating simulated
values with measured values (global flux data, ground-
based observations, etc.) through rate-setting algorith-
mic parameters. This method has strong self-learning,
self-organization, and self-adaptation capabilities and is
suitable for solving nonlinear and complex problems.

The application of machine learning models in estimat-
ing evapotranspiration is somewhat limited, because a
priori knowledge of the field still needs to be accu-
mulated due to the complexity of evapotranspiration
(Bellido-Jiménez et al., 2021).

Reanalysis Reanalyzed information relies on the strengths of nu-
merical weather modelling and assimilation techniques
to break through the limitations of raw observational
data and produce long series of dynamically and physi-
cally coordinated gridded data sets.

Reanalysis data rely on global observations for assimi-
lation, but the coverage and quality of observations vary
regionally, with large differences in data quality from
one region to another (Parker, 2016).

Land surface model A land surface process model (LSPM) is a mathemati-
cal model used to simulate and study energy and mois-
ture exchange at the land surface. It is usually based
on physical principles and empirical relationships, di-
viding the land surface into different components (such
as soil, vegetation, snow, etc.) and taking into account
their interactions; it outputs evapotranspiration by sim-
ulating the energy and moisture exchange between the
land surface and the atmosphere.

Land surface models obtain evapotranspiration data
with high temporal resolution but low spatial resolution;
model parametric schemes for inhomogeneous sub sur-
faces are difficult to determine; and there are challenges
in terms of multiple observations, data assimilation, etc.
(Overgaard et al., 2006).

2 Data and Methods

2.1 Data

2.1.1 Evapotranspiration data

Thirty evapotranspiration datasets were used in this study,
including four remote sensing (RS) datasets, four machine
learning (ML) datasets, two reanalysis (RA) datasets, and 20
datasets based on land surface models (LSMs) (Table 2 and
Fig. 1). Download links for all ET datasets are in Table S1 of
the supplementary material. The Penman-Monteith-Leuning
(PML) estimates are calculated using the observation-driven
PML model (Zhang et al., 2016). The basic principle of the
Global Land Evaporation Amsterdam Model (GLEAM) is
to maximise the recovery of ET information contained in
current satellite-observed climate and environmental vari-
ables to derive values for the different components of ter-
restrial ET (Martens et al., 2017). The Global Land Surface
Satellite (GLASS) evapotranspiration dataset is a long-time-
series, high-resolution, high-precision remote sensing inver-
sion dataset based on multi-source remote sensing data and
measured station data obtained through inversion algorithms

(Liang et al., 2013). The PLSH dataset was obtained based on
AVHRR remotely sensed data and reanalysed meteorological
data inverted with the improved Penman-Monteith formula
(Zhang et al., 2015). The FLUXCOM datasets use meteo-
rological observations and satellite data as inputs to upscale
evapotranspiration estimates from 224 flux tower sites using
three machine learning methods (random forest algorithm,
artificial neural network, and multivariate adaptive regres-
sion spline) (Jung et al., 2019). Three FLUXCOM datasets
were included in this study – FLUXCOM-CRUNCEP_v8,
FLUXCOM-GSWP3, and FLUXCOM-WFDEI – each with
different input data. The Model Tree Ensemble Evapotran-
spiration (MTE) dataset is based on global flux site observa-
tions, combining MODIS data and meteorological data, and
using machine learning to extrapolate the data from the site
scale to the global scale (Jung et al., 2011). ERA5-Land (the
land component of the European Centre for Medium-Range
Weather Forecasts [ECMWF] ReAnalysis v5) is produced by
inversion of the terrestrial component of the ERA5 climate
reanalysis data (Muñoz-Sabater et al., 2021). The production
combines climate model data with monitoring data from me-
teorological observatories to form a globally complete and
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Figure 1. Years of coverage for each evapotranspiration dataset,
with 1982–2011 being the common period of coverage for all evap-
otranspiration datasets. Dataset types are labelled as follows, by
group: RS = remote sensing; ML = machine learning; RA = re-
analysis; LSM = land surface model.

continuous data set using the laws of physics. The MERRA-
Land (Modern-Era Retrospective Analysis for Research and
Applications, land only) dataset focuses more on histori-
cal analyses of the hydrological cycle over a wide range of
weather and climate scales (Reichle et al., 2011). GLDAS
stands for Global Land Data Assimilation System, and its
goal is to use advanced land surface modelling, assimila-
tion techniques, and the assimilation of satellite- and ground-
based observational datasets to produce optimal land surface
states and flux fields. The study used three GLDAS datasets
that differed based on the surface model used: GLDAS
CLSM, GLDAS NOAH, and GLDAS VIC (Rodell et al.,
2004). Version 12 of the TRENDY programme (TRENDY
v12) was chosen for this study (corresponding to dataset
IDs 14–30 in Table 2), and all simulations follow the same
boundary conditions and simulation specifications and are
therefore well comparable (Friedlingstein et al., 2023).

