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Abstract. The global near-surface soil freeze-thaw (FT) states are crucial for understanding complex interac-
tions with hydrological, ecological, and climatic processes. However, current remote sensing of FT states pri-
marily relies on passive microwave remote sensing, which, despite its all-weather monitoring capabilities, suffers
from low spatial resolution. This limitation restricts its application to hydroclimatological scales, precluding its
use in finer-scale studies such as soil erosion and hydrometeorological applications. To address this issue, this
study introduces a novel downscaling approach that integrates passive microwave and optical satellite data to
generate a long-term (2002-2023), high-resolution (0.05°) dataset of global near-surface FT states, ensuring
daily seamless continuity. The dataset was validated against in situ measurements, demonstrating that the high-
resolution product maintains an overall accuracy of 83.78 %, consistent with the coarse-resolution microwave-
based dataset, while offering enhanced spatial detail. Comprehensive global trend analyses provided new insights
into the dynamics of FT cycles, revealing that the average annual number of frost days in regions north of 45° N
is 187.8 £12.7d, with 14.35 % of the area showing a decreasing trend in frozen persistence. Additionally, the
average annual number of freeze onset dates is 240.3 + 7.2, and 9.10 % of the area exhibits a trend of delayed
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freeze onset. The high-resolution record enables accurately monitoring FT states and providing detailed infor-
mation for a refined understanding of hydrological and ecological effects globally. The global 0.05° near-surface
soil FT state dataset (FI-HiDFA) is freely available at https://doi.org/10.11888/Cryos.tpdc.301551 (Zhao et al.,

2024b).

1 Introduction

Frozen ground, including permafrost and seasonally frozen
ground, covers nearly 66 x 10° km?, accounting for 52.5 %
of the total global land surface area (Kim et al., 2011; Mc-
Donald and Kimball, 2006). Most of these regions experi-
ence seasonal freeze-thaw (FT) state cycles, which refer to
the phase transition between water and ice in the soil pores of
surface layers (Zhang et al., 2010). These FT state cycles sig-
nificantly impact surface runoff, energy balance, and carbon
cycling (Kimball et al., 2004; Wang et al., 2024), thereby in-
fluencing climate (Peng et al., 2016; Poutou et al., 2004), hy-
drological (Gouttevin et al., 2012; Gray et al., 1985), ecologi-
cal (Black et al., 2000), and biogeochemical (Panneer Selvam
et al., 2016; Schaefer et al., 2011; Xu et al., 2013) processes.
Therefore, the dynamics of surface soil FT states are recog-
nized as a significant indicator of global climate warming,
with broad implications for the Earth’s environment and hu-
man society (Beer et al., 2018; Yang et al., 2013).

Over the past few decades, numerous studies have focused
on detecting soil FT status. Although many traditional meth-
ods based on in situ observations offer advantages in terms of
accuracy and reliability (Wei et al., 2011; Cary et al., 1979;
Zhang et al., 2007), their labour-intensive nature, coupled
with sparse spatial coverage and limited representativeness,
restricts their ability to meet the comprehensive requirements
of frozen ground research. In contrast, satellite remote sens-
ing offers an effective and rapid alternative, providing exten-
sive spatial and temporal coverage for monitoring FT status.

Due to the critical importance of monitoring global surface
FT states in hydroclimatology research, FT has been iden-
tified as an essential climate variable (ECV) by the Global
Climate Observation System (GCOS) (Bojinski et al., 2014).
FT cycles occur frequently and are highly spatially heteroge-
neous due to variations in topography, vegetation, soil prop-
erties, and snow characteristics (Chang et al., 2015; Jiang et
al., 2020). As a result, the GCOS has specified explicit re-
quirements for FT estimation. Although an ideal spatial res-
olution of 1km and a temporal resolution of 6 h are recom-
mended, the application of FT monitoring can be improved
if FT records achieve a spatial resolution of 10 km and daily
temporal resolution. However, current remote sensing tech-
niques are unable to directly meet these requirements for
monitoring FT dynamics.

Satellite microwave remote sensing methods are less sus-
ceptible to potential degradation from solar illumination ef-
fects and atmospheric cloud/aerosol contamination while re-
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maining sensitive to changes in landscape dielectric prop-
erties due to liquid water content variations in soils. This
characteristic makes them highly applicable in consistent FT
detection (England, 1990; Kou et al., 2017; McDonald et
al., 2004b; Wu et al., 2022; Zhao et al., 2014). Passive mi-
crowave remote sensing is an effective technique for mon-
itoring global surface FT processes owing to radiometers’
shorter revisit intervals and larger coverage areas (Kim et
al., 2011; Kou et al., 2017; Zuerndorfer and England, 1992).
Additionally, it can detect microwave radiation from specific
depths within the surface soil and is sensitive to changes in
soil dielectric properties, thereby enhancing its applicability
in FT detection (McDonald et al., 2004b). In recent years,
with the development of new-generation passive microwave
radiometers, various corresponding FT discrimination algo-
rithms have been constructed, including the dual-index algo-
rithm (Han et al., 2015; Judge et al., 1996; Zuerndorfer and
England, 1992; Zuerndorfer et al., 1990), the decision tree
algorithm (Jin et al., 2009), the discriminant function algo-
rithm (DFA) (Hu et al., 2019; Kou et al., 2017, 2018; Zhao et
al., 2011), the seasonal threshold method (Kim et al., 2011),
and the polarization ratio (PR)-based algorithm (Rautiainen
et al., 2016; Roy et al., 2015). However, the relatively coarse
spatial resolution of current passive microwave radiometers
limits the retrieval of high-resolution information (Chai et al.,
2014; Han et al., 2015; Zhao et al., 2011; Zhou et al., 2016).
Moreover, spatial heterogeneity, often caused by mixed pix-
els resulting from the coarse spatial resolution, introduces
uncertainty into FT data derived from passive microwave re-
mote sensing.

Optical remote sensing techniques provide high-spatial-
resolution information, such as land surface temperature
(LST), which can be used to infer surface FT states. For
example, the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) on the Aqua and Terra satellites provides LST
products with high accuracy, potentially allowing for mon-
itoring global FT states. However, LST primarily reflects
the linear changes in temperature during the FT process and
cannot capture the abrupt changes in dielectric properties
that occur between the frozen and thawed soils. In addition,
these products are significantly affected by discontinuities in
coverage due to cloud contamination, vegetation, and snow
cover (Cary et al.,, 1979; Langer et al., 2013; Chen et al.,
2021; Running, 1998). Recent research focus is exemplified
by efforts to generate seamless datasets (Li et al., 2018; Yao
et al., 2023; Yu et al., 2022; Zhang et al., 2022, 2020; Zhao
et al., 2024a).
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Active microwave sensors, divided into radars and scat-
terometers, receive backscattering coefficients as the echo
signals, which are primarily related to soil structure and di-
electric properties. Active microwave remote sensing, par-
ticularly through synthetic aperture radars (SARs), provides
observations of landscape FT states at resolutions on the kilo-
metre scale or finer. Consequently, many active microwave
FT discrimination algorithms have been developed, includ-
ing the FT threshold value method (Du et al., 2015; Kim et
al., 2012; Kimball et al., 2004; Way et al., 1997), a change de-
tection algorithm (Frolking et al., 1999), and an edge detec-
tion algorithm (Canny, 1986; McDonald et al., 2004a). How-
ever, most satellite-based SARs have longer revisit periods
than passive microwave radiometers, preventing them from
meeting the temporal resolution requirements of FT moni-
toring.

