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Section S1 Monte Carlo method for uncertainty estimation

Estimating u;pp,,;s requires quantifying the uncertainties of nine input variables. A conservative approach was adopted,
using the highest reported uncertainty for each variable when available. The total uncertainty from input variables was

calculated as:

_ [z 2 2 2 2 2 2 2 2
Uinput = \/ussr tusss Uy T UCKHI— o TUpcosqir +u63p€02 +u0.;pC02 +u63pC02 +u6;pC02
SST 5SS DIC ALK

For SST, we used a global mean standard deviation of 0.24 °C from the OISST dataset. SSS uncertainty was set to
0.23 psu, based on the global mean standard deviation reported in the Hadley Centre EN.4.2.2 dataset. For MLD, we adopted
a value of 7.06 m, derived from the global mean grid-level standard deviation in the WOCE Global Data Version 3.0. Chl-a
uncertainty was set to 0.25 mg m™, represented as the RMSD of logio-transformed chlorophyll-a concentration in seawater

provided by the ESA CCI Ocean Colour dataset. Lastly, the uncertainty in pCOzair was taken as 0.22 ppm, based on the global

dspCO, 0spCO, 0spCO, 0spCO,
9SSS > 9SST > 9DIC > QALK

mean uncertainty of xCOz. The uncertainties of are estimated using the standard deviations

derived from monthly climatological data, with corresponding values of 0.16, 0.32, 0.06, and 0.05, respectively. These
values were used in the Monte Carlo simulation to propagate input uncertainties through the pCOz estimation process.

We estimated uncertainty by individually perturbing each input variable. For a given input x;, we generated 100 sets of
random perturbations &;~N(0,u;), where u; is the assumed uncertainty of x;. The perturbed inputs x; + &; were used to
recompute spCO2, and the differences A; between the original and perturbed outputs were calculated. The standard

deviation of A; at each grid cell was taken as the uncertainty contribution of that input variable to the reconstructed spCOs.

Section S2 The data description and climate mode selection

The stations used in this study include the Bermuda Atlantic Time-Series Study (BATS), Hawaii Ocean Time-series (HOT),
Eastern Pacific Ocean (Papa station), Irminger Sea Station, California Current Ecosystem (CCEl), Bay of Bengal Ocean
Acidification (BOBOA), Iceland Station, Tropical Atlantic Ocean (TAO), and the European Station for Time-Series in the
Ocean (ESTOC). The detailed locations are shown in Fig. S2a. These stations are strategically located across different ocean
basins, covering regions such as the tropical and subtropical zones, high-latitude oceans, and coastal upwelling areas, each
with its own distinct physical and biogeochemical properties.

Air-sea CO2 flux data are available for 17 Earth System Models (ESMs) from the CMIP6 ensemble at the Lawrence
Livermore National Laboratory node. From these 17 models, we selected a subset of 7 ESMs based on the availability of
download access through our cluster and the availability of environmental variables. As detailed in Table S1, the selected
models are: CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2, GFDL-ESM4, NorESM2-MM, and
NorESM2-LM. For ease of data analysis, the output data from these models were regridded from their native horizontal grids
to a regular 1° x 1° grid wusing a Dbilinear remapping method (XESMF, python package,
https://doi.org/10.5281/zenodo.1134365).

El Niflo and La Nifia events are identified based on the Nifio 3.4 index, which is the 3-month running mean sea surface
temperature (SST) anomaly for the Nifio 3.4 region (5°N-5°S, 120°W-170°W). These events are defined as five consecutive
overlapping 3-month periods with SST anomalies at or above +0.5°C for El Nifio (warm) events, and at or below -0.5°C for
La Nifa (cool) events (for more details, see https:/ggweather.com/enso/oni.htm). The selected El Nifio and La Nifa events
are listed in Table S2. The Indian Ocean Dipole (IOD) is defined by the Dipole Mode Index (DMI). IOD events are
determined as the three-month running mean DMI is +0.4°C or above (-0.4°C or below) for at least three consecutive months
between June and November (see details in https://ds.data.jma.go.jp/tcc/tcc/products/elnino/iodevents.html). The selected

positive IOD events are also shown in Table S2.
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Table S1. List of the CMIP6 Earth system models used in this study.