2.1.2 Site data

In order to evaluate the evapotranspiration datasets, the study
used observations from FLUXNET2015 flux sites (Fig. S1,
Tables S2–S4). Flux site data are from the FLUXNET2015
dataset, which covers 212 flux sites worldwide and docu-
ments flux observations on near-surface carbon, water, and
energy; quality control information; and uncertainty quantifi-
cation results collected from 1991 to 2014 (accessed at https:
//fluxnet.org/data/fluxnet2015-dataset, last access: 25 Octo-
ber 2025). The FLUXNET2015 dataset provides continuous

measurements of carbon and energy fluxes at half-hourly to
hourly intervals via the eddy covariance method (Baldocchi
et al., 2001; Ma et al., 2021). The study subsequently refers
to the observational dataset as ET from FLUXNET2015.
Based on MODIS IGBP (International Geosphere-Biosphere
Programme) land cover, the flux sites can be classified into
12 vegetation types (see Fig. S1 in the Supplement). These
sites are distributed across the major climatic zones (tropi-
cal, subtropical, temperate, and boreal) and continents (Asia,
Africa, South America, Oceania, and especially Europe and
North America) (Fig. S1). Specific flux site data processing
is described in Supplement Text S1. Ultimately, our study re-
tained 174 flux sites. In addition, we also validated the energy
balance closure on the flux site data (Supplement Text S2
and Fig. S2). We found that the flux sites for most vegetation
types were consistent with energy balance closure, so the 174
sites screened by the study are reliable and can be used for
accuracy evaluation of ET datasets.

We used independent data sources to validate ET fusion
dataset, specifically including AmeriFlux (accessed at https:
//ameriflux.lbl.gov/data, last access: 25 October 2025), Chi-
naFlux (accessed at http://rs.cern.ac.cn/data/initDRsearch,
last access: 25 October 2025), and ICOS (accessed at https:
//www.icos-cp.eu/data-products/ecosystem-release, last ac-
cess: 25 October 2025). The site information of AmeriFlux,
ChinaFlux, and ICOS list in Tables S5–S7.

2.1.3 Other datasets

To assess global ET datasets at the basin scale, a total of
32 basins across the globe were selected for this study, and
basin boundary data were obtained from HydroBasins Level
3 basin boundaries (accessed at https://www.hydrosheds.org/
products/hydrobasins#downloads, last access: 25 October
2025) (Table S8). The streamflow data were obtained from
the Dai and Trenberth Global River Flow and Continental
Discharge Dataset (accessed at http://www.cgd.ucar.edu/cas/
catalog/surface/dai-runoff/index.html, last access: 25 Oc-
tober 2025) and the Global Runoff Data Centre (ac-
cessed at http://www.bafg.de/GRDC/EN/Home/homepage_
node.html, last access: 25 October 2025) (Table S8). Pre-
cipitation data were obtained from the Global Precipitation
Climatology Centre (GPCC), which provides a global land-
surface gridded precipitation dataset based on approximately
86 100 rain gauges and stations worldwide. The advantage
of GPCC is the use of a large number of station observa-
tions. The spatial resolution is 1°× 1°. Data are available
from https://psl.noaa.gov/data/gridded/data.gpcc.html (last
access: 25 October 2025).

The MCD12Q1 data are considered in this study. The
MCD12Q1 data is a fusion of data from sensors Terra and
Aqua, with a spatial resolution of 500 m, and provides inter-
annual global data on land cover types (from 2001 onwards),
containing six classification systems, where the International
Geosphere Biosphere Programme (IGBP) is used (Cai et al.,
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Table 2. Information for 30 evapotranspiration datasets.

