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Abstract. International databases of disaster impacts are crucial for advancing disaster risk research, partic-
ularly as climate change intensifies the frequency and intensity of many natural hazards — including tem-
perature extremes. However, many widely-used disaster impact databases lack information on the physical
dimension of the hazards associated with an impact, and on the exposure to such hazards. This hinders
analysing drivers of severe disaster outcomes. To bridge this knowledge gap, we present SHEDIS-Temperature,
a dataset that provides Subnational Hazard and Exposure information for temperature-related DISaster impact
records (https://doi.org/10.7910/DVN/WNOTTC; Lindersson and Messori, 2025). This open-access dataset links
temperature-related impact records from the Emergency Events Database (EM-DAT) with subnational data on
their locations, associated meteorological time series, and population maps. SHEDIS-Temperature provides haz-
ard and exposure data for 2835 subnational locations associated with 382 disaster records from 1979-2018 in 71
countries. Detailed hazard metrics, derived from 0.1° 3 hourly data, encompass absolute indicators, such as the
heat stress measure apparent temperature accounting for humidity and wind speed, as well as percentile-based
indicators of when and where temperatures exceeded local thresholds. Population exposure data include an-
nual population figures for impacted subnational administrative units and person-days of exposure to threshold-
exceeding temperatures. Outputs are available at grid-point level as well as zonally aggregated to administrative
subdivision units, and disaster-record levels. Technical validation against a station-based dataset indicated minor
systematic biases — slightly overestimated minimum and underestimated maximum temperatures — but con-
firmed high consistency between datasets, with correlation coefficients > 0.9 and mean absolute errors < 2°C.
By providing comprehensive attributes across the hazard-exposure spectrum, SHEDIS-Temperature supports in-
terdisciplinary research on past temperature-related disasters, offering valuable insights for future risk mitigation
and resilience strategies.

tion globally (Aitsi-Selmi et al., 2015). Combined with ad-

International databases documenting impacts from natural
hazards play a central role in advancing quantitative research
on disaster risk (Jones et al., 2022; UNDRR, 2022). These
collections enable researchers, organisations and agencies
to track how disaster impacts vary across regions and over
time, including to monitor progress of disaster risk reduc-
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ditional risk-relevant information — such as estimates of the
physical hazard, exposed population, and socioeconomic in-
dicators — impact records can pinpoint factors contributing to
particularly severe outcomes (Kahn, 2005; Lindersson et al.,
2023; Mochizuki et al., 2014; Tselios and Tompkins, 2019;
Vestby et al., 2024). Lessons learned from past events are,
furthermore, increasingly important for guiding future risk
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mitigation and resilience efforts as climate change drives
shifts in the frequency and intensity of many natural hazards
(McBean and McCarthy, 1990). Hot and cold extremes are
primary examples of fatal hazards under rapid change (Gallo
et al., 2024; Garcia-Le6n et al., 2024; Gasparrini et al., 2015;
IPCC, 2023; Liithi et al., 2023; Russo et al., 2019).

The Emergency Events Database (EM-DAT; CRED and
UCLouvain, 2023; Delforge et al., 2025), maintained by the
Centre for Research on the Epidemiology of Disasters, is a
leading open-access resource for international disaster im-
pact data (Jones et al., 2022; Panwar and Sen, 2020). Widely
used for its extensive set of national-level records of human
and economic losses from major disasters, EM-DAT remains
a cornerstone of empirical disaster research despite certain
limitations, such as underreporting and a bias toward ad-
vanced economies (Acevedo Mejia, 2016; Green et al., 2019;
Jones et al., 2022, 2023; Wirtz et al., 2014). Beyond issues
with missing data, EM-DAT lacks spatiotemporal detail for
impacts and the associated hazards. The physical magnitude
of temperature extremes, for instance, is often missing or re-
duced to a single maximum or minimum air temperature,
without specifics on the timing, duration or location. Further-
more, multiple meteorological factors beyond the (dry bulb)
air temperature, including humidity and wind, substantially
influence stress levels experienced by the human body during
extreme temperatures (Cvijanovic et al., 2023). These limita-
tions place the responsibility on users to link impact records
to additional data sources when a more comprehensive risk
analysis is needed. However, recent advancements in high-
resolution data on disaster locations, meteorological data and
population patterns present new opportunities for systematic
data integration across the risk spectrum.

This article introduces SHEDIS-Temperature, an open-
access dataset that provides Subnational Hazard and Ex-
posure information for temperature-related DISaster im-
pact records (Fig. 1). To achieve this, we integrated
the open-source Geocoded Disasters extension (GDIS;
Rosvold and Buhaug, 2021), which geocodes many EM-DAT
records to subnational locations, with high-resolution global
time-series of meteorological variables from Multi-Source
Weather (MSWX; Beck et al., 2022) and population data
from the Global Human Settlement Population grids (GHS-
POP; European Commission, 2023; Carioli et al., 2023).
SHEDIS-Temperature (Lindersson and Messori, 2025) pro-
vides hazard and exposure data for 2835 subnational loca-
tions (referred to hereafter as subdivisions) associated with
382 disaster records from 1979-2018 in 71 countries (Fig. 1).

SHEDIS-Temperature advances a growing field of re-
search that links disaster impact data to in-situ and satellite-
derived information (Brimicombe et al., 2021; Dellmuth
et al., 2021; Felbermayr and Groschl, 2014; Kageyama
and Sawada, 2022; Mester et al., 2023). Our dataset of-
fers three primary contributions. First, it includes detailed
information on the physical hazards, including both abso-
lute and percentile-based indicators. The absolute indicators,
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like maximum 2m air temperature and apparent tempera-
ture are provided as daily statistics derived from 3 hourly
data. The percentile-based threshold analysis identifies if],
when, where, and by how much daily temperatures exceeded
local 90th and 95th percentiles, enabling more context-
sensitive assessments of extreme events. Second, SHEDIS-
Temperature provides data on population exposure to these
extreme temperatures, detailing annual population figures
for each impacted subdivision and exposure to threshold-
exceeding temperatures, expressed as person-days. Third, to
support diverse research needs, we present outputs at three
levels: grid point, subdivision and EM-DAT record (referred
to hereafter as disno, short for disaster number). Open-access
source scripts enable users to further adjust the outputs if
needed.

The usefulness of SHEDIS-Temperature is multifaceted.
It can serve as a corroboration of EM-DAT and GDIS by
cross-verifying reported impact locations against observed
extreme weather events. We also anticipate that SHEDIS-
Temperature can support empirical analysis of temperature-
related disasters across disciplines. We consider the granu-
larity and flexibility of the dataset to be crucial, especially
since disasters often have uneven impacts — not only across
countries but within them as well (Masselot et al., 2023; Yin
et al., 2023). Our work is also aligned with UNDRR’s call
for more integrated tracking systems that capture both the
origins of hazards and their impacts (UNDRR, 2022). Ulti-
mately, systematically connecting data on hazards, exposure
and impacts is essential for quantifying the social vulnerabil-
ity to disasters.

2 Data and methods

SHEDIS-Temperature links temperature-related impact
records to subnational data on their physical occurrence and
human exposure. The dataset was constructed through three
main steps: (1) sampling and geocoding, (2) data processing
at the grid point level, and (3) aggregating of outputs into
the final dataset (Fig. 2). All analyses were performed in R
v.4.3.3 and the WGS84 coordinate system. Area-corrected
calculations were applied to derive grid cell areas and
polygon areas with the R packages “terra” (Hijmans, 2025)
and “sf” (Pebesma, 2018), respectively. Meteorological data
in NetCDF were processed with Climate Data Operators
(CDO; Schulzweida, 2023).

2.1 Sampling and geocoding

SHEDIS-Temperature extends the international disaster
database EM-DAT (CRED and UCLouvain, 2023), which
documents national-level disaster impacts meeting at least
one of the following criteria: > 10 fatalities, > 100 affected
individuals, a declared state of emergency, and/or a request
for international assistance. SHEDIS-Temperature includes
records that EM-DAT classifies as heat waves and cold
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Figure 1. Introduction to SHEDIS-Temperature. (a) The 382 national-level disaster records from 1979-2018 in 71 countries that underpin
the dataset. These records comprise EM-DAT records (b) that have been geocoded to administrative subdivisions by GDIS (c). SHEDIS-
Temperature expands on this by providing an extensive catalogue of hazard- and exposure-related attributes for each subdivision and disno

(d), as well as data on grid point level.

waves. EM-DAT defines a heat wave as a period of abnor-
mally hot and/or unusually humid weather, while a cold wave
is a period of abnormally cold weather that may be exacer-
bated by high winds (CRED and UCLouvain, 2024b). Both
types of events are also described as typically lasting two or
more days, and specific temperature thresholds vary by re-
gion (CRED and UCLouvain, 2024).

