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Section S1 Monte Carlo method for uncertainty estimation 

Estimating 𝑢!"#$%& requires quantifying the uncertainties of nine input variables. A conservative approach was adopted, 

using the highest reported uncertainty for each variable when available. The total uncertainty from input variables was 

calculated as: 
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For SST, we used a global mean standard deviation of 0.24 °C from the OISST dataset. SSS uncertainty was set to 

0.23 psu, based on the global mean standard deviation reported in the Hadley Centre EN.4.2.2 dataset. For MLD, we adopted 

a value of 7.06 m, derived from the global mean grid-level standard deviation in the WOCE Global Data Version 3.0. Chl-a 

uncertainty was set to 0.25 mg m-3, represented as the RMSD of log₁₀-transformed chlorophyll-a concentration in seawater 

provided by the ESA CCI Ocean Colour dataset. Lastly, the uncertainty in pCO2air was taken as 0.22 ppm, based on the global 45 
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 are estimated using the standard deviations 

derived from monthly climatological data, with corresponding values of 0.16, 0.32, 0.06, and 0.05, respectively. These 

values were used in the Monte Carlo simulation to propagate input uncertainties through the pCO2 estimation process. 

We estimated uncertainty by individually perturbing each input variable. For a given input 𝑥!, we generated 100 sets of 

random perturbations 𝜀!~𝑁(0, 𝑢!), where 𝑢! is the assumed uncertainty of 𝑥!. The perturbed inputs 𝑥! + 𝜀! were used to 50 

recompute spCO2, and the differences ∆!  between the original and perturbed outputs were calculated. The standard 

deviation of ∆! at each grid cell was taken as the uncertainty contribution of that input variable to the reconstructed spCO2. 

Section S2 The data description and climate mode selection 

The stations used in this study include the Bermuda Atlantic Time-Series Study (BATS), Hawaii Ocean Time-series (HOT), 

Eastern Pacific Ocean (Papa station), Irminger Sea Station, California Current Ecosystem (CCE1), Bay of Bengal Ocean 55 

Acidification (BOBOA), Iceland Station, Tropical Atlantic Ocean (TAO), and the European Station for Time-Series in the 

Ocean (ESTOC). The detailed locations are shown in Fig. S2a. These stations are strategically located across different ocean 

basins, covering regions such as the tropical and subtropical zones, high-latitude oceans, and coastal upwelling areas, each 

with its own distinct physical and biogeochemical properties. 

Air-sea CO2 flux data are available for 17 Earth System Models (ESMs) from the CMIP6 ensemble at the Lawrence 60 

Livermore National Laboratory node. From these 17 models, we selected a subset of 7 ESMs based on the availability of 

download access through our cluster and the availability of environmental variables. As detailed in Table S1, the selected 

models are: CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2, GFDL-ESM4, NorESM2-MM, and 

NorESM2-LM. For ease of data analysis, the output data from these models were regridded from their native horizontal grids 

to a regular 1° x 1° grid using a bilinear remapping method (xESMF, python package, 65 

https://doi.org/10.5281/zenodo.1134365). 

El Niño and La Niña events are identified based on the Niño 3.4 index, which is the 3-month running mean sea surface 

temperature (SST) anomaly for the Niño 3.4 region (5°N–5°S, 120°W–170°W). These events are defined as five consecutive 

overlapping 3-month periods with SST anomalies at or above +0.5°C for El Niño (warm) events, and at or below -0.5°C for 

La Niña (cool) events (for more details, see https://ggweather.com/enso/oni.htm). The selected El Niño and La Niña events 70 

are listed in Table S2. The Indian Ocean Dipole (IOD) is defined by the Dipole Mode Index (DMI). IOD events are 

determined as the three-month running mean DMI is +0.4ºC or above (-0.4ºC or below) for at least three consecutive months 

between June and November (see details in https://ds.data.jma.go.jp/tcc/tcc/products/elnino/iodevents.html). The selected 

positive IOD events are also shown in Table S2. 



Section S3 Table S1-S2 75 

Table S1. List of the CMIP6 Earth system models used in this study. 

