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Abstract. The ocean plays a crucial role in regulating the global carbon cycle and mitigating climate change.
Spatial and temporal variations of ocean surface partial pressure of CO2 (spCO2) influence the air–sea CO2 flux
through the difference between surface ocean and atmospheric pCO2 (1pCO2), which is further modulated by
surface wind speed and gas exchange velocity. However, constructing a global spCO2 data product that is able
to resolve interannual and decadal variability remains a challenge due to the spatial sparsity and temporal dis-
continuity of observational data. This study presents an approach based on the Vision Transformer (ViT) model,
combining high-quality observational data from the CO2 Atlas (SOCAT) with multiple advanced global ocean
biogeochemical models results to reconstruct a global monthly spCO2 dataset (SJTU-AViT) at 1° resolution
from 1982 to 2023. The approach employs the self-attention mechanism of the ViT model to enhance the model-
ing of the spatial and temporal variations of spCO2, as well as incorporates physical-biogeochemical constraints
from the derivative of spCO2 with respect to key controlling factors as additional features. The incorporation
of advanced ocean biogeochemical models during the training process allows the ViT-based model to capture
more accurate spCO2 variability in these data-sparse regions. Evaluations demonstrate that the new data product
effectively captures spCO2 variability at both global and regional scales, showing good consistency with SO-
CAT observations, long-term ocean station data, and global atmospheric CO2 trends. The reconstructed spCO2
demonstrates strong capability in reproducing spCO2 anomalies during El Niño–Southern Oscillation (ENSO)
events, particularly in the eastern Pacific Ocean, where it shows a correlation of −0.81 with the Niño 3.4 index
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and demonstrates high consistency with cruise data. Based on the SJTU-AViT dataset, the estimated global air–
sea CO2 flux patterns are consistent with known regional features such as strong uptake in the Southern Ocean
and outgassing in the tropical Pacific. This study not only provides a new 42-year data product for advanc-
ing understanding of the ocean carbon cycle and global carbon budget assessments, but also introduces a new
Transformer-based deep learning framework for Earth-system data reconstruction. The data product is publicly
accessible at https://doi.org/10.5281/zenodo.15331978 (Zhang et al., 2025) and will be updated regularly.

1 Introduction

Global warming is primarily driven by the continuous
increase in atmospheric greenhouse gas concentrations,
with carbon dioxide (CO2) being the dominant contributor
(Friedlingstein et al., 2023). The ocean, as one of the largest
carbon sinks in the Earth system, absorbs approximately
25 % of anthropogenic CO2 emissions (∼ 2.80 Pg C yr−1),
playing a crucial role in regulating the global carbon cy-
cle and climate change (Friedlingstein et al., 2023). How-
ever, the ocean’s capacity to absorb CO2 is not constant;
rather, it is influenced by a complex interplay of atmo-
spheric CO2 concentration, ocean physical and biogeochem-
ical processes, exhibiting significant spatiotemporal variabil-
ity (Landschützer et al., 2016; Takahashi et al., 2002). Accu-
rate estimation of oceanic CO2 fluxes is therefore essential
for understanding carbon cycle mechanisms and assessing
the effectiveness of the ocean as a carbon sink.

Accurately quantifying air–sea CO2 flux relies on precise
estimates of sea surface CO2 partial pressure (spCO2). While
the surface ocean CO2 atlas (SOCAT) database (Bakker
et al., 2016) provides a valuable foundation, observational
coverage remains sparse and uneven, particularly in high-
latitude regions and during winter months when harsh sea
conditions limit measurements (Mackay and Watson, 2021).
Existing approaches for estimating spCO2 primarily fall
into two categories: numerical biogeochemical modeling and
data-driven methods. Traditional numerical biogeochemical
models simulate spCO2 by parameterizing physical and bio-
geochemical processes (Kern et al., 2024; Roobaert et al.,
2022). However, due to the highly nonlinear dynamics of
the oceanic carbon cycle and regional heterogeneity, numer-
ical biogeochemical models still exhibit considerable un-
certainties in reconstructing the spatiotemporal distribution
of spCO2 (Rödenbeck et al., 2015; Roobaert et al., 2022).
Moreover, simplified parameterization of biogeochemical
processes may lead to underestimation or overestimation of
oceanic carbon uptake, ultimately affecting the accuracy of
global carbon budget assessments (Resplandy et al., 2024).

To address these limitations, statistical interpolation and
machine learning techniques have been increasingly em-
ployed to reconstruct spCO2 distributions based on avail-
able observations (Rödenbeck et al., 2015). Statistical in-
terpolation methods, such as regression-based approaches
(Rödenbeck et al., 2015), Bayesian techniques (Valsala et

al., 2021), and tree-based algorithms (Geurts et al., 2006),
leverage the spatiotemporal correlation of spCO2 obser-
vations and have achieved moderate success in some re-
gions (Gregor et al., 2019). However, these methods strug-
gle with poor reconstruction accuracy in data-sparse regions
and do not fully capture the complex ocean carbon biogeo-
chemical processes effectively (Hauck et al., 2023). Conse-
quently, machine learning approaches have gained promi-
nence in recent years. In particular, feedforward neural net-
works (FFNNs) have demonstrated superior reconstruction
accuracy and have become one of the most widely used tools
for spCO2 and other ocean data estimation (Denvil-Sommer
et al., 2019; Landschützer et al., 2013; Zeng et al., 2014).
These methods yield root mean square errors (RMSE) of
approximately 18 µatm in open ocean regions, aligning well
with SOCAT observations (Gregor et al., 2019).

Despite recent advances, significant challenges remain in
reconstructing spCO2, particularly in capturing its interan-
nual and decadal variability, which plays a pivotal role in
modulating oceanic carbon uptake. Previous machine learn-
ing (ML)-based interpolations of pCO2 may overly smooths
the spatial patterns and interannual variability, which repre-
sents a potential limitation in capturing these features fully.
Accurate characterization of this variability remains a cen-
tral issue in the ocean carbon field. Furthermore, the widely
used FFNNs method may introduce discontinuities at clus-
ter boundaries due to the discrete nature of data grouping,
impacting the representation of spCO2 variability (Gregor
et al., 2019). These discontinuities often require additional
post-smoothing procedures, which may introduce artificial
bias, thereby increasing reconstructed data uncertainty or
suppressing real spatiotemporal variability (Gregor et al.,
2019). More broadly, a persistent imbalance of approxi-
mately 1 Pg C yr−1 remains in the global carbon budget, re-
flecting unresolved discrepancies between estimated sources
and sinks on the global scale. One plausible contributor to
this imbalance is the inadequate characterization of the inter-
annual variability in oceanic carbon uptake (Friedlingstein
et al., 2023). Therefore, this study develops a novel recon-
struction method to more accurately capture interannual dy-
namics, alleviate artificial spatial discontinuities, particularly
across cluster boundaries, and ultimately contribute to close
the global carbon budget (Rödenbeck et al., 2015).

Transformer architectures, originally developed for se-
quence modeling in natural language processing, have
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demonstrated exceptional capabilities in capturing long-
range dependencies and learning complex, nonlinear rela-
tionships across high-dimensional datasets. Their scalabil-
ity and effectiveness in tasks such as machine translation,
language understanding, and large language models (e.g.,
Chat-GPT) have established them as a cornerstone of mod-
ern artificial intelligence. Recently, these models have been
extended to atmospheric science and oceanography, where
they have shown promising performance in forecasting ocean
states and extracting spatiotemporal patterns from large-scale
environmental data. Given these advantages, Transformer-
based frameworks offer considerable potential for data re-
construction in oceanography, where challenges such as
sparse observations, multiscale variability, and strong spa-
tiotemporal coupling demand flexible and powerful model-
ing approaches (Ji et al., 2025; Liu et al., 2024).

Against this backdrop, the image-based Vision Trans-
former (ViT) architecture, with its multi-head self-attention
mechanism and high representational capacity, has emerged
as a powerful tool for capturing the complex spatiotempo-
ral features of oceanic environmental variables. This model
is well-suited for reconstructing spCO2, as it can integrate
diverse environmental drivers such as sea surface tempera-
ture (SST), salinity (SSS), chlorophyll concentration (Chl a),
mixed layer depth (MLD), and atmospheric CO2 concen-
tration. To enhance the physical constraints of spCO2 re-
construction, this study incorporates ocean carbonate system
sensitivities to key variables like SST, SSS, dissolved inor-
ganic carbon (DIC), and total alkalinity (ALK) (Takahashi
et al., 1993). In this context, multi-stage training strategies
that combine simulated data from Earth system models and
observational constraints have also proven effective in im-
proving model robustness and accuracy. The spCO2-based
Shanghai Jiao Tong University aggregation Vision Trans-
former (SJTU-AViT) developed in this study effectively cap-
tures both spatial variations and interannual to decadal vari-
ability of ocean carbon dynamics at global scales. This con-
tributes to enhancing our understanding of the temporal dy-
namics of oceanic carbon uptake and addressing imbalances
in the global carbon budget.