Existing methods fall short in fulfilling the scientific re-
quirements for high-resolution detection of FT states and
are predominantly dependent on microwave observations. To
overcome these limitations, downscaling techniques based
on multi-source data fusion have been proposed (Giorgi and
Mearns, 1991; Hanssen-Bauer et al., 2005; Xu et al., 2019).
Among these, statistical downscaling methods (Bierkens et
al., 2000; Vaittinada Ayar et al., 2016) are commonly applied
in high-resolution monitoring studies (Fan et al., 2005; Her-
tig and Jacobeit, 2008), which quickly establish statistical or
empirical relationships between downscaling predictors and
predictands, thereby enabling the reconstruction of coarse-
resolution data at finer scales. This has inspired researchers
to integrate multi-source remote sensing data, leveraging the
high sensitivity of passive microwave signals to FT dynam-
ics and the finer spatial details of optical datasets (Zhao et al.,
2017).

The detection of frozen and thawed soil can rely on two
critical characteristics: temperatures below 0 °C and the pres-
ence of ice. Therefore, remote sensing observations can be
utilized to infer these conditions by monitoring the physi-
cal temperature and liquid water content. Microwave and op-
tical remote sensing each offer distinct advantages in this
context. Microwave observations are extensively employed
to detect FT dynamics through various discrimination algo-
rithms. In particular, the DFA has proven to be highly ef-
fective in generating consistent, long-term, daily global FT
state products. This algorithm, which utilizes brightness tem-
perature (TB) data from the Advanced Microwave Scanning
Radiometer for EOS (AMSR-E) and its successor, the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2), has
demonstrated both high validation accuracy and reasonable
consistency (Hu et al., 2019; Wang et al., 2019a). One of
the key discriminant indicators in this algorithm is TB at
36.5 GHz due to its strong correlation with LST. The other
important indicator is the quasi-emissivity (Qe), i.e. the ratio
between TB at 18.7 GHz and TB at 36.5 GHz, which captures
the variations in landscape dielectric properties (ice / water
content) across different FT conditions (Zhang et al., 2010;

https://doi.org/10.5194/essd-17-6273-2025

6275

Zhao et al., 2011). Despite its strengths in physical mech-
anisms, the coarse spatial resolution of passive microwave
sensors constrains their application in detailed monitoring. In
comparison, optical remote sensing provides data with high
spatial resolution, offering an alternative for detecting de-
tailed FT states. A previous study attempted to generate high-
resolution FT maps, but the optical data used were restricted
to LST and did not incorporate parameters characterizing soil
ice / water content (Hu et al., 2017). The apparent thermal in-
ertia (ATI), derived from optical data, has been shown to ef-
fectively monitor soil moisture conditions (Qin et al., 2013;
Song and Jia, 2016; Van Doninck et al., 2011; Veroustraete
et al., 2012; Verstraeten et al., 2006). Thus, integrating ATI
into data fusion might further enhance the ability to gener-
ate high-resolution FT records (Liang et al., 2024; Yao et al.,
2023; Yu et al., 2022; Zhang et al., 2022).

The objective of this study is to enhance the spatial
resolution of FT detection products without compromis-
ing the accuracy of passive microwave-based FT products,
as derived from AMSR-E/2 TB data through the DFA.
To achieve this enhancement, the study employs down-
scaling indicators, specifically the MODIS-based LST and
ATI, which serve to encapsulate soil moisture information.
Both the original coarse-resolution and the resultant high-
resolution FT records are validated by in situ soil temper-
atures, thereby facilitating an assessment of accuracy vari-
ations post-downscaling. Subsequent trend analyses of the
high-resolution FT records are conducted to reflect the de-
tailed dynamics of FT states. The resultant downscaled, high-
resolution FT states align with the expanding spatial and tem-
poral resolution requirements of GCOS for FT monitoring,
thereby providing a valuable tool in cryospheric and ecolog-
ical studies.

2 Data

2.1 AMSR-E and AMSR2 brightness temperature

The near-surface FT downscaling method integrates data
from passive microwave and optical remote sensing. TB
observations from passive microwave sensors were oOb-
tained from AMSR-E and its successor, AMSR2. AMSR-
E, which was carried on NASA’s Aqua satellite, operated
from May 2002 to October 2011 and provided six microwave
bands (6.9, 10.65, 18.7, 23.8, 36.5, and 89 GHz), each avail-
able in both horizontal (H) and vertical (V) polarization
(Choetal.,2017; Knowles et al., 2006). AMSR2, launched in
May 2012 and mounted on the Japan Aerospace Exploration
Agency’s (JAXA’s) Global Change Observation Mission-
Water 1 (GCOM-W1) satellite, retains most of AMSR-E’s
physical properties, except for a larger antenna reflector and
an extra C-band channel (7.3 GHz) (Cho et al., 2017). Both
sensors share the same spatial resolution of 0.25° and provide
measurements at 13:30 (ascending) and 01:30 (descending)
local time at the Equator. This study utilized TB data from
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the 18.7 H and 36.5 V channels of the AMSR-E/2 Level-3
TB standard product to discriminate near-surface FT states
ata 0.25° grid resolution. All available TB data from 2002 to
2023 were utilized, excluding the missing observations be-
tween AMSR-E and AMSR-2.

2.2 Global spatiotemporally continuous MODIS LST
dataset

The spatiotemporally continuous MODIS LST dataset was
utilized in this study, derived from two products: MOD-
IS/Terra LST Daily L3 Global 0.05° CMG (MODI11C1)
and MODIS/Aqua LST Daily L3 Global 0.05° CMG
(MYD11C1). These products are separately obtained from
the Terra and Aqua satellites, both of which cross the Equa-
tor at the local time of 13:30 and 01:30 during ascending and
descending orbits, respectively. However, cloud contamina-
tion introduces data gaps in these products. To address this
issue, a data interpolation and reconstruction method was ap-
plied, enabling the generation of spatiotemporally continu-
ous LST records. Furthermore, the clear-sky LSTs were cor-
rected to all-weather LSTs, enabling the retrieval of more
realistic information (Yu et al., 2022; Zhao and Yu, 2021).
These datasets under clear-sky and all-weather conditions ex-
hibit satisfactory accuracy and are therefore suitable for high-
resolution optical remote sensing inputs in the development
of the downscaling algorithm.

2.3 GLASS Albedo

Spatiotemporally continuous land surface albedo products
are essential for estimating global ATI, as outlined in the in-
troduction. In this study, we used the GLASS02B06 dataset,
which is part of the Global Land Surface Satellite (GLASS)
project. The GLASS albedo series demonstrates accuracy
comparable to that of the MODIS MCD43 albedo product,
validated against FLUXNET site observations (Liu et al.,
2013). Furthermore, GLASS albedo products address spa-
tial gaps arising from cloud contamination and snow cover,
thereby ensuring seamless and continuous products. This
study employed the long-term clear-sky albedo dataset from
GLASS02BO06, which captures surface albedo at a 0.05° spa-
tial resolution and provides new data every 8 d.

2.4 Land cover maps

In this study, the ancillary land cover maps were derived from
the MODIS Land Cover Type CMG Yearly L3 Global 0.05°
(MCD12C1) dataset (Friedl and Sulla-Menashe, 2022). With
a spatial resolution of 0.05°, this dataset aligns with the res-
olution of the optical datasets mentioned earlier. It follows
the 17-class International Geosphere-Biosphere Programme
(IGBP) classification framework, as summarized in Table 1.
The land cover dataset, illustrated in Fig. 1, was specifically
utilized to mask out pixels of three IGBP land cover classes:
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water bodies, urban and built-up lands, and snow and ice.
Furthermore, the corresponding type percentage dataset was
used to filter out pixels dominated by large water bodies,
which were then explicitly marked in the FT data record. No-
tably, no permafrost distribution data were used as input or
constraints in generating the FT dataset.