Model Ocean 
component 

Ocean 
biogeochemical 

module 

Ocean resolutions 
(lonxlat, levels) Data DOI Members 

labels 

CESM2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019a; b; c) r1i1p1f1 

CESM2-FV2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019d) r1i1p1f1 

CESM2-WACCM POP2 MARBL 320x384, 60 levels (Danabasoglu, 
2019e; f; g) r1i1p1f1 

CESM2-WACCM-
FV2 POP2 MARBL 320x384, 60 levels (Danabasoglu, 

2019h) r1i1p1f1 

GFDL-ESM4 MOM6 COBALTv2 720x576, 75 levels 
(John et al., 

2018; Krasting et 
al., 2018) 

r1i1p1f1 

NorESM2-LM MICOM HAMOCC 360x384, 70 levels (Seland et al., 
2019a; b; c) r1i1p1f1 

NorESM2-MM MICOM HAMOCC 360x384, 70 levels (Bentsen et al., 
2019a; b; c) r1i1p1f1 

 

Table S2. List of selected El Niño, La Niña, and positive IOD events from 1985 to 2018. 

Event El Niño La Niña Positive IOD 

Event No. Start Date End Date Start Date End Date Start Date End Date 

1 1986-12-01 1987-03-01 1988-12-01 1989-03-01 1994-09-01 1994-12-01 

2 1987-12-01 1988-03-01 1995-12-01 1996-03-01 1997-09-01 1997-12-01 

3 1991-12-01 1992-03-01 1998-12-01 1999-03-01 2006-09-01 2006-12-01 

4 1994-12-01 1995-03-01 1999-12-01 2000-03-01 2007-09-01 2007-12-01 

5 1997-12-01 1998-03-01 2007-12-01 2008-03-01 2012-09-01 2012-12-01 

6 2002-12-01 2003-03-01 2010-12-01 2011-03-01 2015-09-01 2015-12-01 

7 2009-12-01 2010-03-01 2011-12-01 2012-03-01 2017-09-01 2017-12-01 

8 2015-12-01 2016-03-01 \ \ 2018-09-01 2018-12-01 

 

Table S3. List of selected independent test stations with long-term observations. 80 

Station Coordinates  Time range Number of 
samples 

URL 

BAT 31.67°N, 295.83°E 10/1991-6/2022 324 https://bios.asu.edu/bats 
HOT 22.75°N, 202°E 10/1988-12/2023 325 https://hahana.soest.hawaii.edu/hot/hotco2 

ESTOC 29.07°N, 344.17°E 10/1995-11/2009 115 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Coa

stal/ESTOC.html 
CCE1 33.50°N, 237.50°E 11/2008-12/2023 144 https://www.ncei.noaa.gov/access/ocean-ca

rbon-acidification-data-system/oceans/Moo
rings/Pacific.html 

TAO -0.51°N, 189.98°E 2/2010-8/2016 45 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo

rings/Pacific.html 
BOBOA 15°N, 90°E 11/2013-11/2018 53 https://www.ncei.noaa.gov/access/ocean-ca

rbon-acidification-data-system/oceans/Moo
rings/Indian.html 

Papa 50.13°N, 215.17°E 6/2007-4/2023 168 https://www.pmel.noaa.gov/co2/story/Papa 
Iceland 68°N, 347.40°E 2/1985-11/2021 158 https://www.ncei.noaa.gov/access/ocean-ca

rbon-acidification-data-system/oceans/Moo
rings/Atlantic.html 

Irminger 64.30°N, 332°E 3/1983-11/2012 99 https://www.ncei.noaa.gov/access/ocean-ca
rbon-acidification-data-system/oceans/Moo



rings/Atlantic.html 
 

Table S4. Skill metrics of the reconstructed spCO2 by ocean basin. 

