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Abstract. South America is a global hotspot for land use and land cover (LULC) change, marked by dra-
matic agricultural land expansion and deforestation. While previous studies have documented land use and land
cover changes in South America over recent decades, there is still a lack of spatially explicit and time-series
maps of crop types that capture shifts in crop distribution. Therefore, developing high-resolution, long-term, and
crop-specific datasets is crucial for advancing our understanding of human—environment interactions and for as-
sessing the impacts of agricultural activities on carbon and biogeochemical cycles, biodiversity, and climate. In
this study, we integrated multi-source data, including high-resolution remote sensing data, model-based data, and
historical agricultural census data, to reconstruct the historical dynamics of four major commodity crops (i.e.,
soybean, maize, wheat, and rice) in South America at an annual timescale and 1 km x 1 km spatial resolution
from 1950 to 2020. The results showed that soybean and maize cultivation expanded rapidly in South America
by encroaching on other vegetation (i.e., forest, pasture/rangeland, and unmanaged grass/shrubland) over the
past 70 years, whereas wheat and rice areas remained relatively stable. Specifically, soybean is one of the most
dramatically expanded crops, increasing from essentially zero in 1950 to 48.8 Mha in 2020, resulting in a total
loss of 23.92 Mha of other vegetation. In addition, the area of maize increased by a factor of 2.1 from 12.7 Mha in
1950 to 26.9 Mha in 2020. The newly developed crop type dataset provides important insights for assessing the
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impacts of cropland expansion on crop production, biodiversity, greenhouse gas emissions, and carbon and nitro-
gen cycles in South America. Moreover, these data are instrumental for developing national policies, sustainable
trade, investment, and development strategies aimed at securing food supply and other human and environmental
objectives in South America. The datasets are available at https://doi.org/10.5281/zenodo.14002960 (Xu et al.,

2024).

1 Introduction

South America is of critical importance due to its substan-
tial contribution to global agriculture, which is essential for
meeting the world’s growing food demand (Ceddia et al.,
2014; Hoang et al., 2023). Cropland expansion in this re-
gion has been a significant driver of land use transformation,
particularly through deforestation, with profound effects on
ecosystems and biogeochemical processes (Song et al., 2021;
Zalles et al., 2021). As one of the main types of land use and
land cover (LULC), cropland plays a crucial role in support-
ing human nutritional needs and ensuring food security (He
etal., 2017; Yu and Lu, 2017). However, to meet the growing
demand for food and fiber driven by population growth and
consumption patterns, cropland has increasingly encroached
on natural vegetation (Winkler et al., 2021). Additionally,
economic and policy factors have reshaped crop cultivation
structures across the region (Cheng et al., 2023; Mueller and
Mueller, 2010; Song et al., 2021). These changes are driven
by a combination of trade dynamics, investment flows, and
market concentration (Boyd, 2023; Clapp, 2021). As a result,
the transformation of crop types has occurred, weakening the
resilience of agroecosystems and contributing to biodiversity
loss (Frison et al., 2011; Renard and Tilman, 2019). In re-
sponse to these challenges, the international community has
increasingly emphasized the need to align agricultural sys-
tems with climate mitigation and food security goals (ICJ,
2025). Therefore, an improved understanding of the spatial
distribution and historical dynamics of crop types is urgently
needed to assess the impacts of cropland expansion and crop
pattern shifts across South America. Such insights are crucial
for evaluating the environmental and socioeconomic conse-
quences of cropland expansion, particularly in terms of its
impact on climate, ecosystems, and food security.
Agriculture in South America has experienced signifi-
cant changes driven by agricultural policies, socioeconomic
shifts, and technological innovations after the 1950s (Altieri,
1992; Ceddia et al., 2014; Zalles et al., 2021). These changes
have not only reshaped regional economies, as in other his-
torical periods of agrarian reform, but also been justified by
global food security goals, alongside such other important
drivers as trade relationships, investors, subsidies, and debt-
serving goals (Boyd, 2023; OAS, 2024). In this context, crop
cultivation has shifted from traditional crops to high-yield
and high-demand commodity crops, reflecting both the in-
creasing global demand for food and fuel and the urgent need
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to enhance agricultural efficiency and yields (Garrett et al.,
2013; Meyfroidt et al., 2014). Specifically, the major com-
modity crops (i.e., maize, soybean, wheat, and rice) have be-
come the core of agricultural production in South America
(FAO, 2020). The cultivation of these crops has not only sig-
nificantly boosted food production in the region but also se-
cured a strong position for many producers in the global food
market. After the 1950s, countries in South America (e.g.,
Bolivia, Brazil, Chile, Colombia, Ecuador, and Peru) under-
took land reforms to reduce land concentration and promote
agricultural production (De Janvry et al., 1998), which sig-
nificantly affected land use outputs and efficiency and laid
a substantial foundation for the development of agriculture
(De Janvry et al., 1998; Munoz and Lavadenz, 1997). Af-
ter the 1980s, neoliberal economic reforms were further car-
ried out in South America, accelerating the ongoing agri-
cultural modernization (Chonchol, 1990) and greatly facil-
itating the cultivation of soybeans by eliminating price con-
trols and export restrictions on agricultural products (Cam-
pos Matos, 2013). Since the 2000s, soybean production has
continued to grow dramatically due to global demand, tech-
nological advances, economic subsidies, and other support-
ive policies (de LT Oliveira, 2017; Song et al., 2021). This
growth has further bolstered the expansion of maize culti-
vation, driven by the promotion of maize—soybean cropping
systems; the adoption of direct-seeding, no-tillage practices;
and double cropping (Klein and Luna, 2022). In comparison,
the area under wheat and rice cultivation has remained rela-
tively stable. Although there is a growing demand for wheat,
its market price is less fluctuating, leading farmers, farm
managers, and investors to prefer crops with higher market
returns (Erenstein et al., 2022). Meanwhile, rice primarily
serves domestic demand rather than being export-oriented
(Dawe et al., 2010). Despite government reports and docu-
ments that have recorded changes in the dynamics of agricul-
ture in South America over the past few decades, there is still
a lack of spatially explicit and time-series maps of historical
crop types that reflect changes in crop distribution. This de-
ficiency makes it difficult to fully understand the spatial and
temporal evolution of major commodity crops and hinders
understanding of their impacts on environmental changes.
Many efforts have produced commodity crop maps at re-
gional or global scales. For example, datasets such as the
Spatial Production Allocation Model (SPAM) (Yu et al.,
2020), M3 (Monfreda et al., 2008), and CROPGRIDS (Tang
et al., 2023) offer valuable solutions by providing detailed
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crop type information based on census data and spatial allo-
cation algorithms. SPAM, for instance, provides data on crop
area, yield, and production for 42 major crops at a spatial
resolution of 5 arcmin under four farming systems. However,
these datasets have a coarse spatial resolution and are avail-
able for only a few years, which makes it challenging to accu-
rately characterize the spatial-temporal distribution of crop
types at finer scales (Becker-Reshef et al., 2023; Ye et al.,
2024). In contrast, with the continuous evolution of remote
sensing technologies, high-resolution data have increasingly
been used to develop fine-scale crop type maps. For example,
Song et al. (2021) developed annually updated soybean maps
with a 30 m resolution for South America from 2000 to 2023
using all Landsat and MODIS images and a probability sam-
ple of continental field observations. MapBiomas also pro-
vides high-resolution crop type maps for Argentina, Brazil,
and Uruguay, covering the period from 1985 to the present
(De Abelleyra et al., 2020; Petraglia et al., 2019; Souza and
Azevedo, 2017). However, these existing datasets are avail-
able only at partial national or local scales, cover only a sin-
gle crop type, or lack rigorous validation. Furthermore, most
remote sensing data date back only to 1985, making it chal-
lenging to depict crop dynamics further back. Therefore, it
is imperative to develop high-resolution and time-series crop
type data for driving terrestrial ecosystem models to quan-
tify the impact of crop dynamics on ecosystems and climate.
Such a dataset will draw on innovations in earth science and
data use to contribute to related fields that address the “ad-
vance of the agricultural frontier” in South America and its
implications for human—environmental interactions (Liu et
al., 2007; OAS, 2024).

In this study, we aim to develop an annual and 1km
crop-specific (i.e., soybean, wheat, maize, and rice) grid-
ded dataset for South America from 1950 to 2020 by in-
tegrating agricultural census data and remote-sensing-based
and model-based crop type distribution maps. This study fo-
cuses on understanding how the spatial-temporal patterns of
these four commodity crops have evolved over the past seven
decades and how these changes have influenced land use
transitions in South America. The dataset is designed to sup-
port research on agricultural land use change, its ecological
impacts, and food security, offering insights into the effects
of agricultural expansion on deforestation, biodiversity loss,
and greenhouse gas emissions. It provides critical informa-
tion for policymakers, researchers, and stakeholders engaged
in sustainable agriculture, thereby assisting in the develop-
ment of strategies that balance agricultural production with
environmental conservation.