ID Name Type Spatial resolution Time Period References
(lon× lat) resolution

1 PML RS 0.5°× 0.5° mon 1981–2012 Zhang et al. (2016)
2 GLEAM 3.6a RS 0.25°× 0.25° mon 1980–2021 Martens et al. (2017)
3 GLASS RS 0.05°× 0.05° 8 d 1982–2018 Liang et al. (2013)
4 PLSH RS 0.083°× 0.083° mon 1982–2013 Zhang et al. (2015)
5 FLUXCOM-CRUNCEP_v8 ML 0.5°× 0.5° mon 1950–2016 Jung et al. (2019)
6 FLUXCOM-GSWP3 ML 0.5°× 0.5° mon 1950–2014 Jung et al. (2019)
7 FLUXCOM-WFDEI ML 0.5°× 0.5° mon 1979–2013 Jung et al. (2019)
8 MTE ML 0.5°× 0.5° mon 1982–2011 Jung et al. (2011)
9 ERA5-Land RA 0.1°× 0.1° mon 1950–present Muñoz-Sabater et al. (2021)
10 MERRA-Land RA 0.667°× 0.5° mon 1980–present Reichle et al. (2011)
11 GLDAS CLSM 2.0 LSM 1°× 1° mon 1948–2014 Rodell et al. (2004)
12 GLDAS NOAH 2.0 LSM 1°× 1° mon 1948–2014 Rodell et al. (2004)
13 GLDAS VIC 2.0 LSM 1°× 1° mon 1948–2014 Rodell et al. (2004)
14 CABLE-POP LSM 1°× 1° mon 1700–2022 Haverd et al. (2018)
15 CLASSIC LSM 1°× 1° mon 1701–2022 Melton et al. (2020)
16 CLM5.0 LSM 1.25°× 0.9375° mon 1701–2022 Lawrence et al. (2019)
17 DLEM LSM 0.5°× 0.5° mon 1700–2022 Friedlingstein et al. (2023)
18 E3SM LSM 1.25°× 0.9375° mon 1700–2022 Bisht et al. (2018)
19 EDv3 LSM 0.5°× 0.5° mon 1700–2022 Ma et al. (2022)
20 IBIS LSM 0.5°× 0.5° mon 1700–2022 Yuan et al. (2014)
21 ISBA-CTRIP LSM 1°× 1° mon 1700–2022 Delire et al. (2020)
22 JSBACH LSM 1.875°× 1.875° mon 1700–2022 Reick et al. (2021)
23 LPJ-GUESS LSM 0.5°× 0.5° mon 1700–2022 Smith et al. (2014)
24 LPJmL LSM 0.5°× 0.5° mon 1700–2022 Schaphoff et al. (2018)
25 LPX-Bern LSM 0.5°× 0.5° mon 1700–2022 Lienert and Joos (2018)
26 OCN LSM 1°× 1° mon 1700–2022 Zaehle and Friend (2010)
27 ORCHIDEE LSM 0.5°× 0.5° mon 1700–2022 Vuichard et al. (2019)
28 SDGVM LSM 1°× 1° mon 1700–2022 Woodward and Lomas (2004)
29 VISIT LSM 0.5°× 0.5° mon 1860–2022 Ito and Inatomi (2012)
30 YIBs LSM 1°× 1° mon 1700–2022 Yue and Unger (2015)

Note: In the table, RS is used for remote sensing, ML for machine learning, RA for reanalysis, and LSM for land surface model; “mon” indicates a time resolution of
one month.

2014). The IGBP classifies land cover types into 17 cate-
gories, including 11 natural vegetation classifications, 3 land
use and land mosaics, and 3 unvegetated land classifications.
The product uses supervised classification in addition to ad-
ditional post-processing of the data, i.e., some a priori knowl-
edge and ancillary data are incorporated to improve the ac-
curacy of the classification. This study uses the MOD12 Q1
dataset to classify global land cover (Fig. S3).

2.2 Methods

Prior to the evaluation and fusion of the ET datasets, the
spatial resolution of all ET datasets was standardized to
0.5°× 0.5° and 1°× 1° using a bilinear interpolation method.
This study compared the differences in ET data at 1 and 0.5°
globally and under each vegetation type, respectively. The
results show that the sensitivity to spatial resolution is low
for each ET dataset (Fig. S4). Since the common coverage
period for the 30 ET datasets is 1982–2011, the ET evalua-

tions in this study are also focused on this time period. ET
dataset uncertainty is characterised using standard deviation.
The evaluation of ET datasets covers three specific aspects.
First, site scale: thirty ET datasets were assessed for accuracy
at site scale using the three statistical indicators described
below. Evaluations of site scale were carried out based on
1991–2011 (the years of common coverage of the flux sta-
tion data and the 30 sets of ET datasets).

1. Correlation coefficient (R)

R =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (1)

2. Mean absolute error (MAE)

MAE=
∑n

i=1 |xi − yi |

n
, (2)
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3. Root-mean-square error (RMSE)

RMSE=

√∑n
i=1(xi − yi)2

n
, (3)

where n is the number of samples, xi is the estimated
monthly value of the evapotranspiration dataset, yi is
the observed monthly value of the evapotranspiration
site, and x̄ and ȳ are the mean values of xi and yi , re-
spectively.

Second, the basin water balance approach was used for
ET evaluation at the basin scale (Supplement Text S3).
Third, the global-scale ET evaluation used the three-cornered
hat (TCH) method (Supplement Text S4). Using the TCH
method, we obtained the TCH uncertainty and relative un-
certainty for each ET dataset, where the relative uncertainty
is calculated as the ratio of the uncertainty to the mean value
of the time series. We also used standardized Taylor diagrams
for comprehensive evaluation of ET datasets (Supplement
Text S5).