Ocean basin N R2 RMSE MAE MBE 

Pacific ocean 159783 0.94 6.79 5.29 0.30 

Atlantic ocean 111326 0.81 7.10 5.31 -0.31 

Indian ocean 6354 0.95 5.31 4.75 -0.08 

Arctic ocean 10316 0.90 8.80 7.58 -0.24 

Southern ocean 48636 0.88 8.20 6.76 -0.55 

 

Table S5. Skill metrics of the reconstructed spCO2 by latitude band. 

latitude band N R2 RMSE MAE MBE 

60°N-90°N 30802 0.92 9.23 7.58 -0.56 

30°N-60°N 123357 0.91 9.13 6.40 0.07 

0-30°N 96608 0.72 6.13 4.74 0.04 

0-30°S 35804 0.97 5.70 4.96 -0.07 

30°S-60°S 43497 0.90 6.13 5.29 -0.20 

60°S-90°S 16602 0.86 11.80 9.29 -1.03 

 85 



Section S4 Figure. S1-S8 

 

Figure S1. Data availability for spCO2 reconstruction. (a) Spatial distribution of the number of all spCO2 data points. (b) Annual 
data count of all spCO2 data points over the period from 1982 to 2023. (c) Spatial distribution of the number of spCO2 data points 
used for training. (d) Annual data count used for training over the period from 1982 to 2023. (e) Spatial distribution of the number 90 
of spCO2 data points used for validation. (f) Annual data count used for validation over the period from 1982 to 2023. 

 

Figure S2. Spatial distribution of independent in situ observations and the definition of ocean basins used in this study. 



 

Figure S3. Independent test of seasonal cycles of spCO2 climatology between SJTU-AViT and in situ observations. These in situ data 95 
are independent data and are not used to train the model. The station description and location refer to supplement section S2 and 
Fig. S2. The spCO2 in SJTU-AViT is interpolated to match the station locations and times in the comparison. The lines represent the 
monthly mean spCO2 values, with the shaded regions indicating the standard deviation for the observed climatology. The 
SJTU-AViT data product demonstrates good agreement with the observed climatological spCO2 patterns at each station. 

 100 

Figure S4. Temporal evolution of bias and SOCAT observation count from 1982 to 2023. The blue line represents the bias in 
long-term mean spCO2 (SJTU-AViT minus SOCAT), while the red bars show the annual number of SOCAT observations 
contributing to the data. The increasing observation count over time correlates with a decrease in the mean bias, suggesting 
improvements in model performance as more observational data became available. 
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Figure S5. Bias in the standard deviation of spCO2 between SJTU-AViT and SOCAT at each season from 1982 to 2023. (a) MAM 
(March-May), (b) JJA (June-August), (c) SON (September-November), and (d) DJF (December-February). The standard deviation 
(STD) is quantified as the standard deviation of residuals after removing long-term trends. The bias is calculated as the difference 
between SJTU-AViT and SOCAT standard deviations at each season (SJTU-AViT minus SOCAT). Positive values (red) indicate 
overestimation of variability by SJTU-AViT, while negative values (blue) indicate underestimation. These seasonal biases highlight 110 
the model's performance across different seasonal periods and regions. The spCO2 in SJTU-AViT is interpolated to match the 
SOCAT observation locations and times in the comparison (see detailed computation in section 2.3). 

 

Figure S6. Spatial distribution of standard deviation in interannual time scale of reconstructed spCO2 at multiple data products 
from 1985 to 2018. All the panels show the standard deviation of residuals after removing long-term trends and seasonal cycles. The 115 
color scale represents the magnitude of variability in spCO2, with higher values (red) indicating greater variability. 



 
Figure S7. Spatial and temporal patterns of spCO2 anomalies during ENSO events in the equatorial Pacific Ocean: comparison 
between SJTU-AViT and multiple data products. The left column shows composite spatial distribution of spCO2 anomalies during 
eight El Niño events. The middle column shows composite spatial distribution of spCO2 anomalies during seven La Niña events. The 120 
right column shows the time series of spCO2 anomalies averaged over the equatorial eastern Pacific and their correlation with the 
Niño 3.4 SST index. The eight El Niños and seven La Niñas are indicated in the supplement section S2 and S3. 



 

Figure S8. Spatial distribution of SOCAT spCO2 observations in the Equatorial Pacific Ocean (240°E–280°E) during selected ENSO 
events. The color scale indicates the valid data count per 1°×1° grid cell during four distinct ENSO events: (a) El Niño 1997–1998, (b) 125 
El Niño 2002–2003, (c) La Niña 1995–1996, and (d) La Niña 1998–1999. 