2 Data and methods

2.1 Training data description

This study selects a range of input features for model training
to comprehensively capture the dynamics of surface ocean
spCO2 variability through sensitivity tests and other spCO2
data reconstruction studies (Denvil-Sommer et al., 2019;
Landschützer et al., 2013; Zeng et al., 2014). The selected
input features include SST, SSS, Chl a, MLD, and air CO2.
Additionally, we introduce physical constraints based on the

relationship
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)
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cluded as input features in the deep learning model to re-
inforce spCO2 physical-biogeochemical consistency (Taka-
hashi et al., 1993). These parameters represent key physical,
chemical, and biological factors influencing the distribution
of spCO2 in the ocean. All the input features are interpolated
into a uniform 1°×1° spatial resolution and monthly tempo-
ral resolution.

The input datasets consist of long-term time series and
high-resolution spatial data, ensuring both temporal and spa-
tial consistency across variables (Table 1). SST data were ob-
tained from the NOAA Optimum Interpolation SST (OISST)
(version v02r01) dataset, spanning from 1982 to 2023 with
daily resolution and a spatial resolution of 0.25° (Reynolds
et al., 2007; Huang et al., 2021). SSS data were sourced from
the Hadley Centre EN.4.2.2 (c14) dataset, covering the pe-
riod from 1982 to 2023 with daily resolution and a spatial
resolution of 0.25° (Good et al., 2013). Chl a data were de-
rived from the European Space Agency Climate Change Ini-
tiative (ESA CCI) Ocean Colour (version 5.0) dataset, span-
ning 1997 to 2022 with daily resolution and a spatial resolu-
tion of 4 km (Jackson et al., 2017). For periods prior to 1997
and for 2023, we employed a climatology computed from
the 1997–2022 Chl a record to ensure full temporal cover-
age. Ocean MLD data were obtained from the World Ocean
Circulation Experiment (WOCE) Global Data Version 3.0,
providing monthly climatology with a spatial resolution of
2° (de Boyer Montégut et al., 2004). Atmospheric CO2
mole fraction (xCO2) data were sourced from the NOAA
Earth System Research Laboratories (ESRL) marine bound-
ary layer (MBL) CO2 product, covering the period from 1982
to 2023 with about 8 d resolution and meridional spacing
(Dlugokencky et al., 2019). In this study, the meridional band
product was mapped onto the model’s 1°×1° global grid us-
ing latitudinal interpolation and longitudinal replication, gen-
erating continuous 2D fields suitable for model simulations.

The monthly climatologies of ∂spCO2
∂SSS , ∂spCO2

∂SST , ∂spCO2
∂DIC ,

∂spCO2
∂ALK at a spatial resolution of 1° are included as additional

input features, sourced from the ocean-driven global biogeo-
chemical model simulations (Liao et al., 2020). These rate-
of-change variables help to reflect the influences of tempera-
ture, salinity, alkalinity, and DIC on spCO2, thereby enrich-
ing the deep learning model’s representation of the under-
lying biogeochemical processes. Additionally, spCO2 from
the SOCAT database was used as the target variable for the
model training and validation. The SOCAT dataset used in
this study is version 2024 (Fig. S1 in the Supplement) which
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Table 1. Summary of data sources and variable characteristics used in this study.

Variable Units Period Resolution Dataset Reference

Atmospheric CO2 (xCO2) ppm 1982–2023 Meridional,
monthly

ESRL MBL CO2
product

Dlugokencky et al. (2019)

Chlorophyll a (Chl a) mg m−3 1997–2022 4 km, daily ESA CCI Ocean
Colour (Version
5.0)

Jackson et al. (2017)

Sea surface temperature
(SST)

°C 1982–2023 0.25°, daily NOAA OISST
(Version v02r01)

Reynolds et al. (2007)

Sea surface salinity (SSS ) PSU 1982–2023 0.25°, daily Hadley Center
EN.4.2.2 (c14)

Good et al. (2013)

Ocean mixed layer depth
(MLD)

m 12-month 2°, monthly
climatology

WOCE Global
Data Version 3.0

de Boyer Montégut et al. (2004)

SOCAT µatm 1982–2023 1°, monthly SOCAT version
2024 data products

Bakker et al. (2016)

is interpolated into the uniform 1°×1° spatial resolution and
monthly temporal resolution (Bakker et al., 2016).

The Coupled Model Intercomparison Project
Phase 6 (CMIP6) model results are downloaded from
the Lawrence Livermore National Laboratory node database
(https://esgf31node.llnl.gov/projects/cmip6/, last access: 27
February 2025, at the time of this study). We selected a sub-
set of 7 ESMs based on the availability of download access
through our cluster and the availability of environmental
variables (see Sect. S2 for details). The biogeochemical
model adopted in this study is from the Geophysical Fluid
Dynamics Laboratory (GFDL). The model includes Mod-
ular Ocean Model version 6 (MOM6), sea ice simulator
version 2, carbon ocean biogeochemistry, and lower trophics
version 2 (COBALT v2), which is collectively referred to
as MOM6-COBALT2 (Adcroft et al., 2019; Stock et al.,
2020). The model performance is thoroughly assessed, and
it reproduces well-observed physical and biogeochemical
features in the global ocean (Stock et al., 2020). More
detailed model evaluations and configurations, including
spin-up, atmospheric forcing, and initial conditions, can be
found in Liao et al. (2020, 2024).

2.2 Model architecture

The deep learning model employed in this study is a Vi-
sion Transformer (ViT, Fig. 1), originally proposed by Doso-
vitskiy et al. (2020) for capturing spatial dependencies in
large-scale image-like datasets. The design of ViT tackled
the key limitation of the CNN-like methods, which implies
the translation-invariant property of learned kernels. This
property failed to learn the remote connections across re-
gions among multiple variables (Liu et al., 2024). The ViT
model employs a self-attention mechanism to capture long-
term connections and complex spatial and temporal patterns

(Nguyen et al., 2023), allowing it to dynamically adjust its
receptive field and capture both localized details and large-
scale variations. As a result, the model is able to provide a
more comprehensive characterization of the relationships be-
tween spCO2 and oceanic variables across spatial scales.

The ViT-based framework for spCO2 reconstruction in-
cludes four main steps. The first is variable tokenization,
a process that involves partitioning the input data into lo-
cal regions. Each region is treated as an image patch for
subsequent processing and feature extraction (Dosovitskiy
et al., 2020). These input variables are standardized us-
ing variable-wise mean-variance normalization and format-
ted into a multi-channel input to ensure feature extraction oc-
curs on a unified scale. Then, the ocean fields are segmented
into fixed-size image patches. For example, the SST field
(180×360) is divided into non-overlapping 6×6 grids on ev-
ery patch, resulting in 30×60 patches. The data in each patch
is then projected into a high-dimensional vector through a
patch embedding layer, preserving critical spatial structures
and providing a suitable input representation for the Trans-
former framework.

The second step is variable aggregation, where a cross-
attention mechanism is employed to integrate information
across multiple environmental input variables (Vaswani et
al., 2017). Given that different variables influence spCO2
through distinct mechanisms, other methods like simple con-
catenation may obscure crucial dynamic relationships. The
cross-attention mechanism enables the model to adaptively
assign appropriate weights to different variables, emphasiz-
ing those that contribute most significantly to spCO2 vari-
ations (Jaegle et al., 2021). To further enhance its ability to
capture spatiotemporal dynamics, the model incorporates po-
sition encoding and time encoding at this stage, ensuring
temporal consistency in the input data and improving the
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Figure 1. Schematic of the Vision Transformer (ViT)-based framework for spCO2 reconstruction. The framework includes four main steps.
The first is variable tokenization, where the input oceanographic variables (e.g., SST, SSS, Chl a, MLD, and atmospheric CO2) are divided
into spatial patches and passed through a convolutional embedding layer. The second step is variable aggregation, where multiple variables
are aggregated into one vector through the cross-attention mechanism. The third step is Transformer backbone, where the data are passed
through stacked Transformer blocks that incorporate multi-head self-attention, layer normalization, and feedforward neural networks to
capture complex spatiotemporal dependencies. The final step is model output, where a pooling head aggregates the learned representations
and generates the spCO2 fields.

interpretability of ocean carbon cycle processes (Wu et al.,
2021).

The third step is Transformer backbone, where the data
are fed into a Transformer backbone composed of 10 stacked
Transformer blocks. Each block integrates multi-head self-
attention (16 heads), layer normalization (LayerNorm), and a
feedforward neural network (MLP) (Dosovitskiy et al., 2020;
Vaswani et al., 2017). The multi-head self-attention mecha-
nism enables the model to learn long-range dependencies and
capture complex spatial interactions by attending to multiple
representation subspaces simultaneously – an essential fea-
ture for modeling the inherently spatiotemporal dynamics of
oceanographic variables. To further enhance representation
learning, linear transformation and concatenation operations
(Linear & Concat) are employed across layers. These oper-
ations support deep feature fusion, enabling the network to
integrate both fine-scale local variations and broader climate-
driven signals.