Ocean .
Model Ocean biogeochemical Ocean resolutions Data DOI Members
component (lonxlat, levels) labels
module
CESM2 POP2 MARBL 320x384, 60 levels | (Danabasoglu, | o gy
2019a; b; ¢)

CESM2-FV2 POP2 MARBL 320x384, 60 levels (Daggtl’zzgglu’ rlilplfl
CESM2-WACCM POP2 MARBL 320x384, 60 levels (ggrll";zf‘sf‘_’ggl)u’ rlilplfl
CESM2-WACCM- (Danabasoglu, .

FV2 POP2 MARBL 320x384, 60 levels 2019h) rlilplfl
(John et al.,
GFDL-ESM4 MOM6 COBALTvV2 720x576, 75 levels 2018; Krasting et | rlilplfl
al., 2018)
NorESM2-LM MICOM HAMOCC 360x384, 70 levels (gglla;‘ﬁ gt il) rlilplfl
NorESM2-MM MICOM HAMOCC 360x384, 70 levels | (Bemsenetal, o gy
2019a; b; ¢)
Table S2. List of selected El Nifio, La Nifia, and positive IOD events from 1985 to 2018.
Event El Nifio La Nifia Positive IOD
Event No. | Start Date End Date Start Date End Date Start Date End Date
1 1986-12-01 | 1987-03-01 | 1988-12-01 | 1989-03-01 | 1994-09-01 | 1994-12-01
2 1987-12-01 | 1988-03-01 | 1995-12-01 | 1996-03-01 | 1997-09-01 | 1997-12-01
3 1991-12-01 | 1992-03-01 | 1998-12-01 | 1999-03-01 | 2006-09-01 | 2006-12-01
4 1994-12-01 | 1995-03-01 | 1999-12-01 | 2000-03-01 | 2007-09-01 | 2007-12-01
5 1997-12-01 | 1998-03-01 | 2007-12-01 | 2008-03-01 | 2012-09-01 | 2012-12-01
6 2002-12-01 | 2003-03-01 | 2010-12-01 | 2011-03-01 | 2015-09-01 | 2015-12-01
7 2009-12-01 | 2010-03-01 | 2011-12-01 | 2012-03-01 | 2017-09-01 | 2017-12-01
8 2015-12-01 | 2016-03-01 \ 2018-09-01 | 2018-12-01
80  Table S3. List of selected independent test stations with long-term observations.
Station Coordinates Time range Number of URL
samples
BAT 31.67°N, 295.83°E 10/1991-6/2022 324 https://bios.asu.edu/bats
HOT 22.75°N, 202°E 10/1988-12/2023 325 https://hahana.soest.hawaii.edu/hot/hotco2
ESTOC 29.07°N, 344.17°E 10/1995-11/2009 115 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Coa
stal/ESTOC.html
CCE1 33.50°N, 237.50°E 11/2008-12/2023 144 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo
rings/Pacific.html
TAO -0.51°N, 189.98°E 2/2010-8/2016 45 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo
rings/Pacific.html

BOBOA 15°N, 90°E 11/2013-11/2018 53 https://www.ncei.noaa.gov/access/ocean-ca

rbon-acidification-data-system/oceans/Moo
rings/Indian.html

Papa 50.13°N, 215.17°E 6/2007-4/2023 168 https://www.pmel.noaa.gov/co2/story/Papa
Iceland 68°N, 347.40°E 2/1985-11/2021 158 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo

rings/Atlantic.html
Irminger 64.30°N, 332°E 3/1983-11/2012 99 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo
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Table S4. Skill metrics of the reconstructed spCO; by ocean basin.