Our dataset incorporates records from 1979-2018, align-
ing with the temporal scope of supporting datasets — Multi-
Source Weather (MSWX; Beck et al., 2022) and the Global
Human Settlement Population grid (GHS-POP; European
Commission, 2023; Carioli et al., 2023), which begin in 1979
and 1975 respectively, and the Geocoded Disasters (GDIS)
dataset (Rosvold and Buhaug, 2021), reaching up to 2018.
Limiting the dataset to four recent decades also enhances
data reliability, since impact records from earlier periods are
generally more uncertain and biased (CRED and UCLou-
vain, 2024; Gall et al., 2009). The final sample of SHEDIS-
Temperature includes impact records that meet this timespan
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and have been geocoded to administrative subdivisions by
GDIS.

The creators of GDIS geocoded EM-DAT entries (disnos)
to subnational levels by matching their location description
in EM-DAT to administrative subdivision names provided by
the Global database of Administrative boundaries (GADM),
version 3.6 (https://www.gadm.org, last access: 5 October
2023). GADM provides names and corresponding polygons
of administrative subdivisions across multiple hierarchical
levels, including level-1 (province/equivalent), level-2 (coun-
ty/district/equivalent), and level-3 (municipality/equivalent).
The creators of GDIS thus linked each disno in EM-DAT to
one or more of these subdivisions in GADM, across one or
more hierarchical levels — when the location description in
EM-DAT was sufficient to do so.

For each disno, GDIS provides the original location de-
scription from EM-DAT along with the name, level and cen-
troid coordinate pair for one or more matched subdivisions
from GADM. However, we identified several mismatches

Earth Syst. Sci. Data, 17, 6379-6403, 2025
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Figure 2. Flowchart illustrating the main steps of integrating data from multiple sources to derive SHEDIS-Temperature. (1) A total of 382
temperature-related impact records from EM-DAT were successfully matched to subnational locations by GDIS, which we used to identify
2835 subdivision boundaries at level 1 (province/equivalent) and level 2 (county/district/equivalent) from GADM. (2) Within these identified
geographical extents, daily statistics of meteorological variables (absolute values and percentiles) were computed from MSWX. Annual
population figures were also interpolated from GHS-POP, and percentile-exceeding temperature events were identified. (3) Outputs were
exported at three levels: grid point, subdivision and disno.
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where a disno has been linked to a subdivision in the wrong
country due to shared subdivision names. To address this, we
derived country-specific ISO codes directly from the GDIS-
provided coordinates and used them to reconstruct the disno
number. If the assigned location falls outside the expected
country, the disno number does not match with the list from
EM-DAT and is excluded from the final sample.

To retrieve the boundary polygons instead of the centroid
coordinates, we first converted GADM polygons to centroids
and then applied a nearest-neighbour approach for each ad-
ministrative level separately. We then controlled for discrep-
ancies between the original location description in EM-DAT
and the matched subdivision name. We identified one mis-
match where the centroid of a subdivision had been mis-
placed by GDIS, which we corrected manually!. After hav-
ing run these consistency checks, we replaced each centroid
coordinate pair (from GDIS) with its original boundary poly-
gon (from GADM).

For the purpose of SHEDIS-Temperature, we chose to re-
place the level-3 impacted subdivisions (n = 148, associated
with 45 unique disnos) with their parent level-2 divisions —
due to the relatively coarse resolution of the global support-
ing datasets and the wide spatial extent of temperature ex-
tremes. Moreover, GADM provides level-3 subdivisions for
only certain countries, making level-1 and level-2 divisions
more suitable for consistent cross-country comparisons. Du-
plicates, due to multiple level-3 units having been replaced
with the same level-2 unit for the same disno, were removed.

To reduce file size, we simplified the polygon shapes with
the R package “rmapshaper” (Teucher et al., 2024), which
performs topologically aware polygon simplifications. To
clarify, aside from this minor shape simplification, the sub-
division geometries provided by SHEDIS-Temperature are
identical to those provided by the GADM v3.6 dataset.

2.1.1 Sample of disaster records and their subnational
locations

The final dataset comprises 2835 impacted subdivisions, in-
cluding 2353 level-1 administrative units (province/equiva-
lent) and 482 level-2 units (county/district/equivalent), linked
to 382 distinct disaster records (disnos) across 71 countries
(Fig. 1). Of these, 63 % of the subdivisions are linked to
243 cold wave records in 60 countries, while the remain-
ing subdivisions are linked to 139 heat wave disnos in 47
countries. The majority (83 %) of impacted subdivisions are
level-1 administrative units. Since several subdivisions expe-
rienced multiple events during the study period, the dataset
includes 931 unique level-1 and 343 unique level-2 subdivi-
sions (Fig. Al).

IFor disno 1999-0068-RUS, the centroid of the Russian subdi-
vision Chukot had been incorrectly located within the neighbouring
subdivision Sakha by GDIS. This error may arose because Chukot
spans the 180th meridian, which can distort the centroid location
depending on the methodology used.

https://doi.org/10.5194/essd-17-6379-2025

6383

The dataset spans 1979-2018, with most disnos recorded
after 2000 (Fig. 3a). A notable spike in cold wave records
appears in 2012, when cold waves in Europe led to recorded
disasters in 26 countries, ten of which recorded events both at
the beginning and end of the year. The European heat waves
of 2003 and 2007 are also evident (Fig. 3a), resulting in 15
and 11 disaster impact records, respectively. Each disno in
the sample includes a reported start month from EM-DAT,
collectively illustrating the seasonal variability of these hot
and cold extremes across continents (Fig. 3b).

The geographic distribution of the final sample reflects
a bias in the parent dataset EM-DAT, with most records
originating from Europe, Asia and the Americas (Figs. la
and 3b). This bias arises from two factors: a reporting ten-
dency towards advanced economies and the high density of
small countries in continental Europe, which leads to multi-
ple national-level records per meteorological event.

The median number of subdivisions impacted by each
disno is four for cold waves and three for heat waves,
though this also varies across continents and recording pe-
riods (Fig. 3c), from six in Europe to four in the Americas,
three in Asia and Africa and 1.5 in Oceania. More recent
records tend to be linked to a greater number of subdivisions
compared to older ones, likely reflecting increased detail in
disaster reporting over time. Figure 3c also displays an out-
lier in the sample with 78 linked subdivisions — a heat wave
disno from Turkey (disno 2000-0381-TUR) for which EM-
DAT offers an unusually long list of impacted locations.

2.2 Data processing at grid point level
2.2.1 Spatiotemporal boundaries for analysis

The simplified polygons outlining the impacted subdivisions
define the spatial boundaries for the subsequent analysis,
which we also refer to as the geometry for analysis. The anal-
ysis period for each disno is defined by the first date of the
start month and last date of the end month as reported by EM-
DAT, but expanded with one week at both ends for precau-
tion. A majority (n = 175) of the disnos have reported start
months that coincide with the reported end month, resulting
in a roughly six weeks analysis period. One impact record
(disno 2007-0673-ROU) missed a reported end month, which
we then assumed to be the month following the reported start
month.

We chose not to rely on the daily information from EM-
DAT because only approximately half of the disnos pro-
vide start and end days. Additionally, about a quarter of the
records with daily information have start- and end-days that
coincide, which contradicts the very disaster definition stat-
ing that heat waves and cold waves typically last for two days
or more (CRED and UCLouvain, 2024).