The final step is the model output. This step incorporates
a pooling head for dimensionality reduction, producing the
global oceanic spCO2 fields as the output. The loss function
is minimized by comparing the reconstructed values against
observational datasets, ensuring both physical consistency
and numerical accuracy. The ViT-based model contains ap-
proximately 115 million parameters and was trained in par-
allel on eight NVIDIA RTX 4090 GPUs for up to 200 epochs
with early stopping (patience= 10); each training epoch re-
quired roughly 10 min.

To enhance model performance, we employ a multi-stage
training strategy. First, we pre-train the ViT-based model us-
ing the 7 CMIP6 model results to learn a general relation-
ship between spCO2 and the environmental variables (SST,

SSS, Chl a, MLD, and air CO2). We then fine-tune the ViT-
based model using data from the ocean-driven global ocean
biogeochemical models (e.g., MOM6-COBALT) and further
refine it with SOCAT observations to improve accuracy and
applicability. The incorporation of the CMIP6 model and ad-
vanced ocean biogeochemical models enhances the spCO2
reconstruction by mitigating the data sparsity issue, particu-
larly in regions with limited observations, such as the Indian
Ocean and high-latitude areas. Through the use of transfer
learning, the model can better leverage global climate data
to fill gaps in observational coverage. The overall workflow
of this multi-stage training strategy is summarized in Fig. 2,
which also provides a schematic overview of the spCO2 re-
construction workflow based on the ViT framework. The fig-
ure clearly visualizes the main steps, from data preprocessing
through model training to evaluation (see detailed description
in Sect. S5.1).

2.3 Validation procedure and data

The SOCAT dataset was randomly divided into 80 %
(277 528 samples) for training and 20 % (69 142 samples) for
validation, using a fixed random seed (seed= 42) to ensure
reproducibility. For the independent test at long-term sta-
tions, data from these stations were excluded, and the model
was trained using the remaining SOCAT data. In the final re-
sults generation phase, the full SOCAT dataset was utilized
to produce the spCO2 estimates. These estimates are subse-
quently used for analyses of climatological states, seasonal
variations, and interannual changes in spCO2. For compar-
ison with SOCAT, we used the monthly 1° gridded SOCAT
product and evaluated our SJTU-AViT reconstruction on the
same grid, without applying any additional spatial interpo-
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Figure 2. Workflow of the spCO2 reconstruction using the ViT-based framework. The workflow consists of four major stages: (a) data
processing, where CMIP6, MOM6, and SOCAT inputs are temporally harmonized, spatially interpolated, and normalized; (b) model archi-
tecture, where variables are tokenized, aggregated into spatio-temporal embeddings, and processed by a Transformer backbone to predict
monthly spCO2; (c) training and validation, involving CMIP6 pretraining, MOM6 and SOCAT fine-tuning, and evaluation against withheld
SOCAT data and long-term stations; and (d) evaluation and analysis, where model performance metrics, climatology, seasonal cycles, and in-
terannual variability are assessed, leading to downstream analyses such as air–sea CO2 flux estimation and uncertainty analysis (see detailed
description in Sect. S5.1).

lation. Reconstructed values were masked where SOCAT is
missing, and all skill metrics were computed only at grid-
time points with valid SOCAT data. For the independent test
at long-term stations, reconstructed values were extracted at
the corresponding station locations using bilinear spatial in-

terpolation, which incorporates information from surround-
ing grid cells to provide smoother and more representative
estimates, and skill metrics were subsequently computed to
evaluate model performance. Detailed information for these
stations, including their names, geographic locations, obser-
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vation periods, number of samples, and data sources, is pro-
vided in Table S3, and their locations are shown in Fig. S2 to
facilitate visual interpretation. Subsequently, the climatolog-
ical mean, seasonal variations, and interannual changes are
calculated at each grid point where data are available. The
processed SJTU-AViT data are then compared with the cor-
responding SOCAT observations in the following sections.

In the training process, we adopt the latitude-weighted
mean squared error (MSE) as the loss function to ensure
that the model accommodates the spatial variability caused
by the Earth’s curvature. The latitude-weighted MSE effec-
tively emphasizes the prediction accuracy in low-latitude re-
gions, which occupy a larger proportion of the Earth’s sur-
face (Nguyen et al., 2023; Willard et al., 2024). The loss
function is computed as follows:

MSE=
1
N

1
H

1
W

N∑
t=1

H∑
h=1

W∑
w=1

α(h)
(
yt,h,w − yobs,t,h,w

)2 (2)

where N is the total number of time points in the dataset,
H and W are the numbers of latitudinal and longitudinal
grid points, respectively, and t , h, and w represent the time,
latitude, and longitude indices, respectively. yobs,t,h,w is the
observed value, and yt,h,w is the predicted value. The term
α(h) is the latitude weight.

In the validation process, we use multiple evaluation met-
rics, including mean bias error (MBE), mean absolute er-
ror (MAE), root mean square error (RMSE), and coefficient
of determination (R2). These metrics have been extensively
used in reconstructed data assessments and climate model
evaluations. It is computed as follows:

MBE=
1
n

n∑
i=1

(
yrec,i − yobs,i

)
(3)

MAE= 1/n
n∑
i=1

∣∣yrec,i − yobs,i
∣∣ (4)

RMSE=

√√√√1/n
n∑
i=1

(
yrec,i − yobs,i

)2 (5)

R2
= 1−

n∑
i=1

(
yobs,i − yrec,i

)2
/

n∑
i=1

(
yobs,i − yobs

)2 (6)

where n represents the number of data samples, yrec,i denotes
the reconstructed values, while yobs,i and yobs represent the
observed values and their mean, respectively.

To evaluate the performance of the deep learning model
(ViT-base Model) adopted in this study, we selected eight
global ocean spCO2 products (Table 2), nine independent
observational stations (Fig. S2a), and SOCAT data. The cho-
sen benchmark datasets include Jena-MLS, MPI-SOMFFN,
OS-ETHZ-GRaCER, and five other data products (Table 2),
which are widely used in the ocean carbon community. These
data products cover periods from 1957 to 2023 at varying

spatial resolutions from 1 to 2.50°, with temporal resolutions
ranging from daily to monthly. The nine stations span vari-
ous periods and effectively capture the spatial and temporal
variability of ocean spCO2. The diversity of the benchmark
datasets provides a deeper understanding of the model’s per-
formance across different oceanic environments, thus further
optimizing its predictive capabilities.

2.4 Air–sea CO2 flux computation

We calculate the air–sea CO2 flux (FCO2, mol C m−2 yr−1)
from the reconstructed spCO2 using a standard bulk param-
eterization (Wanninkhof, 2014), given by the equation:

FCO2 = kw ·K0 · (1− fice) · (spCO2− apCO2) (7)

Here, the flux (FCO2) is considered positive when CO2 is
outgassed from the ocean and negative when CO2 is absorbed
by the ocean. The fluxes are adjusted to account for the ice-
free area of each pixel, with the sea ice cover data (fice)
taken from Rayner et al. (2003). The gas transfer velocity
of CO2 (kw) is computed using the parameterization of Wan-
ninkhof (2014), which assumes a quadratic dependence on
wind speed. The Schmidt number (Sc) required in this for-
mulation is calculated following the temperature-dependent
empirical formula provided by Wanninkhof (2014). The
wind speed data is sourced from ERA5, with a 6-hourly
temporal resolution spanning 1982–2023 and a 1° spatial
resolution. To ensure consistency with global radiocarbon-
based constraints (Graven et al., 2012; Müller et al., 2008;
Sweeney et al., 2007; Wanninkhof, 2014), the scaling fac-
tor is set as 0.251 (Wanninkhof, 2014), which equals about
a global mean transfer velocity of 16 cm h−1. The solubility
of CO2 in seawater (K0) is calculated as a function of SST
and SSS (Weiss, 1974). The partial pressure of atmospheric
CO2 (apCO2) is estimated using the mole fraction of CO2
in dry air (xCO2) from the ESRL MBL CO2 product, with
water vapor correction from Dickson et al. (2007).

2.5 ViT-based model uncertainty estimation

The uncertainty associated with our reconstructed spCO2
product was estimated using the method proposed by Land-
schützer et al. (2014, 2018). The uncertainty of estimated
spCO2 for each grid cell was accumulated from the quadratic
sum of four sources of uncertainties:

uspCO2 =

√
u2

obs+ u
2
grid+ u

2
algorithm+ u

2
inputs (8)

uobs is the observational uncertainty inherited from observa-
tions. The SOCAT gridded product compiles the pCO2 ob-
servations with WOCE flags A, B (uncertainty< 2 µatm), C,
and D (uncertainty< 5 µatm). Adopting a conservative ap-
proach, we set the maximum value of uobs to 5 µatm. ugrid is
calculated as the standard deviation of the samples used for
gridding spCO2 in each grid cell (Roobaert et al., 2024a; Wu
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Table 2. References for global spCO2 products used for comparison.