2 Materials and method

2.1 Study area

This study aims to reconstruct crop type (i.e., soybean,
wheat, maize, and rice) data at annual and 1km reso-
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Figure 1. Geopolitical and administrative divisions of South Amer-
ica.

Iution from 1950 to 2020 in South America using the
high-resolution remote-sensing-based crop type data, model-
based crop type data, and historical agricultural census data.
We focused on generating data for the 13 countries in South
America, including Argentina, Bolivia, Brazil, Chile, Colom-
bia, French Guiana, Ecuador, Guyana, Paraguay, Peru, Suri-
name, Uruguay, and Venezuela (Fig. 1). Considering the
data availability, we excluded the Falkland Islands and South
Georgia and the South Sandwich Islands. We used GADM
version 4.1 Level 1 administrative units (i.e., province level)
as the basic unit for this study, which included a total of
243 administrative units (Table S1 in the Supplement). More-
over, to maintain consistency with historical agricultural
census data, some administrative units were regrouped and
merged for area calibration. Specifically, we merged Buenos
Aires and Ciudad de Buenos Aires in Argentina; Bogotd
D.C. and Cundinamarca in Colombia; Asuncién and Central
in Paraguay; Callao, Lima, and Lima Province in Peru; and
all regions together in French Guiana. Ultimately, a total of
237 administrative units were used to reconstruct historical
cropland density and crop type data (Table S1).

2.2 Workflow

The structure of this paper includes three main sections
(Fig. 2). The first section provides a detailed description of
the input data and methods. The second section performs a
comprehensive analysis of the spatial and temporal charac-
teristics of four major commodity crops over the past seven
decades. The third section compares the results of this study
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with other existing datasets and analyses the driving forces
and uncertainties associated with the reconstructed data.

2.3 Input data
2.3.1 Gridded datasets and preprocessing

In this study, we used both remote-sensing-based and model-
based LULC and crop type data to generate cropland den-
sity maps and crop type base maps in South America.
As shown in Table 1, CGLS-LC100, GLC_FCS30D, and
HYDE 3.2 were used to generate cropland density maps.
SPAM 2010, GEOGLAM, GLAD, Argentina MNC, Map-
Biomas, and Uruguay LC were used to generate base maps
for crop types, and HILDA+ was used for land use transition
analysis.

Copernicus Global Land Service Land Cover Map (CGLS-
LC100). CGLS-LC100 is a newly developed global LULC
dataset with 100 m spatial resolution from 2015 to 2019, con-
taining 23 land use types (Buchhorn et al., 2020). This prod-
uct uses PROBA-V 100 m time-series data and high-quality
land cover training samples to construct a land cover classifi-
cation model with 80 % accuracy at Level 1. It has been com-
pared to other popular LULC products and proven to perform
better, making it a good choice for generating a base map for
cropland density maps (Tsendbazar et al., 2019).

Global 30 m Land Cover Dynamics Monitoring Dataset
(GLC_FCS30D). GLC_FCS30D is a global land cover prod-
uct with a 30 m resolution based on continuous change detec-
tion algorithms (Zhang et al., 2024). It uses a detailed clas-
sification system containing 35 land cover classes, covering
the period from 1985 to 2022. The update cycle is 5 years
before 2000 and annually after 2000. Moreover, it combines
a continuous change detection algorithm, local adaptive clas-
sification models, and a spatial-temporal refinement method
for dense time series to describe the land cover dynamics,
verifying that the overall accuracy of the basic classification
system for the 10 major land cover types exceeds 80 %.

The History Database of the Global Environment (HYDE
version 3.2). HYDE 3.2 uses a spatial allocation algorithm to
generate spatially explicit maps from 10 000 BCE to 2017 CE
by integrating historical statistical data with recent satel-
lite information (Klein Goldewijk et al., 2017). It includes
cropland (irrigated and rainfed crops and irrigated and rain-
fed rice), grazing land (pasture and rangeland), and popula-
tion maps with 5 arcmin spatial resolution. Numerous studies
have demonstrated that HYDE 3.2 provides an excellent ba-
sis for reconstructing cropland density for historical periods
(Li et al., 2023; Mao et al., 2023).

Historic Land Dynamics Assessment+ (HILDA+).
HILDA+ is a comprehensive global dataset designed to
track changes in land use and cover from 1899 to 2019
at a spatial resolution of 1km (Winkler et al., 2021). This
dataset is notable for integrating multiple datasets, including
high-resolution remote sensing data, land use reconstruc-
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tions, and long-term statistical records. HILDA+ captures
the dynamics of various land use categories, such as urban
areas, cropland, pasture/rangeland, forests, unmanaged
grass/shrublands, and areas with sparse or no vegetation.

Spatial Production Allocation Model (SPAM 2010).
SPAM 2010 integrates high-resolution remote sensing data
and agricultural statistics to generate a comprehensive prod-
uct of crop area, yield, and production (Yu et al., 2020).
This dataset enhances previous models by including data for
42 major crops under four different farming systems across
a global 5 arcmin grid. SPAM2010 addresses the limitations
of administrative-level agricultural statistics by disaggregat-
ing them to a finer spatial resolution, thereby revealing the
diversity and spatial patterns of agricultural production.

Group on Earth Observations Global Agriculture Mon-
itoring (GEOGLAM). GEOGLAM is a global and up-to-
date crop type map at 0.05° spatial resolution for four major
commodity crops: wheat, maize, rice, and soybeans (Becker-
Reshef et al., 2023). The development process involved ex-
tensive dataset selection and unification, considering factors
such as seasonality, spatial resolution, accuracy, and data
source specificity. These criteria ensure that the final maps
are both accurate and useful for operational agricultural mon-
itoring.

Global Land Analysis & Discovery (GLAD). GLAD pro-
vides soybean maps with a 30 m resolution for South Amer-
ica covering the period from 2000 to 2023 (Song et al.,
2021). The products were derived by integrating all Land-
sat and MODIS images captured during the growth stage of
soybeans. GLAD soybeans maps cover all major biomes in
South America (i.e., Pampas, Chiquitania, Chaco, Cerrado,
Atlantic Forest, Amazonia, and the Pantanal and Caatinga
biomes). Validated using a probability sample of field obser-
vations across the continent, the GLAD soybean maps have
an overall accuracy exceeding 94 % with both high user’s and
high producer’s accuracy.

MapBiomas provides land use and land cover maps with
a 30 m resolution for Argentina, Brazil, and Uruguay, which
include the major land use and cover types, as well as some
crop-specific information (e.g., soybean and rice). Argentina
MNC provides detailed crop type maps (e.g., soybean, maize,
and rice) with a 30 m resolution for Argentina from 2018 to
2022 (De Abelleyra et al., 2020). The data were generated
by supervised classification of Landsat-8 observations using
a random forest classifier to independently classify different
agricultural zones, achieving an overall accuracy exceeding
80 % for both summer and winter crops. MapBiomas Brazil
was generated using all available Landsat observations cov-
ering 1985 to 2022 and processed in Google Earth Engine,
achieving an overall accuracy of around 80 % in most biomes
at Level 1 (Souza and Azevedo, 2017). An integrated land
cover/use map of Uruguay (Uruguay LC) was also generated
in 10 m resolution with crop-specific information from 2018
(Petraglia et al., 2019).

https://doi.org/10.5194/essd-17-6353-2025
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Figure 2. The flowchart of this study. CNA refers to Census National Agriculture.

To reconstruct the historical cropland and crop type dy-
namics, all datasets needed to be preprocessed. First, the
high-resolution datasets (i.e., CGLS-LC100, GLC_FCS30D,
GLAD, Argentina MNC, MapBiomas, and Uruguay LC)
were aggregated to a 1 km resolution to attain the fractional
cropland and crop type. Second, HYDE 3.2, SPAM 2010,
and GEOGLAM were resampled to 1km spatial resolu-
tion using the bilinear method. Finally, the projection of all
datasets was transformed into WGS84 for further analysis,
with all processes carried out in Google Earth Engine.