Earth Syst. Sci. Data, 17, 6379-6403, 2025
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Figure 3. Overview of the disaster records underpinning SHEDIS-Temperature. (a) Histogram of the temporal distribution of disaster impact
records from 1979-2018, highlighting the higher number of records in the latter part of the recording period. (b) Density plots illustrating
the seasonal variability of reported start months for heat wave and cold wave records across continents. The uneven number of observations
per continent also highlight the geographic bias of the parent dataset, EM-DAT. (¢) Boxplots showing the number of subdivisions linked to
each disno, per continent and reporting period. Note the cut in the y axis for visualization purposes.
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2.2.2 Meteorological data processing

Multi-Source Weather MSWX; Beck et al., 2022) is a high-
resolution meteorological dataset derived from hourly ERAS
reanalysis data (Hersbach et al., 2020). MSWX bias-corrects
and downscales the ERAS data using nearest-neighbour in-
terpolation to a spatial resolution of 0.1°. It provides seam-
less global NetCDF files at 3 hourly intervals beginning
1 January 1979. The 3 hourly MSWX values represent aver-
ages of the 1 hourly ERAS data (Beck et al., 2022). ERAS is
widely regarded as the most reliable reanalysis dataset avail-
able. For instance, Liu et al. (2024) recently demonstrated
its consistent quality for 2 m air temperature across most re-
gions across the globe. For this study, we used MSWX-Past
data on 2 m air temperature (°C), 2 m relative humidity (%)
and 10 m wind speed (m s,

ERAS5-Land (Mufioz Sabater, 2019) is another widely used
0.1° reanalysis product based on ERAS and could also have
been used in this study. MSWX was selected over ERAS-
Land primarily for practical reasons. The 3 hourly tempo-
ral resolution of MSWX, compared to the 1 hourly structure
of ERAS5-Land, is less computationally demanding. MSWX
also provides ready-to-use variables such as 10 m wind speed
and 2m relative humidity, whereas ERAS5-Land only pro-
vides wind components and variables from which relative
humidity must be derived, requiring additional processing
steps. Unlike ERAS5-Land, which is a physically consistent
reanalysis without explicit bias correction (Mufloz Sabater,
2019), MSWX applies a statistical bias correction using mul-
tiple observational datasets (Beck et al., 2022). For a subset
of events, we compared maximum and minimum tempera-
ture estimates from MSWX and ERAS5-Land against EM-
DAT records (as described for MSWX in Sect. 3.3.3). Both
datasets showed broadly similar levels of agreement with
EM-DAT, with the main difference being that ERAS5-Land
aligned less well with minimum temperatures during cold
waves. Considering these factors, MSWX was chosen as the
primary dataset for this study.

Using 3 hourly values of air temperature, wind speed, and
relative humidity from MSWX, we calculated apparent tem-
perature for each grid point within the impacted subdivi-
sions and their respective analysis period. Apparent temper-
ature quantifies the amplification of perceived temperatures
due to wind and humidity, and can thus be used as a metric
for thermal stress in humans (Steadman, 1984). The model
assumes that the temperature is experienced outdoors but
not in direct sunlight (Buzan et al., 2015). Although radia-
tion is sometimes included in these calculations, we used the
non-radiant version for our analysis, following the method-
ology by Steadman (1994). These calculations were per-
formed using the “apparentTemp” function in the R pack-
age “HeatStress” (Casanueva, 2019), which calculates appar-
ent temperature (at, °C) using air temperature (f,, °C), rela-
tive humidity (RH, %) and wind speed (u, ms~!), following

https://doi.org/10.5194/essd-17-6379-2025
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Egs. (1) and (2).
at=1,4+0.33¢e—0.7u — 4 (1)

where e is the water vapour pressure (hPa), derived from air
temperature and relative humidity as

X t]
e =RH x ¢ x exp 4> 2)
b+t
with 7, = 10 X t,.
The constants a, b, and c¢ differ depending on whether the
air temperature is above or below the freezing point:

a=17368; b=2388.3; ¢=0.06107
for ¢, >0°C (water phase)
a=17.856; b=24552; ¢=0.06108

for 7, <0°C (ice phase)

For each disno and subdivision in the sample, we then com-
piled daily time series for all grid points within the bound-
ary polygon and the analysis period. The following variables
were included: daily mean air temperature, daily maximum
air temperature (TX), daily minimum air temperature (TN),
daily mean apparent temperature, daily maximum apparent
temperature (ATX), and daily minimum apparent tempera-
ture (ATN). The variables TX, TN, ATX, and ATN thus rep-
resent the most extreme 3 hourly values recorded within each
24 h period.

2.2.3 Population data processing

For estimating human exposure to extreme temperatures, we
used global population maps from the Global Human Set-
tlement Layer R2023 A (GHS-POP; European Commission,
2023; Carioli et al., 2023), which combines satellite imagery
and census data to generate 5 year time series from 1975-
2020. The population maps, initially at a spatial resolution of
30 arcsec, were resampled to align with the MSWX 0.1° data
grid using the R package “exactextractr” (Baston, 2024).

During resampling, we extracted population estimates for
each 5 year time step for all grid points within the bound-
aries of each subdivision. These population values were si-
multaneously scaled with the coverage fraction, which repre-
sents the proportion of each grid point being located within
the subdivision boundaries. To address minor discrepancies
in population values introduced during resampling, we also
scaled the resampled population cell values to ensure that the
population sum across each subdivision polygon matched the
original, non-resampled population sum. Finally, we gener-
ated annual population estimates for each grid point by lin-
early interpolating the 5 year population estimates.

2.2.4 Percentiles of air temperature

We used copies of the TX and TN times series to derive per-
centiles for each day of the year, with respect to the 30 year

Earth Syst. Sci. Data, 17, 6379-6403, 2025
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reference period 1981-2010. This reference period was se-
lected because it best corresponds to our analysis period
(1979-2018), ensuring consistency with the temporal cov-
erage of the study. We calculated percentiles centred on a
31 d moving window (following e.g. Russo et al., 2014, 2015,
2017; Vogel et al., 2019), and thus extended the reference pe-
riod to also include the last 15 d of 1980 and the first 15d of
2011 prior to the percentile calculations. 29 February was
assigned the percentile value of 28 February in leap years.

Before calculating percentiles, we linearly detrended these
reference period-long copies of the TX and TN time series, to
remove the potential influence of long-term trends. This is in
line with the notion that a climatological period should ide-
ally be uniform (WMO Climatological Normals, 2024). We
did this by using the CDO function “detrend” (Schulzweida,
2023), which removes the long-term linear trend along the
specified time dimension. This function fits a least-squares
linear regression model to each grid cell and subtracts the fit-
ted trend component from the original time series, thereby
isolating short-term variability from long-term changes, fol-
lowing Eq. (3).

x'(t) = x(t) — (4 + bt) (3)

Where x(¢) is the original time series, a and b are the esti-
mated intercept and slope of the linear trend, respectively,
and x'(¢) is the detrended series. To preserve the baseline
characteristics of the temperature fields, the temporal mean
of the original series, X, was added back to the detrended val-
ues, yielding the final series as written in Eq. (4).

O =x't)+x €]

This ensured that the resulting data retained their original cli-
matological mean while excluding long-term linear trends.
The outputs from Eq. (4) were then used to calculate the per-
centiles. Please note that the detrended time series were used
only to derive percentiles, while the rest of our analysis was
conducted on the original non-detrended time series to main-
tain consistency with the rest of the analysis (which also re-
lied on the non-detrended meteorological data).

For heat waves, we derived the 90th and 95th percentiles
of TX. For cold waves, we calculated the 10th and 5th per-
centiles of TN.

2.2.5 Event detection analysis

We identified heat wave and cold wave events us-
ing percentile-based threshold analysis at grid point-level
(Fig. 4). Heat waves were detected when TX exceeded the
90th or 95th percentile thresholds (referred to hereafter as
pct90 and pct95 events), while cold waves were identified
when TN fell below the 10th or 5th percentiles (referred to
hereafter as pctl0 and pctO5 events). The identification of
percentile exceedances was performed on the original (non-
detrended) time series. Moreover, the percentiles are relative
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to the selected reference period. Consequently, the final num-
ber of identified percentile exceedances might deviate from
the specified percentile numbers.

We consider the start of an event to be the first day the
temperature crossed the threshold, and its end to be the first
day it no longer did. If a non-qualifying day was directly pre-
ceded and followed by threshold-surpassing days, it is treated
as also being threshold-surpassing, as exemplified in Fig. 4.
A minimum duration of three consecutive days was required
for a sequence to be classified as a heat wave or cold wave,
consistent with common definitions in the climate literature
(e.g. Meehl and Tebaldi, 2004; Perkins and Alexander, 2013;
Perkins-Kirkpatrick and Lewis, 2020).

We define the event duration as the number of days be-
tween its start and end. Event magnitude was calculated as
the sum of temperature exceedances relative to the threshold
over the event duration, following e.g. Brown (2020). Human
exposure, expressed in person-days, was quantified by mul-
tiplying the population count at each grid point by the event
duration. For example, if a grid point with a population count
of 1000 people experienced a seven-day event (as illustrated
in Fig. 4), the total event exposure would be 7000 person-
days.

Event-specific metrics were stored in CSV files: with one
file per disno and one row per event at the grid point level.