Dataset Time range Spatial resolution Temporal Reference
resolution

Jena-MLS 1957–2023 2.50° lon× 2° lat daily Rödenbeck et al. (2014)
MPI-SOMFFN 1982–2022 1°× 1° monthly Landschützer et al. (2016)
OS-ETHZ-GRaCER 1982–2022 1°× 1° monthly Gregor and Gruber (2021)
CMEMS-LSCE-FFNN 1985–2018 1°× 1° monthly Chau et al. (2022)
CSIR-ML6 1985–2018 1°× 1° monthly Gregor et al. (2019)
Watson 1985–2019 1°× 1° monthly Watson et al. (2020)
NIES-NN 1980–2019 1°× 1° monthly Zeng et al. (2014)
JMA-MLR 1985–2019 1°× 1° monthly Iida et al. (2020)

et al., 2025). ualgorithm is evaluated as the RMSE between the
reconstructed and reference ocean model spCO2 field.

In addition to the three uncertainty sources previously
mentioned, this study also considers the cumulative un-
certainty introduced by input variables (uinputs). The un-
certainties associated with these variables are calculated
through Monte Carlo simulations (Wu et al., 2025). For
each input variable, white noise following a normal distri-
bution (N (0,uxi)) is added, and spCO2 is recalculated using
the perturbed inputs. By repeating 100 times, the uncertainty
for each input variable is then determined by calculating the
standard deviation of the differences between the original
spCO2 and the spCO2 values obtained after adding noise.
Detailed procedures for determining these input uncertain-
ties are described in Sect. S1 in the Supplement.

3 Results

3.1 Evaluation of ViT-based model performance

The SJTU-AViT product demonstrated robust performance
and high accuracy in capturing spCO2 variability (Fig. 3). In
the training phase (Fig. 3a), the model achieved a high co-
efficient of determination (R2

= 0.86), with low root mean
square error (RMSE= 16.70 µatm), an MAE of 6.89 µatm,
and minimal mean bias error (MBE=−0.36 µatm), based
on over 277 528 (80 %) samples. In the validation phase
(Fig. 3b), the model maintained robust performance, with an
R2 of 0.82 and an RMSE of 18.30 µatm, indicating strong
generalization ability and no sign of overfitting. Most pre-
dicted values lie close to the 1 : 1 line, particularly within the
climatologically common spCO2 range (300–420 µatm), as
indicated by the high-density regions in Fig. 3. These results
confirm the model’s ability to accurately reconstruct large-
scale spCO2 patterns across diverse oceanic regimes. In ad-
dition, the sensitivity test indicates that the implementation
of physical-biogeochemical constraints can significantly im-
prove model performance, reducing the mean absolute error
from 7.15 to 5.95 µatm.

Independent test with in-situ buoy observations (which
were not used to train the model) (Fig. 4) indicates that

the model performs best in subtropical regions (e.g., HOT,
BATS, CCE1, ESTOC, and Papa), accurately capturing both
long-term trends (Fig. 4) and seasonal cycles (Fig. S3). At
the HOT station, for instance, the model yields a minimal
MBE of 0.31 µatm, a low RMSE of 8.65 µatm, and a high
R2
= 0.86, and similar performance is observed at other sub-

tropical stations, indicating the model’s accuracy in data-
rich, stable regions. In the equatorial Pacific Ocean, the
model shows reasonable performance at the data-sparse TAO
station in the Pacific Ocean, with a slight negative MBE
(−7.02 µatm), an RMSE of 13.16 µatm, and an R2 of 0.74,
effectively capturing large-scale seasonal variability in equa-
torial upwelling-dominated environments (Fig. S3). Simi-
larly, at the monsoon-influenced BOBOA station at the Bay
of Bengal, where observations are also limited, the model
captures overall variability with an MBE (−6.07 µatm), an
RMSE of 10.48 µatm, and an R2 of 0.65, indicating reason-
able skill in capturing the overall variability driven by mon-
soonal forcing processes. In contrast, performance deterio-
rates at high-latitude stations and regions with strong dy-
namical variability. At the Irminger Sea and Iceland sites, the
model exhibits large RMSE (35.24 and 21.82 µatm, respec-
tively) and low correlations, with R2 near zero. This suggests
that the model has difficulty capturing rapid spCO2 fluctua-
tions or processes that are not well represented by the avail-
able input features. This discrepancy is likely due to high-
latitude processes such as seasonal sea-ice variability and
freshwater inputs, which are not fully represented in the cur-
rent observational constraints.

In general, the evaluation confirms that the ViT-based
method effectively generates essentially bias-free spCO2
fields with no signs of overfitting, achieving high accuracy in
low latitudes and open oceans, while performance declines
at high latitudes.

3.2 Evaluation of long-term climatology and annual
means of spCO2

The reconstructed spCO2 product (SJTU-AViT) exhibits
strong agreement with SOCAT observations in terms of long-
term climatology, successfully capturing the large-scale spa-
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Figure 3. Performance evaluation of the ViT-based model for reconstructing the SJTU-AViT spCO2 product. Density scatter plots illustrate
the comparison between model-reconstructed sea surface partial pressure of CO2 (spCOrec

2 ) and in situ SOCAT observations (spCOobs
2 )

during (a) the training phase (using 80 % of the samples) and (b) the validation phase (using 20 % of the samples). Statistical metrics,
including the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and
the number of samples (N ), are provided to quantitatively assess model performance. The color bar indicates the number of data points within
each bin, representing the density of observations. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and
times in the comparison.

tial distribution of spCO2 in the global ocean (Fig. 5a–c).
This demonstrates strong consistency with previous clima-
tology products (Landschützer et al., 2020; Takahashi et al.,
2002). Elevated spCO2 values are prominent in the tropi-
cal oceans (e.g., equatorial Pacific Ocean) and coastal up-
welling regions, driven by the upwelling of CO2-rich sub-
surface waters. In contrast, low spCO2 levels are predomi-
nantly observed in mid-latitude gyre areas (e.g., the North
Pacific Ocean) which is driven by subduction processes. The
relatively low spCO2 is present in the high-latitude regions,
driven primarily by low temperature and a strong biological
pump.

Compared with all SOCAT observation grid cells, the
SJTU-AViT product exhibits good performance metrics in
terms of long-term climatology, characterized by a low bias
(MBE=−0.21 µatm, Fig. 5d), a low MAE of 5.95 µatm,
a low RMSE of 7.44 µatm, and a notably high correlation
coefficient (R = 0.94). The small averaged bias suggests
that the model does not exhibit systematic over- or under-
estimation at the global scale, further validating its reliabil-
ity in estimating the monthly and annual mean climatology
of spCO2. However, despite the small overall bias, the spa-
tial distribution of bias shows significant regional variation
(Fig. 5d). The larger biases (> 4 µatm) are predominantly
found in the coastal, tropical, and high-latitude oceans. The
bias comparison between coastal and open oceans indicates
the probability distribution function (pdf) for open ocean
centers around 0.16 µatm, with 90 % of the biases falling
between −12 to +10 µatm (Fig. 6b). Conversely, the pdf
for coastal ocean (400 km distance from the coastline) bias
centers around −1.44 µatm, with 90 % of the biases remain

within the range of −18 to +14 µatm (Fig. 6c). The larger
biases in the coastal ocean may stem from complex coastal
physical-biogeochemical processes, such as terrestrial in-
puts, tidal mixing, and freshwater fluxes from rivers (Bauer
et al., 2013; Cai et al., 2020; Roobaert et al., 2024b). These
processes are often difficult to accurately capture in global-
scale reconstruction models.

Comparison among different ocean basins (see basin
boundary in Fig. S2b) indicate that spCO2 biases in high lat-
itude oceans, specifically the Arctic and Southern Oceans,
are much larger than the biases in the low and middle lat-
itudes of the Pacific, Atlantic, and Indian Oceans (Fig. 6).
The bias of pdf line for the Arctic Ocean and Southern Ocean
centers around −1.95 and −0.64 µatm, with 90 % of the bi-
ases falling within the range of −20 to +16 µatm and −14 to
+12 µatm respectively (Fig. 6g and h). The biases in other
ocean basins have a near-zero mean value and a narrow
range of 90 % of the grid cells (−12 to +10 µatm, Fig. 6).
The increased spCO2 uncertainty in the high-latitude oceans
might be related to factors such as seasonal ice cover, in-
tense local hydrological changes, and sparse observational
data. The smaller bias in the low and middle latitudes of
other ocean basins can be attributed to the relatively sta-
ble oceanic conditions and the availability of abundant ob-
servational data, which help improve the accuracy of model
reconstruction in regions dominated by large-scale physical
processes driving air–sea CO2 exchange. Additionally, rel-
atively large bias observed in the tropical ocean may stem
from complex interannual variability associated with climate
variability like El Niño–Southern Oscillation (ENSO) and In-
dian Ocean dipole (IOD). Despite these regional differences,
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Figure 4. Independent test of spCO2 variability between SJTU-AViT and in situ observations at different stations. These in situ data are
independent data and are not used to train the model. The station description and location refer to Sect. S2 and Fig. S2. The spCO2 in SJTU-
AViT is interpolated to match the station locations and times in the comparison. For each panel, the number of samples (N ), the mean bias
error (MBE), root mean square error (RMSE), and correlation coefficient (R2) between the reconstructed and observed spCO2 are displayed.
The dashed and solid lines show the linear trend of SJTU-AViT and in situ data.

the low overall bias demonstrates the SJTU-AViT product’s
effectiveness in accurately capturing the spatial distribution
of spCO2 on a global scale.