2.3.2 Inventory datasets

The inventory datasets were collected at three levels: na-
tional, provincial, and municipal. The national data mainly
come from the Food and Agriculture Organization (FAO),
while the provincial and municipal data primarily come from
agriculture censuses released by governments (Table 2). Ul-
timately, a total of 136 provincial-level statistics on LULC
and crop-specific information from 13 countries were col-
lected and sorted to reconstruct historical crop-specific ar-
eas at the provincial level. Additionally, 10 municipal-level
statistics were used to evaluate the crop-specific maps gener-
ated in this study.

https://doi.org/10.5194/essd-17-6353-2025

2.4 Generating cropland density maps

We used both gridded and inventory datasets to generate
cropland density maps at a resolution of 1km x 1 km, cov-
ering the period from 1950 to 2020 (Fig. 2). All gridded
datasets used in this section were first aggregated to a com-
mon spatial resolution of 1km. All subsequent operations,
including trend operation, interpolation, and cropland den-
sity adjustment, were performed at this resolution to en-
sure spatial consistency. Specifically, the reconstruction pro-
cess consists of the following steps: (1) the reconstruction
of a total cropland area at the provincial level covers the
period from 1950 to 2020. In this step, we mainly used
two complementary interpolation approaches: ratio-based in-
terpolation and linear interpolation. For years with avail-
able national-level cropland area but missing provincial-level
cropland area, we estimated provincial-level cropland area
by scaling the nearest known provincial-level cropland area
according to the relative change in national-level cropland
area (Eq. 1). This assumes that provincial-level changes fol-
low the same relative trend as those observed on the na-
tional scale. From 1961 to 2020, national cropland areas
from FAO were used to calculate annual change rates. For
years prior to 1961, we relied on agricultural census records

Earth Syst. Sci. Data, 17, 6353-6377, 2025
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Table 1. The datasets used in this study. C: cropland; M: maize; R: rice; S: soybean; W: wheat. For data sources, please refer to Table S3.
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Dataset Resolution Year range Category used Reference
CGLS-LC100 100 m, global, 2015-2019 C Buchhorn et al. (2020)
annual
GLC_FCS30D 30m, global 1985-2022 C Zhang et al. (2024)
5-year interval
(1985-2000),
annual (2000-2022)
HYDE 3.2 5 arcmin, global, 1950-2000 C Klein Goldewijk et al. (2017)
10-year interval
HILDA + 1 km, global, 1899-2019 8 categories Winkler et al. (2021)
annual
SPAM 2010 5 arcmin, global 2010 M,R,S, W Yu et al. (2020)
GEOGLAM 0.05°, global Integration of crop type M Becker-Reshef et al. (2023)
data from 2010 to 2020
GLAD 30 m, all major biomes 2020 S Song et al. (2021)
where soybeans are
cultivated in South
America, annual
Argentina MNC 30 m, Argentina 2020 S,M,R De Abelleyra et al. (2020)
MapBiomas 30 m, Brazil 2020 S Souza and Azevedo (2017)
Uruguay LC 10 m, Uruguay 2018 R Petraglia et al. (2019)

or HYDE data. In cases where neither provincial nor na-
tional cropland areas were available, we applied linear in-
terpolation between known provincial cropland areas. Since
data availability and reference years differ across countries,
the reconstruction was performed separately for each coun-
try. (2) Second, we generated the potential cropland density
maps with a resolution of 1km x 1 km from 1950 to 2020.
Based on the definitions of various datasets and a compar-
ison of total cropland area at the provincial level, we se-
lected CGLS-LC100 (2015-2019), GLC FCS30D (1985-
2022), and HYDE (1950-1990) as sources to generate poten-
tial cropland density maps (Tables S1 and S2 and Fig. S1 in
the Supplement). Since CGLS-LC100 and the reconstructed
cropland area exhibit high agreement at the provincial level
(R2 =0.92, RMSE =0.46 Mha), we choose CGLS-LC100
as the baseline data for generating the potential cropland
density maps. To extend cropland density maps prior to the
availability of CGLS-LC100, we employed a backward pro-
jection method using GLC_FCS30D and HYDE. Specifi-
cally, we selected CGLS-LC100 in 2015 as the base map for
GLC_FCS30D and 1990 as the base year for HYDE due to
its decadal resolution. We then projected cropland density
backward by applying annual or decadal fractional changes
from these two datasets to their respective base maps. Ac-
cordingly, we applied the following rules to handle dataset
integration.

Earth Syst. Sci. Data, 17, 6353-6377, 2025

a. GLC_FCS30D >0, CGLS_LC100>0: the relative
change in cropland density between the years (e.g.,
2014 to 2015 from GLC_FCS30D) was applied directly
to the corresponding CGLS-LC100 grid cell.

b. GLC_FCS30D > 0, CGLS-LC100=0: the product of
any change rate and zero yields zero; thus, the cropland
density for that year and grid cell remained zero.

c¢. GLC_FCS30D =0, CGLS-LC100 > 0: this implies no
recorded change in cropland presence; thus, the CGLS-
LC100 value was retained without adjustment.

A similar method was applied when using HYDE to recon-
struct cropland density maps prior to 1985, with decadal
change rates applied to the 1990 baseline. Since HYDE pro-
vides data at decadal intervals, we applied linear interpola-
tion to fill in the annual gaps between 1950 and 1985 on a
grid-by-grid basis. (3) Third, we adjusted the potential crop-
land density maps using reconstructed provincial-level crop-
land area to obtain an annual cropland density map between
1950 and 2020 (Eq. 2). If the cropland density of a grid is
less than O or greater than 1, we assign it a value of O or 1, re-
spectively. This adjustment process is repeated until the dif-
ference between the adjusted area and the total cropland area

https://doi.org/10.5194/essd-17-6353-2025
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Table 2. The inventory datasets used in this study. NAT: national; PRO: provincial; MUN: municipal; C: cropland; M: maize; R: rice;
S: soybean; W: wheat; P: production. CNA: National Agricultural Census; INDEC, INE, IBGE, and INE are the national statistics and
census bureaus of the corresponding countries. Due to the large number of data sources, detailed information is provided in Table S3.

Country Resolution Year range Category  Source
. PRO, MUN INDEC
Argentina 5- to 10-year interval 1960-2018 C,M,R, S, W CNA
PRO
.. Annual (1984-2022) 1950-2020 MRS, W INE
Bolivia
PRO 1950, 1984, 2013 C CNA
MUN 1950 C,M,R,S, W
PRO
. 5- to 10-year interval 1940-2006 P IBGE
Brazil
PRO . 1970-2017 C,M,R,S, W CNA
5- to 10-year interval
MUN 1995, 2017 C,M,R,S, W
PRO INE
Chile 10-year interval 1997-2020 C.M,R,S, W CNA
MUN 2007 C,M,R,S, W
PRO
. 5-year interval (1996-2011)  1960-2019 C,M,R,S, W
Colombia L a1 (2011-2019) CNA
MUN 1960 M,R
Ecuador PRO . 1995-2020 C,M,R,S,W CNA
10-year interval
ilr\llr;lllal 1960-2016 R
Guyana CNA
PRO
Annual (2007-2016) 1994-2016 R
PRO 2008, 2020 C
Paraguay CNA
PRO
Annual (2000-2022) 199172020 M.R.S.W
Peru PRO 1929, 1993 M,R,S, W CNA
PRO 2012 C
Suriname PRO 1995, 2008 M,R,S, W CNA
PRO 2008 C
Uruguay PRO 1990, 2000 M,R,S,W CNA
Venezuela PRO 1995 M,R CNA
Global NAT 1961-2020 C,M,R,S,W FAO
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at the provincial level is less than 100 ha.

Reference data, ;

CropArea, ; ; = CropArea, g ;. ; X

(D
Reference data, ;1 j
where CropArea. s ; and CropArea s ;y; are the recon-
structed cropland area of province s in country ¢ in year i
and i + j and Reference data.; and Reference data. ; ; are
the reference values for the total cropland area in country ¢
in year i and i 4 j, respectively. Between 1961 and 2020, the
value of j is 1, while before 1961, the value of j corresponds
to the year difference in the reference data.

n
(TotalArea -y Gridk)

Grid), = Gridy + . , @)

n

where Grid) is the adjusted cropland density for the kth grid,
Gridy, is the potential cropland density, “TotalArea” is the re-
constructed cropland area at the provincial level, and n is the
total number of valid crop grids (cropland density > 0) in a
province.