2.5 In situ soil temperature

Validation of the downscaled FT dataset was conducted using
soil temperature measurements obtained from 41 dense ob-
servation networks and three sparse networks (SCAN, SNO-
TEL, USCRN). Among these, 42 networks were provided
by the International Soil Moisture Network (ISMN), a global
collaboration that delivers in situ measurements of soil mois-
ture and related variables (Dorigo et al., 2013, 2021). Addi-
tionally, two networks (Naqu and Pali) were obtained from
the Tibetan Plateau Observatory (Tibet-Obs), which focuses
on plateau-scale monitoring of soil moisture and temperature
(Su et al., 2011; Zhang et al., 2021a, b). Although the sam-
pling time points vary across networks, the measurements
are consistently conducted at hourly intervals. This study se-
lected long-term in situ soil temperature data from 1027 sta-
tions within 44 global networks, all measured at a depth of 0—
5 cm to match the penetration depth of the passive microwave
observations. Figure 1 illustrates the spatial distribution of
these stations.

2.6 Data pre-processing

The inter-calibration of different satellite instruments is for
establishing consistent data records of Earth’s environment
(Chander et al., 2013). Although AMSR-E and AMSR2
share numerous similarities, calibrating these two sensors is
necessary due to a 5 K difference in observed TB caused by
different calibration procedures and other issues (Okuyama
and Imaoka, 2015). Hu et al. (2019) introduced an inter-
calibration linear model utilizing overlapping TB observa-
tions and the least squares method. This inter-calibration
model was applied to TB data at the 18.7 and 36.5 GHz
bands, generating a long-term passive microwave TB dataset.
The inter-calibration model equations are as follows:

TBamsre_18.7 7 = 1.0189 x TBamsr2_18.75 — 5.2717, (1)
TBamsre_18.7v = 1.0577 x TBamsr2_18.7v — 16.2042,

(2
TBaAMSRE_36.5 # = 1.0073 x TBamsr2_ 365 5 —4.7723, (3)
TBamsRE_36.5v = 1.0135 x TBamsr2_ 36.5v —6.3914,  (4)

where TBamsre_ 1877 and TBamsr2 18.7m denote TB
at 18.7GHz in horizontal polarization obtained from
AMSR-E and AMSR?2, respectively. TBamsre 18.7v and
TBamsr2_18.7v correspond to vertical polarization at the
same frequency. Other terms in the equations follow the same
conventions.
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D. Feng et al.: A high-resolution global seamless continuity record of near-surface soil FT states 6277

90°N T T T T T BSV

: SNI

60°N F e 5| CRM

URB

CRL

30°N 8 PWL

1 GRL

< 1 sAV

0° k . . 1 WSA

. ‘ 1 0SH

5 1 CSH

30°S - ; L - N 1 MXF

i v 1 DBF

. “ | DNF

60°S |- 7 EBF

® Soil Temperature Stations| ENF

goos 1 ! | | 1 WAT
180°W 120°W 60°W 0° 60°E 120°E 180°E

Figure 1. IGBP global land cover map for 2019, depicting the spatial distribution of ground measurement sites within the ISMN and Tibet-

Obs networks.

Table 1. IGBP land cover classification framework.

Value IGBP classes ‘ Value IGBP classes
Abbreviated name  Full name Abbreviated name  Full name
WAT Water Bodies SAV Savannas
ENF Evergreen Needleleaf Forest GRL Grasslands
EBF Evergreen Broadleaft Forest PWL Permanent Wetlands
DNF Deciduous Needleleaf Forest CRL Croplands
DBF Deciduous Broadleaf Forest URB Urban and Built-Up
MXF Mixed Forest CRM Cropland Mosaics
CSH Closed Shrubland SNI Snow and Ice
OSH Open Shrubland BSV Barren/Sparsely Vegetated
WSA Woody Savannas

To meet the requirements of daily ATI estimation, a lin-
ear interpolation method was employed to transform the
GLASS 8d shortwave clear-sky albedo datasets into daily
data (Sohrabinia et al., 2014).

3 Methodology

3.1 FT discrimination from passive microwave
observations

The DFA is a surface FT discrimination method developed
using AMSR-E and AMSR?2 data, demonstrating high ac-
curacy compared to existing FT products. Near-surface FT
variations are closely associated with soil temperature and
moisture, which are reflected by the TB at 36.5 GHz in verti-
cal polarization (TB3¢.5v) and the quasi-emissivity (Qe).

Qe is defined as the ratio of the TB at 18.7 GHz in horizon-
tal polarization (TBjg.7 i) to TB3¢ 5 v. This ratio serves as an
indicator of soil moisture, as microwave TB at these frequen-
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cies is highly sensitive to changes in water content. The near-
surface soil FT process involves dynamic changes in soil and
vegetation moisture states, which lead to significant varia-
tions in soil dielectric properties. Due to the substantial dif-
ference in dielectric constants between liquid water and ice,
these phase transitions cause pronounced dielectric changes,
a phenomenon further complicated by the distinct biogeo-
chemical mechanisms of different vegetation types. The Qe
index introduced in this study comprehensively characterizes
the combined dielectric effects of both soil and vegetation
during the FT process. Thus, Qe not only reflects soil mois-
ture variations but also indirectly captures the biophysical
status of vegetation and soil conditions, enabling considera-
tion of the unique biogeochemical processes associated with
various vegetation types during the FT process.

Therefore, TB3g 5y and Qe were selected as key parame-
ters for FT discrimination (Zhao et al., 2011).

The DFA is further parameterized to separately detect FT
status during ascending and descending orbits (Wang et al.,
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6278

2019b), as expressed by the following equations:

FTIp = —0.123 x TB3g sy + 11.842 x Qe +20.650,  (5)
FTIp = —0.209 x TB3g 5 v +9.384 x Qe +43.697,  (6)

TBis.7u
Qe=r—"—, @)
TB3esv

where FTI5 and FTIp represent the FT status for ascending
and descending orbits, respectively. Through these equations,
a long-term 0.25° FT record was generated using AMSR-E
and AMSR2 TB data.

3.2 Estimation of apparent thermal inertia

ATI, as a substitute indicator for thermal inertia (TI), has
proven effective in monitoring soil moisture conditions,
thereby facilitating the downscaling of coarse-resolution FT
states (Qin et al., 2013; Song and Jia, 2016; Van Doninck et
al., 2011; Veroustraete et al., 2012; Verstraeten et al., 2006).
ATI quantifies the temperature rise due to the Earth’s surface
absorbing radiant energy. Given that water has a relatively
large heat capacity, higher soil water content provides greater
resistance to external thermal fluctuations (Qin et al., 2013).

In this study, ATI is introduced as an indicator of soil mois-
ture and is calculated as follows:

l—ao
DTA '

ATI=C ®)

where ag is the actual surface albedo, derived from interpo-
lated daily surface albedo data. C denotes the solar correc-
tion factor, which accounts for spatial and temporal varia-
tions in solar flux due to latitude and solar declination. The
diurnal LST cycle’s amplitude, denoted as DTA, represents
the largest variation in LST observed within a single day.