The distribution of temporal evolution of annual mean
spCO2 (Fig. 7a) exhibits a clear rightward shift over time,
indicating a long-term rise in spCO2. Specifically, the annual
mean spCO2 rises from 330 to 400 µatm, with an estimated
trend of 1.42 µatm yr−1. This trend is consistent with the
long-term increase in global oceanic spCO2 driven by atmo-
spheric CO2 growth (Gruber et al., 2023; Landschützer et al.,
2016), further validating the reliability of the reconstruction.
In addition to this overall increase, the shape of the spCO2
frequency distribution varies across years (Fig. 7a). Notably,
the pdf gradually broadens over time, suggesting enhanced
spatial heterogeneity in surface ocean CO2 concentrations
under the combined influence of rising CO2 levels and global
warming. The distribution of reconstruction biases (Fig. 7b)
centers around 0 with a narrow range (< 30 µatm), suggest-
ing that the reconstruction data has no systematic offset. This
further indicates that the features of shape variability across

years captured by SJTU-AViT data are trustworthy. In the
early years (from the 1980s to the mid-1990s), the bias dis-
tribution is more dispersed with a notable skew toward nega-
tive values, implying that the model tended to underestimate
surface CO2 partial pressure during this period. As time pro-
gresses, the bias distribution becomes increasingly concen-
trated and more symmetric around zero. This shift reflects
improved reconstruction accuracy as the spatial coverage of
observational data increased (Fig. S4). However, we note that
the absolute range of biases may increase in later years. This
widening is likely due to a combination of factors, including
the expansion of observational coverage to regions with more
extreme or marginal conditions, which introduces a larger
range of reconstructed values, as well as the enhanced sea-
sonal and interannual variability that the model may not fully
capture in some regions, leading to increased biases under
local or extreme conditions. Overall, the temporal evolution
of the bias distribution highlights both the influence of ob-
servational coverage and the challenges in capturing high-
frequency or extreme variations.
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Figure 5. Comparison of long-term mean spCO2 between SJTU-AViT and SOCAT over 1982–2023. (a) Long-term mean spCO2 from
SJTU-AViT on the SOCAT observation grid points. (b) Long-term mean spCO2 from SOCAT. (c) Long-term mean spCO2 from SJTU-
AViT at all grid points. (d) Mean bias (SJTU-AViT minus SOCAT, panel a minus panel b) on SOCAT observation grid points. In panel a,
SJTU-AViT values are first interpolated to match the spatial and temporal locations of SOCAT observations, after which the long-term mean
is calculated at each grid point where data are available (see detailed computation in Sect. 2.3).

Figure 6. Bias probability density distributions of long-term mean spCO2 for the SJTU-AViT product compared to SOCAT data across
different ocean regions. (a) Global ocean, (b) Open ocean, (c) Coastal ocean, and (d–h) individual ocean basins. Coastal ocean is defined as
the region within 400 km from coastline. The spatial extents of the ocean basins are shown in Fig. S2. The vertical dashed line represents the
mean spCO2 value for each region, with the 95 % and 5 % threshold points marked on either side of the mean. The values next to the dashed
lines indicate the corresponding mean bias and the values at the two sides of dashed lines are 95 % and 5 % percentiles for each region. The
spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the bias computation (see detailed computation
in Sect. 2.3). The asymmetry in the percentiles is due to the asymmetric shape of the probability density function.

3.3 Evaluation of full spCO2 variability and seasonal
cycle

The variability in spCO2 mainly includes the seasonal, in-
terannual, and decadal variability. To evaluate the ability

of SJTU-AViT in reproducing this variability, we compute
the overall standard deviation of spCO2 at each observa-
tional grid cell (Fig. 8a). The SJTU-AViT data product effec-
tively reproduces the magnitude and spatial distribution of
observed spCO2 variability from 1982 to 2023, as indicated
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Figure 7. Probability density distributions of annual mean spCO2 from the SJTU-AViT and bias relative to SOCAT. (a) Probability density
distribution of annual mean spCO2 from the SJTU-AViT; (b) bias probability density distribution of annual mean spCO2 between SJTU-
AViT and SOCAT. The vertical dashed line indicates the mean spCO2 value and mean bias in panels a and b, respectively. The spCO2
in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the bias computation (see detailed computation in
Sect. 2.3).

by the consistent spCO2 standard deviation between SJTU-
AViT and SOCAT data (Fig. 8a and b). The SOCAT obser-
vations (Fig. 8b) show that the strongest spCO2 variability
(SD> 30 µatm) is concentrated in the tropical Pacific Ocean,
the North Pacific Ocean (40 and 60° N), the North Atlantic
Ocean (40° N), and parts of the South Pacific Ocean (30° S).
The SJTU-AViT successfully reproduces these spatial fea-
tures, exhibiting low bias across most regions (Fig. 8d). The
ratio of SJTU-AViT vs SOCAT standard deviation ranges
from 0.80–1.20 which indicates the SJTU-AViT data is able
to capture the 80 %–120 % varied amplitude. The bias com-
parison shows that the deep learning model exhibits a mean
bias in standard deviation of −1.97 µatm, indicating high re-
liability in capturing spCO2 variability (Fig. 8d). However,
the standard deviation bias (Fig. 8d) reveals an overall un-
derestimation of variability, with only 18.69 % of grid points
showing a positive bias. This underestimation is particularly
pronounced in high-latitude regions and is likely attributed to
the smoothing effect of the machine learning model, which
attenuates high-frequency variability, as well as the spatial
inhomogeneity of observational data. In contrast, some over-
estimations are observed in regions with sparse data cov-
erage, such as the Southern Ocean and the Indian Ocean
(Fig. 8c).

The SJTU-AViT effectively captures the large-scale sea-
sonal distribution and amplitude of spCO2, as shown in
Figs. 9 and 10. Across the four climatological seasons –
MAM (March–May), JJA (June–August), SON (September–
November), and DJF (December–February) – the model re-
constructs major spatial patterns that are broadly consistent
with SOCAT observations. Notably, the model successfully
reproduces persistently high spCO2 concentrations in the
equatorial Pacific Ocean, primarily driven by continuous up-

welling of CO2-rich subsurface waters throughout the year.
It also captures elevated spCO2 values in both the Atlantic
and Pacific Oceans within the 5–30° N and 5–30° S latitu-
dinal band during the respective summer and autumn sea-
sons of each hemisphere, reflecting the combined effects
of increased surface temperatures and seasonally weakened
biological uptake. Furthermore, the model reasonably re-
produces seasonal increases in spCO2 in the North Pacific
and North Atlantic (40–60° N) during Northern Hemisphere
winter and early spring. This suggests that the model has
likely captured underlying mechanisms, such as the deepen-
ing of the winter mixed layer and the entrainment of DIC-
rich subsurface waters, which drive seasonal variations in
surface ocean pCO2 (Keppler et al., 2020). Conversely, a
pronounced seasonal decrease in spCO2 is simulated in the
high-latitude Southern Ocean (south of 60° S) during the
same period, indicating that the model may also have learned
the influence of cooling-driven solubility changes and bio-
logical activity on ocean pCO2. These spatial and seasonal
patterns demonstrate the model’s capacity to incorporate key
physical and biogeochemical processes regulating spCO2
variability.

Bias analysis in Fig. 9i–l reveals seasonal model–
observation discrepancies through the mean absolute error
distribution. Larger errors (MAE exceeding 10 µatm) are
observed in mid- to high-latitude regions during JJA and
SON, particularly in the North Pacific Ocean, North At-
lantic Ocean, and coastal zones. These discrepancies are
likely linked to complex biological processes (e.g., seasonal
blooms, net community production), which are not well cap-
tured using data-driven approaches. In contrast, lower mean
absolute errors are found in subtropical gyres during DJF
and MAM, with MAE values typically below 6 µatm, where
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Figure 8. Comparison of spCO2 standard deviation from 1982–2023 between SJTU-AViT and SOCAT. (a) Standard deviation of spCO2
from the SJTU-AViT reconstruction. (b) Standard deviation of spCO2 from SOCAT data. (c) Standard deviation ratio, representing the ratio
of SJTU-AViT to SOCAT standard deviation (SJTU-AViT divided by SOCAT). (d) Standard deviation bias, showing the difference between
the SJTU-AViT and SOCAT standard deviations (SJTU-AViT minus SOCAT). The standard deviation (SD) is quantified as the standard
deviation of residuals after removing long-term trends. In the panels (c) and (d), the SJTU-AViT values are interpolated to match the spatial
and temporal locations of SOCAT observations (see detailed computation in Sect. 2.3).