2.5 Generating gridded crop-specific maps
2.5.1 Building crop-specific base map for the year 2020

We set 2020 as the base year and generated the base map of
four commodity crops (i.e., maize, rice, soybean, and wheat)
by integrating multiple remote-sensing-based and model-
based datasets. First, considering that high-resolution crop
distribution maps do not cover the whole of South Amer-
ica, we used the resampled SPAM 2010 data to generate
the initial base map. We then replaced the corresponding re-
gions with higher-resolution data available for around 2020.
Specifically, the base map for maize was generated from
Argentina MNC (2020) and SPAM (2010). The base map
for soybean was generated from Argentina MNC (2020),
MapBiomas (2020), GLAD (2020), Uruguay LC (2018), Ar-
gentina MNC (2020), and SPAM (2010). The base map for
wheat was generated from GEOGLAM (2020). Finally, we
used reconstructed crop-specific harvested area in 2020 at the
provincial level to further adjust the base map (Eq. 2).

2.5.2 Reconstructing the annual crop-specific harvested
area at the provincial level

Long-term historical crop-specific harvested areas at the
provincial level were reconstructed from 1950 to 2020 using
multiple sources of historical inventory data (Table 2). The
detailed reconstruction processes are described below. First,
the time series of crop-specific harvested areas at the provin-
cial level were obtained from the National Agricultural Cen-
sus (CNA), the national statistics office (e.g., INDEC, IBGE,
and INE, etc.), and the literature.

Second, anomaly values in the time series of crop-specific
harvested area were identified and removed through visual
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inspection, based on the assumption that harvested area typ-
ically follows a gradual upward or downward trend over
time. Years with abrupt deviations inconsistent with adja-
cent values were flagged as potential anomalies. Third, the
FAO trend was used to fill the gaps between 1961 and 2020
(Eq. 1). Fourth, in countries where harvested area statistics
were unavailable, crop-specific harvested areas were recon-
structed using production data, based on the strong corre-
lation between production and harvested area (R> =0.92,
Eq. 3). Specifically, in Brazil from 1950 to 1970, provincial-
level crop production data were used to estimate harvested
areas, as no public statistics data were available during this
period. For countries with no available data before 1961, we
maintain consistency using the data from 1961. Finally, the
liner interpolation was used to fill the crop-specific harvested
area with the missing values.

Prod, s.i
Prod; s i+ j

CTArea, 5 ; = CTArea 5 ;1 X 3)

where CTArea, g j and CTArea. s ;4 are the reconstructed
crop-specific harvested area of province s in country ¢ in
year i and i + j and Prod.s; and Prod ;4 ; are the crop
production of province s in country ¢ in year i and i + j.

2.5.3 Spatializing provincial-level data to generate
annual crop-specific maps

The reconstructed crop-specific harvested area at the provin-
cial level was spatially allocated to the grid level based on the
generated crop-specific base map and annual cropland den-
sity to obtain 1km crop-specific maps from 1950 to 2020.
Specifically, we took 2020 as the baseline and used the ra-
tio of cropland density between two adjacent years to obtain
the density of the crop-specific harvested area in the previ-
ous year (Eq. 4). We assumed that the interannual trend in
crop-specific harvested area is consistent with the trend in
area changes in cropland density. To ensure that the allocated
area is consistent with the total harvested area at the provin-
cial level, we further adjusted the allocated crop-specific har-
vested area using Eq. (2).

CropDensity;, ;_;

CTDensity; ; | = x CTDensity; ;,  (4)

CropDensityy ;

where CTDensityy ;—1 and CTDensityy ; are the density of
crop-specific harvested area for the kth grid in years i and i —
1 and CropDensityy ;—1 and CropDensityy ; are the cropland
density for the kth grid in years i and i — 1.

2.5.4 Analyzing crop-specific land use transitions

To assess the transitions between land use and specific crop
types, we first converted the annual crop-specific density
maps into Boolean crop type maps for each year from 1950
to 2020, following the method described by Li et al. (2023).
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For each crop and year, grid cells were ranked in descending
order based on crop-specific density. Boolean values (pres-
ence = 1, absence = 0) were then assigned to the top-ranked
grid cells until the cumulative area matched the reconstructed
provincial-level harvested area within a 100 ha margin. This
allocation was performed sequentially for soybean, maize,
wheat, and rice, based on the availability and reliability of
high-resolution crop-specific datasets. In particular, soybean
and maize were prioritized because they are supported by
well-validated spatial products (e.g., GLAD and Argentina
MNC), which offer a reliable basis for anchoring the al-
location and maintaining spatial consistency with observed
crop distributions. To identify land use transitions associated
with specific crops, we overlaid the annual Boolean crop type
maps with the annual land use maps from the Historic Land
Dynamics Assessment+ (HILDA+) (Winkler et al., 2021).
This spatial overlay allowed us to determine which crop
types occupied areas that had been newly converted cropland
in a given year. It is important to note that this approach as-
sumes that the spatial allocation based on crop-specific den-
sity rankings reflects the dominant crop type established after
cropland conversion. While this process introduces some un-
certainty, the method offers a consistent and spatially explicit
framework for attributing land use change processes to spe-
cific crops in the absence of pixel-level crop rotation data.

2.6 Accuracy assessment

We performed accuracy assessments using three strategies:
(1) we compared crop-specific areas derived from existing
gridded products with those from this study at the provin-
cial level. To ensure the reliability of the assessment, we
used data from years not included as inputs, serving as
an independent reference for the evaluation — i.e., Map-
Biomas (2000, 2005, and 2010), SPAM (2000 and 2005),
GEOGLAM (2020), GLAD (2005 and 2010), and Brazil
Conba (2017-2020, Table S3). (2) We validated recon-
structed crop-specific maps in this study with crop-specific
areas collected from agricultural censuses at the municipal
level. (3) We performed visual comparisons using existing
remote-sensing-based high-resolution data (Argentina MNC,
GLAD, Uruguay LC, and WorldCereal) at the grid level.
This process is primarily evaluated by calculating the dif-
ference between the fraction of our developed data and the
fraction of other datasets within each grid. Given the lim-
ited availability of high-resolution data, we began by com-
paring data from around 2020 —i.e., Argentina MNC (2020),
Uruguay LC (2018), and WorldCereal (2021). Additionally,
GLAD data (2001, 2010, and 2020) were used for long-term
series comparisons. For evaluation at the provincial and mu-
nicipal levels, we used the coefficient of determination (R2,
Eq. 5), normalized root mean square error (nRMSE, Eq. 6),
and slope (Eq. 7) to quantify the performance of our de-
veloped crop-specific data relative to other datasets. Higher
R? values, lower nRMSE, and a slope closer to 1 indicate
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better agreement between actual and estimated crop-specific
areas, and vice versa.

n

(xi —yi)*
R =1- l:”l— ()
> (i — %)
i=1
% > (i — i)
i=1
PRMSE=1"— (6)
X

slope = - , @)

where n represents the number of samples, x; and y; are the
actual and estimated crop-specific areas for the ith sample,
and x and y represent the average of the actual crop-specific
areas.

3 Results

3.1 Dynamics of crop types from 1950 to 2020 in South
America

Figure 3 shows the spatial pattern of soybean, wheat, maize,
and rice from 1950 to 2020 in South America. Overall, there
has been a significant increase over time in the area and den-
sity of cultivation for all major crops. Soybean and maize
have expanded significantly in Argentina and Brazil. Specif-
ically, soybean was practically not cultivated in South Amer-
ica in 1950, with small amounts starting to appear in 1980.
After 2000, soybean cultivation increased significantly, cov-
ering large areas in central and southern Brazil and cen-
tral Argentina. Maize was initially cultivated mainly in cen-
tral Argentina, southern Brazil, and northern Colombia and
Venezuela. The extent and density of maize cultivation grad-
ually increased, showing a trend of expansion from south to
north. Rice is cultivated in a relatively small area in South
America, mainly in Uruguay; in northern parts of Colom-
bia and Venezuela; and in the Brazilian states of Maran-
hao, Tocantins, and Rio Grande do Sul. Except for an in-
crease in the extent of cultivation around 1980, there has
been relatively little change in the rest of the years. Wheat
is more concentrated in southern South America, including
the provinces of Buenos Aires, Cérdoba, and Santa Fe in
central Argentina; Rio Grande do Sul in southern Brazil;
and Araucania and Biobio in central Chile. Between 1950
and 2020, the extent of wheat cultivation remained relatively
stable. Additionally, we calculated the changes in the total
area of different crops in different countries and the whole
of South America (Figs. 4 and S2). Soybean is the crop with
the most rapid change in the area, growing from 0.08 Mha
in 1950 to 48.8 Mha in 2020, a 610-fold increase. The area
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Figure 3. The spatial pattern of soybean, maize, rice, and wheat
from 1950 to 2020. The first, second, third, and fourth rows repre-
sent the crop-specific fraction of soybean, maize, rice, and wheat.
Crop-specific density represents the proportion of a given crop
within each 1 x 1km grid.

of maize showed a slow growth trend until 2000, increas-
ing from 12.7 Mha in 1950 to 16.5 Mha in 2000. Since 2000,
the growth rate has gradually increased, reaching a total area
of 26.9 Mha in 2020, with an average annual growth rate of
6.8 times higher than that of the pre-2000 period. The area of
rice increased gradually before 1980, growing from 3.2 Mha
in 1950 to 6.7 Mha in 1980, followed by a gradual decline,
falling back to 3.8 Mha by 2020. In contrast, wheat is rel-
atively stable, increasing slightly from 7.6 Mha in 1950 to
7.9 Mha in 2020. At the country level, Brazil has the largest
area of soybean, maize, and rice, while Argentina has the
largest area of wheat. These trends reflect the significant agri-
cultural transformations in South America. The rapid growth
in soybean and maize cultivation is especially notable, align-
ing with global shifts in commodity markets, while rice and
wheat have shown more moderate changes over time.
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Figure 4. Temporal changes in crop-specific areas in South Amer-
ica during 1950-2020.