C is calculated as follows:

1/2
C= sin<psin8(1 — tanz(ptanZ(S)

+ cosgcosdarccos(—tangtand), )

where ¢ is the latitude and § represents the solar declination,
calculated by

8 = 0.006918 — 0.399912 cos (I")
+0.070257 sin(I") — 0.006758 cos (2I")
+0.000907 sin (2I") — 0.002697 cos (3T)
+0.00148sin(3T), (10)

where I represents the day angle, given by

_ 27t(nd— 1)

, 11
365.25 1D

and nq is the day number of the year.
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The daily LST amplitude DTA in Eq. (8) can be calculated
as

”;?:1 cos(wt; — w)Yn}
2 ny ' cos*(wt; — )
2
— (ZLI cos(wt; — w))
where T; is the LST recorded at time #; and w is the angular
velocity of the Earth’s rotation. The parameter n represents

the number of LST observations for one pixel in a day (n =4
in this study), and v is the phase angle, calculated as

, 12)

Y = arctan(§) + 7, (13)
(T1 — T3) (cos (wtp) — cos (wty))

[ (Tr — Ty) (cos (wt) — cos (wt3))
~ (Tr — Ty) (sin(wty) — sin(wt3))
—(T1 — T3) (sin(wty) — sin(wt4))

(14)

where Eq. (14) is used to calculate the diurnal LST cy-
cle and requires clear-sky LST observations at four spe-
cific times during the day: Aqua/night (01:30), Terra/day
(10:30), Aqua/day (13:30), and Terra/night (22:30). These
observations are derived from the spatiotemporally contin-
uous MODIS clear-sky LST products. The method of ATI
calculation is adapted from Van Doninck et al. (2011). Con-
sequently, a long-term 0.05° daily ATI dataset has been pre-
pared for downscaling FT status.

3.3 Spatial downscaling of FT status

The FTI is characterized by its quantitative form, expressed
in decimal values instead of binary values (Zhao et al., 2017).
This feature enables its integration with other satellite-
derived parameters, thereby enhancing its utility in remote
sensing applications. As defined by soil temperature and
emissivity from microwave data in Egs. (5) and (6), the FTI
exhibits a strong correlation with LST, thereby demonstrat-
ing its relevance in thermal analysis (Zhao et al., 2017).
Moreover, the emissivity properties of soil are susceptible to
changes in soil water content, which can be captured through
ATT estimation.

Consequently, the assumed linear relationship between
microwave and optical datasets is mathematically expressed
as follows:

FII=a -LST+b- ATl +c, (15)

where the coefficients a, b, and ¢ are determined through lin-
ear regression fitting. The MODIS/Aqua LST dataset was se-
lected to ensure temporal consistency with the AMSR-E TB
product.

Given the annual FT cycles, the downscaling approach was
applied to the data on a yearly basis, following four steps as
illustrated in Fig. 2.

The 0.05° LST and ATI data were resampled to align with
the lower 0.25° resolution of the microwave-derived FTI.

https://doi.org/10.5194/essd-17-6273-2025
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Figure 2. Schematic diagram of spatial downscaling methodology.
This resampling process involved averaging the data across 3.4 Validation

5 x5 grid cells.

The FTI, LST, and ATT datasets were divided into yearly
vectors, and the data within each vector were arranged in
chronological order.

Linear regression fitting was performed on these three data
vectors of each pixel, resulting in six coefficient matrices for
a, b, and c at the ascending and descending times:

FTIir = arr - LSTLR + b1R - ATILR + CLR, (16)

where the abbreviations “HR” and “LR” refer to high and low
resolution, respectively. Regression fitting was performed us-
ing only those dates with valid 0.25° FT data, together with
the corresponding 0.05° optical data on those dates.

Once the coefficients arr, bLRr, and cLr were expanded
into 5 x 5 grids at a spatial resolution of 0.05°, they were ap-
plied in a regression model with the high-resolution (0.05°)
LST and ATI data to generate the downscaled FTT values:

FTIgr = arr - LSTHR + bLR - ATIHR + cLR. (17)

This process produced a finer spatial resolution compared to
the original 0.25° FT maps derived from microwave data.
Additionally, the land cover product was utilized to identify
areas characterized by permanent snow and ice, substantial
water cover, and urban or built-up lands, ensuring an accu-
rate representation in the downscaled dataset.
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Validating the downscaled FT product is essential to ensure
its accuracy and reliability. In this study, soil temperature
data from ISMN and Tibet-Obs ground stations were used to
validate the downscaled FT results. Because satellite obser-
vations are divided into ascending and descending orbit data,
the FT records were validated independently for each orbit.
Frozen and thawed states in in situ soil temperature data are
classified as follows:

frozen

thawed (18)

T <0,
{ T >0,
To validate satellite data against ground measurements, the in
situ observations must first be selected and pre-processed. In
situ observations temporally closest to the satellite observa-
tion times are selected. ISMN observation data are recorded
at hourly intervals, while the MODIS LST product pro-
vides observations at 20 min increments. Thus, in situ data
recorded at the hour closest to the satellite observation time
are used for validating FT classification. Missing data are
excluded from the validation process. Due to the properties
of microwave sensors, data gaps may occur in the 0.25° FT
product, where the corresponding in situ observations are not
included in the accuracy validation. Furthermore, only ISMN
data labelled as “Good” quality is selected for validation.

Accuracy was calculated separately for the 0.25 and 0.05°
FT products. The validation process, illustrated in Fig. 3, was
conducted using a single, larger 0.25° grid cell as an example.

Earth Syst. Sci. Data, 17, 6273-6293, 2025
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Figure 3. Schematic diagram of the validation method for comparing the FT product before and after downscaling.

FT conditions derived from in situ observations were con-
sidered the actual results. For a grid cell with a resolution of
0.25°, the average of all in situ soil temperature observations
within the cell was calculated. The grid cell was subsequently
classified according to the criteria delineated in Eq. (18), dis-
tinguishing between frozen and thawed states.

The FT classification results for the larger grid cell from
both products were validated using in situ data. For the 0.25°
product, the FT classification of the grid cell was directly
compared to the in situ observation results. For the 0.05°
product, each 0.25° grid cell contains 25 pixels. If the ma-
jority of these pixels (i.e. more than 13) were classified as
frozen, the entire grid cell was labelled as frozen in the 0.05°
product; otherwise, it was labelled as thawed.

The classification accuracies of the two products were cal-
culated. Within each grid cell, the numbers of true and false
FT classifications over the entire time series were counted
to determine the discrimination accuracy using the following
formula:

FF+TT
FF+FT +TF+TT’

Accuracy = (19)

where FF denotes the number of classifications where both
the in situ observation and the satellite observation indicate
a frozen state and FT denotes the number of classifications
where the soil is frozen but the satellite observation indicates
thawed conditions. TF and TT are defined similarly.

The same validation procedures were applied to all other
grid cells containing in situ observations. The discrimination
accuracy before and after downscaling was calculated and
compared to assess any changes in accuracy resulting from
the downscaling process.
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3.5 Trend analysis

Trend analysis for global FT cycles is crucial for understand-
ing temporal changes across different regions, which may in-
dicate impacts associated with climate change. To analyse
the annual global FT trend based on the downscaled product,
this study employs two key parameters: the frost day and the
frozen onset date.

A frost day is defined as the number of days within a year
in which the lowest recorded temperature is less than 0 °C.
The minimum temperature can be inferred to be below 0 °C
if freezing is detected at the satellite’s descending time for the
same pixel. Therefore, in the satellite FT product, a frost day
is identified as a day when the pixel is classified as frozen.
In this study, the calculation and analysis of frost days rely
on the descending FT product. The freeze onset date refers to
the first day a pixel begins freezing and remains in a frozen
state for more than 2 weeks. The initial day of this freezing
period is designated as the freeze onset date. Both the frost
day and the freeze onset date offer significant insights into
the global distribution of near-surface FT variations. These
two parameters are essential for comprehending the global
temporal and spatial dynamics of freezing events.

To further analyse the trends of frost days and freeze onset
dates, time series data for both parameters were generated
for global-scale analysis using Sen’s Slope and the Mann—
Kendall (MK) test.