Section S5 Workflow, Ablation experiments, and Validation of spCO2 reconstruction 

5.1 Workflow of the spCO2 reconstruction using the ViT-based framework 

The spCO2 reconstruction workflow based on the ViT framework is organized into four main stages—Data Processing, 
Model Architecture, Training & Validation, and Evaluation & Analysis—as illustrated in Fig. 2 (in main text). At the top, the 130 
data processing panel shows the input sources (CMIP6, MOM6, SOCAT) and the preprocessing steps: temporal 
harmonization to a monthly cadence, spatial regridding to a 1°×1° grid, and feature normalization. These boxes indicate that 
all inputs are brought to a common spatio-temporal grid and scale before being passed to the model. The model architecture 
panel depicts how physical variables are converted into model inputs: variable tokenization, variable aggregation, and then 
fed into a Transformer backbone that learns spatial and temporal dependencies. The model output block illustrates that the 135 
network predicts monthly spCO2 on the same 1° grid. The training & validation panel summarizes our multi-stage training 
strategy: (i) pretraining on CMIP6-derived fields, (ii) fine-tuning using MOM6 plus 80% of SOCAT, and (iii) evaluation 
using a withheld 20% SOCAT validation split and independent tests at long-term station sites. Finally, the evaluation & 
analysis panel shows the main evaluation products derived from the reconstruction: model performance metrics, climatology, 
seasonal cycle, interannual variability, and downstream analyses (air-sea CO2 flux calculation and uncertainty analysis). 140 



5.2 Ablation experiments on the contribution of CMIP6 pre-training 

To quantitatively assess the impact of CMIP6-based pretraining on the reconstruction, we conducted two controlled 
experiments that were identical in all settings except for the use of CMIP6 pretraining. 

(a) Test 1 (with CMIP6 pre-training): The model was first pretrained on CMIP6 simulation outputs, allowing it to learn 
from CMIP6 model results. It was then jointly fine-tuned using MOM6 and SOCAT observational data. 145 

(b) Test 2 (without CMIP6 pre-training): Under the same conditions, the model relied solely on MOM6 and SOCAT data. 
The ablation experiments reveal a substantial impact of CMIP6 pretraining on the results. When pretrained on CMIP6 

(Test 1), the model achieved an RMSE of 7.44 µatm on the validation set. Without CMIP6 pretraining (Test 2), RMSE 
increased to 17.13 µatm. Thus, CMIP6 pretraining reduced RMSE by 9.69 µatm, corresponding to a relative decrease of 
approximately 56.57%. The spatial map indicates that the largest improvements occur in regions with sparse observations 150 
(particularly at high latitudes) and areas with pronounced low-frequency or interannual variability. 

CMIP6 pretraining provides the model with a physically meaningful initialization. By learning from temporally and 
spatially complete simulation fields, the model can first capture large-scale spatial patterns and low-frequency signals, 
enabling faster convergence during fine-tuning, reducing overfitting in observation-sparse regions, and achieving better 
generalization at interannual scales. Although CMIP6 simulations may contain biases, these are effectively corrected during 155 
the subsequent fine-tuning with MOM6 and SOCAT, ensuring the final reconstruction remains consistent with observations. 
The substantial RMSE improvement (a reduction of 9.69 µatm, ~56.57%) demonstrates that this two-stage training strategy 
achieves an optimal balance between physical consistency and empirical accuracy. 

 
Figure S9. Impact of CMIP6 pre-training on reconstructed spCO2 fields. (a) Test 1 (with CMIP6 pre-training): CMIP6 pre-training 160 
followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without CMIP6 pre-training): no CMIP6 pre-training, trained only on 
MOM6 & SOCAT. Inclusion of CMIP6 pre-training reduces validation RMSE by 9.69 µatm (~56.57% relative reduction), justifying 
the two-stage training strategy. 