3.2 Crop-specific land use transitions

Over the past 70 years, soybean and maize have ex-
panded dramatically through encroachment on other vege-
tation, including forest, pasture/rangeland, and unmanaged
grass/shrubland (Fig. 5 and Table 3). Specifically, 24.49 Mha
of the forest was converted into the four major crops. Addi-
tionally, 13.82 Mha of pasture/rangeland, 11.26 Mha of un-
managed grass/shrubland, and 0.20 Mha of sparse/no veg-
etation were also converted. Most of this conversion was
into soybean, accounting for 23.92 Mha, which represents
48.1 % of the total converted area. Regarding crops, differ-
ent types exhibit varying extents of spatial expansion and en-
croachment on other vegetation. The total area of soybean
encroaching upon forest, pasture/rangeland, and unmanaged
grass/shrubland was 12.26, 5.26, and 6.39 Mha, respectively.
The growth rate of encroachment upon forests increased
rapidly from 0.05Mhayr—! in 1950-1980 to 0.32 Mha yr~!
in 2000-2020. In terms of spatial distribution, soybean en-
croachment occurred mainly in the Brazilian provinces of
Mato Grosso, Parand, and Rio Grande do Sul, as well as
in southeastern Paraguay and central Bolivia for forests; in
eastern Argentina and parts of Brazil for pasture/rangeland;
and at the confluence of the provinces of Maranhdo, Piaui,
and Bahia for grasslands. On the other hand, the total area of
maize encroachment from forest, pasture/rangeland, and un-
managed grass/shrubland was 9.22, 5.44, and 3.57 Mha, re-
spectively. The growth rate of encroachment from forests in-
creased from 0.13Mhayr~! in 1950-1980 to 0.36 Mhayr !
in 2000-2020. The spatial pattern of maize encroachment
was similar to that of soybean. The expansions of other crops
are smaller in area compared to soybeans and maize and
more dispersed in their spatial distribution. Overall, cropland
expansion led to significant reductions in other vegetation,
with the most dramatic increase occurring in staple crops,
particularly soybean and maize.
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Table 3. Statistics of transition areas in South America from 1950 to 2020 (unit: Mha).

Transition types 1950-1980  1980-2000 2000-2020  1950-2020

Past Present
Soybean 1.43 1.92 6.47 12.26
Maize 4.00 3.07 7.26 9.22
Forest Wheat 1.14 0.38 1.16 1.76
Rice 1.11 0.88 0.80 1.25
Sub-total 7.68 6.25 15.69 24.49
Soybean 0.87 1.00 2.81 5.26
Maize 335 2.94 5.04 5.44
Pasture/rangeland ~ Wheat 1.75 1.27 1.59 2.08
Rice 1.30 1.34 1.30 1.04
Sub-total 7.27 6.55 10.74 13.82
Soybean 0.92 0.49 1.03 6.39
Unmanaged Maize 2.00 0.82 1.76 3.57
grass/shrubland Wheat 1.07 0.64 0.59 0.91
Rice 0.99 0.14 0.25 0.39
Sub-total 4.98 2.09 3.63 11.26
Soybean 0.00 0.00 0.00 0.01
Sparse/no Maize 0.10 0.07 0.08 0.12
vegetation Wheat 0.01 0.01 0.01 0.01
Rice 0.02 0.02 0.03 0.06
Sub-total 0.13 0.10 0.12 0.20

3.3 Evaluation of the crop-specific maps

3.3.1 Evaluation against existing datasets at the
provincial level

We compared the crop-specific areas (i.e., soybean, wheat,
maize, and rice) derived from existing datasets with the crop-
specific maps developed in this study at the provincial level
(Fig. 6). We used gridded datasets that were not involved
in the base map generation to ensure independence from
the reconstruction process, including MapBiomas (soybean
and rice in 2000, 2005, and 2010), SPAM (soybean, wheat,
maize, and rice in 2000 and 2005), GEOGLAM (soybean,
maize, and rice), GLAD (soybean in 2005 and 2010), and
Brazil Conab (soybean and rice from 2017 to 2020). The soy-
bean areas from this study are consistent with Brazil Conab
(Fig. 6a: R*>=1, slope=1.38) and SPAM (R?=0.96,
slope = 1.15) but lower than those from MapBiomas (R? =
0.99, slope =1.41), GEOGLAM (R2 =0.92, slope = 1.49),
and GLAD (R? =0.91, slope = 1.56). The wheat areas from
this study are consistent with SPAM (Fig. 6b: R? =0.93,
slope = 1.15). The maize areas from this study are generally
consistent with SPAM (Fig. 6¢c: R? =0.94, slope =1.01).
However, they differ significantly from those of GEOGLAM
(R? = 0.65, slope = 3.36). For rice, the areas from this study
match well with Brazil Conba (Fig. 6d: R> = 1, slope = 1.93)
and SPAM (R? = 0.87, slope = 1.15) but differ significantly
from those of GEOGLAM (R? = 0.70, slope =0.83) and
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MapBiomas (R? = 0.66, slope = 0.55). Generally, the crop-
specific areas reconstructed in this study were consistent with
other datasets, with most R? values exceeding 0.87, except
for maize and rice in GEOGLAM and wheat in MapBiomas.
This suggests that our method is reliable in reconstructing
crop-specific areas at the provincial level despite some dis-
crepancies. These discrepancies may be attributed to varia-
tions in data sources, processing methods, or classification
criteria.

3.3.2 Evaluation using inventory data at the municipal
level

To ensure the effectiveness of the evaluation, we collected
crop type areas from various countries across different
years at the municipal level to evaluate our reconstructed
crop type maps (Argentina: 1960, 2008, and 2018; Bo-
livia: 1950; Brazil: 1995, 2006, 2017; Chile: 2017; Colom-
bia: 1960; Paraguay: 2008). Figure 7 shows the compari-
son results of crop-specific areas for soybean, wheat, maize,
and rice at the municipal level between census data and
this study. We used R? and nRMSE to quantify the pre-
cision and reliability of our data. Specifically, the soybean
and wheat areas derived from this study fit well with those
from census data (soybean: R?2 =0.93, nRMSE = 0.0106;
wheat: R? =0.79, nRMSE =0.0151), whereas the perfor-
mance of the maize and rice is less accurate (maize: R2 =
0.65, nRMSE =0.0143: rice: R = 0.61, nRMSE =0.0184).
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Figure 5. Spatial pattern of transitions between LULC and crop-
specific areas from 1950 to 2020. (a) 1950-1980; (b) 1980-2000;
(¢) 2000-2020; (d) 1950-2020. Pasture: pasture/rangeland. Shrub:
unmanaged grass/shrubland.
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Additionally, the spatial pattern of soybean, maize, wheat,
and rice proportions (i.e., crop-specific area/municipal area)
is consistent with the census data (Figs. 8 and S3-S5). Soy-
bean cultivation in Brazil is concentrated in the southern and
central regions, and the soybean proportions derived from
this study are relatively close to the census data, with mi-
nor over- and underestimates in only a few areas, such as
Parana and Rio Grande do Sul. On the other hand, Argentina
shows a similar geographical distribution pattern, with the
main cultivation areas concentrated in the central region but
with overestimation in some areas. The main concentration is
in the provinces of Cérdoba and Buenos Aires. The areas for
the remaining three crops (i.e., maize, wheat, and rice) are
in good agreement with the census data, except for Brazilian
maize in 2017, which is slightly underestimated in central
Brazil.
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3.3.3 Evaluation using satellite-based datasets at the
grid level

We also compared satellite-based crop type maps with our re-
constructed data at the grid level. Due to the lack of crop type
maps for the whole of South America, we used Argentina
MNC and Uruguay LC as baselines for the comparison of
soybean, wheat, and maize. However, some maps generated
by satellite data do not distinguish wheat from winter cere-
als (Van Tricht et al., 2023), so we used the resampled GE-
OGLAM as the baseline for the comparison of wheat. Fig-
ure 9 shows the spatial comparison of soybean, wheat, maize,
and rice between satellite-based data and reconstructed data
at the grid level. The results of the estimation of the pro-
portion of soybean, wheat, maize, and rice cultivation show
high agreement with the satellite data in terms of spatial dis-
tribution. However, there were slight over- or underestimates
in some areas, especially in regions with concentrated crop
cultivation. The percentage histograms provide detailed in-
formation on the distribution of differences, with most of
the differences being less than 10 %, indicating that the es-
timation results of this study are generally reliable. Since
most satellite-based crop maps are from around 2020 and
are used as base maps to reconstruct historical crop distri-
butions, we used soybean time-series data from GLAD to
further assess the reliability of our reconstructed data. We
chose 2001, 2010, and 2020 for comparison, with only the
2020 data used to construct the base map in Sect. 2.5.1. As
shown in Fig. 10, the estimates from this study also show
high agreement with the GLAD data in terms of spatial dis-
tribution for 2001, 2010, and 2020, with differences of less
than 10 %.