Figure 9. Comparison of seasonal spCO2 means and mean absolute errors between SJTU-AViT and SOCAT. (a–d) Seasonal mean spCO2
from the SJTU-AViT reconstruction for MAM (March–May), JJA (June–August), SON (September–November), and DJF (December–
February). (e–h) Seasonal mean spCO2 from SOCAT data. (i–l) Mean absolute error (MAE) of spCO2 between SJTU-AViT and SOCAT
for each season. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the MAE computation
(see detailed computation in Sect. 2.3).
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Figure 10. Comparison of meridional seasonal amplitude of spCO2 between SJTU-AViT and SOCAT across different ocean regions from
1982–2023. The seasonal amplitude is defined as the absolute value of the difference between winter (December–February) and summer
(June–August) means, subsequently averaged zonally. The spatial extents of the ocean basins are shown in Fig. S2. The spCO2 in SJTU-
AViT is interpolated to match the SOCAT observation locations and times in the comparison (see detailed computation in Sect. 2.3).

variability is predominantly governed by physical drivers
like SST and MLD, which are more effectively resolved by
the model. Despite the pronounced interannual influence of
ENSO events on spCO2 variability in equatorial regions, the
model consistently achieves low reconstruction bias across
different seasons, indicating that SJTU-AViT effectively cap-
tures ENSO-related interannual anomalies in spCO2. Addi-
tionally, the reduced observation density may contribute to
the high bias of seasonal variability in the Southern Ocean
and parts of the Indian Ocean.

Figure 10 further supports the model’s performance in
reproducing seasonal spCO2 amplitude. Zonally averaged
seasonal amplitudes across the global ocean and individ-
ual ocean basins show a high degree of agreement between
SJTU-AViT and SOCAT, particularly in the Atlantic and Pa-
cific Oceans. The model captures the amplitude peaks in the
Northern Hemisphere around 40–60° N and in the South-
ern Hemisphere near 50° S, aligning with regions of pro-
nounced seasonal forcing. However, deviations are observed
in the Arctic Ocean, where limited data coverage likely leads
to an underestimation of seasonal amplitude. Similarly, in
the Southern Ocean, the model slightly overestimates sea-
sonal amplitude in some latitudes, which may stem from the
smoothing nature of machine learning algorithms and the
scarcity of high-frequency, high-latitude measurements.

To evaluate the accuracy of the SJTU-AViT in capturing
the seasonal phasing of spCO2, we compared it against SO-
CAT climatology (Figs. S16–S18). Climatological seasonal
cycles were evaluated for the global ocean and five ma-

jor basins, separately for the Northern and Southern Hemi-
spheres. The SJTU-AViT closely reproduces the timing of
seasonal maxima and minima in spCO2, generally aligning
with SOCAT observations. Global maps of phase differences
show that most regions deviate by less than ±1 month, with
only∼ 5 % of grid points exceeding this range. These results
demonstrate that the reconstruction data reliably captures the
observed seasonal phasing.

The bias of standard deviation in each season remains rel-
atively low and spatially coherent across all four climatolog-
ical seasons, providing further evidence of the model’s ro-
bustness in representing both the magnitude and spatial dis-
tribution of seasonal spCO2 variability (Fig. S5). Overall,
the SJTU-AViT product exhibits strong skill in reconstruct-
ing seasonal spCO2 patterns, amplitudes and phases glob-
ally. The remaining biases highlight the need for improved
observational coverage in polar and biologically dynamic re-
gions, and for enhanced model formulations that better ac-
count for nonlinear biological and physical interactions driv-
ing seasonal CO2 variability.

3.4 Evaluation of spCO2 variability on timescales
longer than 1 year

This section evaluates spCO2 variability on timescales
longer than one year. Specifically, the variability is quan-
tified as the standard deviation of residuals after removing
both long-term trends and seasonal cycles. For the SOCAT
data, calculating the residual standard deviation is challeng-
ing due to the gap in the observation record. Therefore, we
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use the long-term trend and seasonal amplitude derived from
the SJTU-AViT data to compute the residual for the SOCAT
data. While this variability encompasses both interannual and
decadal variability, the signal shown here is predominantly
driven by interannual fluctuations due to the limited tempo-
ral range of the data, spanning only 42 years. Therefore, for
simplicity, we refer to it as interannual variability throughout
this study. A comprehensive assessment of the global spatial
distribution of this variability is presented in Fig. 11.

Figure 11a and b compare the interannual variability of
spCO2 derived from the SJTU-AViT model and SOCAT ob-
servations. The model accurately captures the spatial patterns
of interannual variability, showing strong structural agree-
ment with the observational dataset. High variability is well
reproduced in key regions such as the equatorial Pacific
Ocean (15° N–15° S, 120–280° E), the subpolar gyres of the
North Pacific and North Atlantic (30–60° N), and the high
latitudes of the Southern Ocean (south of 60° S). The vari-
ability in these areas is probably related to the interannual
change of wind stress, upwelling, and mixed layers. To eval-
uate the model’s performance in reproducing variability am-
plitude, Fig. 11c shows the bias in interannual standard devi-
ation relative to SOCAT. On a global scale, the bias is gen-
erally small (−2.66 µatm) but tends toward slight underesti-
mation. The most pronounced underestimations (> 6 µatm)
appear in the high-latitude North Pacific, North Atlantic, and
Southern Ocean, where high-frequency variability is often
suppressed by machine learning models due to their inher-
ent smoothing.

Figure 11d presents the interannual standard deviation
from SJTU-AViT, while Fig. 11e shows the ensemble mean
of standard deviation in each existing spCO2 products as a
reference. Notably, SJTU-AViT reveals stronger variability
in most global oceans – especially the Southern Ocean, trop-
ical Pacific, and North Atlantic subtropical gyre (Figs. 11f
and S6). Considering the SJTU-AViT still underestimates the
interannual variability compared to SOCAT, the Fig. 11 com-
parison suggests the ViT-based model better retains ocean–
climate variability signals rather than excessively smoothing
them. The improved performance of SJTU-AViT in captur-
ing interannual amplitude is likely due to the multi-head self-
attention mechanism, high representational capacity, and the
transfer learning approach applied using CMIP6 and ocean-
driven biogeochemical model results. This helps the model
better capture the interaction between ocean pCO2 and in-
terannual variability modes, leading to more accurate esti-
mations of spCO2 fluctuations on the interannual timescale.

We further assessed the performance of the SJTU-AViT
product in the equatorial Pacific Ocean, where interannual
variability of spCO2 is the strongest in the global ocean. The
SJTU-AViT dataset demonstrates clear and spatially coher-
ent spCO2 anomaly patterns associated with ENSO events
(Figs. 12 and S7). In terms of spatial distribution, SJTU-
AViT reproduces a significant decline in spCO2 over the
eastern Pacific Ocean during El Niño and a pronounced

increase during La Niña. These strong comparisons be-
tween different phases of ENSO are consistent with well-
established physical-biogeochemical mechanisms of ENSO-
driven carbon variability through changes in upwelling, SST,
precipitation, and biology (Liao et al., 2020; Sun et al., 2025).
Due to the limited availability of long-term observational
data, we compare the SJTU-AViT with the composite mean
of multiple available spCO2 data products. The spatial pat-
terns of anomalies in SJTU-AViT are broadly consistent with
those in the multi-model ensemble. Notably, the SJTU-AViT
provides finer spatial detail, particularly in the nearshore
eastern Pacific Ocean, where sharp gradients and coastal pro-
cesses are more pronounced.

The consistency between the SJTU-AViT product and
these data products is further confirmed by the temporal cor-
relation between spCO2 anomalies and the Niño 3.4 SST in-
dex. The SJTU-AViT shows a correlation of −0.81 and the
multiple data products range from −0.40 to −0.78 (Fig. S7),
indicating that the SJTU-AViT model captures the temporal
evolution of ENSO-related variability in the carbon system.
The latitudinal comparison also indicates a strong agreement
between SJTU-AViT results, data product, and SOCAT ob-
servations during both El Niño and La Niña periods (Fig. 13).

These results indicate that the SJTU-AViT model reliably
reconstructs the spatial patterns of interannual and decadal
spCO2 variability at SOCAT observation sites and across the
global ocean. Its ability to capture variability in line with key
physical indicators such as SST and MLD demonstrates its
robustness in physically consistent reconstructions. Never-
theless, regional discrepancies highlight the need for further
refinement, particularly in under-observed areas and regions
where non-physical factors may dominate reconstructed vari-
ability.