The equation for Sen’s Slope is defined as

. X;—X; .
B = Median (?) , Yj>i, 20)
where X; and X; represent the data values at times i and
J, respectively, and Median(-) represents the median calcu-
lation. This equation computes the median of the slopes be-
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tween all pairs of data points. A positive B reflects an increas-
ing trend, while a negative 8 indicates a decreasing trend.

The MK test is a statistical procedure that is employed to
evaluate the null hypothesis that the data are independent and
identically distributed (Mann, 1945; Kendall, 1948). It is em-
ployed to detect trends in time series data without assuming
a linear relationship. Given a series X; of length n, the null
hypothesis posits that the values in X, are independent. The
MK test statistic S is calculated as

n—=1 n
S:Z Z sgn(Xj —X,'), (21
i=1 j=i+1

where n is the sample size, defined as the number of data
points, and sgn (X i—X i) is the sign function, defined as

1, ifXj>X,'
sgn(X; —X;)=4{ 0, ifX;=X; . (22)
—1, ifXj<X,'

The test statistic S evaluates the cumulative number of pos-
itive differences that exceed negative differences. In this
study, because the frost day and freeze onset date of each
year in the same pixel are unique, the variance of S is com-
puted as

n(n —1)2n+5)
18 '

If the sample size n > 10, the standard normal test statistic Z
is calculated as

Var(S) = (23)

S—1 .
N ifS>0
Z=1 0, if§=0 . (24)
s+1 .
NS ifS§ <0

Trend testing is conducted at a specified significance level, «.
If the absolute value of Z exceeds the critical value Z1_4/2,
the null hypothesis of no trend is rejected. In this study, the
test was performed at « = 0.05, corresponding to a 95 % con-
fidence interval. Under these conditions, if |Z]| > 1.96, the
null hypothesis is rejected. The results of the test are catego-
rized into five trend types, as summarized in Table 2. Sen’s
Slope quantifies the direction of temporal variation as pos-
itive or negative, while the MK test evaluates the statistical
significance of these trends. This combined approach allows
for the assessment of both the magnitude and significance of
trends in frost days and freeze onset dates, providing insights
into changes in global FT cycles that may be linked to cli-
mate change.

4 Results and discussions

4.1 Result of downscaled FT product

According to the methodology described in Sect. 3.3, a
global near-surface FT states dataset with a 0.05° resolu-
tion was generated, spanning the years 2002 to 2023. This
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Table 2. Classification of trends based on the MK test.

B Z Trend features
B>0 1|Z|=1.96 Significant increase
0<1]Z] <196 Slight increase
B=0 1Z|=0 No trend
B<0 0<|Z|<1.96 Slightincrease
|Z] > 1.96 Significant increase

dataset provides daily FT information for both daytime and
nighttime, corresponding to the satellite’s ascending (13:30)
and descending (01:30) orbits, respectively. The left panel of
Fig. 4 presents a comparison between the original 0.25° FT
discrimination product and the downscaled FT product for
1 January 2019 at 01:30 (descending orbit). The dataset clas-
sifies land surface conditions into the following categories:
thawed soil, frozen soil, snow and ice, urban and built-up
lands, water bodies, regions with missing data, and water-
influenced areas (labelled as “water” in Fig. 4).

An important point to consider is that areas near water
bodies may be misclassified as frozen due to the high soil
moisture content detected by microwave TB data. However,
these areas are unlikely to freeze, particularly in coastal re-
gions where temperatures consistently remain above 0 °C.
To improve the reliability of the FT product, these water-
influenced areas should be carefully delineated and flagged.

In addition to the classification of surface conditions, an-
other important feature of the dataset is its treatment of miss-
ing data. In the original 0.25° FT product, data gaps occur
due to the inherent swath gaps of the AMSR-E/2 satellites,
resulting in missing values for some grid cells on certain
days. By contrast, our downscaling approach for the 0.05°
product effectively overcomes this limitation. For each 0.25°
pixel, regression fitting is performed using only those dates
with valid 0.25° FT data, together with the corresponding
0.05° optical data on those dates. As the 0.05° optical data
are spatiotemporally continuous, regression can always be
performed on any date with valid 0.25° FT observations. The
fitted regression model is then applied to the complete year of
0.05° optical data, resulting in a seamless, gap-free 0.05° FT
dataset. This missing-data treatment in the downscaling pro-
cess ensures that the high-resolution FT product contains no
data gaps, as demonstrated in Fig. 4. The right panel of Fig. 4
presents a comparison of the FT product for the Qinghai-
Tibet Plateau, highlighting the enhanced resolution of the
0.05° product in capturing FT states. The downscaled prod-
uct more precisely classifies soil freezing and thawing states,
as well as specific surface features that are more difficult to
detect in the 0.25° product. This demonstrates the enhanced
capability of the 0.05° product to capture FT cycles at the lo-
cal scale, compensating for the resolution limitations of the
original 0.25° product.

Earth Syst. Sci. Data, 17, 6273-6293, 2025
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Figure 4. Maps of the FT product for (a) the global scale and (b) the Qinghai-Tibet Plateau at 01:30 on 1 April 2019, derived from microwave
data with a 0.25° spatial resolution. Additionally, panels (c¢) and (d) display the same conditions in the downscaled FT product at a higher

resolution of 0.05°.

This downscaled product, with its enhanced spatial reso-
lution, allows for a more detailed analysis of global FT dy-
namics, providing a more reliable interpretation of global FT
patterns. This capability is crucial for understanding FT cy-
cles and their associated environmental impacts.

Figure 5 illustrates frost days for April 2019 at two spatial
resolutions, 0.25 and 0.05°, for both the global scale and the
Qinghai-Tibet Plateau.

The left panel compares global frost days for a single
month, showing that the 0.25° product exhibits a more grad-
ual variation in frost days across the Northern Hemisphere.
In contrast, the 0.05° product reveals more detailed and intri-
cate patterns of frost day variation. For instance, in southern
Russia and parts of North America, the 0.05° product cap-
tures more nuanced frost day variations, highlighting signif-
icant differences in frost day counts between neighbouring
grid cells. Meanwhile, the 0.25° product displays relatively
uniform changes on frost days, reflecting less variation due
to its coarser resolution.

The right panel of Fig. 5 compares frost days for the
Qinghai-Tibet Plateau, illustrating finer variations at the
higher spatial resolution. This demonstrates that the down-
scaled product provides a more detailed distribution of frost
days while also capturing the trend of frost day variation at a
finer spatial scale.

In summary, the downscaled FT product offers signifi-
cantly more detailed information, especially in regions with
complex FT dynamics. This improvement in spatial resolu-
tion is crucial for our research, as it enables a more refined
understanding of global FT processes and their environmen-
tal impacts. The ability to capture finer details and regional
variations is a key advantage of the downscaling approach,
which effectively meets the primary objectives of this study.
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4.2 Validation with in situ soil temperature

In this section, the coarse- and high-resolution FT products
are validated against in situ soil temperature data from 44
networks. The scatter plots of accuracy across all ground sta-
tions are shown in Fig. 6, with detailed validation results pro-
vided in Table 3. The downscaled products achieved overall
accuracies of 87.63 % and 83.78 % at ascending and descend-
ing orbit times, respectively. These accuracies are compara-
ble to those of the original products, which had overall ac-
curacies of 87.72 % and 84.08 %. In addition, Table 4 sum-
marizes the classification accuracies of both products across
various land cover types for both ascending and descending
passes. The land cover types are defined by the ESA CCI
Land Cover 2010 classification values provided by the ISMN
sites, enabling a more comprehensive assessment of perfor-
mance under different physiographic conditions.

For networks experiencing FT cycles, the accuracies of
the high-resolution products are 85.91 % and 81.55 % at as-
cending and descending orbit times, respectively. For net-
works without FT phenomena, the accuracies are 97.43 %
and 97.97 %. The colour gradient in the plots of Fig. 6 re-
flects the data density, with points shifting toward yellow as
the density increases. Additionally, in 65.91 % and 56.92 %
of networks, accuracy exceeds 90 % at both ascending and
descending orbit times for both FT products.