5.3 Ablation experiments on the contribution of MOM6 fine-tuning 

To assess the role of MOM6 fine-tuning in our reconstruction framework, we designed two comparative experiments while 165 
keeping all other model settings identical: 

(a) Test 1 (with MOM6 in fine-tuning): The model was first pretrained on CMIP6 outputs and then fine-tuned using both 
MOM6 simulation outputs and SOCAT observations. MOM6 provides continuous, physically consistent global fields, while 
SOCAT supplies essential observational constraints. 

(b) Test 2 (without MOM6 in fine-tuning): The model was pretrained on CMIP6 data as in Test 1 but fine-tuned solely 170 
with SOCAT observations, without incorporating MOM6 outputs. 

The fine-tuning strategy that included MOM6 data (Test 1) achieved a validation RMSE of 7.44 µatm. In contrast, 
excluding MOM6 during fine-tuning (Test 2) resulted in a substantially higher RMSE of 12.27 µatm. Thus, incorporating 
MOM6 during fine-tuning reduced RMSE by 4.83 µatm, corresponding to a relative decrease of approximately 39.36%. The 
spatial map indicates that the largest improvements occur in regions with sparse observations, particularly at high latitudes, 175 
and in areas with pronounced low-frequency or interannual spCO2 variability, highlighting the crucial role of MOM6 in 
enhancing reconstruction accuracy.  

In our framework, MOM6 outputs are incorporated alongside SOCAT observations during the fine-tuning stage. SOCAT 
provides the essential observational constraint, but its spatial and temporal coverage is sparse and uneven. MOM6 
complements this by supplying continuous global fields that embed large-scale physical consistency, thereby stabilizing the 180 
training process and enhancing generalization, particularly in data-poor regions. Mechanistically, MOM6 fine-tuning serves 
three key functions: (i) it exposes the network to continuous, globally coherent background fields (e.g., large-scale gradients, 
seasonal cycles, and interannual variability), thereby reducing overfitting to the sparse and uneven SOCAT distribution; (ii) it 



aligns model weights with physically plausible oceanographic relationships, mitigating the direct transfer of structural biases 
from heterogeneous CMIP6 pre-training and avoiding abrupt or unrealistic weight corrections during SOCAT anchoring; (iii) 185 
it supplies realistic background variability, enabling the model to learn coherent patterns prior to adjustment with pointwise 
observations, which strengthens generalization in data-limited regions. In summary, MOM6 fine-tuning functions as a 
physically consistent bridge between synthetic CMIP6 pre-training and sparse SOCAT observations, significantly improving 
the stability, robustness, and reliability of the reconstruction, especially in regions with limited observational coverage. 

 190 
Figure S10. Impact of MOM6 fine-tuning on reconstructed spCO2 fields. (a) Test 1 (with MOM6 in fine-tuning): CMIP6 
pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without MOM6 in fine-tuning): CMIP6 pre-training, fine-tuning 
only on SOCAT. Inclusion of MOM6 fine-tuning reduces validation RMSE by 4.83 µatm (~39.36% relative reduction), highlighting 
the crucial role of MOM6 in enhancing reconstruction accuracy. 

5.4 Ablation experiments on the contribution of different CMIP6 pre-training data combination 195 

To assess the sensitivity of our reconstruction to the choice of CMIP6 models and the fine-tuning strategy, we conducted two 
comparative pre-training experiments while keeping all other model settings identical: 

(a) Test 1 (3-model CMIP6 pre-training): The model was pre-trained on a subset of three CMIP6 simulations 
(GFDL-ESM4, NorESM2-LM, NorESM2-MM) and then fine-tuned with the same MOM6 and SOCAT data. 

(b) Test 2 (4-model CMIP6 pre-training): The model was pre-trained on a different subset of four CMIP6 simulations 200 
(CESM2, CESM2-FV2, CESM2-WACCM, CESM2-WACCM-FV2) and fine-tuned using the same MOM6 and SOCAT 
data. 

The ViT reconstruction using the 3-model subset (Test 1) achieved a validation RMSE of 10.48 µatm, while the 4-model 
subset (Test 2) yielded a slightly lower RMSE of 9.54 µatm. Both are higher than the RMSE obtained using all seven CMIP6 
models (7.44 µatm), indicating that the total amount of pre-training data can influence reconstruction performance. 205 
Nevertheless, the difference between the two subsets is small (RMSE difference of 0.94 µatm, ~8.97%), and deviations from 
the 7-model pre-training result are modest (~2-3 µatm). 