4 Discussion

4.1 Comparison with other datasets

We first compared the area changes of four main crops
(maize, rice, soybean, and wheat) in South America from
1950 to 2020 using FAO, GEOGLAM, GLAD, SPAM, and
our reconstructed data (Table 4). Before 2000, the soybean
area reconstructed in this study was highly consistent with
FAO data, but after 2000, the reconstructed soybean area
was lower. This discrepancy mainly originates from coun-
tries with larger soybean areas, such as Argentina and Brazil
(Fig. S6). The census data we used were collected from the
national statistical offices and the agricultural census inven-
tory. In contrast, FAO data are mainly provided by mem-
ber countries, making it challenging to ensure data accuracy
(FAOSTAT). Additionally, Song et al. (2021) reported that
the soybean area in the major biomes of South America in-
creased from 26.4 Mha in 2001 to 55.1 Mha in 2019, which
is comparable to the data reconstructed in this study and
shows greater consistency at the country level. It is worth
noting that SPAM also used provincial-level data for model-
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Figure 6. Comparison of crop type areas between this study and existing datasets (gridded datasets that were not involved in reconstruction
process, i.e., Brazil Conba (2017-2020), MapBiomas (2000, 2005, 2010), SPAM (2000, 2005), GEOGLAM (2020), GLAD (2005, 2010)) at
the provincial level. (a) Soybean; (b) wheat; (c) maize; (d) rice. The numbers in parentheses represent the total number of samples.

ing, but the total soybean area is consistent with FAO and
higher than that in this study. This is because SPAM cor-
rected the allocation results using FAO national-level data,
whereas our results were corrected based on provincial-level
statistics (Yu et al., 2020). On the other hand, the soybean
area in GEOGLAM is much higher than in other datasets.
This difference arises because GEOGLAM integrates crop-
specific maps at global and regional scales, spanning a wide
range of periods (Becker-Reshef et al., 2023). For the re-
maining three crops (i.e., maize, wheat, and rice), our re-
constructed data and other datasets showed high agreement
across South America. However, the area of maize derived
from GEOGLAM data is much higher than the others, for
the reasons discussed above. Therefore, due to the lack of
high-resolution data for wheat and relatively stable wheat
area after 2010, we used only the GEOGLAM wheat dis-
tribution map as a base map. Additionally, the comparison
with multiple reference datasets shows that slope values be-
tween our reconstructed cropland area at the provincial level
vary across sources (Fig. 6). When compared to SPAM — a
dataset that also incorporates official statistics — the slope val-
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ues are largely within the range of 0.90 to 1.21 across crop
types, indicating strong agreement and suggesting that our
product is reliable in representing provincial-scale cropland
distribution. In contrast, comparisons with remote-sensing-
based datasets exhibit larger deviations. These discrepancies
are expected due to differences in data sources and classi-
fication uncertainties. Overall, our reconstructed data are in
good agreement with other existing datasets and utilize finer-
grained statistics to generate spatially explicit crop type dis-
tribution maps.

Additionally, we performed a comparison of the distri-
bution of different crop types at both spatial and temporal
scales (Figs. 11 and 12). Specifically, the spatial distribu-
tion of soybean, maize, and rice is highly consistent with
the high-resolution crop-specific distribution maps derived
from remote sensing imagery and has a higher spatial res-
olution compared to GEOGLAM, providing more detailed
information on crop-specific cultivation patterns. Due to the
lack of high-resolution wheat distribution maps, we used
WorldCereal as a potential wheat distribution map for com-
parison. WorldCereal is a winter cereal map that includes
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Figure 7. Comparison of the crop-specific areas between this study and census data at the municipal level. (a) Soybean; (b) wheat; (¢) maize;
(d) rice. The municipal-level inventory data used include Argentina (1960, 2008, and 2018), Bolivia (1950), Brazil (1995, 2006, and 2017),

Chile (2017), Colombia (1960), and Paraguay (2008).

wheat, barley, and rye (Van Tricht et al., 2023). Although
Fig. 11 demonstrates strong spatial agreement between our
reconstructed data and existing high-resolution crop maps for
2020, some of these maps were also used to construct the
base map, which may partially account for the high levels
of consistency. To further evaluate the temporal reliability of
our dataset, GLAD, being the only soybean distribution maps
in South America with a high-resolution and long-duration
time series and validation accuracy, allows us to compare
spatial distributions of reconstructed data over time (Song
et al., 2021). As shown in Fig. 12, we selected the Brazil-
ian state of Mato Grosso, one of the most significant regions
for soybean expansion since 2000, as an example to present
comparative results. GLAD maps show clear signals of fron-
tier expansion, while our results emphasize more gradual in-
tensification. This difference may be attributed to the fact that
our reconstruction is based on harmonized census data and
historical cropland density, which may limit its ability to cap-
ture abrupt shifts as precisely as the high-resolution satellite-
based maps. Nevertheless, our results remain broadly con-
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sistent with high-resolution products in terms of spatial pat-
terns. Importantly, our dataset provides long-term, annu-
ally resolved crop-specific maps from 1950 to 2020, fill-
ing key temporal gaps that satellite-only datasets cannot ad-
dress. Thus, despite limitations in detecting fine-scale expan-
sion, the HISLAND-SA (HIStory of LAND transformation
by humans in South America) dataset complements existing
remote-sensing products by offering a coherent and histori-
cally extended view of crop type dynamics in South America.

4.2 Drivers of crop type changes

Agricultural expansion has led to dramatic land use changes
in South America over the past few decades (Potapov et al.,
2022; Winkler et al., 2021). In this study, we reconstructed
crop-specific maps for South America over the past 70 years
by integrating agricultural census data, model-based data,
and remote-sensing-based crop type data and quantified the
land use transitions caused by agricultural expansion. Our re-
sults show that the soybean area in South America increased
from nearly zero in 1950 to 48.8 Mha in 2020. In South
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data from this study. The soybean and maize maps are from Argentina MNC, the rice map is from Uruguay LC, and the wheat map is from

GEOGLAM due to the lack of high-resolution data.

America, soybeans were initially cultivated on small farms
primarily to provide animal feed and serve as a rotation crop
adjunct to wheat (Klein and Luna, 2021). By the 1970s, the
soybean industry began to emerge, driven by the surge in
global protein meal prices (Richards et al., 2012; Warnken,
1999), new geopolitical alliances, and grain—livestock—fuel
dynamics (de LT Oliveira, 2017). Simultaneously, the Brazil-
ian National Agricultural Research Centre of Brazil (i.e.,
Embrapa) developed new soybean varieties adapted to the
tropical climate and successfully introduced them into the
Cerrado region in the Brazilian Midwest, which contributed
to the “tropicalization of the soybean” and significantly ex-
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panded the soybean cultivation area (Klein and Luna, 2021).
Driven by market-oriented reforms, globalization, and ad-
vancements in technology, the total soybean exports have
burgeoned, further leading to a surge in soybean acreage
(da Silva et al., 2021; Song et al., 2021). However, such a
dramatic expansion in the soybean area is bound to have far-
reaching consequences for land use change in South Amer-
ica. Over the past 70 years, soybean expansion has led to
the loss of nearly 23.92 Mha of other vegetation, with forest
accounting for 12.26 Mha, pasture/rangeland for 5.26 Mha,
and unmanaged grass/shrubland for 6.39 Mha (Table 3). This
extensive land use change has led to several environmen-
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Figure 10. Spatial comparison of soybean maps between satellite-based high-resolution data (i.e., GLAD soybean) and the reconstructed

data from this study for the years 2001, 2010, and 2020.