These findings suggest that the data points are most
densely concentrated in the range where accuracy values lie
between 0.9 and 1. Both ascending and descending orbit re-
sults closely align with the one-to-one line, indicating that the
accuracy of the FT classification remains largely unchanged
after the downscaling process. Despite the enhanced spatial
resolution, the downscaled product preserves the accuracy
and consistency of the original resolution.
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Table 3. Validation results for the coarse- and high-resolution FT products across various networks. Networks 1 to 27 typically experience
FT cycles, whereas networks 28 to 44 do not exhibit FT phenomena. “Num” represents the number of FT product samples that matched in
situ measurements at the corresponding sampling times and were used for validation.

No Network Ascend Descend
Num  Accuracy Accuracy Num  Accuracy Accuracy
(0.05°) (0.25°) (0.05°) (0.25°)
1 BNZ-LTER 6977 90.28 % 91.89 % 7641 89.45 % 95.75 %
2 CTP_SMTMN 22654 73.59 % 74.42 % 25433 87.04 % 84.45 %
3 FLUXNET-AMERIFLUX 5981 99.57 % 99.52 % 5726 99.25 % 99.09 %
4 FMI 5395 66.71 % 75.94 % 5701 69.20 % 75.39 %
5 FR_Aqui 2947 99.97 % 99.90 % 3018 100.00%  100.00 %
6 GTK 1686 83.33% 82.27 % 1124 84.16 % 88.52 %
7 HOAL 1450 93.10 % 93.03 % 1568 98.47 % 96.49 %
8 HOBE 6931 91.43 % 88.57 % 7916 97.02 % 95.89 %
9 HYDROL-NET_PERUGIA 1101 95.64 % 95.37 % 985 95.94 % 95.94 %
10 HiWATER_EHWSN 43 100.00%  100.00 % 41 100.00%  100.00 %
11  KHOREZM 25 100.00%  100.00 % 27  100.00%  100.00 %
12 MAQU 12050 76.67 % 77.35% 13019 80.71 % 76.34 %
13 MOL-RAO 4268 94.80 % 94.24 % 5152 95.57 % 95.38%
14 NGARI 7699 81.60 % 80.70 % 8188 69.89 % 69.42 %
15 NVE 304 69.41 % 82.57 % 0 / /
16 RISMA 13435 93.80 % 92.50 % 13772 89.34 % 92.35%
17  Ru_CFR 1182 82.66 % 85.87 % 896 89.06 % 84.71 %
18  SMN-SDR 4335 80.16 % 81.34 % 4816 84.88 % 85.24 %
19 SMOSMANIA 43811 99.45 % 98.98 % 41441 99.56 % 99.11 %
20  SONTE-China 662 81.27 % 82.78 % 755 84.11 % 86.23 %
21  TibetObs-Naqu 24814 73.81 % 74.77 % 27829 85.90 % 83.39 %
22 TibetObs-Pali 5427 91.84 % 90.82 % 5645 80.96 % 84.00 %
23 TxSON 5879  100.00%  100.00 % 5476  100.00 % 99.95 %
24  USDA-ARS 11926 96.01 % 96.43 % 12014 94.93 % 95.04 %
25 SCAN 486 602 94.20 % 93.95 % 506250 91.18% 89.99 %
26  SNOTEL 1189704 80.81 % 81.94% | 1332948 75.23 % 75.85 %
27  USCRN 235292 93.26 % 92.29 % 238498 89.39 % 89.31 %
Overall accuracy for networks experiencing FT cycles 2102580 85.91 % 86.41% | 2275879 81.55% 81.60 %
28  AACES 1674  100.00%  100.00 % 1721 99.88%  100.00 %
29  ARM 47249 98.94 % 98.96 % 43150 98.55 % 98.10 %
30 BIEBRZA_S-1 631 90.49 % 89.22 % 661 96.52 % 96.37 %
31 DAHRA 1233 100.00%  100.00 % 1009 100.00%  100.00 %
32 MySMNet 111  100.00%  100.00 % 103 100.00%  100.00 %
33 OZNET 17128  100.00 % 99.99 % 16939 99.94%  100.00 %
34  REMEDHUS 16943 99.98 % 99.89 % 17273 99.95 % 99.86 %
35 RSMN 24231 95.80 % 95.21 % 15957 96.37 % 95.57 %
36 SASMAS 2094  100.00%  100.00 % 2069 100.00%  100.00 %
37  SOILSCAPE 5475 90.47 % 90.48 % 5029 97.77 % 97.63 %
38 SWEX_POLAND 876 93.72 % 94.41 % 891 89.23 % 90.68 %
39 TAHMO 1583  100.00 % 99.68 % 1111 100.00%  100.00 %
40 TERENO 5304 92.48 % 89.57 % 6529 97.33 % 96.88 %
41 TWENTE 13339 95.80 % 93.94 % 15136 99.09 % 98.39 %
42 VAS 365 99.45 % 99.18 % 298 100.00%  100.00 %
43 WSMN 370 25.14 % 1.35% 456 37.72 % 2.63 %
44  XMS-CAT 6763 95.00 % 94.69 % 6886 90.01 % 85.81 %

Overall accuracy for networks without FT phenomena 145369 97.43 % 96.97 % ‘ 135218 97.97 % 97.30 %
Overall accuracy 2247949 87.63 % 87.72 % ‘ 2411097 83.78 % 84.08 %
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Table 4. Validation results for the coarse- and high-resolution FT products across various land cover types. Land cover types are sourced
from the ESA CCI Land Cover 2010 classification values provided within the ISMN site dataset.

No Land cover type Ascend ‘ Descend
Num  Accuracy Accuracy Num  Accuracy Accuracy
(0.05°) (0.25°) (0.05°) (0.25°)
1 Cropland, rainfed 275743 94.66 % 94.37 % ‘ 277149 92.71 % 92.26 %
2 Cropland, rainfed/herbaceous cover 10129 90.79 % 80.11 % ‘ 10157 83.01 % 62.56 %
3 Cropland, rainfed/tree or shrub cover 12127 99.54 % 99.20 % ‘ 11336 99.07 % 98.42 %
4 Cropland, irrigated or post-flooding 5162 99.99 % 99.91 % ‘ 5217 99.93 % 99.81 %
5 Mosaic cropland (> 50 %)/matural vegetation 4896 95.70 % 96.12 % 5439 93.14 % 93.47 %
(tree, shrub, herbaceous cover) (< 50 %)
6 Mosaic natural vegetation (tree, shrub, herbaceous 25702 91.44 % 89.54 % 27613 82.67 % 79.58 %
cover) (> 50 %)/cropland (< 50 %)
7 Tree cover, broadleaved, evergreen, closed to open 7466 99.14 % 94.58 % 12210 79.45 % 64.53 %
(> 15%)
8 Tree cover, broadleaved, deciduous, closed to open 12658 94.14 % 93.40 % 12094 94.76 % 93.53 %
(> 15%)
9 Tree cover, broadleaved, deciduous, closed (> 40 %) 15445 90.60 % 91.34 % 14557 91.21 % 90.13 %
10 Tree cover, broadleaved, deciduous, 198  100.00%  100.00 % 198  100.00%  100.00 %
open (15 %—40 %)
11 Tree cover, needleleaved, evergreen, closed to open 898 729 81.77 % 82.81% | 996959 76.49 % 76.84 %
(> 15%)
12 Tree cover, mixed leaf type (broadleaved and needle- 10529 83.71% 83.61 % 12351 79.36 % 84.00 %
leaved)
13 Mosaic tree and shrub (> 50 %)/herbaceous cover 22384 90.10 % 90.79 % 24002 85.67 % 90.28 %
(< 50 %)
14 Mosaic herbaceous cover (> 50 %)/tree and shrub 5159 90.48 % 91.17 % 4955 92.15% 93.02 %
(<50 %)
15  Shrubland 217565 89.63 % 89.83 % ‘ 236376 85.49 % 85.47 %
16  Grassland 596 806 87.98 % 88.41 % ‘ 626309 84.49 % 84.47 %
17  Lichens and mosses 2711 92.62 % 92.88 % ‘ 3153 86.24 % 93.78 %
18  Sparse vegetation (tree, shrub, herbaceous cover) 25240 88.56 % 88.26 % 28 065 83.54 % 87.57 %
(< 15 %)
19 Shrub or herbaceous cover, flooded, fresh/saline/brack- 16913 83.87 % 85.76 % 19753 80.89 % 85.64 %
ish water
20  Urban areas 41406 92.64 % 92.07 % ‘ 37230 89.29 % 89.39 %
21  Bare areas 2955 93.10 % 93.49 % ‘ 3178 89.26 % 90.64 %
22 Consolidated bare areas 642 85.41 % 85.31 % ‘ 665 67.48 % 65.08 %
23 Water 5213 81.31% 81.96 % ‘ 6120 73.57 % 74.23 %
24 Permanent snow and ice 0 / / ‘ 0 / /