Ocean basin N R? RMSE MAE MBE
Pacific ocean 159783 0.94 6.79 5.29 0.30
Atlantic ocean 111326 0.81 7.10 5.31 -0.31
Indian ocean 6354 0.95 5.31 4.75 -0.08
Arctic ocean 10316 0.90 8.80 7.58 -0.24
Southern ocean 48636 0.88 8.20 6.76 -0.55
Table S5. Skill metrics of the reconstructed spCO; by latitude band.
latitude band N R? RMSE MAE MBE
60°N-90°N 30802 0.92 9.23 7.58 -0.56
30°N-60°N 123357 0.91 9.13 6.40 0.07
0-30°N 96608 0.72 6.13 4.74 0.04
0-30°S 35804 0.97 5.70 4.96 -0.07
30°S-60°S 43497 0.90 6.13 5.29 -0.20
60°S-90°S 16602 0.86 11.80 9.29 -1.03
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Figure S1. Data availability for spCO; reconstruction. (a) Spatial distribution of the number of all spCO; data points. (b) Annual
data count of all spCQO; data points over the period from 1982 to 2023. (c) Spatial distribution of the number of spCO; data points
used for training. (d) Annual data count used for training over the period from 1982 to 2023. (e) Spatial distribution of the number
of spCO; data points used for validation. (f) Annual data count used for validation over the period from 1982 to 2023.
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Figure S2. Spatial distribution of independent in situ observations and the definition of ocean basins used in this study.
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Figure S3. Independent test of seasonal cycles of spCO; climatology between SJTU-AVIT and in situ observations. These in situ data
are independent data and are not used to train the model. The station description and location refer to supplement section S2 and
Fig. S2. The spCO; in SJTU-AVIT is interpolated to match the station locations and times in the comparison. The lines represent the
monthly mean spCO; values, with the shaded regions indicating the standard deviation for the observed climatology. The
SJTU-AVIT data product demonstrates good agreement with the observed climatological spCO; patterns at each station.
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Figure S4. Temporal evolution of bias and SOCAT observation count from 1982 to 2023. The blue line represents the bias in
long-term mean spCO; (SJTU-AVIT minus SOCAT), while the red bars show the annual number of SOCAT observations
contributing to the data. The increasing observation count over time correlates with a decrease in the mean bias, suggesting
improvements in model performance as more observational data became available.
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Figure SS. Bias in the standard deviation of spCO; between SJTU-AVIiT and SOCAT at each season from 1982 to 2023. (a) MAM
(March-May), (b) JJA (June-August), (¢c) SON (September-November), and (d) DJF (December-February). The standard deviation
(STD) is quantified as the standard deviation of residuals after removing long-term trends. The bias is calculated as the difference
between SJTU-AVIT and SOCAT standard deviations at each season (SJTU-AVIT minus SOCAT). Positive values (red) indicate

110  overestimation of variability by SITU-AViT, while negative values (blue) indicate underestimation. These seasonal biases highlight
the model's performance across different seasonal periods and regions. The spCO; in SJTU-AVIT is interpolated to match the
SOCAT observation locations and times in the comparison (see detailed computation in section 2.3).
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Figure S6. Spatial distribution of standard deviation in interannual time scale of reconstructed spCO; at multiple data products
115  from 1985 to 2018. All the panels show the standard deviation of residuals after removing long-term trends and seasonal cycles. The
color scale represents the magnitude of variability in spCO,, with higher values (red) indicating greater variability.
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Figure S7. Spatial and temporal patterns of spCO; anomalies during ENSO events in the equatorial Pacific Ocean: comparison
between SJTU-AVIT and multiple data products. The left column shows composite spatial distribution of spCO; anomalies during
eight El Nifio events. The middle column shows composite spatial distribution of spCO, anomalies during seven La Niiia events. The
right column shows the time series of spCO; anomalies averaged over the equatorial eastern Pacific and their correlation with the
Nifio 3.4 SST index. The eight El Nifios and seven La Niiias are indicated in the supplement section S2 and S3.
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Figure S8. Spatial distribution of SOCAT spCO; observations in the Equatorial Pacific Ocean (240°E-280°E) during selected ENSO
events. The color scale indicates the valid data count per 1°x1° grid cell during four distinct ENSO events: (a) El Nifio 1997-1998, (b)
El Nifio 2002-2003, (c) La Nifia 1995-1996, and (d) La Nifia 1998-1999.