2.3 Output aggregation

The hazard- and exposure-related attributes of SHEDIS-
Temperature were aggregated into output files at two spa-
tial levels: disno level and subdivision level. At the disno
level, the spatial extent is defined by the combined bound-
aries of all identified impacted subdivisions within a given
disno (Fig. 5a). At the subdivision level, the spatial extent
corresponds to the individual polygon of each subdivision
(Fig. 5b). Both levels provide the same set of attributes, in-
cluding:

— Metadata attributes

Temperature attributes averaged over the analysis pe-
riod

Extreme daily temperature attributes

Extreme 3 hourly temperature attributes

Hazard and exposure attributes from the percentile-
based event detection analysis

Additionally, results from the percentile-based threshold
analysis at the grid point level are stored in separate files
for each disno, with one row per percentile-exceeding event
(Fig. 5¢). Where applicable, the date and location of specific
attributes are also saved (e.g., the coordinate pair and date
of the warmest 3 hourly air temperature recorded at the grid
point level). The full set of attributes provided by SHEDIS-
Temperature are provided under Sect. 4.
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Figure 4. Percentile-based methodology for detecting heat waves at grid point level. Red numbers indicate the exceedance of the daily
maximum air temperature (TX) above the smoothed percentile-based threshold, which are summed to determine the event magnitude. A
minimum duration of three days is required for classification as a heat wave. If a non-qualifying day falls between threshold-surpassing days,
it is reclassified as also being threshold-surpassing. The diagram represents a synthetic time series, and the y axis does not start at zero. For
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Figure 5. Illustration of the three output levels of SHEDIS-Temperature, using the maximum duration of a 95th percentile-exceeding event
in France as an example. (a) At the disno level, the spatial extent (i.e. geometry for analysis) encompasses the combined boundaries of
all identified impacted subdivisions, with the maximum duration representing the highest value among the three subdivisions. (b) At the
subdivision level, the spatial extent corresponds to an individual impacted subdivision, where the maximum duration reflects the longest
duration at any grid point within that specific polygon. (¢) At the grid-point level, events are detected and recorded at the resolution of

individual pixels.

3 Results

3.1 Global analysis of human exposure to temperature
extremes

In building SHEDIS-Temperature, we have successfully
quantified a wide range of hazard- and exposure-related at-
tributes from 2835 administrative subdivisions associated
with 382 records of temperature-related disasters. Distinct
patterns emerge across continents regarding both extreme
temperatures and the populations bearing the brunt of these

https://doi.org/10.5194/essd-17-6379-2025

extremes. For instance, North America, Europe and northern
Asia stand out for having experienced very cold extremes in
highly populated areas (Fig. 6a). In terms of human exposure
to hot extremes, India, Pakistan and Bangladesh are notably
affected by the combination of very high temperatures and
large population numbers (Fig. 6¢).

The data gaps in Africa, the Middle East and Southeast
Asia are particularly striking and highlights a broader chal-
lenge of international disaster databases. Despite these gaps,
our results reveal a global pattern in which warmer adminis-
trative subdivisions also tend to be more populated (Fig. 6).
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Figure 6. Geographical distribution of human exposure to extreme temperatures. (a) The lowest apparent temperatures recorded within
the analysis period for each cold wave disno in the dataset. Each dot represents a subdivision, with color indicating temperature and size
representing the total population of the subdivision the year of the record. (b) Scatter plot showing the relationship between population and
temperature. Each dot represents a subdivision, with color indicating the continent. (¢, d) are analogous to (a, b) but depict the highest
apparent temperatures in heat wave-impacted subdivisions instead. The x axes in (b, d) are logarithmic for visualization purposes.

This trend is particularly pronounced in subdivisions that
have experienced heat wave disasters (Fig. 6d), emphasiz-
ing a critical challenge in the face of climate change. These
findings also underscore the importance of integrating data
across multiple risk dimensions to better identify and under-
stand risk hotspots globally.

Turning now to the results of the event detection analysis
using percentile-based thresholds. For a vast majority of the
disnos in SHEDIS-Temperature, we could detect percentile
exceeding events within the respective subdivisions and anal-
ysis periods. All 139 heat wave disnos in the dataset record
at least one pct90 event at grid point level within the defined
spatiotemporal boundaries, while 133 disnos also experience
pct95 events. For over 70 % of the heat wave disnos, pct95
events cover more than half of the analysed area. Similarly,
among the 243 cold wave disnos, 233 show pctl0 events,
and 214 also record pct05 events. For nearly 50 % of the cold
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wave disnos, pctO5 events cover more than half of the anal-
ysed area. Taken together, these results support the reliability
of EM-DAT reports and their recorded locations.

In terms of human exposure to these percentile-exceeding
events, India once again emerges as particularly affected.
All eleven disnos in our dataset with the highest number of
person-days exposed to pct95 events are recorded in India.
Thereafter follows two heat wave records from the United
States (1998 and 2011) and the 2003 heat wave in Ger-
many. Despite not being prone to the lowest absolute temper-
atures, India also ranks prominently for person-days exposed
to pct05 cold waves, accounting for five of the top ten disnos
in our sample. Other highly ranked cold wave disnos include
events in China (2011), Germany, Bangladesh, France, and
Poland (all in 2012).
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3.2 A case study from the fatal European heat waves in
2003

As previously noted, the year 2003 stands out as one of
the years with the highest number of heat wave disnos in
the dataset, driven by widespread and severe European heat
waves. Four of the five disnos in our sample with the high-
est reported fatalities in EM-DAT correspond to this event
(all disnos beginning with 2003-0391): Italy (20 089 deaths),
France (19490 deaths), Spain (15 090 deaths), and Germany
(9355 deaths)?. Among these, the French disno is the most
severe fatal impact record for which EM-DAT also includes
information on its physical magnitude (maximum tempera-
ture of 43 °C) as well as start and end dates (August 1-20).
We now examine how this information aligns with the at-
tributes provided by SHEDIS-Temperature (Fig. 7).

The highest 3 hourly air temperature recorded at the
grid point level within the impacted subdivisions, based on
MSWX data, is 41 °C on 12 August. This is slightly lower
than the magnitude reported by EM-DAT, presumably due to
the inherent limitations of gridded datasets, which may miss
localized extreme values within individual grid cells. The
highest temperatures were recorded in inland France, par-
ticularly in Haute-Vienne (Fig. 7a and b). However, there is
considerable spatial variation within subdivisions, especially
in the mountainous areas of the French Alps and the Pyre-
nees.

Almost all grid points within the analysed subdivisions
recorded pct95 events during the analysis period, with a me-
dian duration of 11d (Fig. 7c and d). The longest duration,
31d, was recorded on the island of Corsica, while the short-
est duration, lasting only a few days, occurred in coastal
Brittany. Across the entire geometry, pct95 events occurred
from 25 July—31 August. Regarding human exposure, the to-
tal population in these subdivisions was 43 million in 2003,
according to GHS-POP data. The total number of person-
days exposed to pct95 events amounted to S08 million, with
the largest numbers recorded in the region of fle-de-France,
which includes Paris (Fig. 7e and f).

3.3 Technical validation
3.3.1 Sample coverage and geocoding

The dataset includes approximately 80 % (382 out of 468)
of the heat wave and cold wave disnos recorded in EM-DAT
between 1979 and 2018, covering 243 of 293 cold waves and
139 of 175 heat waves. This coverage is limited to disnos
that have been geocoded in GDIS, which primarily depends
on the level of detail in the original location descriptions in
EM-DAT (Rosvold and Buhaug, 2021). Additionally, a small
number of subdivisions have been excluded due to geocoding

2The only disno with a higher reported fatality count is a Russian
heatwave disno from 2010, with over 55 000 fatalities recorded.
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Figure 7. Selected SHEDIS-Temperature attributes for the 2003
heat wave in France (disno 2003-0391-FRA). Panels depict the
maximum 3 hourly air temperature (a, b), duration of pct95 events
(¢, d) and human exposure expressed in person-days (e, f). The left
panels show grid point-level data, while the right panels present out-
puts at subdivision-level. Note that palette ranges vary across pan-
els, and logarithmic scales are applied for person-days.

errors in GDIS, and one misplaced GDIS centroid has been
manually corrected (see Sect. 2.1).