Overall, these results indicate that, as long as multiple CMIP6 models are included to capture diverse large-scale oceanic 
patterns, the reconstruction is largely robust to the specific choice of pre-training models. The two-stage training framework 
effectively stabilizes reconstruction performance, corrects model-specific biases, and reliably integrates observational 210 
information. To further strengthen robustness, CMIP6 models were carefully selected based on the evaluation framework of 
Liao et al. (2021), ensuring that the chosen models accurately represent key oceanic carbon dynamics. Through multi-model 
pre-training combined with carefully designed fine-tuning strategies, our approach maintains stable and reliable 
reconstruction performance, effectively capturing large-scale patterns, low-frequency variability, and regional details across 
different spatial and temporal scales. 215 



 
Figure S11. The sensitivity of reconstructed spCO2 fields to the choice of CMIP6 models. (a) Test 1 (3-model CMIP6 pre-training): 
three CMIP6 simulations (GFDL-ESM4, NorESM2-LM, NorESM2-MM) pre-training followed by MOM6 & SOCAT fine-tuning; 
(b) Test 2 (4-model CMIP6 pre-training): four CMIP6 simulations (CESM2, CESM2-FV2, CESM2-WACCM, 
CESM2-WACCM-FV2) pre-training followed by MOM6 & SOCAT fine-tuning. 220 

5.5 Ablation experiments on the contribution of SOCAT fine-tuning 

To evaluate the role of SOCAT observations in the fine-tuning stage, we designed two comparative experiments while 
keeping all other model settings identical: 

(a) Test 1 (with SOCAT in fine-tuning): The model, pretrained on CMIP6 and optionally fine-tuned with MOM6 fields, 
was further fine-tuned using SOCAT in situ pCO2 observations. SOCAT provides high-quality pointwise constraints that 225 
correct model biases and ensure alignment with real-world ocean conditions. 

(b) Test 2 (without SOCAT in fine-tuning): The same pretrained model was fine-tuned without using SOCAT data, relying 
solely on MOM6 fields for spatial coverage and physical consistency. 

Incorporating SOCAT observations during fine-tuning (Test 1) yielded a validation RMSE of 7.44 µatm. In contrast, 
excluding SOCAT (Test 2) resulted in a dramatically higher RMSE of 26.87 µatm. Thus, the inclusion of SOCAT reduced 230 
RMSE by 19.43 µatm, corresponding to a relative decrease of approximately 72.31%. This large improvement demonstrates 
the critical role of SOCAT observations in aligning the reconstructed spCO2 field with real-world measurements.  

SOCAT data act as a supervisory signal that corrects local and regional biases in the model, ensuring the fine-tuned 
reconstruction reproduces observed variability while retaining large-scale spatiotemporal patterns learned during CMIP6 
pretraining and MOM6 fine-tuning. Without SOCAT, the model cannot accurately capture local pCO2 variations, leading to 235 
substantial errors. Proper integration of SOCAT with MOM6 fields balances the influence of sparse observational points and 
physically consistent background patterns, enhancing overall predictive skill, particularly in regions with limited 
observations. 

 
Figure S12. Impact of SOCAT observations on the fine-tuning of the reconstructed spCO2 field. (a) Test 1 (with SOCAT in 240 
fine-tuning): CMIP6 pre-training followed by MOM6 & SOCAT fine-tuning; (b) Test 2 (without SOCAT in fine-tuning): CMIP6 
pre-training, fine-tuning only on MOM6. Inclusion of SOCAT observations reduces validation RMSE by 19.43 µatm (~72.31% 
relative reduction), demonstrating the pivotal role of SOCAT in achieving accurate spCO2 reconstruction. 