Section S5 Workflow, Ablation experiments, and Validation of spCO: reconstruction

5.1 Workflow of the spCO: reconstruction using the ViT-based framework

The spCOz reconstruction workflow based on the ViT framework is organized into four main stages—Data Processing,
Model Architecture, Training & Validation, and Evaluation & Analysis—as illustrated in Fig. 2 (in main text). At the top, the
data processing panel shows the input sources (CMIP6, MOM6, SOCAT) and the preprocessing steps: temporal
harmonization to a monthly cadence, spatial regridding to a 1°x1° grid, and feature normalization. These boxes indicate that
all inputs are brought to a common spatio-temporal grid and scale before being passed to the model. The model architecture
panel depicts how physical variables are converted into model inputs: variable tokenization, variable aggregation, and then
fed into a Transformer backbone that learns spatial and temporal dependencies. The model output block illustrates that the
network predicts monthly spCO2 on the same 1° grid. The training & validation panel summarizes our multi-stage training
strategy: (i) pretraining on CMIP6-derived fields, (ii) fine-tuning using MOM®6 plus 80% of SOCAT, and (iii) evaluation
using a withheld 20% SOCAT validation split and independent tests at long-term station sites. Finally, the evaluation &
analysis panel shows the main evaluation products derived from the reconstruction: model performance metrics, climatology,
seasonal cycle, interannual variability, and downstream analyses (air-sea CO2 flux calculation and uncertainty analysis).
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5.2 Ablation experiments on the contribution of CMIP6 pre-training

To quantitatively assess the impact of CMIP6-based pretraining on the reconstruction, we conducted two controlled
experiments that were identical in all settings except for the use of CMIP6 pretraining.

(a) Test 1 (with CMIP6 pre-training): The model was first pretrained on CMIP6 simulation outputs, allowing it to learn
from CMIP6 model results. It was then jointly fine-tuned using MOM6 and SOCAT observational data.

(b) Test 2 (without CMIP6 pre-training): Under the same conditions, the model relied solely on MOM6 and SOCAT data.

The ablation experiments reveal a substantial impact of CMIP6 pretraining on the results. When pretrained on CMIP6
(Test 1), the model achieved an RMSE of 7.44 patm on the validation set. Without CMIP6 pretraining (Test 2), RMSE
increased to 17.13 patm. Thus, CMIP6 pretraining reduced RMSE by 9.69 patm, corresponding to a relative decrease of
approximately 56.57%. The spatial map indicates that the largest improvements occur in regions with sparse observations
(particularly at high latitudes) and areas with pronounced low-frequency or interannual variability.

CMIP6 pretraining provides the model with a physically meaningful initialization. By learning from temporally and
spatially complete simulation fields, the model can first capture large-scale spatial patterns and low-frequency signals,
enabling faster convergence during fine-tuning, reducing overfitting in observation-sparse regions, and achieving better
generalization at interannual scales. Although CMIP6 simulations may contain biases, these are effectively corrected during
the subsequent fine-tuning with MOM®6 and SOCAT, ensuring the final reconstruction remains consistent with observations.
The substantial RMSE improvement (a reduction of 9.69 patm, ~56.57%) demonstrates that this two-stage training strategy
achieves an optimal balance between physical consistency and empirical accuracy.

(@)  Test 1 (with CMIP6 pre-training) (b) Test 2 (without CMIP6 pre-training)

Mean RMSE=7.44 Mean RMSE=17.13
T e g *‘_’. B . ol aﬂ—-"?.w"‘-?? ':_}--,

spCO> (patm)

Figure S9. Impact of CMIP6 pre-training on reconstructed spCO; fields. (a) Test 1 (with CMIP6 pre-training): CMIP6 pre-training
followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without CMIP6 pre-training): no CMIP6 pre-training, trained only on
MOMS6 & SOCAT. Inclusion of CMIP6 pre-training reduces validation RMSE by 9.69 patm (~56.57% relative reduction), justifying
the two-stage training strategy.