Earth Syst. Sci. Data, 17, 6273-6293, 2025

https://doi.org/10.5194/essd-17-6273-2025



D. Feng et al.: A high-resolution global seamless continuity record of near-surface soil FT states

6285

Days
30

40°N

| 35N

30°N [

| 25°Nt

120

() 0.05°

60°S

5 40°N |

35°N

30°N [

| 25°Nt

0

180°W  120°W  60°W 0° 60°E 120°E 180°E

75°E 80°E 85°E 90°E 95°E 100°E 105°E 110°E

Figure 5. Maps of frost days in April 2019 for (a) the global scale and (b) the Qinghai-Tibet Plateau, derived from microwave data with
a 0.25° spatial resolution during the descending orbit time. Additionally, panels (¢) and (d) show the same conditions in the downscaled

descending FT product at a resolution of 0.05°.
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Figure 6. Scatter plots comparing the downscaled FT product at a
0.05° resolution with the FT product at a 0.25° resolution. The plots
show data for (a) ascending orbits and (b) descending orbits. The
colour bar represents the density of data points.

These results are consistent with the conventional under-
standing of downscaling, which aims to enhance spatial res-
olution without compromising the accuracy of the original
product. As a result, the downscaled FT product provides
higher spatial resolution and more detailed information while
maintaining the integrity and quality of the original observa-
tions.

4.3 FT dynamics and trends

4.3.1 Trend analysis of frost days

After validating the FT dataset’s accuracy with in situ ob-
servations, we calculated the average number of frost days
and their trends over the period 2003-2023. Figure 7a illus-
trates the spatial distribution of the annual average frost days
in the Northern Hemisphere. In high-latitude regions (north
of 45° N), the average number of frost days is approximately
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187.8 & 12.7 d (spatial standard deviation). In contrast, frost
days in lower-latitude regions vary due to seasonal shifts.

While frost days generally increase with latitude, this pat-
tern is not globally consistent. For example, the Qinghai-
Tibet Plateau, despite its relatively low latitude, experiences
a higher number of frost days due to its high elevation. In
the Southern Hemisphere, soil freezing is rare, except in lo-
calized regions along the Andes Mountains, where freezing
occasionally occurs under specific climatic conditions.

The spatial trends of annual frost days are shown in
Fig. 7b. MK trend analysis identifies a decreasing trend in
approximately 14.35 % of global land areas, with 2.67 % ex-
hibiting statistically significant declines. This trend reflects
the impact of climate warming, especially across much of
the Eurasian continent and Alaska, with particularly obvious
effects in Russia and the Qinghai-Tibet Plateau.

In contrast, about 11.17 % of the global land area shows
an increasing trend in frost days, of which 1.55 % are statis-
tically significant. Regions with increasing frost days include
North America and West Asia. These opposing trends under-
score the complexity of regional climate dynamics, revealing
that while many areas are warming with fewer frost days, lo-
calized cooling in some areas results in more frequent freez-
ing events.

The analysis of frost day trends demonstrates the utility of
the FT dataset while providing valuable insights into regional
variations in climate change impacts.

To further explore the climatic and geocryological signif-
icance of this metric, we compared the spatial distribution
of annual frost days in 2017 with independently derived per-
mafrost maps over the Qinghai-Tibet Plateau (Zhao, 2017;
Zou et al., 2017), as illustrated in Fig. 8. This qualitative

Earth Syst. Sci. Data, 17, 6273-6293, 2025
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FT product during the descending satellite pass from 2003 to 2023.
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Figure 8. Maps of (a) permafrost distribution (Zhao, 2017; Zou et
al., 2017) and (b) annual frost days derived from the downscaled
descending FT product in 2017 over the Qinghai-Tibet Plateau.

comparison reveals a notable spatial agreement, demonstrat-
ing that regions with high annual numbers of frost days, as
detected by remote sensing, are generally consistent with ar-
eas classified as permafrost in existing reference datasets.
Specifically, the average annual number of frost days within
permafrost-classified pixels is approximately 278.85, indi-
cating a potential spatial correspondence between these two
metrics. This finding highlights the potential of the annual
number of frost days as a valuable proxy for assessing per-
mafrost extent and its spatial variability.
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4.3.2 Trend analysis of freeze onset date

A statistical analysis was performed to examine the average
freeze onset date and its trend from 2003 to 2023. Figure 9a
shows the spatial distribution of the annual average freeze on-
set date across the Northern Hemisphere. Soil freezing pre-
dominantly occurs in the Northern Hemisphere, where the
average freeze onset date in high-latitude regions is approx-
imately 240.3 7.2 d (spatial standard deviation). A general
trend is observed, with freezing beginning earlier in higher-
latitude regions compared to lower-latitude areas. However,
this pattern is not uniform. On the Qinghai-Tibet Plateau,
the high elevation causes freezing to occur earlier, leading
to lower freeze onset dates. In the Southern Hemisphere, soil
freezing is limited to small areas, primarily along the Andes
Mountains, where freezing also begins earlier in the year.

Figure 9b illustrates the spatial patterns of trends in freeze
onset dates. The MK trend analysis identifies a decreasing
trend in freeze onset dates for approximately 9.10 % of the
global land area, of which 1.22 % exhibits statistically sig-
nificant reductions. A decrease in freeze onset date indicates
an earlier start to freezing in these regions, with the most pro-
nounced trends observed in eastern Russia. Conversely, ap-
proximately 7.57 % of the global land area demonstrates an
increasing trend in freeze onset dates, with 0.91 % exhibit-
ing statistically significant increases. An increase in freeze
onset date reflects a delayed start to freezing. These regions
are more geographically dispersed, reflecting the widespread
influence of global warming on soil FT dynamics.

Investigating frost day and freeze onset trends demon-
strates the applicability of the FT dataset and provides deeper
insight into regional variations in climate change effects on
global FT patterns.

https://doi.org/10.5194/essd-17-6273-2025
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Figure 9. Northern Hemisphere maps showing (a) annual average freeze onset date and (b) trend analysis results for the 0.05° downscaled

FT product from 2003 to 2023.