Our approach verifies the consistency of GDIS with EM-
DAT and eliminates dependence on GDIS-provided ISO
codes, which are not completely consistent — with certain
countries having been assigned multiple ISO codes in GDIS.
While these steps result in partial coverage of EM-DAT dis-
nos and may lead to occasional omissions of subdivisions,
they enhance the overall reliability of our dataset by ensur-
ing a high degree of confidence in the included cases.
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3.3.2 Evaluation of temperature extremes in MSWX
using E-OBS

We use meteorological data from MSWX-Past, a bias-
corrected and downscaled version of ERAS. Previous studies
show that ERAS shows reduced performance in areas with
sparse in situ observations, as it integrates remotely sensed
and ground-based measurements (Hersbach et al., 2020; Liu
et al., 2024), and MSWX likely shares this shortcoming. Ac-
curacy is also often reduced in regions with complex ter-
rain and high altitudes. For example, ERAS tends to under-
estimate wind speeds in mountainous regions (Beck et al.,
2022) which may affect the modelled apparent temperature
attributes in SHEDIS-Temperature. Additionally, errors in
2m air temperature tend to be larger in regions with com-
plex topography and high elevations, as well as deserts and
tropical rainforests (Beck et al., 2022; Liu et al., 2024). This
inevitably influences the quality of MSWX. The validation
study by Beck et al. (2022) showed that MSWX performs
comparably to ERAS over flat terrain and outperforms ERAS
in high-relief areas. This highlights the advantage of using a
high-resolution resampled variant of ERAS to capture local
variations in temperature extremes, as exemplified in Fig. 7.
To assess the reliability of the hazard attributes in
SHEDIS-Temperature, we systematically evaluated our
MSWX-derived extreme temperatures with those of the
Europe-wide dataset E-OBS (Cornes et al., 2018; Coperni-
cus Climate Change Service, 2025). The E-OBS dataset is
constructed from quality-controlled station data and interpo-
lated over a regular 0.1° grid (Cornes et al., 2018). For this
assessment, we used the daily ensemble mean of TX and TN
from E-OBS (Copernicus Climate Change Service, 2025).
We evaluated the consistency between MSWX and E-OBS
for each subdivision in our dataset fully covered by the E-
OBS grid (Fig. B1 and Table 1). We evaluated the agreement
for attributes that represent averages across the spatiotempo-
ral domain (zonally averaged across the subdivision geom-
etry and temporally averaged across the respective analysis
period; mean_tn and mean_tx) as well as the most 3 hourly
extreme value at grid point level (xy_min_tn and Xxy_max_tx)
per record at subdivision level. For each variable and record,
temperature errors were calculated as defined in Eq. (5).

€ = XMSWX — XE-OBS )

Hence, positive values represent overestimation by MSWX
in relation to E-OBS.

‘We then calculated, for each variable and subdivision, the
mean bias error (MBE), the mean absolute error (MAE) and
the root mean square error (RMSE) as defined in Eqgs. (6)—

(8).
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Table 1. Validation statistics for MSWX against E-OBS for ex-
treme daily temperatures. Statistics include the number of obser-
vations (n), mean bias error (MBE), mean absolute error (MAE),
root mean square error (RMSE), and Pearson correlation coefficient
(r). The variables mean_tn and mean_tx represent spatiotemporally
averaged values across each record’s domain, while xy_min_tn and
xy_max_tx correspond to the most extreme TN and TX values at
the grid-cell level within the domain.

Statistic mean_tn mean_tx Xy_min_tn Xy_max_tx
n 813 360 813 360
MBE 0.57 —1.41 0.56 —1.48
MAE 0.69 1.42 2.07 1.59
RMSE 0.83 1.57 2.63 1.99
r 0.99 0.97 0.94 0.92
1 n
MBE=-) "¢ (6)
i3
1 n
MAE = —Z|e,~| (7
i3
RMSE = ; ' e; (8)

Table 1 provides the results of these calculations, along with
Pearson correlation coefficients () and Fig. 8 illustrates cor-
relation between the datasets and the distribution of errors. In
general, MSWX shows small systematic biases compared to
E-OBS, with a slight overestimation of minimums and an un-
derestimation of maximums. For extreme values (xy_min_tn
and xy_max_tx), absolute errors increased, reflecting the
greater challenge of reproducing local and short-lived tem-
perature extremes. However, high correlation values seem
to reproduce both average and extreme temperature patterns
with high fidelity at the subdivision level, reinforcing our
confidence in the attributes of SHEDIS-Temperature.

3.3.3 Consistency of temperature extremes in MSWX
and EM-DAT

We also evaluated the consistency of our most extreme
3 hourly MSWX temperatures recorded at the grid point level
with the temperatures reported in EM-DAT. The latter corre-
spond to a maximum temperature for heat waves and a min-
imum temperature for cold waves. This information is, how-
ever, only available for a subset of cases, specifically 94 heat
wave disnos and 120 cold wave disnos in our sample (Fig. 9).

Overall, the agreement between MSWX and EM-DAT
is stronger for heat waves (MAE =2.6°C) than for cold
waves (MAE = 8.3°C). For heat waves, MSWX and EM-
DAT show reasonable consistency, though EM-DAT values
tend to be slightly higher, with an average bias of 0.81°C
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Figure 8. Validation of MSWX against E-OBS for extreme daily temperatures. Panels (a, b) represent minimum temperature agreement for
cold wave records, and panels (¢, d) show maximum temperatures for heat wave records (covered by the E-OBS grid). Scatter plots illustrate
agreement between the datasets, and histograms show the distribution of errors. Each dot in the scatter plots represents a subdivision-level
record. The variables mean_tn and mean_tx represent spatiotemporally averaged values across each record’s domain, while xy_min_tn and
xy_max_tx correspond to the most extreme TN and TX values at the grid-cell level within the domain. Grey lines in the scatter plots indicate
linear trend fits, with the coefficient of determination annotated — and grey lines in the histograms indicate the mean bias error. Please note

that axes intervals vary between panels.
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Figure 9. Comparison of extreme temperatures between EM-DAT and MSWX. The scatter plots illustrate the relationship between reported
temperature extremes in EM-DAT and the corresponding 3 hourly minimum (a) and maximum (b) temperatures from MSWX for 120 cold
waves and 94 heat waves, respectively. Each point represents a disno, with colours indicating the continent.

(Fig. 9a). This discrepancy may reflect the inability of grid-
ded datasets like MSWX to fully capture localized tempera-
ture extremes, as previously discussed.

A few outliers are evident. For example, a heatwave in the
Borno Province, Nigeria, in June 2002 records a maximum
temperature of 60 °C in EM-DAT, whereas the correspond-
ing MSWX estimate is 44 °C (Fig. 9b). To put these values
into context, according to the World Meteorological Organi-
sation the official highest registered air temperature on Earth
is 56.7 °C, recorded in Death Valley in the United States
(WMO Records of Weather and Climate Extremes, 2024).
This casts doubts on the veridicity of the EM-DAT record,
which likely echoes news reporting from the time describ-
ing temperatures reaching 55-60 °C in Maiduguri (The New
Humanitarian, 2002). While the EM-DAT value may some-
times be an overestimation of the actual conditions, differ-
ences between the two datasets may also reflect challenges
of global reanalysis datasets such as MSWX to capture local-
ized extreme temperatures, as shown by our evaluation using
E-OBS. For instance, MSWX will miss hot temperatures ex-
acerbated by urban heat island effects.

The comparison for cold waves exhibits greater variability
(Fig. 9a). On average, EM-DAT reports minimum tempera-
tures 1.8 °C higher than MSWX estimates, but the spread is
substantial in both directions. For instance, a group of cold
wave disnos in India show a stark contrast, with MSWX min-
imum temperatures near —40 °C, while EM-DAT reports val-
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ues slightly above 0°C (Fig. 9a). In December 2002 (disno
2002-0818-IND), for instance, EM-DAT reports a magni-
tude of 5°C across a number of regions encompassing the
most northern part of India (Bihar, Uttar Pradesh, Himachal
Pradesh, Rajasthan, Jharkhand, Jammu and Kashmir, Pun-
jab, Haryana, Delhi provinces). Within these subdivisions,
MSWX estimates a minimum of —42°C, recorded in the
mountainous Jammu and Kashmir region, which is climat-
ically diverse across altitude levels and regularly experiences
sub-zero temperatures in winter.