5.6 Ablation experiments on the contribution of physical-biogeochemical Constraints on seasonal cycle 

To assess the impact of MOM6-derived physical-biogeochemical constraints on the seasonal cycle of spCO2, we conducted 245 
two comparative experiments while keeping all other model settings identical: 

(a) Test 1 (with physical-biogeochemical constraints): The SJTU-AViT model reconstruction incorporated MOM6-derived 
constraints during training, enforcing physically and biogeochemically plausible relationships among environmental 
variables. 

(b) Test 2 (without physical-biogeochemical constraints): The SJTU-AViT reconstruction excluded these constraints, 250 
allowing the model to rely solely on observational and CMIP6-derived information. 

The constraints systematically improve model performance across all seasons, as reflected in reduced RMSE values: 
MAM decreases from 11.66 to 11.35 µatm (~2.66%), JJA from 12.31 to 11.93 µatm (~3.09%), SON from 13.67 to 12.51 
µatm (~8.49%), and DJF from 10.32 to 10.18 µatm (~1.36%). On average, the inclusion of constraints reduces RMSE by 
~3.90% across the four seasons. 255 

These improvements are systematic and physically meaningful rather than random fluctuations. The MOM6-derived 
constraints anchor the model to physically and biogeochemically plausible relationships, enhancing the accuracy and 
robustness of the seasonal spCO2 representation. The constraints are particularly effective in regions with sparse 
observational coverage, where purely data-driven reconstructions may be prone to larger errors. Overall, the results 
demonstrate that including physical-biogeochemical constraints play a substantial and reliable role in improving the seasonal 260 
cycle representation of spCO2, rather than merely introducing stochastic or localized enhancements. 

 
Figure S13. Seasonal comparison of SJTU-AViT spCO2 means and RMSE with and without physical-biogeochemical constraints. 
(a-d) Test 1 (with physical-biogeochemical constraints): seasonal mean spCO2 from SJTU-AViT with physical-biogeochemical 
constraints for MAM (March-May), JJA (June-August), SON (September-November), and DJF (December-February). (e-h) Test 2 265 
(without physical-biogeochemical constraints): seasonal mean spCO2 from SJTU-AViT without constraints. (i-l) Test 1 (with 
physical-biogeochemical constraints): seasonal RMSE of spCO2 between SJTU-AViT and SOCAT with constraints. (m-p) Test 2 
(without physical-biogeochemical constraints): seasonal RMSE of spCO2 between SJTU-AViT and SOCAT without constraints. For 
RMSE calculations, SJTU-AViT spCO2 was interpolated to SOCAT observation locations and times. 

5.7 Algorithm uncertainty assessment using synthetic data 270 

We acknowledge that the traditional 𝑢91# approach depends directly on observational coverage and may underestimate 
uncertainty in regions with sparse or missing SOCAT data. To address this limitation, we performed an additional experiment 
using synthetic data to provide a more robust estimate of algorithm uncertainty. Specifically, we used the RECCAP2 
simulation from the Scott Doney group (hereafter SD data) as an independent reference “truth,” which the ViT machine 
learning model had never seen before. The SD data were divided into two subsets: (i) SD_SOCAT: SD outputs sampled at 275 
the spatiotemporal locations of SOCAT observations. (ii) SD_nonSOCAT: the remaining SD outputs. 



Following our standard workflow (CMIP6 pretraining, MOM6 fine-tuning, and SD_SOCAT fine-tuning), we 
reconstructed spCO2 and quantified three RMSE values: 

(a) RMSE_SD_SOCAT = 5.58 µatm. This is bias at training locations, indicating good consistency with data the model 
has seen. 280 

(b) RMSE_SD_nonSOCAT = 7.40 µatm. This is bias at independent validation points, demonstrating generalization to 
unseen data. 

(c) RMSE_SD_all = 7.39 µatm. This is bias error over the full SD dataset, reflecting the model’s overall performance. 
These results show that the training error is slightly lower, as expected, and the validation and overall errors are nearly 

identical. This indicates that the ViT model does not overfit and that its uncertainty estimates are robust across different 285 
spatial domains. The close agreement also demonstrates that algorithm uncertainty captures the spatial heterogeneity of 
errors, particularly in high-latitude or data-sparse regions where	 𝑢91# cannot be defined. 