Finally, evapotranspiration fusion was completed using a
BMA method. The 30 sets of ET datasets are clustered and
then fused. First, we calculated a Pearson correlation coef-
ficient matrix using the residuals from the 30 sets of ET
datasets with observations from FLUXNET2015 sites. Sec-
ond, the 30 sets of ET datasets were clustered based on the
residual correlation coefficient matrix (Table S9). Third, for
each vegetation type, the BMA fusion of the ET data within
each cluster was performed first, and then the BMA fusion of
the fused data for each cluster was performed.

The specific BMA fusion steps are shown in Fig. 2 and
are explained as follows: (1) The sites were partitioned ac-
cording to land cover type. We took cropland (CRO) as an
example, a total of 16 CRO sites were involved, and 60 %
of the sites (corresponding to 10 sites) were selected to par-
ticipate in the BMA fusion, while 40 % of the sites (corre-
sponding to 6 sites) were used for validation. (2) Due to the
overall short coverage time period of the flux sites, all crop-
land sites were considered as one site in this study, and the
time series were spliced to obtain a longer time series of site
observations (ETobs). (3) For each ET dataset, data from the
10 site locations and times identified above were spliced, and
this step traversed all the ET datasets, resulting in n time se-
ries (ET1. . .,ETn), with length the same as ETobs, where n

refers to the number of ET products. (4) ETobs was used as
an observation to perform a BMA analysis of the n ET se-
quences, thus obtaining the weight of each ET dataset un-
der cropland vegetation type, denoted as wCRO-1. . .,wCRO-n,
where wCRO-1+ . . .+wCRO-n = 1. This weight was applied
to all cropland grid points for each ET dataset. (5) Fu-
sion of all ET datasets was achieved using the following:
ETCRO-merge = ETCRO-1×wCRO-1+ . . .+ETCRO-n×wCRO-n.
(6) The above steps 1 to 5 were repeated to obtain the ET fu-
sion datasets for all other vegetation types. (7) The ET fusion

datasets for each vegetation type were spliced to obtain the fi-
nal global ET fusion dataset. (8) The remaining six cropland
stations from step 1 were used to validate and evaluate the
accuracy of the global ET fusion datasets in cropland. The
BMA analyses were carried out based on 1991–2011 (the
years of common coverage for the flux station data and the
30 sets of ET datasets). The datasets obtained from the final
fusion were denoted as BMA-ET.

It is important to note that land cover types change over
time, and 2001 land cover classifications are used in this
study. Also, note that 10 vegetation cover types do not cover
the entire study area. For areas not covered, an equal weight-
ing approach was taken. Calculation formulas for the BMA
algorithm are shown in Supplement Text S6. The weighting
scheme for determining years with non-overlapping coverage
in the ET fusion process is addressed in Supplement Text S7
and Fig. S5.

3 Results

3.1 Evaluation of evapotranspiration data

The basic spatial pattern found for evapotranspiration is
that it is larger at low equatorial latitudes and smaller at
high latitudes and altitudes (Figs. S6 and S7). The global
spatial patterns across the 30 evapotranspiration datasets
are generally similar, but some differences are apparent
(Fig. S6). In the Amazon and Central African regions, evap-
otranspiration is higher for GLASS, JSBACH, ISBA-CTRIP,
and SDGVM and lower for GLDAS-VIC, CLASSIC, and
LPX-Bern. In terms of evapotranspiration categories, remote
sensing-based ET datasets are larger and machine learning-
based ET datasets are smaller in the above regions (Fig. S7).
Overall, ET shows a three-peaked distribution of equato-
rial high and bipolar low, globally. Remote sensing-based
evapotranspiration datasets have the largest evapotranspira-
tion near the equator, with mean values of evapotranspira-
tion exceeding 1300 mm in this latitudinal band (Fig. S7).
In particular, the greater the multi-year average of global
evapotranspiration, the greater the differences among ET
datasets (Fig. S8). After considering ET values, ET uncer-
tainty (variation among ET datasets) is greater in the Sahara
Desert, the Middle East, the Tibetan Plateau, and Central
Australia (Fig. S9). The interannual trends in ET datasets
also show large differences (Fig. S9). The largest trends in
ET are in ERA5-Land and MERRA-Land, where the de-
creasing trends in ET exceed 4 mm yr−1 at low latitudes. ET
trends of the three FLUXCOM datasets and MTE are small
in most parts of the globe, with both increasing and decreas-
ing trends of less than 1 mm yr−1. Overall, machine learning-
based ET datasets show a smaller trend during 1982–2011,
while reanalysis-based ET datasets have a larger decreasing
trend at low equatorial latitudes (Fig. 3). ET shows an in-
creasing trend in regions such as northern North America,
Southern Africa, North Asia, and Australia.
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Figure 2. Steps for fusion of ET datasets based on the BMA algorithm.

Figure 3. Interannual trends of multi-dataset medians in the four
categories of evapotranspiration datasets during 1982–2011 (the
black dotted areas indicate that the trend in these cells was signifi-
cant at the 95 % level).