This discrepancy is likely driven by factors beyond dif-
ferences in temperature measurement methods. The EM-
DAT magnitude record of 5°C for the 2002 cold wave
likely comes from accounts such as “On many occasions
the average temperature was less than 5 °C for consecutive
days” (Samra et al., 2003, p. “Preface”). EM-DAT magnitude
records may thus, in some cases, reflect prolonged conditions
in areas that suffered large socioeconomic losses (e.g. agri-
cultural damage). In contrast, SHEDIS-Temperature quanti-
fies extremes across all grid points within the impacted sub-
divisions. The percentile-based event detection analysis at
the grid-point level can provide users with a more spatially
detailed representation of cold waves in regions with high cli-
matic variability. Taken together, these findings highlight the
need for systematic approaches to linking hazard magnitude
estimates with disaster impact records.
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3.3.4 Sensitivity analysis of the influence of detrending

We also conducted a sensitivity analysis to assess the influ-
ence of detrending the TX and TN time series prior to the per-
centile calculations, by deriving percentiles directly from the
non-detrended data (see Appendix C for details). The analy-
sis compared differences in the resulting percentiles and their
downstream effects on the SHEDIS-Temperature outputs.

Overall, using detrended time series resulted in slightly
less extreme percentile thresholds compared to the non-
detrended series — meaning slightly milder warmer thresh-
olds for cold wave detection and slightly cooler thresholds
for heat wave detection. The influence was also slightly
larger on percentiles for heat waves than for cold waves: the
former showed mean differences of approximately 0.05 °C
and the latter of about 0.01 °C (averaged across the spa-
tiotemporal domains for each subdivision in our sample).

The list of disnos associated with threshold-exceeding
events at grid point level remained unchanged, although
the number of subdivisions threshold exceeding events
changed slightly. The differences appeared in subdivi-
sions for which small parts of the geometries experienced
threshold-exceeding events. Regarding the relevant SHEDIS-
Temperature attributes, using non-detrended instead of de-
trended data resulted in differences of less than 1 % across
all related attributes, except for the person-day attributes for
heat wave records, which differed by maximum 2.4 %.

4 Code and data availability

SHEDIS-Temperature is publicly avail-
able from a  Harvard  Dataverse  repository
(https://doi.org/10.7910/DVN/WNOTTC; Lindersson

and Messori, 2025), with replication code published on
Zenodo  (https://doi.org/10.5281/zenodo.17571341, Lin-
dersson, 2025). The dataset is organized into two main
folder structures: one for heat waves and one for cold waves
(Fig. 10). Each folder contains four primary files, with con-
tent as outlined in Table 2. Two files (CSV and GeoPackage)
contain attributes aggregated at the disno-level, with one
row per disno. Two additional files (CSV and GeoPackage)
contain attributes aggregated at the subdivision-level, with
one row per subdivision and disno. These files do, however,
also include information derived at the grid point level. The
only distinction between the CSV and GeoPackage files is
that the latter also contain the geometries delineating the
analysis domain.

SHEDIS-Temperature also includes subfolders containing
detailed outputs from the detection of threshold-exceeding
events, with subfolder names specifying the threshold and
minimum duration used for analysis (Fig. 10). These sub-
folders contain one CSV file per disno for which threshold-
exceeding events were detected, with one row per subdivi-
sion, coordinate pair, and detected event. The information in
these files is detailed in Table 3.

https://doi.org/10.5194/essd-17-6379-2025
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SHEDIS-Temperature
heatwaves
shedis_heatwaves_disno.csv
shedis_heatwaves_disno.gpkg
shedis_heatwaves_subdivision.csv
shedis_heatwaves_subdivision.gpkg
threshold-exceeding-events

pct90-min3days
disno.csv

pct95-min3days
disno.csv

coldwaves
shedis_coldwaves_disno.csv
shedis_coldwaves_disno.gpkg
shedis_coldwaves_subdivision.csv
shedis_coldwaves_subdivision.gpkg
threshold-exceeding-events
pct10-min3days
disno.csv

pct5-min3days
disno.csv

Figure 10. Folder structure of SHEDIS-Temperature. The dataset
is organized into two main folders, each corresponding to a specific
hazard type. Within the “threshold-exceeding-events” directories,
subfolders are labeled based on the threshold and minimum dura-
tion used for analysis. Files within these subfolders are named by
their disaster identifier number (disno) from EM-DAT (e.g. “2003-
0391-FRA”).

4.1 Usage notes

SHEDIS-Temperature provides attributes for records in the
international disaster database EM-DAT, which is known
to have reporting biases, with higher coverage in advanced
economies such as those in Europe and North America
(CRED and UCLouvain, 2024; Gall et al., 2009; Osuteye
et al., 2017). Users should be mindful about this bias when
comparing disaster frequencies across continents. Further-
more, EM-DAT only records major disasters that meet at
least one of the following criteria: > 10 fatalities, > 100 af-
fected individuals, a declared state of emergency, and/or a
request for international assistance. The database’s coverage
is thus affected by exposure and vulnerability, as well as dif-
fering national criteria to declare a state of emergency.

The meteorological and population attributes in SHEDIS-
Temperature are derived from global gridded products. As
such, the results should be interpreted with caution at local
scales. Consequently, SHEDIS-Temperature includes admin-
istrative subdivisions at the level-1 (province/equivalent) and
level-2 (county/district/equivalent) scales, but not finer.

Earth Syst. Sci. Data, 17, 6379-6403, 2025
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Table 2. Attributes available in files beginning with “shedis”. These files are provided in both CSV and GeoPackage formats at two spatial
levels: the disno level (one row per disno) and the subdivision level (one row per disno and subdivision). This table lists attributes for
heat waves in files beginning with “shedis_heatwaves”, including: TX (daily maximum temperature) and ATX (daily maximum apparent
temperature). For cold waves, these attributes are replaced with TN (daily minimum air temperature) and ATN (daily minimum apparent
temperature). Attributes from the event detection analysis are here denoted as “pctXX”, with pct90 and pct95 applied to heat waves, and
pet10 and pctO5 applied to cold waves. Variables prefixed with “xy_" represent values calculated at the grid-point level, while all other hazard-
related variables have been spatially averaged over the corresponding geometry. An asterisk (*) denotes attributes available exclusively in

the GeoPackage format.

Type Attribute Unit Description
Metadata iso3c - ISO-3 character country code.
country - Country name.
disno - Disaster identifier number in EM-DAT.
subtype - Hazard subtype in EM-DAT (heat wave or cold wave)
gadm_gid - Administrative subdivision identifier in GADM.
gadm_level - Administrative level of subdivision in GADM
(province/equivalent =1,
county/district/equivalent = 2).
gadm_name - Administrative subdivision name in GADM.
geometry* - Simplified polygon of administrative subdivision

boundaries.
geometry_area_km?2 km? Area of “geometry”.
geometry_pop persons Population total of administrative subdivision the year
of “analysis_start”.
analysis_start - Start date period of analysis.
analysis_end - End date period of analysis.
Attributes representing temporal averages mean_t °C Average daily-mean air temperature.
across the entire period of analysis
mean_at °C Average daily-mean apparent temperature.
mean_tx °C Average daily-max air temperature.
mean_atx °C Average daily-max apparent temperature.
The most extreme daily mean values max_t | max_t_date °C | date Maximum daily-mean air temperature, with recording
recorded within the period of analysis. date.
Xy_max_t| °Cldate|° Maximum daily-mean air temperature at grid
xy_max_t_date | point-level, with recording date and coordinates.
Xy_max_t_coord
max_at | max_at_date °C | date Maximum daily-mean apparent temperature, with
recording date.
Xy_max_at | °Cldate|° Maximum daily-mean apparent temperature at grid
Xy_max_at_date | point-level, with recording date and coordinates.
Xy_max_at_coord
The most extreme 3 hourly values recorded  max_tx | max_tx_date °C | date Maximum daily-max air temperature, with recording
within the period of analysis. date.
Xy_max_tx | °Cldate|° Maximum daily-max air temperature at grid
xy_max_tx_date | point-level, with recording date and coordinates.
Xy_max_tx_coord
max_atx | °C | date Maximum daily-max apparent temperature, with
max_atx_date recording date.
Xy_max_atx | °Cldate|° Maximum daily-max apparent temperature at grid

Xy_max_atx_date |
Xy_max_atx_coord

point-level, with recording date and coordinates.