4.4 Discussion

4.4.1 Enhanced capabilities of high-resolution FT
products

This study utilizes passive microwave and optical obser-
vations to achieve high-resolution detection of FT states.
Initially, passive microwave sensors were used to monitor
global surface FT states, generating an original FT dataset
at a 0.25° resolution. Due to their minimal susceptibility to
atmospheric conditions, such as cloud cover and aerosols,
these sensors enable continuous tracking of FT transitions
across diverse landscapes and climatic zones globally. Fur-
thermore, the associated discrimination algorithm demon-
strates high classification accuracy, rendering it suitable for
global-scale applications. However, the original dataset’s
coarse spatial resolution of 0.25°, combined with inherent
seams in microwave sensor data, limits its capacity to capture
detailed surface variations. In contrast, optical observations,
including LST and albedo, offer higher spatial resolution and
provide more detailed surface information. Additionally, the
development of seamless, long-term data products not only
addresses the data seams in the original dataset but also main-
tains a short revisit interval, enabling daily surface monitor-
ing.

Therefore, to integrate the advantages of both data sources,
a bivariate regression model was developed, effectively
downscaling the original 0.25° resolution dataset to a finer
0.05° resolution. This improved resolution allows for a more
detailed representation of FT states, facilitating analyses of
regional FT dynamics, particularly in areas with complex
terrain, diverse vegetation, or significant seasonal variations.
As shown in Fig. 10, the 0.05° resolution FT product reveals
finer details of FT cycles that were previously undetectable
in the 0.25° dataset. These enhancements are critical for re-
search requiring precise identification of localized surface
condition changes, such as those affecting soil moisture and
ecosystem carbon dynamics.

The methodology employed in this study not only elim-
inates seams in the original FT dataset but also integrates

https://doi.org/10.5194/essd-17-6273-2025

data from multiple sources, including MODIS optical prod-
ucts and microwave TB observations. This fusion provides
a robust and continuous long-term FT record, essential for
understanding global FT cycles and their environmental im-
plications. Moreover, the enhanced spatial resolution enables
detailed analyses of changes in local FT conditions, offer-
ing valuable insights for hydrological modelling, climate re-
search, and ecosystem management. These advancements
expand the applicability of the FT record, contributing sig-
nificantly to diverse scientific fields.

4.4.2 Uncertainties associated with ground validation

Ground temperature data serve as a reliable basis for validat-
ing satellite-derived FT products. In this study, soil tempera-
ture measurements at 0-5 cm depth were used for validation
rather than surface-level (0 cm) measurements due to their
superior representation of near-surface soil FT states. Addi-
tionally, the utilization of 0-5cm depth data ensures com-
parability with satellite-based FT discrimination, as the typ-
ical penetration depths of passive microwave observations at
18.7 and 36.5 GHz are approximately 3-5 and 0-2cm, re-
spectively, both under 5cm. While 0°C is commonly em-
ployed as the threshold for distinguishing frozen and thawed
states in validation using in situ temperature data, this crite-
rion may not always accurately reflect actual ground condi-
tions. Various factors, including wind, vegetation cover, and
snow cover, can influence the true ground state even when
surface temperatures are at or below 0 °C.

Currently, there is no universally accepted standard for
defining absolute temperature boundaries for frozen and
thawed ground. However, the use of 0-5cm soil tempera-
ture remains the most physically meaningful for passive mi-
crowave FT validation, as it provides a more direct and reli-
able indicator of the near-surface state than either air temper-
ature or deeper soil temperature measurements. Despite this,
under certain conditions, such as areas with strong winds
or heavy snow cover, this approach may lead to classifica-
tion errors, particularly when the ground thawing process is
disrupted at temperatures near 0 °C. To address these limi-
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station of the NGARI network, distinguished by (a) daytime and (b) nighttime observations.

tations, future studies should concentrate on identifying op-
timal soil depths and establishing more precise temperature
thresholds to enhance validation accuracy.

4.4.3 Limitations and challenges

Although this study has effectively generated high-resolution
FT data by integrating passive microwave observations with
optical datasets, further refinements are required to address
the remaining challenges. First, despite the resolution en-
hancement to 0.05°, it is still relatively coarse for applica-
tions demanding finer-scale detail. In complex surface en-
vironments, this resolution may not adequately capture lo-
calized variations in FT states. To reduce the influence of
spatial heterogeneity, higher-resolution optical observations
are necessary. For instance, utilizing a 1 km LST and albedo
dataset for downscaling would align the resulting FT record
with this finer spatial resolution. While 1km LST datasets
are available, the development of more stable and higher-
resolution LST products remains critical. The quality of the
downscaled FT dataset is closely reliant on the quality of the
optical observations employed. Future research should pri-
oritize the use of seamless, high-quality optical datasets with
short revisit intervals and higher spatial resolution to produce
more precise and reliable FT classification products.
Second, the accuracy of the downscaled FT dataset is in-
herently determined by FT discrimination algorithms, which
rely on lower-resolution microwave remote sensing. As out-
lined in Sect. 4.2, the downscaling process preserves the ac-
curacy characteristics of the original FT data. Therefore, im-
provements in the FT discrimination algorithms are neces-
sary for achieving further gains in classification accuracy.
Additionally, during the data fusion process, combining
optical observations with microwave data, various factors
may affect the correlation coefficients and the performance of
the linear regression model. These factors include land cover
types, vegetation conditions, terrain elevation, and seasonal
variations, all of which can introduce instability in model
performance and impact FT classification accuracy. To ad-
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dress these limitations, future studies should incorporate ad-
ditional surface parameters, including the normalized differ-
ence vegetation index (NDVI), to improve the model’s adapt-
ability and accuracy across diverse surface conditions.

5 Data availability

The global 0.05° near-surface soil FT state dataset
(FT-HiDFA, 2002-2023) is freely available at
the National Tibetan Plateau/Third Pole Environ-
ment Data Center. The dataset can be accessed via
https://doi.org/10.11888/Cryos.tpdc.301551 (Zhao et al.,
2024b) or https://cstr.cn/18406.11.Cryos.tpdc.301551 (last
access: 28 January 2025).

6 Conclusion

This study developed a comprehensive, high-resolution
global dataset of surface FT states by integrating multi-
source remote sensing data. The primary objective was
to enhance spatial resolution and provide more detailed
global monitoring of FT states. Coarse-resolution FT data
were initially derived from passive microwave TBs, while
long-term ATT data were calculated using optical observa-
tions. By leveraging the complementary strengths of pas-
sive microwave and optical remote sensing products, a high-
resolution daily near-surface FT dataset was produced, offer-
ing a finer representation of surface FT conditions.

Subsequently, the coarse- and high-resolution FT prod-
ucts were validated using ground-based in situ observations.
This validation facilitated a thorough evaluation of accuracy
changes associated with the downscaling process and en-
abled a comprehensive trend analysis on a global scale using
the enhanced-resolution FT records.

The findings have significant implications for understand-
ing and monitoring ecological and hydrological responses to
climate dynamics. The analysis revealed intricate patterns of
frost days and freeze onset dates, demonstrating the vary-
ing regional influences of climate change. The downscaled
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product, with its enhanced spatial resolution, provided de-
tailed insights into FT dynamics, which are crucial for stud-
ies requiring precise identification of local surface condition
changes, such as those impacting soil moisture or ecosystem
carbon dynamics.

This integration of multi-source remote sensing data
marks a significant advancement in monitoring Earth’s sur-
face processes. It demonstrates the potential to improve cli-
mate models and other environmental assessments. Further-
more, the proposed methodological framework is adaptable
for similar applications globally, enhancing the predictive
capabilities for climate-related phenomena and supporting
environmental decision-making. By providing a robust and
continuous long-term FT record, this study contributes to
the development of hydrological models, climate studies, and
ecosystem management, thereby expanding the applicability
of the record in diverse scientific fields.
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