3.5 Evaluation of the air–sea CO2 fluxes

The air–sea CO2 flux based on SJTU-AViT spCO2 repro-
duces consistent known features with multiple data products
(Gregor et al., 2019; Landschützer et al., 2016; Takahashi
et al., 2009). Elevated FCO2 is observed along the equator,
particularly in the eastern equatorial Pacific, associated with
the upwelling of carbon-rich waters. In contrast, mid-to-high
latitudes act as net CO2 sinks (Fig. 14a). This substantial car-
bon sequestration is primarily driven by the enhanced solu-
bility of CO2 in cold waters, deep water mixing, transport
processes, and the biological carbon pump (DeVries et al.,
2017; Gregor et al., 2018; Sarmiento et al., 2004; Takahashi
et al., 2009). While SJTU-AViT effectively reproduces the
overall spatial patterns and mechanisms of air–sea CO2 flux,
Fig. 6 indicates that negative spCO2 biases remain in cer-
tain high-latitude regions. The negative bias, likely associ-
ated with underrepresented high-latitude processes such as
seasonal sea-ice variability and freshwater inputs, can lead
to an overestimation of global ocean CO2 uptake through the

https://doi.org/10.5194/essd-17-6071-2025 Earth Syst. Sci. Data, 17, 6071–6095, 2025



6086 X. Zhang et al.: A surface ocean pCO2 product with improved representation of interannual variability

Figure 11. Comparison of spCO2 standard deviations on timescales longer than one year between SJTU-AViT, SOCAT, and multiple data
products. (a) Standard deviation of spCO2 from the SJTU-AViT at SOCAT observation grid points. (b) Standard deviation of spCO2 from
SOCAT data. (c) Standard deviation bias between SJTU-AViT and SOCAT – panel (a) minus panel (b). (d) Standard deviation of spCO2
from the SJTU-AViT. (e) Ensemble mean standard deviation from multiple existing spCO2 data products. (f) Standard deviation difference
between the SJTU-AViT and the ensemble mean standard deviation – panel (d) minus panel (e). The standard deviation (SD) is quantified as
the standard deviation of residuals after removing both long-term trends and seasonal cycles, representing the variability on timescales longer
than one year. The spCO2 in SJTU-AViT is interpolated to match the SOCAT observation locations and times in the panel (a)–(c) comparison
(see detailed computation in Sect. 2.3).

Figure 12. Comparison of spCO2 anomalies during El Niño and La Niña events between SJTU-AViT and multiple data products. Panels
(a) and (b) show the composite mean spCO2 anomalies during eight El Niño and seven La Niña events, respectively, as reconstructed by
the SJTU-AViT product. Panels (c) and (d) display the corresponding composite mean anomalies from the ensemble mean of eight spCO2
data products. The eight El Niños and seven La Niñas are indicated in Sects. S2 and S3. The spCO2 anomalies are defined as residuals after
removing both long-term trends and seasonal cycles.

bulk equation and should be considered when interpreting the
absolute flux magnitude.

The time series of global air–sea CO2 flux (Fig. 14b)
shows a strengthening oceanic carbon sink over the past
four decades, from −1.40 Pg C yr−1 in the early 1980s to
−2.60 Pg C yr−1 in the 2010s. Notably, the SJTU-AViT re-
construction is consistently maintained within the ±2 SD
(standard deviation) envelope of existing multi-product en-
semble estimates and exhibits strong agreement with other
FCO2 products. Interannual and decadal variability are ev-

ident, such as a temporary weakening of the sink from the
late 1990s to the early 21st century, reflecting the modula-
tion of global carbon sink strength by external forcing and
climate variability (DeVries, 2022; McKinley et al., 2020).
In particular, the significant weakening of the carbon sink
during the 1997–1998 strong El Niño event is effectively re-
produced, without exhibiting the abrupt discontinuities or ar-
tificial jumps.
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Figure 13. Comparison of meridional spCO2 between SJTU-AViT, SOCAT, and multiple data products during (a) El Niño and (b) La Niña
events. The selected El Niño events are 1997–1998 and 2002–2003, while the La Niña events are 1995–1996 and 1998–1999. These events
are selected due to the availability of several cruise datasets during these periods. The cruise data are distributed over 240–280° E, which are
shown in Fig. S8. The spCO2 in all data products is interpolated to match the SOCAT observation locations and times in the comparison.

Figure 14. Spatial and temporal characteristics of air–sea CO2 flux (FCO2, mol C m−2 yr−1); (a) spatial distribution of the long-term annual
mean FCO2; (b) comparison of time series of yearly global integrated CO2 flux between SJTU-AViT and multiple data products. Colored
lines represent individual products, with SJTU-AViT highlighted in bold. The shaded area indicates the ±2 SD (standard deviation) range,
centered on the ensemble mean. Negative= ocean uptake (sink), Positive= release to the atmosphere (source).

3.6 Evaluation of the uncertainty of reconstructed
spCO2

The global uncertainty associated with the reconstructed
spCO2 is estimated to evaluate the reliability of the
data product. The estimated global mean uncertainty is
11.05 µatm, with the dominant contribution arising from the
algorithm uncertainty (ualgorithm), which reaches 7.39 µatm.
This value was obtained through error propagation and re-
flects the cumulative impact of both systematic and random
errors introduced throughout the reconstruction procedure.
Given the conservative nature of our uncertainty estima-
tion, this magnitude is considered reasonable. Specifically,
to ensure a conservative approach, the observational uncer-
tainty (uobs) for each SOCAT data point was uniformly set
to 5 µatm, following established practices. The gridding pro-
cess applied to SOCAT data (ugrid) resulted in an uncertainty
of 6.34 µatm. The contribution from uncertainties in the in-
put variables (uinputs) is comparatively minor, also estimated
at 1.50 µatm.

Regionally, the estimated uncertainties of reconstructed
spCO2 exhibit moderate spatial variability across the major
ocean basins. Among the five RECCAP2-defined open ocean
regions, the Indian Ocean shows the lowest mean uncertainty
at 8.62 µatm, followed by the Pacific Ocean (10.10 µatm) and
the Atlantic Ocean (10.28 µatm). Higher uncertainty levels
are observed in the Southern Ocean (11.64 µatm) and the
Arctic Ocean (12.45 µatm), consistent with sparser obser-
vational coverage, enhanced seasonal variability, and more
complex air–sea interactions in these regions. These regional
patterns suggest that while the global uncertainty level re-
mains controlled, localized differences – particularly in high-
latitude oceans – should be considered when interpreting the
product in regional carbon budget assessments.

4 Discussion

In this study, we present a new reconstructed data prod-
uct of spCO2 (SJTU-AViT) with improved interannual vari-
ability using the ViT-based deep learning model. The ViT-
based deep learning model integrates the Vision Transformer
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(ViT) architecture with physics-informed constraints and as-
similates outputs from advanced ocean biogeochemical mod-
els, including CMIP6 models and ocean-driven biogeochem-
ical model (MOM6-COBALT2). This integration enables a
more precise extraction of the complex relationships between
oceanic environmental variables and spCO2. The SJTU-
AViT product effectively captures key spatiotemporal pat-
terns and reconstructs improved interannual spCO2 variabil-
ity.

In addition, we evaluated the contributions of CMIP6
pre-training, MOM6 fine-tuning, SOCAT observations, and
MOM6-derived physical-biogeochemical constraints within
the SJTU-AViT framework. CMIP6 pre-training substan-
tially improved model initialization and skill, reducing val-
idation RMSE by ∼ 56.57 % versus random initialization
by supplying large-scale structure and low-frequency vari-
ability. MOM6 fine-tuning further stabilized the model –
especially in observation-sparse regions – lowering RMSE
by ∼ 39.36 % and enforcing physically plausible relation-
ships. Including SOCAT during fine-tuning was critical for
local and regional accuracy, reducing RMSE by ∼ 72.31 %
through high-quality pointwise constraints. Sensitivity tests
indicate the reconstruction is largely robust to the specific
choice of CMIP6 pre-training subsets, provided multiple
models are used to capture diverse large-scale patterns. Fi-
nally, adding MOM6-derived physical constraints improved
overall performance (MAE from 7.15 to 5.95 µatm) and re-
duced seasonal RMSE by 1.36 %–8.49 %, with the largest
gains in high-latitude and data-sparse regions. Collectively,
these results confirm that CMIP6 pre-training followed by
MOM6- and SOCAT-constrained fine-tuning with physically
informed constraints yields a robust, reliable, and physically
consistent reconstruction of spCO2 across spatial and tem-
poral scales.

Despite the strong performance of SJTU-AViT, several
challenges remain. A key issue is to understand and rec-
oncile the discrepancy among different reconstruction prod-
ucts, particularly when considering the influence of spe-
cific climate modes such as the Indian Ocean Dipole (IOD).
As illustrated in Fig. 15, during positive IOD events, nine
distinct spCO2 data products exhibit divergent composite
anomaly patterns across the Indian Ocean (see IOD defi-
nition in Sect. S2). The SJTU-AViT results indicate an in-
crease in spCO2 in the western Indian Ocean basin and a
decrease in the eastern basin (Valsala et al., 2020). The other
data products present divergent or even opposite spatial pat-
terns, raising fundamental questions about which data prod-
uct most accurately reflects reality in the data-limited re-
gion. The scarcity of in situ observations in the Indian Ocean
exacerbates the difficulty in determining the most reliable
spCO2 distribution (Valsala et al., 2021). These uncertain-
ties underscore the urgent need to enhance observational ef-
forts, particularly in regions where data products exhibit sig-
nificant divergence (Rödenbeck et al., 2015). Future work
should focus on expanding observation networks and lever-

aging autonomous platforms such as biogeochemical Argo
floats (Claustre et al., 2020; Williams et al., 2017) to provide
crucial validation data.