We reiterate that localized extreme temperature events oc-
curring at spatial scales smaller than the grid resolution are
not fully captured. The aggregation from hourly ERAS5 data
to the 3 hourly MSWX time steps may also obscure short-
lived temperature peaks. The technical validation against the
station-based E-OBS dataset indicated higher agreement for
the spatiotemporally averaged extreme temperature attributes

Earth Syst. Sci. Data, 17, 6379-6403, 2025

(mean_tn and mean_tx) compared to the 3 hourly grid-point
attributes (xy_mean_tn and xy_mean_tx). The analysis also
showed that MSWX slightly underestimates temperature ex-
tremes for both attribute types. Nonetheless, correlation co-
efficients exceeded 0.9 across all variables, supporting the
overall reliability of the hazard metrics derived from MSWX.
It should be noted, however, that the validation was per-
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S. Lindersson and G. Messori: SHEDIS-Temperature: impacts, meteorology, and exposure 6395
Table 2. Continued.
Type Attribute Unit Description
Hazard and exposure variables from the pctXX_area_percentage % Percentage of geometry area that experienced at least
threshold analysis at grid point level one event.
petXX_pop persons Population that experienced at least one event.
petX_persondays person-days  Population exposure of events.
petXX_median_duration days Median duration of all events detected within the
geometry.
petXX_max_duration days Duration of the longest event detected within the
geometry.
petXX_days days Total number of days during which at least one grid

petXX_dates

point experienced an event.
- List of dates for which at least one grid point in the
geometry experienced an event.

formed only for air temperature over Europe, and not for ap-
parent temperature or regions outside Europe.

Our dataset is provided at two spatial levels: the disno-
level and subdivision-level. We anticipate that the disno-
level data will be particularly useful for comparative anal-
yses across countries, while the subdivision-level data will
facilitate the examination of within-country variations.

The spatial boundaries of the SHEDIS-Temperature anal-
ysis are limited to the administrative subdivisions recorded
as impacted locations in EM-DAT, where “impacted” refers
to areas affected by socioeconomic losses. As a result, these
boundaries are not meant to outline the spatial extent of the
meteorological events per se. These boundaries also outline
the domain for the analyses at grid point level.

For the percentile-based detection analysis, we enforce
a minimum duration of three consecutive days for heat
waves and cold waves, a widely used criterion in extreme
temperature studies (e.g. Meehl and Tebaldi, 2004; Perkins
and Alexander, 2013; Perkins-Kirkpatrick and Lewis, 2020).
This is, however, more conservative than the definition
by EM-DAT of two days or longer (CRED and UCLou-
vain, 2024). While this kind of methodological choices
will always be, to some extent, arbitrary we think that
the main benefit of SHEDIS-Temperature is the appli-
cation of consistent methodological choices across all
records to ensure comparability. Users who prefer differ-
ent event detection settings can use our publicly available
R-scripts (https://doi.org/10.5281/zenodo.17571341, Linder-
sson, 2025) to do so.

We highlight below some key practical usage points to
note:

— To link SHEDIS-Temperature with EM-DAT, users can
match the disaster identifier code (“disno”) present
in both datasets, but in EM-DAT currently written as
“DisNo.”.

— Users should ensure UTF-8 encoding is used when read-
ing SHEDIS files to correctly display location names.

https://doi.org/10.5194/essd-17-6379-2025

— For projecting coordinate-specific CSV outputs to raster
files, users should adopt the same grid as MSWX.

— The polygons in the GeoPackage files in SHEDIS-
Temperature are simplified versions of the original
polygons from GADM v3.6. To access the original
polygons, users may retrieve the “gadm_gid” identifiers
in SHEDIS-Temperature, which correspond to “GID_1”
for level-1 subdivisions and “GID_2" for level-2 subdi-
visions in GADM.

— The R scripts used to generate SHEDIS-Temperature
outputs are available on Zenodo (Lindersson, 2025) as R
Markdown files, along with an accompanying ReadMe
file.

5 Conclusions

International databases of socioeconomic disaster impacts
are essential for disaster risk research, yet they display im-
portant geographic coverage biases. The data gap is par-
ticularly striking in Africa, the Middle East and Southeast
Asia, and addressing it will require continued efforts from the
global disaster research community. Nonetheless, it is criti-
cal to maximize the usefulness of the data that we do have
available. SHEDIS-Temperature addresses this need by en-
riching the information about major temperature-related dis-
asters across five continents.

By providing detailed hazard information — such as tem-
perature thresholds, duration, and geographic distribution —
and linking it to exposure data (e.g., population counts during
threshold-exceeding events), SHEDIS-Temperature enables
more comprehensive analyses of past temperature-related
disasters. For instance, users may calculate mortality rates
by combining EM-DAT’s fatality numbers with the expo-
sure information in SHEDIS-Temperature. Researchers can
further combine SHEDIS-Temperature with other socioe-
conomic and political indicators. This type of information
is essential for statistical studies of how risk varies across
time and regions. Ultimately, we think that this also can en-
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Table 3. Attributes in CSV files in the folders named “threshold-exceeding-events”. The files are named according to their respective
disaster identifier number (disno) from EM-DAT and contain one row per subdivision and event. Each event is identified using percentile-
based thresholds at grid point-level. This table lists attributes for heat waves, including TX (daily maximum air temperature) and ATX (daily
maximum apparent temperature). For cold waves, these attributes are replaced with TN (daily minimum air temperature) and ATN (daily
minimum apparent temperature). Results are provided for thresholds of analysis using the 90th and 95th percentiles for heat waves and the
10th and 5th percentiles for cold waves, as explicitly indicated in the subfolder names and the “mean_pctXX”-attribute.

Type Attribute Unit Description
Metadata disno - Disaster identifier number in EM-DAT.
subtype - Hazard subtype in EM-DAT (heat wave or cold wave).
gadm_gid - Administrative subdivision identifier in GADM.
gadm_level - Administrative level of subdivision in GADM
(province/equivalent =1,
county/district/equivalent = 2).
gadm_name - Administrative subdivision name in GADM.
analysis_start date Start date period of analysis.
analysis_end date End date period of analysis.
X ° Longitude of grid point.
y ° Latitude of grid point.
cf - Coverage fraction (i.e. share of) of grid cell located
within subdivision boundaries.
area_km?2 km? Area of grid point, scaled with “cf”.
pop persons Population of grid point the year of the event, scaled
with “cf”.
Overarching event information event_start date Start date of the event
event_end date End date of the event
mean_pctXX °C Average percentile-based threshold across the event
days.
duration days Event duration.
persondays person-days  Human exposure of event at grid point-level by
multiplying “pop” with “duration”.
magnitude °C Temperature exceedance over or below threshold
summed across all event days.
Temporal averages across all event days. mean_t °C Average daily-mean air temperature.
mean_at °C Average daily-mean apparent temperature.
mean_tx °C Average daily-max air temperature.
mean_atx °C Average daily-max apparent temperature.
The most extreme daily mean values max_t | max_t_date °C | date Maximum daily-mean air temperature, with recording

recorded within the event period.

date.

max_at | max_at_date °C | date Maximum daily-mean apparent temperature, with
recording date.
The most extreme 3 hourly values recorded  max_tx | max_tx_date °C | date Maximum daily-max air temperature, with recording
within the event period. date.
max_atx | °C | date Maximum daily-max apparent temperature, with

max_atx_date

recording date.

hance the understanding of social and societal vulnerabili-
ties, revealing how exposure to extreme temperatures inter-
sects with socioeconomic factors over time and across re-
gions.

At first glance, the results from SHEDIS-Temperature ev-
idence a concerning trend: more populated subdivisions tend
to face higher temperatures, a pattern that will likely inten-
sify as climate change progresses. The intersection of rising
temperatures and population growth will amplify risk, partic-
ularly in regions already facing the most severe temperature-
related disasters. Identifying such risk hotspots underscores
the importance of collecting data across the entire disaster

Earth Syst. Sci. Data, 17, 6379-6403, 2025

risk spectrum in a systematic manner, and of making the
outputs accessible to an interdisciplinary set of disaster re-
searchers.
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Appendix A: Supplementary figure of the sample at
subnational level
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Figure A1. Spatial distribution of administrative subdivisions linked to SHEDIS-Temperature disaster records. A total of 1274 distinct
subdivisions is linked to 382 disaster records in the SHEDIS-Temperature sample. Panel (a) shows the 931 distinct level-1 administrative
units (provinces or equivalents) and panel (b) shows the 343 distinct level-2 administrative units (counties, districts, or equivalents). Colours
indicate the number of times each subdivision is linked to a disaster record in the sample.
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Appendix B: Supplementary figure from the MSWX
evaluation with E-OBS
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Figure B1. Spatial distribution of administrative level 1 subdivisions included in the technical validation against the E-OBS dataset. Colours
indicate the error e as defined in Eq. (5), where positive values represent overestimation by MSWX relative to E-OBS. Some subdivisions
are associated with multiple records per hazard type, for which mean e values are shown. Only level 1-units are visualized to avoid spatial
overlap and because they constitute the majority of the sample, although level 2-units were also included in the validation analysis.