3.1.1 Site scale

Using data from the ET from FLUXNET2015, we evaluated
the accuracy of the 30 ET datasets over the globe at site scale.
The correlation coefficients for the four types of ET data are
similar, but the MAE and RMSE are lower for the land-
surface-model-based ET datasets (Fig. 4). The correlation
coefficients for PML, GLASS, and MTE data are the high-
est among the 30 ET datasets, while the MAE and RMSE are
the lowest for GLADS-VIC, EDv3, LPJmL, and LPX-Bern.
Over 60 % of sites in most of the ET datasets have correla-
tion coefficients of 0.6 or higher, with higher correlation co-

efficients and lower MAE (less than 10 mm) and RMSE (less
than 20 mm) in regions such as Europe and North America
(Figs. S10, S11 and S12). These are also the areas with the
highest density of flux sites.

On a seasonal scale, the correlation coefficients between
the ET estimates for each ET dataset and the site ET
were higher in the Northern Hemisphere fall (September–
November), with a mean correlation coefficient of 0.76, and
second highest in the Northern Hemisphere spring (March–
May), with a mean correlation coefficient of 0.6 (Figs. S13,
S14 and S15). In contrast, the correlation coefficients for
the northern hemisphere summer (June–August) and win-
ter (December–February) are lower, indicating that the ET
datasets perform poorly in summer and winter. Consider-
ing both the correlation coefficient and the root mean square
error metrics, the overall performance of the PML and
MTE datasets is superior in all four seasons compared to
the other ET datasets. In the Northern Hemisphere spring
(March–May), summer (June–August), and fall (September–
November), the remotely sensed inversion-based ET dataset
performed better compared to the FLUXNET2015 site ET.
The correlation coefficients between the ET estimates from
the machine learning-based reconstructed ET datasets and
the FLUXNET2015 site ET were higher during the northern
hemisphere winter months (December–February), while the
root-mean-square errors for these datasets were also lower.

In terms of vegetation types, the MTE dataset performed
better in most vegetation types except savannas (SAV), wet-
lands (WET), and woody savannas (WSA) (Figs. S16, S17
and S18). The PML dataset, on the other hand, performed
better in most vegetation types other than CRO, mixed forests
(MF) and WSA. For evergreen broadleaf forests (EBF),
grasslands (GRA), and SAV, ET datasets reconstructed based
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Figure 4. Correlation coefficients (R), mean absolute error (MAE),
and root-mean-square error (RMSE) for ET from FLUXNET2015
and each ET dataset during 1991–2011 (for each box, the centre
horizontal line represents the median of the sample, the upper and
lower borders of the line represent the 75th and 25th percentiles,
respectively, and the two “whiskers” extend to the maximum and
minimum values that are not considered outliers; outliers are plotted
separately).

on machine learning outperform other ET datasets. In other
vegetation types, the remote sensing-based ET dataset per-
formed more prominently. Among the CRO types, the ET
dataset based on remote sensing inversion and land surface
model simulation performed better. Overall, all ET datasets
performed poorly in SAV and WSA, and the correlation coef-
ficients for most datasets were below 0.2 (Fig. S19). Most of
the ET datasets performed well in closed shrublands (CSH),
GRA and MF, with the remote sensing inversion-based ET
datasets performing particularly well in CSH, with correla-
tion coefficients exceeding 0.8.

After considering the performance of each ET dataset in
terms of season and vegetation type, we recommend remote
sensing- and machine learning-based ET datasets (Table 3).

3.1.2 Basin scale

By comparing the multi-year average evapotranspiration
from the 30 ET datasets with the multi-year average observed

evapotranspiration from the basin water balance, we found
that the R2 of the two reached more than 0.8 in most of
the ET datasets, except for EDv3 (Fig. S20). In nearly two-
thirds of the ET datasets, R2 actually exceeds 0.9. Compared
with water balance-based observational ET, ISBA-CTRIP,
JSBACH, and GLDAS-CLSM perform better at the basin
scale compared to other ET datasets (Fig. S21). Among
them, only EDv3 and GLASS have correlation coefficients
below 0.9. Remote sensing- and machine learning-based ET
datasets have relatively greater TCH uncertainty, especially
for PML, GLASS, CRUNCEP, and MTE, and TCH uncer-
tainty is generally greater in low-latitude basins than that in
high-latitude basins (Fig. S22). However, in terms of rela-
tive uncertainty for TCH, the relative uncertainty is greater
for CRUNCEP, MERRA-Land, and MTE (Fig. 5). At the
same time, the relative uncertainty of TCH in the low- and
high-latitude basins shows the opposite behaviour of the
TCH uncertainty, being smaller in the low-latitude basins
and larger in the high-latitude basins (Fig. 5). Land-surface-
model-based ET datasets have less relative uncertainty of
TCH at the basin scale compared to the other three types of
ET datasets, whereas machine learning- and reanalysis-based
datasets have greater TCH relative uncertainty.