5.3 Ablation experiments on the contribution of MOMS6 fine-tuning

To assess the role of MOMS6 fine-tuning in our reconstruction framework, we designed two comparative experiments while
keeping all other model settings identical:

(a) Test 1 (with MOMS in fine-tuning): The model was first pretrained on CMIP6 outputs and then fine-tuned using both
MOMB6 simulation outputs and SOCAT observations. MOMS6 provides continuous, physically consistent global fields, while
SOCAT supplies essential observational constraints.

(b) Test 2 (without MOMSG in fine-tuning): The model was pretrained on CMIP6 data as in Test 1 but fine-tuned solely
with SOCAT observations, without incorporating MOM6 outputs.

The fine-tuning strategy that included MOM®6 data (Test 1) achieved a validation RMSE of 7.44 patm. In contrast,
excluding MOM6 during fine-tuning (Test 2) resulted in a substantially higher RMSE of 12.27 patm. Thus, incorporating
MOMS6 during fine-tuning reduced RMSE by 4.83 patm, corresponding to a relative decrease of approximately 39.36%. The
spatial map indicates that the largest improvements occur in regions with sparse observations, particularly at high latitudes,
and in areas with pronounced low-frequency or interannual spCOz variability, highlighting the crucial role of MOMS6 in
enhancing reconstruction accuracy.

In our framework, MOM®6 outputs are incorporated alongside SOCAT observations during the fine-tuning stage. SOCAT
provides the essential observational constraint, but its spatial and temporal coverage is sparse and uneven. MOMG6
complements this by supplying continuous global fields that embed large-scale physical consistency, thereby stabilizing the
training process and enhancing generalization, particularly in data-poor regions. Mechanistically, MOM®6 fine-tuning serves
three key functions: (i) it exposes the network to continuous, globally coherent background fields (e.g., large-scale gradients,
seasonal cycles, and interannual variability), thereby reducing overfitting to the sparse and uneven SOCAT distribution; (ii) it
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aligns model weights with physically plausible oceanographic relationships, mitigating the direct transfer of structural biases
from heterogeneous CMIP6 pre-training and avoiding abrupt or unrealistic weight corrections during SOCAT anchoring; (iii)
it supplies realistic background variability, enabling the model to learn coherent patterns prior to adjustment with pointwise
observations, which strengthens generalization in data-limited regions. In summary, MOM6 fine-tuning functions as a
physically consistent bridge between synthetic CMIP6 pre-training and sparse SOCAT observations, significantly improving
the stability, robustness, and reliability of the reconstruction, especially in regions with limited observational coverage.

(@) Test 1 (with MOMS in fine-tuning) (b) Test 2 (without MOMS in fine-tuning)
Mean RMSE=7 .44 _Mean RMSE=12.27 _

spCO> (patm)

Figure S10. Impact of MOMG6 fine-tuning on reconstructed spCQO; fields. (a) Test 1 (with MOMG6 in fine-tuning): CMIP6
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without MOMS6 in fine-tuning): CMIP6 pre-training, fine-tuning
only on SOCAT. Inclusion of MOMBG6 fine-tuning reduces validation RMSE by 4.83 patm (~39.36% relative reduction), highlighting
the crucial role of MOMG in enhancing reconstruction accuracy.

5.4 Ablation experiments on the contribution of different CMIP6 pre-training data combination

To assess the sensitivity of our reconstruction to the choice of CMIP6 models and the fine-tuning strategy, we conducted two
comparative pre-training experiments while keeping all other model settings identical:

(a) Test 1 (3-model CMIP6 pre-training): The model was pre-trained on a subset of three CMIP6 simulations
(GFDL-ESM4, NorESM2-LM, NorESM2-MM) and then fine-tuned with the same MOM®6 and SOCAT data.

(b) Test 2 (4-model CMIP6 pre-training): The model was pre-trained on a different subset of four CMIP6 simulations
(CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2) and fine-tuned using the same MOMG6 and SOCAT
data.

The ViT reconstruction using the 3-model subset (Test 1) achieved a validation RMSE of 10.48 patm, while the 4-model
subset (Test 2) yielded a slightly lower RMSE of 9.54 patm. Both are higher than the RMSE obtained using all seven CMIP6
models (7.44 patm), indicating that the total amount of pre-training data can influence reconstruction performance.
Nevertheless, the difference between the two subsets is small (RMSE difference of 0.94 patm, ~8.97%), and deviations from
the 7-model pre-training result are modest (~2-3 patm).