Decadal variability presents more significant challenges,
with larger biases that require increased attention. Cur-
rent reconstruction methods primarily capture these climate
modes (e.g., Pacific Decadal Oscillation, PDO) implicitly
and do not explicitly incorporate relevant indices in the
machine learning model training. While increasing obser-
vational coverage is essential, it may not quickly resolve
the issues related to decadal variability. A more effective
solution may lie in improving the reconstruction methods
themselves, particularly through the integration of physics-
informed approaches. For instance, implementing physical-
biogeochemical constraints, such as incorporating spCO2
sensitivity to SST, SSS, DIC, and Alk, can significantly im-
prove model performance, reducing the mean absolute error
from 7.15 to 5.95 µatm. Future research should focus more
on exploring physics-informed machine learning approaches
that integrate climate indices as explicit inputs to enhance
model interpretability and predictive capability (Reichstein
et al., 2019; Willard et al., 2020).

While ViT-based models effectively learn spatial patterns
from observational data, they remain susceptible to inherent
biases in training data (Dosovitskiy et al., 2020). System-
atic biases in SOCAT observations or oceanic variables (e.g.,
temperature and salinity) may propagate through the recon-
struction process, impacting regional carbon cycle estimates
(Takahashi et al., 2009). To address this, uncertainty quantifi-
cation techniques such as Bayesian deep learning or ensem-
ble learning could be incorporated to assess confidence inter-
vals in reconstructed spCO2 and improve anomaly detection
capabilities (Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2016). It should be noted that the climatological MLD
used in this study cannot capture interannual or monthly vari-
ability, which may slightly underestimate local or short-term
impacts on spCO2. Nevertheless, it provides adequate phys-
ical constraints for reconstructing long-term and large-scale
spatiotemporal patterns. Future work will explore incorpo-
rating high-quality time-varying MLD data as it becomes
available to improve model fidelity at regional and seasonal
scales.

Furthermore, existing spCO2 reconstruction approaches
predominantly rely on physical environmental variables
while largely neglecting biological processes. In high-
productivity regions such as the North Atlantic, Southern
Ocean, and Arctic Ocean, biological processes play a crucial
role in regulating CO2 exchange, with phytoplankton photo-
synthesis significantly lowering spCO2 (Bates and Mathis,
2009; Boyce et al., 2010; Takahashi et al., 2009). However,
Chl a only partially represents biological influences and is
subject to considerable uncertainties in high-latitude regions,
particularly in ice-covered areas (Arrigo et al., 2008). To bet-
ter account for biological processes, future efforts should in-
corporate additional biogeochemical variables such as net
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Figure 15. Spatial patterns of spCO2 anomalies during positive IOD in the Indian Ocean between SJTU-AViT and multiple data products.
The spCO2 anomaly is the composite mean of eight positive IOD events (detailed IOD events are shown in Sects. S2 and S3). For each IOD
event, the anomalies are averaged over the months of September, October, and November.

community production (NCP) (Arrigo and Dijken, 2011;
Behrenfeld et al., 2006) and phytoplankton community struc-
ture, alongside bio-optical remote sensing techniques, to en-
hance reconstruction accuracy and the physical coherence of
carbon cycle interpretations.

The generalization capability of machine learning mod-
els is contingent on the completeness and representativeness
of training data, leading to substantial uncertainties in data-
sparse regions (Gloege et al., 2021). This is particularly ev-
ident in high-latitude oceans, where spCO2 is modulated by
sea ice cover, biological carbon pumps, and deep-water up-
welling – processes that cannot be fully inferred from sur-
face environmental variables alone (Mongwe et al., 2018).
Since current models primarily rely on surface observations,
their ability to capture vertical carbon transport and subsur-
face processes remains limited. Future studies should inte-
grate three-dimensional ocean state variables (e.g., dissolved
inorganic carbon and alkalinity) (Fennel et al., 2023; Wang
et al., 2024; Zhou and Zhang, 2023) and incorporate physi-
cal conservation constraints (e.g., mass balance and chemical
equilibrium) to enhance the physical robustness of machine
learning models (Leal et al., 2020; Wang and Gupta, 2024).

Additionally, applying data assimilation techniques or cou-
pling machine learning with physics-based biogeochemical
models could further improve reconstruction accuracy (Ar-
cucci et al., 2021; Brajard et al., 2021; Chen et al., 2023).

In summary, high-resolution spCO2 reconstruction is crit-
ical for understanding global ocean carbon sink variability.
While the ViT-based approach offers an innovative solution,
key challenges remain regarding dataset discrepancies, cli-
mate variability impacts, data uncertainties, and the omission
of physical and biological processes. Existing reconstruction
data product must be interpreted with caution when assess-
ing regional carbon fluxes. As ocean acidification and climate
change continue to alter marine carbon dynamics, improving
our ability to reconstruct historical spCO2 trends is essen-
tial for predicting the future ocean carbon uptake. Advanc-
ing spCO2 reconstruction toward higher accuracy and relia-
bility will require multi-source data integration, explainable
machine learning, and robust uncertainty quantification tech-
niques. Furthermore, this study highlights the critical syn-
ergy between observational programs and machine learning-
based modeling approaches in achieving more precise global
carbon assessments.
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5 Data availability

The reconstructed spCO2 and FCO2 datasets
are publicly available as a NetCDF file at
https://doi.org/10.5281/zenodo.15331978 (Zhang et
al., 2025) and will be updated regularly. The input
datasets used for the reconstruction are also pub-
licly accessible. The SST and SIC datasets were
obtained from the NOAA OISST product (https:
//www.ncei.noaa.gov/products/optimum-interpolation-sst,
last access: 20 February 2025). Chl a data were de-
rived from the ESA CCI Ocean Colour project (https:
//climate.esa.int/en/projects/ocean-colour/, last access: 20
February 2025). xCO2 data were sourced from the ESRL
MBL CO2 product (https://gml.noaa.gov/ccgg/mbl/data.php,
last access: 20 February 2025). Wind speed and sea level
pressure data were retrieved from the ERA5 reanalysis pro-
vided by the Medium-Range Weather Forecasts (ECMWF)
(https://doi.org/10.24381/cds.f17050d7, Hersbach et al.,
2023).

6 Conclusions

This study presents a novel global data product of spCO2
reconstructed by a ViT-based deep learning model at a 1°
spatial resolution for the period 1982–2023. By integrat-
ing multi-source observational data, biogeochemical ocean
model results, and physics-informed constraints, the recon-
structed data product demonstrates strong accuracy and spa-
tial coherence across diverse oceanic regions, with a particu-
lar improvement in capturing interannual variability.

The model performs robustly during both the training and
independent validation phases, with high accuracy (R2

=

0.86 in training, R2
= 0.82 in validation) and low bias

(RMSE of 16.70 µatm in training). The implementation of
physical-biogeochemical constraints can significantly im-
prove model performance, reducing the mean absolute er-
ror from 7.15 to 5.95 µatm. The reconstructed data product
shows strong agreement with SOCAT observations and accu-
rately reproduces long-term climatological and annual mean
spCO2, with a low global mean bias of −0.21 µatm, a low
mean absolute error of 5.95 µatm, and a high correlation co-
efficient (R = 0.94). However, biases were found in coastal
and high-latitude oceans, suggesting the need for further re-
finement in these areas.

The evaluation of seasonality reveals that the SJTU-AViT
model effectively captures both seasonal patterns and am-
plitudes across global ocean basins, particularly in regions
with stable conditions, such as subtropical gyres. On the time
scale longer than one year, the model demonstrated its ability
to capture higher interannual spCO2 variability, particularly
during El Niño and La Niña events, with high spatial and
temporal coherence. The higher performance is likely due
to the incorporation of CMIP6 model and advanced ocean
biogeochemical model results during the ViT-based model

training process. This approach allows the model to capture
more accurate spCO2 variability in these data-sparse regions.
Additionally, it captures the global ocean carbon sink’s long-
term strengthening, consistent with rising atmospheric CO2.
However, uncertainties remain in high-latitude regions due to
challenges in resolving complex oceanic processes. Despite
this, the model’s output aligns with the uncertainty ranges of
existing datasets, demonstrating its reliability for global CO2
exchange assessments.

This study highlights machine learning’s potential in
spCO2 reconstruction, while identifying key challenges,
such as input data limitations and model interpretability. Fu-
ture work should extend this approach to higher spatial and
temporal resolutions, integrate more biogeochemical param-
eters, and couple the model with ocean-atmosphere models
for improved long-term projections. Additionally, enhancing
model interpretability will be crucial for understanding the
drivers of spCO2 variability. The approach shows promise
for reconstructing other carbonate system parameters, con-
tributing to a more comprehensive global ocean carbon data
product. This will support climate change research, carbon
neutrality policies, and global carbon management efforts.
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