Appendix C: Sensitivity analysis of the influence of
detrending prior to percentile calculation

This appendix presents the results of the sensitivity analysis
evaluating the influence of detrending the TX and TN time
series prior to percentile calculation. Percentiles were here
derived directly from the non-detrended data, and all subse-
quent processing steps were repeated. The sensitivity analy-
sis then assessed the impact of detrending on (a) the resulting
percentiles, which serve as thresholds in the event detection
analysis, and (b) the downstream effects on the SHEDIS-
Temperature outputs.

Here we define differences between the two methods fol-
lowing Eq. (C1).

Difference = Xpon-detrended — Xdetrended (CDn

Hence, a positive difference indicates that the value derived
from the non-detrended time series is higher than that from
the detrended series, whereas a negative difference indicates
that the detrended series yields a higher value.

C1 Influence on percentiles

Turning first to how detrending of TX and TN time series in-
fluences the percentile values subsequently used in the event

Earth Syst. Sci. Data, 17, 6379-6403, 2025

detection analysis. Percentiles were calculated for each day
of the year and grid cell, while here we present values av-
eraged across the spatiotemporal domain of each SHEDIS-
Temperature subdivision (i.e. zonally averaged across the ge-
ometry and temporally averaged over the analysis period).

Both Table C1 and Fig. C1 show that the differences are
somewhat larger for percentiles based on TX (pct90 and
pct95) than for those based on TN (pctl0 and pct05). The
mean differences and standard deviations were also greater
for the 5th and 95th percentiles than for the 10th and 90th
percentiles. This indicates that the detrending choice affects
results for the heat wave records at the 95th percentile level
the most. However, the (spatiotemporally averaged) per-
centile differences between the methods are generally small,
with maximum deviations of —0.33 °C for pct05 and 0.42 °C
for pct95.

C2 Influence on SHEDIS-Temperature outputs

Next, we assessed how the relatively small differences in
percentile values between the detrended and non-detrended
methods affected the subsequent SHEDIS-Temperature out-
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Table C1. summarizes the differences between the detrended and non-detrended methods. Using detrended time series resulted in slightly
less extreme percentile thresholds compared to the non-detrended series: marginally warmer thresholds for cold wave detection and slightly
cooler thresholds for heat wave detection. Figure C1 also illustrates these differences across the full temperature range.

Statistic Pct10 Pct05 Pct90 Pct95
n 1796 1796 1039 1039
Mean —0.007 —0.011 0.041 0.056
Mean absolute values 0.025 0.034 0.047 0.063
SD 0.036 0.047 0.051 0.067
Range [-0.21,0.15] [-0.33,0.21] [-0.08,0.24] [—0.08,0.42]

puts. We first provide an overview by comparing the num-
ber of subdivisions and disnos for which threshold-exceeding
events were detected using each method (Table C2). The
results here refer to the event detection analysis at grid
point level. The number of disnos associated with threshold-
exceeding events remained unchanged, whereas the total
number of subdivisions with detected threshold-exceeding
events varied slightly, with a maximum difference of four
subdivisions per percentile-level.

Differences in total counts do not necessarily imply that
events were detected in the same subdivisions. At the 10th
percentile level, seven cold-wave subdivisions were flagged
as experiencing threshold-exceeding events in either the de-
trended or non-detrended method, but not both; this number
increased to 16 subdivisions at the 5th percentile level. For
heat waves, six subdivisions were flagged at pct90 and six at
pct95. In general, these differences occurred in subdivisions
where threshold-exceeding events covered small portions of
the geometry area.

Finally, we summarize the influence of detrending on
relevant subdivision-level attributes across all SHEDIS-
Temperature records (Table C3). Using non-detrended time
series instead of detrended series resulted in relative differ-
ences of less than 1 % for all attributes, except for the person-
day attributes for pct90 and pct95, which differed by maxi-
mum 2.4 %.

Table C2. Changes in the number of subdivisions with at least one threshold-exceeding event at grid point level, depending on whether
detrending was applied prior to percentile calculation. The event detection analysis was conducted in all 1796 subdivisions associated with
the 243 cold wave disnos, and all 1030 subdivisions associated with 132 heat wave disnos. The percentage values refer to the share of
subdivisions or disnos in the sample.

Cold waves Subdivisions with ~ Disnos with ~ Subdivisions with ~ Disnos with

pctl0-events  pctl0-events pctO5-events  pctO5-events
Detrended TN 1680 (93.5%) 233 (95.9 %) 1416 (78.8 %) 214 (88.1 %)
Non-detrended TN 1681 (93.6 %) 233 (95.9 %) 1420 (79.1 %) 215 (88.5 %)
Heat waves Subdivisions with ~ Disnos with ~ Subdivisions with ~ Disnos with

pct90-events  pct90-events pct95-events  pct95-events
Detrended TX 1000 (96.2 %) 139 (100 %) 903 (86.9 %) 133 (95.7 %)
Non-detrended TX 996 (959 %) 139 (100 %) 899 (86.5%) 133 (95.7 %)
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Table C3. Changes in relevant attributes of the SHEDIS-temperature outputs. The difference is defined as the values coming from using the
non-detrended time series minus the detrended time series.

Attribute Non-detrended Detrended  Difference  Percentage change

Characteristics for detected pct10-events (cold waves)

Median duration (average across subdivisions) 5.576443 5.583036 —0.00659 —0.12%
Pop (sum across subdivisions) 5.15 x 102 5.15 x 10° 4065942 0.08 %
Pop (average across subdivisions) 3066577 3065982 594.8601 0.02 %
Person-days (sum across subdivisions) 4.14x 1010 415x1019 —1.1x108 —0.26 %
Person-days (average across subdivisions) 24640112 24718 644 —78531.4 —0.32%

Characteristics for detected pct05-events (heat waves)

Median duration (average across subdivisions) 4.466197 4.483051 —0.01685 —0.38%
Pop (sum across subdivisions) 3.01 x 10° 3 x 10° 17077238 0.57 %
Pop (average across subdivisions) 2122835 2116771 6063.489 0.29 %
Person-days (sum across subdivisions) 1.85x 1010 1.84 x 1010 1.24 x 108 0.67 %
Person-days (average across subdivisions) 13057993 13007 330 50662.84 0.39 %

Characteristics for detected pct90-events (heat waves)

Median duration (average across subdivisions) 5.294679 5.2965 —0.00182 —0.03 %
Pop (sum across subdivisions) 752x10°  7.54x10° —2.1x 107 —0.28%
Pop (average across subdivisions) 7545502 7536705 8796.925 0.12%
Person-days (sum across subdivisions) 942x 1010 954x1019 —12x10° —1.24%
Person-days (average across subdivisions) 94594276 95383439 —789163 —0.83%

Characteristics for detected pct95-events (heat waves)

Median duration (average across subdivisions) 4767519 4.810078 —0.04256 —0.89 %
Pop (sum across subdivisions) 579%10°  5.83x10° —3.8x107 —0.65%
Pop (average across subdivisions) 6440748 6453757 —13009.1 —0.20%
Person-days (sum across subdivisions) 485x 1010 497x1019 —12x10° —2.43%
Person-days (average across subdivisions) 54000 604 55070407 —1069803 —1.98 %
(@ 10th percentile of TN () 5¢h percentile of TN
04 04
G 02 G 02
Py Py
2 oo 2 oo
(7] [
2 g
0 -02 0-02
-04 -04
-50 -40 -30 -20 -10 0 10 20 30 -50 -40 -30 -20 -10 0 10 20 30
10th percentile of TN, non-detrended (°C) 5th percentile of TN, non-detrended (°C)
I Cold waves Heat waves
(€)  90th percentile of TX (d)  95th percentile of TX
04 04
5’3 02 § 02
Y Py
2 00 2 00
o o
£ £
0 -02 8-02
-04 -04
10 20 30 40 50 10 20 30 40 50
90th percentile of TX, non-detrended (°C) 95th percentile of TX, non-detrended (°C)

Figure C1. Scatter plots of percentile differences (°C) across temperature levels. Panels (a, b) illustrate percentiles used for cold wave
records (pct10 and pctOS from TN), and panels (¢, d) show for heat-wave records (pct90 and pct95 from TX). Each dot represents a SHEDIS-
Temperature record at the subdivision level, with percentile values averaged across its spatiotemporal domain. Differences are defined as
percentile values from the non-detrended time series minus those from the detrended time series. Black lines denote linear trend fits.
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