Overall, these results indicate that, as long as multiple CMIP6 models are included to capture diverse large-scale oceanic
patterns, the reconstruction is largely robust to the specific choice of pre-training models. The two-stage training framework
effectively stabilizes reconstruction performance, corrects model-specific biases, and reliably integrates observational
information. To further strengthen robustness, CMIP6 models were carefully selected based on the evaluation framework of
Liao et al. (2021), ensuring that the chosen models accurately represent key oceanic carbon dynamics. Through multi-model
pre-training combined with carefully designed fine-tuning strategies, our approach maintains stable and reliable
reconstruction performance, effectively capturing large-scale patterns, low-frequency variability, and regional details across
different spatial and temporal scales.
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Figure S11. The sensitivity of reconstructed spCQO; fields to the choice of CMIP6 models. (a) Test 1 (3-model CMIP6 pre-training):
three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM) pre-training followed by MOM6 & SOCAT fine-tuning;
(b) Test 2 (4-model CMIP6 pre-training): four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM,
CESM2-WACCM-FV2) pre-training followed by MOM6 & SOCAT fine-tuning.

5.5 Ablation experiments on the contribution of SOCAT fine-tuning

To evaluate the role of SOCAT observations in the fine-tuning stage, we designed two comparative experiments while
keeping all other model settings identical:

(a) Test 1 (with SOCAT in fine-tuning): The model, pretrained on CMIP6 and optionally fine-tuned with MOMS6 fields,
was further fine-tuned using SOCAT in situ pCOz observations. SOCAT provides high-quality pointwise constraints that
correct model biases and ensure alignment with real-world ocean conditions.

(b) Test 2 (without SOCAT in fine-tuning): The same pretrained model was fine-tuned without using SOCAT data, relying
solely on MOMBG fields for spatial coverage and physical consistency.

Incorporating SOCAT observations during fine-tuning (Test 1) yielded a validation RMSE of 7.44 patm. In contrast,
excluding SOCAT (Test 2) resulted in a dramatically higher RMSE of 26.87 patm. Thus, the inclusion of SOCAT reduced
RMSE by 19.43 patm, corresponding to a relative decrease of approximately 72.31%. This large improvement demonstrates
the critical role of SOCAT observations in aligning the reconstructed spCO:z field with real-world measurements.

SOCAT data act as a supervisory signal that corrects local and regional biases in the model, ensuring the fine-tuned
reconstruction reproduces observed variability while retaining large-scale spatiotemporal patterns learned during CMIP6
pretraining and MOMG6 fine-tuning. Without SOCAT, the model cannot accurately capture local pCO:z variations, leading to
substantial errors. Proper integration of SOCAT with MOMS6 fields balances the influence of sparse observational points and
physically consistent background patterns, enhancing overall predictive skill, particularly in regions with limited
observations.

(@) Test 1 (with SOCAT in fine-tuning) (b) Test 2 (without SOCAT in fine-tuning)
Mean RMSE=26.87

=

spCO2 (patm)

Figure S12. Impact of SOCAT observations on the fine-tuning of the reconstructed spCO; field. (a) Test 1 (with SOCAT in
fine-tuning): CMIP6 pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without SOCAT in fine-tuning): CMIP6
pre-training, fine-tuning only on MOMBG6. Inclusion of SOCAT observations reduces validation RMSE by 19.43 patm (~72.31%
relative reduction), demonstrating the pivotal role of SOCAT in achieving accurate spCO; reconstruction.



245

250

255

260

265

270

275

5.6 Ablation experiments on the contribution of physical-biogeochemical Constraints on seasonal cycle

To assess the impact of MOMo6-derived physical-biogeochemical constraints on the seasonal cycle of spCOz, we conducted
two comparative experiments while keeping all other model settings identical:

(a) Test 1 (with physical-biogeochemical constraints): The SJTU-AViT model reconstruction incorporated MOM6-derived
constraints during training, enforcing physically and biogeochemically plausible relationships among environmental
variables.