3.1.3 Global scale

The TCH analysis of global ET datasets shows that machine
learning–based ET datasets have relatively low uncertainty,
especially MTE (Fig. S23). The MTE dataset has less uncer-
tainty at high latitudes and more uncertainty at low latitudes,
while the relative uncertainty is the opposite. Uncertainties in
the datasets MERRA-Land, CLM5, EDv3 and JSBACH are
large, whereas uncertainties in GLDAS-CLSM and SDGVM
are smaller in the northern hemisphere and larger in the
southern hemisphere. For TCH relative uncertainty, machine
learning- and remote sensing-based datasets have less rela-
tive uncertainty (Fig. S24). GLDAS-VIC, CLM5, EDv3, and
LPX-Bern have large relative uncertainties of TCH, and areas
with larger relative uncertainties are predominantly located
at high latitudes. Overall, the relative uncertainty is lower in
regions with larger ET values, such as the Amazon, Central
and Southern Africa, and Southeast Asia.

3.2 Evapotranspiration dataset fusion

Thirty global ET datasets were fused based on the BMA ap-
proach, hereafter referred to as BMA-ET (Fig. 6). Areas of
high evapotranspiration are mainly found at low equatorial
latitudes, such as the Amazon, central Africa, and Southeast
Asia. The Sahara Desert, the Middle East, and the Tibetan
Plateau have less evapotranspiration. ET trends are positive
in most parts of the globe during 1980–2020, and the main
regions with high ET trends are the Amazon, Europe, South-
ern Africa, and the Indian Peninsula. Decreasing trends in ET
are apparent in a few regions, such as southern North Amer-
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Table 3. Guidelines for the use of ET datasets.

Classification Recommendation

Level 1 Level 2 ET datasets ET type

Season MAM PML; PLSH; MTE RS
JJA PML; PLSH; GLEAM RS
SON PML; MTE; FLUXCOM-WFDEI RS; ML
DJF MTE; FLUXCOM-WFDEI; GLASS ML

Vegetation CRO PLSH; PML; FLUXCOM-WFDEI RS
DBF MTE; PML; PLSH ML; RS
EBF FLUXCOM-WFDEI; FLUXCOM-CRUNCEP; FLUXCOM-GSWP3; PML ML
ENF GLASS; MTE; PLSH; PML RS
GRA MERRA-Land; ERA5-Land; MTE; PML RA; ML
MF PML; PLSH; GLASS; MTE RS
OSH FLUXCOM-WFDEI; FLUXCOM-GSWP3; FLUXCOM-CRUNCEP; MTE RS
SAV MERRA-Land; GLASS; GLDAS-NOAH RA; RS
WET GLDAS-CLM; MTE; GLEAM RS
WSA GLEAM; GLDAS-CLM; EDv3; PML RS

ica, central South America, eastern Africa, western Asia,
and eastern India, with some decreasing trends of more than
3 mm yr−1 (Fig. 6). From 1980 to 2020, the global terres-
trial averaged ET showed an overall increasing trend of 0.65
(0.51–0.78) mm yr−1 (p < 0.01) (Fig. S25).

We have also verified the accuracy of the new fusion
dataset, BMA-ET. Validation using FLUXNET2015 ET as
reference data shows that more than 70 % of the flux sites
have correlation coefficients higher than 0.6 and that the
flux sites with high correlation coefficients are mainly lo-
cated in the mid-to-high latitudes of the northern hemisphere
(Fig. S26). Similarly, flux sites with low MAE and RMSE
are mainly located in the above areas. The results show that
BMA-ET has higher correlation coefficients and lower root-
mean-square errors than most of the individual ET datasets
(Fig. 7). BMA-ET also performs well in most vegetation
types, except for evergreen broadleaf forest (EBF), which has
poor performance in all ET datasets (Fig. S27). The correla-
tion coefficients of BMA-ET and FLUXNET2015 ET exceed
0.7 in most vegetation types.

We used independent data sources to validate the fusion
dataset BMA-ET, specifically including AmeriFlux, Chi-
naFlux, and ICOS. Additionally, we also evaluated the ac-
curacy of BMA-ET using FLUXNET2015 data from 2012
to 2015. The results demonstrate that BMA-ET outper-
forms other external datasets, achieving correlation coef-
ficients of 0.61, 0.72, and 0.74 with site-level ET mea-
surements from AmeriFlux, ChinaFlux, and ICOS, respec-
tively (Fig. 8). Using FLUXNET2015 as reference observa-
tions, BMA-ET showed a correlation coefficient of 0.58 with
FLUXNET2015 site-level ET during 2012–2015 (Fig. 8),
while also demonstrating high accuracy across various vege-
tation types (Fig. S28).