tal problems, including biodiversity loss, carbon emissions,
land degradation, and water pollution (Baumann et al., 2017;
Fearnside, 2002; Fehlenberg et al., 2017; Pengue, 2005; Song
et al., 2021). Additionally, maize expansion is also one of the
primary factors contributing to land use change and environ-
mental threats in South America. Until the 1990s, changes
in maize area were relatively stable and concentrated in tra-
ditional agricultural regions (e.g., the Pampas region in Ar-
gentina and the southern region in Brazil), primarily for do-
mestic consumption as a major source of food for humans
and livestock (Warnken, 1999). After the year 2000, maize
cultivation in South America witnessed rapid growth, with
maize being widely used not only as a food crop but also for
biofuel production (Costantini and Bacenetti, 2021). During
this period, maize acreage and yield increased significantly,
with Brazil and Argentina becoming two of the world’s
leading producers and exporters of maize (Klein and Luna,
2022). By 2020, the maize area in South America had in-
creased by a factor of 2.1 compared to 1950, encroaching on
a total of 18.35 Mha of other vegetation, including 9.22 Mha
of forests, 5.44 Mha of pasture/rangeland, and 3.57 Mha of
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unmanaged grass/shrubland (Table 3). Despite the impor-
tance of soybean and maize in the agricultural expansion of
South America, wheat and rice have maintained their posi-
tion as the main food crops. The expansion of soybean and
maize cultivation has largely encroached on non-traditional
farmland, such as forest and pasture, while wheat- and rice-
growing areas have changed less. For wheat and rice, the
change in area has remained relatively stable over the past
70 years, generally staying between 5 and 10 Mha. Wheat
and rice are grown in relatively stable areas to ensure food
security, even though other crops may offer higher economic
returns (Jat et al., 2016). Additionally, several governments
in South America have traditionally provided sustained pol-
icy support for wheat and rice cultivation, encouraging farm-
ers to maintain a certain level of cultivation to ensure a stable
food supply (Altieri, 1992; Warnken, 1999). The more re-
cent notable expansions in South America invite attention to
be given to the broader economic and legal changes that have
facilitated or incentivized these drastic farming and agricul-
ture changes, including through capital, finance, trade, and
investment dynamics (Pistor, 2019; Saab, 2018).
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Table 4. Comparison of crop-specific areas with other datasets in
South America from 1950 to 2020 (unit: Mha).

Corps Year This FAO SPAM GEOGLAM

study

1950 0.08 - - -
Sovbeay 1980 1128 1146 - -
OYPEAN o000 25.02 2417 24.50 -
2020 48.83 59.89 - 54.05
1950 12.72 - - -
Main 1980 1538 16.26 - -
€ 2000 1651 1770 1732 -
2020 2691 29.23 - 55.45
1950  7.62 - 890 -
1980 7.81 931 - _
Wheat 5000 797 832 9.01 -
2020 7.98 1041 - 8.83
1950 3.2 - - -
. 1980 674 753 - -

Rice

2000 444  5.66 5.60 -
2020 3.81 4.13 - 3.52
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4.3 Uncertainty analysis
4.3.1 Spatial and temporal gaps in census data

A key consideration in reconstructing historical land use dy-
namics is the availability of agricultural census data. Ideally,
sub-national level (e.g., municipality, county, or district) agri-
cultural statistics would allow for more detailed spatial allo-
cation of crop-specific harvested areas. However, their avail-
ability across South America is highly limited and tempo-
rally inconsistent. Most countries provide only a few isolated
years of data at the municipal level (i.e., Argentina: 1960,
2008, 2018; Bolivia: 1950; Brazil: 1995, 2006, 2017; Chile:
1960; Paraguay: 2008), which creates large temporal gaps
and hampers their direct use in annual time-series reconstruc-
tion. In contrast, provincial level data are more consistently
reported over time, typically at 10-year intervals. These more
frequent observations enable more robust interpolation and
better constrain the temporal evolution of harvested area.
While these provincial units represent a coarser administra-
tive granularity, we combined them with a high-resolution
crop-specific base map and temporal cropland density maps
to spatially disaggregate the data across all years. This ap-
proach allows us to preserve long-term trends while captur-
ing spatial variability. To address the temporal discontinu-
ities between census years, we applied linear interpolation
to construct continuous annual times series of harvested ar-
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eas at the administrative level. While we acknowledge that
the use of linear interpolation may not fully reflect potential
non-linear trends driven by policy, market, or environmen-
tal drivers, it remains a practical and widely used method
under the constraints of sparse historical data (Klein Gold-
ewijk et al., 2017; Leite et al., 2011; Li et al., 2023; Liu and
Tian, 2010; Ye et al., 2024). Additionally, linear interpolation
in this study is always bounded by observed census points,
which help to preserve long-term trends and prevent fluctua-
tions.

4.3.2 Resampling-related spatial uncertainty

To ensure spatial consistency across input datasets, we em-
ployed two resampling strategies to achieve a standardized
1 km resolution: (1) aggregation of high-resolution remote
sensing products and (2) upsampling of lower-resolution
datasets, such as SPAM. While resampling is essential for
harmonizing spatial scales, it introduces varying degrees of
uncertainty depending on the original resolution and classifi-
cation accuracy of the source data.

Aggregation of high-resolution datasets does not introduce
additional spatial uncertainty beyond the inherent classifica-
tion errors present in the original data. However, these clas-
sification errors can propagate into aggregated outputs and
finally affect spatial statistics. To quantify this aggregation-
induced uncertainty, we conducted a Monte Carlo simulation
by introducing symmetric random noise at various classifi-
cation error rates (i.e., 3% to 15 %), whereby a proportion
of target and non-target pixels were randomly flipped. For
each combination of classification error rate and true frac-
tion, we aggregated the modified raster to 1km resolution
and calculated the resulting aggregated fraction. This process
was repeated 100 times per fraction to obtain stable estimates
of the mean and standard deviation of the aggregated values
(Fig. S7). We then computed the uncertainty as a function of
both classification error and spatial resolution. Specifically,
total uncertainty was defined as the average absolute devia-
tion between aggregated and true values across the full range
of possible true fractions (i.e., 0 % to 100 %). This allowed
us to isolate the magnitude of uncertainty attributable to ag-
gregation process. This simulation framework was applied
to each of the aggregation datasets, yielding the acceptable
uncertainties (Table 5). These results demonstrated that to-
tal uncertainty increases with both classification error and
coarser input resolution. Datasets with higher native resolu-
tion (e.g., Uruguay LC) tend to exhibit lower aggregation un-
certainty, even when classification error is moderate. This un-
derscores that aggregation-induced uncertainty is a function
not solely of accuracy, but also of the granularity of the input
data. This uncertainty component must be explicitly consid-
ered when integrating heterogeneous land cover datasets for
spatial modeling or policy-relevant assessments.

To evaluate the spatial uncertainty introduced by the up-
sampling process, we conducted a quantitative comparison

Earth Syst. Sci. Data, 17, 6353-6377, 2025

B. Xu et al.: HIStory of LAND transformation by humans in South America (HISLAND-SA)

Table 5. Aggregation-induced uncertainty under varying classifica-
tion errors and spatial resolutions.

Dataset Spatial ~ Classification Total
resolution error  uncertainty

(m) (%) (%)

Uruguay LC 10 11.5 5.81
MapBiomas 30 14.2 7.36
Argentia MNC 30 9.0 4.59
GLAD 30 4.0 2.08
CGLS-LC100 100 20.0 10.49

between SPAM and GLAD soybean maps for 2010 in South
America. The original SPAM data were upsampled to 1 km
using bilinear interpolation, while the GLAD soybean layer
was aggregated to 1 km resolution and treated as reference. A
pixel-by-pixel comparison was performed between the two
datasets across the continent. First, the pixel-wise compar-
ison yielded a coefficient of determination (R?) of 0.50,
indicating moderate agreement between resampled SPAM
and GLAD data. Second, the distribution and frequency of
pixel-level differences revealed that over 70 % of the pix-
els fell within a 0.1 range, while larger deviations (greater
than £0.3) were mainly observed in fragmented and hetero-
geneous cropping regions (Fig. S8). Although the resampling
process introduced local structure uncertainty and smoothed
fine-scale heterogeneity, these results suggest that the unsam-
pled 1 km SPAM data retain meaningful broad-scale spatial
patterns. Therefore, the resampled dataset in this study re-
mains suitable for use as a baseline crop distribution map at
continental scale.