(b) Test 2 (without physical-biogeochemical constraints): The SJTU-AVIT reconstruction excluded these constraints,
allowing the model to rely solely on observational and CMIP6-derived information.

The constraints systematically improve model performance across all seasons, as reflected in reduced RMSE values:
MAM decreases from 11.66 to 11.35 patm (~2.66%), JJA from 12.31 to 11.93 patm (~3.09%), SON from 13.67 to 12.51
patm (~8.49%), and DJF from 10.32 to 10.18 patm (~1.36%). On average, the inclusion of constraints reduces RMSE by
~3.90% across the four seasons.

These improvements are systematic and physically meaningful rather than random fluctuations. The MOM6-derived
constraints anchor the model to physically and biogeochemically plausible relationships, enhancing the accuracy and
robustness of the seasonal spCO: representation. The constraints are particularly effective in regions with sparse
observational coverage, where purely data-driven reconstructions may be prone to larger errors. Overall, the results
demonstrate that including physical-biogeochemical constraints play a substantial and reliable role in improving the seasonal
cycle representation of spCOz, rather than merely introducing stochastic or localized enhancements.

Constraints MAM mean Constralnts JJA mean Constraints SON mean Constraints DJF mean

400 420 440

Constralnts SON RMSE = 12 51
- - =7 -

Figure S13. Seasonal comparison of SJTU-AVIiT spCO; means and RMSE with and without physical-biogeochemical constraints.
(a-d) Test 1 (with physical-biogeochemical constraints): seasonal mean spCO; from SJTU-AVIT with physical-biogeochemical
constraints for MAM (March-May), JJA (June-August), SON (September-November), and DJF (December-February). (e-h) Test 2
(without physical-biogeochemical constraints): seasonal mean spCQO; from SJTU-AVIT without constraints. (i-I) Test 1 (with
physical-biogeochemical constraints): seasonal RMSE of spCO; between SJTU-AVIiT and SOCAT with constraints. (m-p) Test 2
(without physical-biogeochemical constraints): seasonal RMSE of spCO; between SJTU-AVIiT and SOCAT without constraints. For
RMSE calculations, SJTU-AVIT spCO; was interpolated to SOCAT observation locations and times.

5.7 Algorithm uncertainty assessment using synthetic data

We acknowledge that the traditional u,,,, approach depends directly on observational coverage and may underestimate
uncertainty in regions with sparse or missing SOCAT data. To address this limitation, we performed an additional experiment
using synthetic data to provide a more robust estimate of algorithm uncertainty. Specifically, we used the RECCAP2
simulation from the Scott Doney group (hereafter SD data) as an independent reference “truth,” which the ViT machine
learning model had never seen before. The SD data were divided into two subsets: (i) SD_SOCAT: SD outputs sampled at
the spatiotemporal locations of SOCAT observations. (ii) SD_nonSOCAT: the remaining SD outputs.
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Following our standard workflow (CMIP6 pretraining, MOM6 fine-tuning, and SD SOCAT fine-tuning), we
reconstructed spCO» and quantified three RMSE values:

(a) RMSE _SD SOCAT = 5.58 patm. This is bias at training locations, indicating good consistency with data the model
has seen.

(b) RMSE_SD nonSOCAT = 7.40 patm. This is bias at independent validation points, demonstrating generalization to
unseen data.

(c) RMSE SD _all =7.39 patm. This is bias error over the full SD dataset, reflecting the model’s overall performance.

These results show that the training error is slightly lower, as expected, and the validation and overall errors are nearly
identical. This indicates that the ViT model does not overfit and that its uncertainty estimates are robust across different
spatial domains. The close agreement also demonstrates that algorithm uncertainty captures the spatial heterogeneity of
errors, particularly in high-latitude or data-sparse regions where u,,,,, cannot be defined.