 
Figure S14. Spatial distribution of RMSE (µatm) between the reconstructed spCO2 field and the Scott Doney RECCAP2 simulation 
(SD data). (a) RMSE for the full SD dataset. (b) RMSE for the SD_SOCAT subset, i.e., SD data sampled at SOCAT observation 290 
locations and used in training. (c) RMSE for the SD_nonSOCAT subset, i.e., SD data at locations not sampled by SOCAT and 
reserved for independent validation. The mean RMSE value for each panel is indicated. The SD data is from Doney et al., (2009). 

5.8 Independence validation of spCO2 reconstruction 

To address the concern regarding the potential lack of independence between the model and the validation data, we 
conducted an additional analysis using an independent reconstructed data product from MPI-SOM-FFN (Landschützer et al. 295 
2016). Specifically, when calculating the detrended and deseasonalized SOCAT STD, we applied the long-term trends and 
seasonal cycles derived from the MPI-SOM-FFN data product instead of the SJTU-AViT estimates. The results, shown in the 
Fig. S15, demonstrate that the overall spatial distribution of SOCAT STD remains highly consistent, with only minimal 
deviations (1.68 µatm). This indicates that the small deviations observed between SJTU-AViT and SOCAT are not artifacts 
of model-data dependence. Therefore, the analysis confirms the robustness of our methodology and supports the credibility 300 
of the interannual variability assessment. 

 
Figure S15. Comparison of spCO2 standard deviations on timescales longer than one year between SJTU-AViT, SOCAT, and 
MPI-SOM-FFN data product. (a) Standard deviation of spCO2 from the SJTU-AViT at SOCAT observation grid points. (b) 
Standard deviation of spCO2 from SOCAT data (the long-term trends and seasonal cycles derived from the SJTU-AViT). (c) 305 
Standard deviation bias between SJTU-AViT and SOCAT (panel a minus panel b). (d) Standard deviation of spCO2 from the 



SJTU-AViT at SOCAT observation grid points. (e) Standard deviation of spCO2 from SOCAT data (the long-term trends and 
seasonal cycles derived from the MPI-SOM-FFN). (f) Standard deviation bias between SJTU-AViT and SOCAT (panel d minus 
panel e). 

5.9 Validation of seasonal phase consistency with SOCAT observations 310 

To evaluate whether our reconstruction can accurately capture the seasonal phase observed in SOCAT, we carried out 
additional analyses comparing the model results with SOCAT climatologies. Specifically: 

(a) Seasonal cycle comparison across ocean basins: We have evaluated the seasonal cycle month-by-month for the global 
ocean and five major basins, separately for the Northern and Southern Hemispheres. These comparisons demonstrate that the 
model well reproduces the seasonal cycle of spCO2, with peak and minimum months largely consistent with SOCAT 315 
observations. 

(b) Phase bias evaluation: We produced global maps of the difference in ocean pCO2 peak month and minimum month 
between SJTU-AViT and SOCAT (in months, range ±6). Across most regions, the phase differences in both peak and 
minimum months are within ±1 month, with only ~5% of grid points exceeding this threshold. 

 320 
Figure S16. Monthly spCO2 regional time series for the Northern Hemisphere across different ocean regions from 1982 to 2023. 
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and SOCAT observations. Peak months are 
indicated to allow direct comparison of seasonal phasing. 



 
Figure S17. Monthly spCO2 regional time series for the Southern Hemisphere across different ocean regions from 1982 to 2023. 325 
Each panel shows the 12-month mean seasonal cycle for both the model (SJTU-AViT) and SOCAT observations. Peak months are 
indicated to allow direct comparison of seasonal phasing. 

 
Figure S18. Grid-scale maps of spCO2 peak- and minimum-month differences (SJTU-AViT − SOCAT, in months, range ±6). For the 
peak-month difference map, positive values indicate that SJTU-AViT peaks later than SOCAT; for the minimum-month difference 330 
map, positive values indicate that SJTU-AViT minimums later than SOCAT. Regions with insufficient observational coverage are 
masked. These maps provide a spatial assessment of the model’s ability to reproduce seasonal maxima and minima timing. 
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