4 Discussion

4.1 Robustness of results

The global terrestrial averaged ET from BMA-ET in this
study showed an overall increasing trend of 0.65 (0.51–
0.78) mm yr−1 (p < 0.01) from 1980 to 2020. The trend in
BMA-ET observed in this study is relatively consistent with
the trends seen in some existing studies (Lu et al., 2021; Pan
et al., 2020), demonstrating the robustness of the trend results
across forcing datasets. From a driving mechanism perspec-
tive, long-term changes in ET at the global scale are jointly
controlled by water availability (Gu and Adler, 2023) and en-
ergy availability (Yuan et al., 2021).

In this study, we use 60 % of station data for training and
40 % of station data for validation. In order to verify the ro-
bustness of the results, we performed 2 additional sets of ex-
periments, 70 % of data for training and 30 % of data for
validation, 80 % of data for training and 20 % of data for
validation, respectively. The results show that the data ac-
curacy of the fusion product BMA-ET is not sensitive to
FLUXNET2015 station split. The accuracy evaluation results
showed remarkable consistency across different training set
proportions (60 %, 70 %, and 80 %), with BMA-ET demon-
strating correlation coefficients of 0.67, 0.67, and 0.65 re-
spectively when compared to FLUXNET2015 ET (Fig. S29).
In addition, we also evaluate the accuracy of BMA-ET under
different vegetation types. The results show that the accuracy
of BMA-ET under each vegetation type is not sensitive to the
split ratio of the training set (Figs. S30, S31 and S32).

To validate model sensitivity to the stationary land cover
assumption, we performed a dynamic comparison of the
data set MOD12Q1 for the three periods of 2001, 2010 and
2020 (Fig. S33). We found that the consistency of the land
cover types between the years was high, with the propor-
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Figure 5. Spatial distribution of relative uncertainty of TCH during 1982–2011 for 32 basins (%).

tions of consistency between 2001 and 2010, 2010 and 2020,
and 2001 and 2020 being 0.80, 0.86 and 0.78, respectively
(Fig. S34). In addition, we also analyzed the percentage of
global land area covered by 12 vegetation types (Fig. S35).
The results show that the proportion of area covered by var-
ious vegetation types does not vary much between years, es-
pecially for the four main vegetation types, open shrublands
(OSH), WSA, SAV and GRA, which account for a larger pro-
portion of the area.

In order to validate the reasonability of using an equal
weighting scheme for the uncovered areas of 10 types of veg-
etation types, we compared the results of ET fusion of un-
covered areas of 10 vegetation types based on the Bayesian-

Three Cornered Hat (BTCH) method (Supplement Text S8)
and the equal weighting method (Fig. S36). The results
showed that the correlation coefficients between the ET esti-
mates based on the equal weighting method and the BTCH-
based method were high in the area not covered by the 10
vegetation types, reaching more than 0.9 at most of the grid
points (Fig. S36). Moreover, only 11.6 % of the global land
area is not covered by 10 vegetation types, the percentage of
uncovered areas is small and therefore introduces little error.
This type of area is mainly found in North Africa, the Middle
East and parts of Central Asia. In summary, in the areas not
covered by the 10 vegetation types, it is reasonable for us to
use an equal weighting approach to fuse all ET datasets.
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Figure 6. Spatial distribution of multi-year averages and trends in
BMA-ET during 1980–2020. The black dotted areas indicate the
trend passes the significance test (p < 0.05) at that grid point.

Figure 7. Standardized Taylor diagram of ET datasets at all sta-
tions from 1991 to 2011. The observation data are ET from
FLUXNET2015.

We conducted a sensitivity experiment by excluding ET
datasets known to use FLUXNET observations during model
development and evaluated the impact of this exclusion
on the performance of the BMA-ET product. According
to Table S10, we identified six ET datasets that utilized
FLUXNET observations during their training or validation
phases. We then constructed a new ET fused dataset us-
ing remaining 24 ET datasets. We evaluated the accuracy of
BMA-ET using FLUXNET2015 flux observations. The re-
sults show that the correlation coefficient between BMA-ET
and FLUXNET2015 observations remained above 0.67 both
before and after excluding ET datasets related to FLUXNET
(Fig. S37). This indicates that the aforementioned exclusion

method had minimal impact on the performance of the BMA-
ET product.

4.2 Limitations and future work

The use of site observations to assess large-scale evapotran-
spiration datasets still has some drawbacks, such as spatial
scale mismatch and sparse site distribution. Typically, flux
sites only cover a spatial range of a few hundred metres (Soe-
gaard et al., 2003), whereas an image in an ET dataset usually
covers a range of several kilometres or even tens of kilome-
tres, which makes a single site unrepresentative of a single
image or its neighbouring images. Even though both ET es-
timates are relatively accurate, the different spatial resolu-
tions can result in large differences in the estimates (Mauser
and Schädlich, 1998; Sharma et al., 2016). Due to global cli-
mate differences, topographic undulations, and surface het-
erogeneity, a limited number of stations cannot represent all
surface conditions around the globe.