4.3.3 Spatial-temporal consistency assessment

To assess the spatial and temporal consistency of our recon-
structed crop type maps, we conducted an uncertainty analy-
sis using the resampled GLAD 1 km soybean density dataset
from 2001 to 2020 as an independent benchmark. This analy-
sis focuses on evaluating whether the interannual variation in
soybean density reflects actual crop dynamics. Figure 13 il-
lustrates the annual difference in soybean density at the pixel
level across South America. The results show that the median
and mean differences remain close to zero over time, with
narrow interquartile ranges (25 %—75 %) and relatively sta-
ble 5 %-95 % quantile envelopes. These findings suggest that
the year-to-year fluctuations in our dataset are not random but
follow a consistent trend with GLAD data, indicating reliable
temporal comparability. In addition, Fig. S9 presents the spa-
tial distribution of the mean soybean density difference aver-
aged over the 20-year period, along with a histogram of its
pixel-wise distribution. Most regions exhibit minimal bias,
with more than 50 % of grids falling within +0.1. The dis-
tribution is systematically centered around zero, and areas
of substantial over- or underestimation are spatially limited.
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Figure 13. Temporal variation in soybean density difference be-
tween GLAD and this study (2001-2020).

These two evaluations together evidence that our data main-
tain robust agreement with independent observations (i.e.,
GLAD) both spatially and temporally, while similar high-
resolution and long-term crop-specific datasets are currently
unavailable for maize, wheat, and rice across South America
and thus prevent a comparable validation. However, the con-
sistency observed in the soybean evaluation provides indirect
support for the robustness of our spatial allocation frame-
work. Given that the same methodological approach and har-
monized inventory inputs were applied across all four crops,
we expect the reconstructed patterns for other crop types
to similarly reflect plausible spatial and temporal dynamics.
Nonetheless, further evaluation using future regional datasets
will be essential to assess the reliability of crop-specific maps
beyond soybean.

4.4 Limitations

This study provides a set of crop type data with 1 km x 1 km
resolution and annual steps from 1950 to 2020 in South
America. The evaluation at different scales (i.e., provincial,
municipal, and grid levels) showed that our reconstructed
data are comparable to other datasets. However, some lim-
itations and uncertainties remain in this study. (1) The base
maps of cropland density and crop types are crucial for con-
straining the spatial patterns of crops. In general, recon-
structing historical crop type distributions requires using the
present crop type distribution as a benchmark to project back
into the past. In this study, we used several high-resolution
remote sensing products (i.e., Argentina MNC, MapBiomas,
and Uruguay LC) to construct a base map. However, these
datasets do not provide full spatial coverage of South Amer-
ica and are limited to specific years, which introduces spa-
tial gaps and temporal inconsistencies across the region. As
a result, we selectively supplemented the base map with
SPAM 2010 in areas where high-resolution products were
unavailable, despite its coarser resolution. This highlights the
pressing need to develop long-term and high-resolution crop
type datasets with consistent spatial and temporal coverage at
the regional or global scales. Such datasets would greatly en-
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hance the accuracy and reliability of historical crop-specific
reconstructions. (2) In some countries, historical agricultural
census data are limited. Adequate historical agricultural cen-
sus data are the basis for the reconstruction of historical spa-
tial data. Although provincial-level data are available in ev-
ery country, only a few years of data are accessible in some
countries due to inconsistencies in national policies and agri-
cultural census years. Even though these data can be recon-
structed in various ways (i.e., interpolation) (Li et al., 2023;
Mao et al., 2023), some uncertainties remain. Additionally,
national-level trends and interpolation methods were used to
reconstruct provincial-level data, which to some extent may
miss internal trends of some provinces. Interannual variabil-
ity at the provincial level is generally not fully consistent
with that at the national level, and such reconstruction meth-
ods may introduce some overestimation or underestimation
of the results. (3) Cropping practice complexity (e.g., crop
rotation and multiple cropping) poses a significant challenge
for accurate crop distribution mapping. These practices can
substantially influence both the spatial patterns and intensity
of agriculture land use. Crop rotation, the practice of grow-
ing different crops in the same field across multiple years,
contributes to soil health, pest control, and long-term crop-
land management. Ye et al. (2024) considered crop rota-
tion to reconstruct the historical crop distribution maps for
the United States, relying on Cropland Data Layer (CDL)
data for crop rotation information; however, similar high-
resolution products are lacking for South America. In addi-
tion, Pott et al. (2023) visualized crop rotation information
for soybean, maize, and rice in Rio Grande do Sul, south-
ern Brazil, but it did not sufficiently represent the overall
rotation patterns across South America. In contrast, multi-
ple cropping involves the cultivation of more than one crop
within the same year in the same field. This practice is com-
mon in regions with favorable climate conditions and con-
tributes significantly to agricultural intensity. However, our
current method does not differentiate between single-season
and multi-season cropping systems, which limits its ability
to reflect cropping intensity in areas with prevalent double
and triple cropping. Therefore, future research should focus
on crop type mapping in South America to obtain crop rota-
tion and multiple cropping patterns, enabling the generation
of more accurate historical crop-specific maps in subsequent
versions. (4) Crop yield was not considered in this version
of dataset. While harvested area provides valuable insights
into land use patterns, crop yield remains a critical vari-
able for assessing agricultural production and food security.
Accurately reconstructing historical crop yields would re-
quire multiple additional factors, including cropping systems
(e.g., rainfed or irrigated), input use, farm scale, climate, and
weather data. However, such data are generally unavailable
or lack consistency across long-term and sub-national scales
in South America, particularly before the 2000s. As a re-
sult, this version of the dataset focuses exclusively on har-
vested areas. Future developments could explore the integra-
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tion of satellite-derived biophysical indicators (e.g., NDVI,
LAI), historical production statistics, and climatic data to
support the reconstruction of spatial-temporal yield dynam-
ics. (5) There are limitations in representing socioeconomic
and environmental drivers. While our data provide long-
term, annually resolved reconstructions of crop-specific har-
vested areas, we did not consider the explicit socioeconomic
and environmental drivers such as soil conditions, manage-
ment practices, or market access. However, incorporating
such factors into a harmonized reconstruction presents con-
siderable challenges. First, long-term, high-resolution data
on these drivers are unavailable or inconsistently reported
across countries. Second, the effects of these drivers are
typically region-specific, non-linear, and time-lagged, which
poses challenges for systematic modeling. Third, integrat-
ing them would require strong assumptions, potentially in-
troducing additional uncertainties into the reconstruction. As
a result, our current framework relies on observed statisti-
cal records to ensure internal consistency over time but may
be less responsive to abrupt cropland shifts induced by ma-
jor policy or market events. Future improvements could ex-
plore the integration of these factors into a hybrid modeling
framework (e.g., machine learning or statistical downscaling
models such as the GAEZ crop suitability layers) to improve
the spatial and temporal realism of crop allocation patterns.
Despite these limitations and uncertainties, this study is still
the first attempt at crop type reconstruction in South America
and has significant implications for analyzing the impacts of
agricultural expansion on local livelihoods and food security,
trade, and agricultural support policies.

5 Code and data availability

The developed dataset and codes are available at
https://doi.org/10.5281/zenodo.14002960 (Xu et al.,
2024). The annual and 1 km crop-specific gridded data are in
GeoTiff format. The state mask with shapefile and GeoTiff
formats is also provided.

6 Conclusions

In this study, we developed spatially explicit crop-specific
maps (i.e., soybean, maize, wheat, and rice) ata 1 km x 1 km
resolution and annual step in South America from 1950
to 2020 by integrating historical agricultural census data,
model-based crop type data, and high-resolution remote-
sensing-based crop type data. The results showed that agri-
cultural expansion has severely encroached on the other veg-
etation of South America over the past 70 years. Specifically,
soybean is one of the most dramatically expanded crops, in-
creasing from essentially zero in 1950 to 48.8 Mha in 2020,
resulting in a total loss of 23.92 Mha of other vegetation. Ad-
ditionally, the maize area in South America had increased
from 12.7 Mha in 1950 to 26.9 Mha in 2020, encroaching on
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a total of 18.35 Mha of other vegetation. In contrast, the area
of wheat and rice kept relatively stable. Compared with ex-
isting data, our reconstructed data have higher spatial and
temporal resolution which can better capture the dynamics of
crop type changes during the historical period. Overall, this
newly developed data can be used to assess the impacts of
agricultural expansion on greenhouse gas emissions, ecosys-
tem services, and biodiversity loss and to guide the formula-
tion of land management and conservation policies for sus-
tainable agricultural development and ecological conserva-
tion.
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