(a) The full SD dataset (b) SD_SOCAT subset (c) SD_nonSOCAT subset
Mean RMSE=7.39 Mean RMSE=5. 58 Mean RMSE=7.40
e > - i

spCO>(patm)

Figure S14. Spatial distribution of RMSE (patm) between the reconstructed spCO; field and the Scott Doney RECCAP2 simulation
(SD data). (a) RMSE for the full SD dataset. (b) RMSE for the SD_SOCAT subset, i.e., SD data sampled at SOCAT observation
locations and used in training. (c¢) RMSE for the SD_nonSOCAT subset, i.e., SD data at locations not sampled by SOCAT and
reserved for independent validation. The mean RMSE value for each panel is indicated. The SD data is from Doney et al., (2009).

5.8 Independence validation of spCO: reconstruction

To address the concern regarding the potential lack of independence between the model and the validation data, we
conducted an additional analysis using an independent reconstructed data product from MPI-SOM-FFN (Landschiitzer et al.
2016). Specifically, when calculating the detrended and deseasonalized SOCAT STD, we applied the long-term trends and
seasonal cycles derived from the MPI-SOM-FFN data product instead of the SJTU-AViT estimates. The results, shown in the
Fig. S15, demonstrate that the overall spatial distribution of SOCAT STD remains highly consistent, with only minimal
deviations (1.68 patm). This indicates that the small deviations observed between SJITU-AViT and SOCAT are not artifacts
of model-data dependence. Therefore, the analysis confirms the robustness of our methodology and supports the credibility
of the interannual variability assessment.
(b)

@) SJTU-AVITSTD

SOCAT STD (c) STD dlfference

T T T T - T
0 3 6 9 121518 0 3 6 9121518 -9-6-30 3 6 9
spCO3 (patm) spCO3 (patm) spCO; (patm)

Figure S15. Comparison of spCO; standard deviations on timescales longer than one year between SJTU-AViT, SOCAT, and
MPI-SOM-FFN data product. (a) Standard deviation of spCO; from the SJTU-AVIiT at SOCAT observation grid points. (b)
Standard deviation of spCO; from SOCAT data (the long-term trends and seasonal cycles derived from the SJTU-AVIT). (c)
Standard deviation bias between SJTU-AVIiT and SOCAT (panel a minus panel b). (d) Standard deviation of spCO; from the
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SJTU-AVIT at SOCAT observation grid points. (¢) Standard deviation of spCO; from SOCAT data (the long-term trends and
seasonal cycles derived from the MPI-SOM-FFN). (f) Standard deviation bias between SJTU-AVIT and SOCAT (panel d minus
panel e).

5.9 Validation of seasonal phase consistency with SOCAT observations

To evaluate whether our reconstruction can accurately capture the seasonal phase observed in SOCAT, we carried out
additional analyses comparing the model results with SOCAT climatologies. Specifically:

(a) Seasonal cycle comparison across ocean basins: We have evaluated the seasonal cycle month-by-month for the global
ocean and five major basins, separately for the Northern and Southern Hemispheres. These comparisons demonstrate that the
model well reproduces the seasonal cycle of spCO2, with peak and minimum months largely consistent with SOCAT
observations.

(b) Phase bias evaluation: We produced global maps of the difference in ocean pCO: peak month and minimum month
between SJTU-AVIiT and SOCAT (in months, range +6). Across most regions, the phase differences in both peak and
minimum months are within £1 month, with only ~5% of grid points exceeding this threshold.

NH monthly climatology
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Figure S16. Monthly spCO; regional time series for the Northern Hemisphere across different ocean regions from 1982 to 2023.
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and SOCAT observations. Peak months are
indicated to allow direct comparison of seasonal phasing.
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Figure S17. Monthly spCO; regional time series for the Southern Hemisphere across different ocean regions from 1982 to 2023.
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and SOCAT observations. Peak months are
indicated to allow direct comparison of seasonal phasing.
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Figure S18. Grid-scale maps of spCO; peak- and minimum-month differences (SJTU-AViT — SOCAT, in months, range +6). For the
peak-month difference map, positive values indicate that SJTU-AVIT peaks later than SOCAT; for the minimum-month difference
map, positive values indicate that SJTU-AVIiT minimums later than SOCAT. Regions with insufficient observational coverage are
masked. These maps provide a spatial assessment of the model’s ability to reproduce seasonal maxima and minima timing.
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