The water balance method is often used as a standard
method for estimating ET in watersheds (Liu et al., 2023; Ma
et al., 2024). However, there are limitations and uncertainties
in assessing the accuracy of ET datasets using this method.
For example, the method is able to obtain only the average
value of ET in a basin but not the spatial distribution of ET
in a basin. Total water storage change (TWSC) cannot be ig-
nored at higher temporal resolution because TWSC greatly
affects basin ET estimates. Climate change and human activ-
ities have significantly altered the regional water cycle over
the past few decades, resulting in dramatic changes in total
water storage. In addition, the uncertainty quantified by the
TCH method does not reflect the goodness of the modelling
of the evapotranspiration datasets, but only the magnitude of
the uncertainty, while the relative uncertainty, although in-
dicative of the extent to which the different datasets are mod-
elled, can be larger for areas with smaller evapotranspiration
due to the order of magnitude of the datasets.

In future research, high-resolution remote sensing data and
machine learning methods can be introduced to construct ET
estimation models from site to regional scales to improve the
representativeness and accuracy of large-scale ET datasets.
To address the lack of observation data for special ecosys-
tems such as deserts and wetlands, more diverse observation
data should be acquired in the future using technologies such
as unmanned aerial vehicles and mobile observation plat-
forms to improve the spatial coverage and ecological repre-
sentativeness of ET estimation.

5 Data availability

This long-term global terrestrial ET dataset covers the pe-
riod of 1980–2020. It contains data for spatial resolu-
tions of 0.5°× 0.5° and 1°× 1° covering the domain of
−89.75–89.75° N, −180–179.5° E. The NetCDF formatted
output files of the BMA-ET dataset are freely accessible
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Figure 8. Accuracy evaluation of BMA-ET. The observation data is ET from (a) FLUXNET2015 during the period 2012–2015, (b) Ameri-
Flux during the period 1994–2020, (c) ChinaFlux during the period 2003–2010, (d) ICOS during the period 2003–2010.

at https://doi.org/10.5281/zenodo.15470621 (Wu and Miao,
2025).

6 Conclusions

In this study, 30 ET datasets were comprehensively evaluated
and fused to obtain a new set of global terrestrial ET datasets.
The following conclusions were obtained:

1. The inter-annual trends of the grid ET data generated
based on different methods are not consistent over the
period 1982–2011. The machine learning-based global
ET shows a weak downward trend in most parts of the
globe, while the reanalysis-based global ET shows a
significant downward trend in the equatorial low lati-
tudes. All datasets show significant upward trends in
ET in regions such as northern North America, south-
ern Africa, northern Asia, and Australia.

2. After a comprehensive evaluation of ET datasets, ET
datasets reconstructed based on remote sensing inver-
sion and machine learning showed higher accuracy, but
the specific data selection needs to consider seasonal
variations and vegetation types. At the site scale, ET
datasets based on remote sensing and machine learn-
ing performed particularly well, especially the MTE,
PML and PLSH datasets. At the basin scale, most of
ET datasets demonstrate superior performance. At the

grid point scale, ET datasets based on remote sensing
and machine learning has relatively low uncertainty.

3. In this study, a long-time-series (1980–2020) ET fu-
sion dataset (BMA-ET) was generated using a Bayesian
model averaging (BMA) method. From 1980 to 2020,
the global terrestrial BMA-ET shows an overall increas-
ing trend of 0.65 (0.51–0.78) mm yr−1. The results show
that BMA-ET has higher correlation coefficients and
lower root-mean-square errors than most of the individ-
ual ET datasets included in this study. Validation us-
ing ET from FLUXNET2015 as reference data shows
that correlation coefficients for more than 70 % of the
flux sites exceed 0.6. Validation results based on in-
dependent data sources show that the correlation coef-
ficients of BMA-ET with AmeriFlux, ChinaFlux, and
ICOS reach 0.61, 0.72, and 0.74, respectively.

Estimating terrestrial evapotranspiration at large scales has
always been a challenge for hydrology and ecology because
of the heterogeneity of the subsurface and the interaction
between the atmosphere and the land surface. In future re-
search, we should focus on the following two aspects: (1)
Given the limited availability of site observations, we should
improve the spatial resolution of the dataset as much as pos-
sible to match the site scale while studying the energy closure
problem in depth. Currently, the regional-scale ET estimates
have achieved high accuracy by optimising the model param-
eters, but the global scale still needs to be calibrated to the
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observed values. Therefore, in future studies, the density of
the site distribution and the accuracy of observations will be
the main focus for improving the modelling results. (2) It is
necessary to focus on the influence of different factors on the
estimation of ET under different climate models in order to
compare different ET models, to pay attention to the differ-
ences between the models, and to optimise or improve the
parameters of the models in order to improve the accuracy of
the model estimation.

Supplement. The supplement related to this article is available
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